X-Git-Url: http://git.vpit.fr/?p=perl%2Fmodules%2Fre-engine-Hooks.git;a=blobdiff_plain;f=src%2F5021001%2Forig%2Fregexec.c;fp=src%2F5021001%2Forig%2Fregexec.c;h=0000000000000000000000000000000000000000;hp=1aafcc70b2a02c2382f95469120c3b001d929f5f;hb=fe5c260b357f1011dff1c4fdf91dc1811675cca9;hpb=a2a125c4999b4c78dcf85fa24c30b832527b500a diff --git a/src/5021001/orig/regexec.c b/src/5021001/orig/regexec.c deleted file mode 100644 index 1aafcc7..0000000 --- a/src/5021001/orig/regexec.c +++ /dev/null @@ -1,8145 +0,0 @@ -/* regexec.c - */ - -/* - * One Ring to rule them all, One Ring to find them - & - * [p.v of _The Lord of the Rings_, opening poem] - * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"] - * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"] - */ - -/* This file contains functions for executing a regular expression. See - * also regcomp.c which funnily enough, contains functions for compiling - * a regular expression. - * - * This file is also copied at build time to ext/re/re_exec.c, where - * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT. - * This causes the main functions to be compiled under new names and with - * debugging support added, which makes "use re 'debug'" work. - */ - -/* NOTE: this is derived from Henry Spencer's regexp code, and should not - * confused with the original package (see point 3 below). Thanks, Henry! - */ - -/* Additional note: this code is very heavily munged from Henry's version - * in places. In some spots I've traded clarity for efficiency, so don't - * blame Henry for some of the lack of readability. - */ - -/* The names of the functions have been changed from regcomp and - * regexec to pregcomp and pregexec in order to avoid conflicts - * with the POSIX routines of the same names. -*/ - -#ifdef PERL_EXT_RE_BUILD -#include "re_top.h" -#endif - -/* - * pregcomp and pregexec -- regsub and regerror are not used in perl - * - * Copyright (c) 1986 by University of Toronto. - * Written by Henry Spencer. Not derived from licensed software. - * - * Permission is granted to anyone to use this software for any - * purpose on any computer system, and to redistribute it freely, - * subject to the following restrictions: - * - * 1. The author is not responsible for the consequences of use of - * this software, no matter how awful, even if they arise - * from defects in it. - * - * 2. The origin of this software must not be misrepresented, either - * by explicit claim or by omission. - * - * 3. Altered versions must be plainly marked as such, and must not - * be misrepresented as being the original software. - * - **** Alterations to Henry's code are... - **** - **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, - **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 - **** by Larry Wall and others - **** - **** You may distribute under the terms of either the GNU General Public - **** License or the Artistic License, as specified in the README file. - * - * Beware that some of this code is subtly aware of the way operator - * precedence is structured in regular expressions. Serious changes in - * regular-expression syntax might require a total rethink. - */ -#include "EXTERN.h" -#define PERL_IN_REGEXEC_C -#include "perl.h" - -#ifdef PERL_IN_XSUB_RE -# include "re_comp.h" -#else -# include "regcomp.h" -#endif - -#include "inline_invlist.c" -#include "unicode_constants.h" - -#ifdef DEBUGGING -/* At least one required character in the target string is expressible only in - * UTF-8. */ -static const char* const non_utf8_target_but_utf8_required - = "Can't match, because target string needs to be in UTF-8\n"; -#endif - -#define NON_UTF8_TARGET_BUT_UTF8_REQUIRED(target) STMT_START { \ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s", non_utf8_target_but_utf8_required));\ - goto target; \ -} STMT_END - -#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i) - -#ifndef STATIC -#define STATIC static -#endif - -/* Valid only for non-utf8 strings: avoids the reginclass - * call if there are no complications: i.e., if everything matchable is - * straight forward in the bitmap */ -#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,c+1,0) \ - : ANYOF_BITMAP_TEST(p,*(c))) - -/* - * Forwards. - */ - -#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv)) -#define CHR_DIST(a,b) (reginfo->is_utf8_target ? utf8_distance(a,b) : a - b) - -#define HOPc(pos,off) \ - (char *)(reginfo->is_utf8_target \ - ? reghop3((U8*)pos, off, \ - (U8*)(off >= 0 ? reginfo->strend : reginfo->strbeg)) \ - : (U8*)(pos + off)) - -#define HOPBACKc(pos, off) \ - (char*)(reginfo->is_utf8_target \ - ? reghopmaybe3((U8*)pos, -off, (U8*)(reginfo->strbeg)) \ - : (pos - off >= reginfo->strbeg) \ - ? (U8*)pos - off \ - : NULL) - -#define HOP3(pos,off,lim) (reginfo->is_utf8_target ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off)) -#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim)) - -/* lim must be +ve. Returns NULL on overshoot */ -#define HOPMAYBE3(pos,off,lim) \ - (reginfo->is_utf8_target \ - ? reghopmaybe3((U8*)pos, off, (U8*)(lim)) \ - : ((U8*)pos + off <= lim) \ - ? (U8*)pos + off \ - : NULL) - -/* like HOP3, but limits the result to <= lim even for the non-utf8 case. - * off must be >=0; args should be vars rather than expressions */ -#define HOP3lim(pos,off,lim) (reginfo->is_utf8_target \ - ? reghop3((U8*)(pos), off, (U8*)(lim)) \ - : (U8*)((pos + off) > lim ? lim : (pos + off))) - -#define HOP4(pos,off,llim, rlim) (reginfo->is_utf8_target \ - ? reghop4((U8*)(pos), off, (U8*)(llim), (U8*)(rlim)) \ - : (U8*)(pos + off)) -#define HOP4c(pos,off,llim, rlim) ((char*)HOP4(pos,off,llim, rlim)) - -#define NEXTCHR_EOS -10 /* nextchr has fallen off the end */ -#define NEXTCHR_IS_EOS (nextchr < 0) - -#define SET_nextchr \ - nextchr = ((locinput < reginfo->strend) ? UCHARAT(locinput) : NEXTCHR_EOS) - -#define SET_locinput(p) \ - locinput = (p); \ - SET_nextchr - - -#define LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) STMT_START { \ - if (!swash_ptr) { \ - U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; \ - swash_ptr = _core_swash_init("utf8", property_name, &PL_sv_undef, \ - 1, 0, invlist, &flags); \ - assert(swash_ptr); \ - } \ - } STMT_END - -/* If in debug mode, we test that a known character properly matches */ -#ifdef DEBUGGING -# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \ - property_name, \ - invlist, \ - utf8_char_in_property) \ - LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist); \ - assert(swash_fetch(swash_ptr, (U8 *) utf8_char_in_property, TRUE)); -#else -# define LOAD_UTF8_CHARCLASS_DEBUG_TEST(swash_ptr, \ - property_name, \ - invlist, \ - utf8_char_in_property) \ - LOAD_UTF8_CHARCLASS(swash_ptr, property_name, invlist) -#endif - -#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS_DEBUG_TEST( \ - PL_utf8_swash_ptrs[_CC_WORDCHAR], \ - "", \ - PL_XPosix_ptrs[_CC_WORDCHAR], \ - LATIN_CAPITAL_LETTER_SHARP_S_UTF8); - -#define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \ - STMT_START { \ - LOAD_UTF8_CHARCLASS_DEBUG_TEST(PL_utf8_X_regular_begin, \ - "_X_regular_begin", \ - NULL, \ - LATIN_CAPITAL_LETTER_SHARP_S_UTF8); \ - LOAD_UTF8_CHARCLASS_DEBUG_TEST(PL_utf8_X_extend, \ - "_X_extend", \ - NULL, \ - COMBINING_GRAVE_ACCENT_UTF8); \ - } STMT_END - -#define PLACEHOLDER /* Something for the preprocessor to grab onto */ -/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */ - -/* for use after a quantifier and before an EXACT-like node -- japhy */ -/* it would be nice to rework regcomp.sym to generate this stuff. sigh - * - * NOTE that *nothing* that affects backtracking should be in here, specifically - * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a - * node that is in between two EXACT like nodes when ascertaining what the required - * "follow" character is. This should probably be moved to regex compile time - * although it may be done at run time beause of the REF possibility - more - * investigation required. -- demerphq -*/ -#define JUMPABLE(rn) ( \ - OP(rn) == OPEN || \ - (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \ - OP(rn) == EVAL || \ - OP(rn) == SUSPEND || OP(rn) == IFMATCH || \ - OP(rn) == PLUS || OP(rn) == MINMOD || \ - OP(rn) == KEEPS || \ - (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \ -) -#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT) - -#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF ) - -#if 0 -/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so - we don't need this definition. */ -#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF ) -#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFA || OP(rn)==EXACTFA_NO_TRIE || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF ) -#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL ) - -#else -/* ... so we use this as its faster. */ -#define IS_TEXT(rn) ( OP(rn)==EXACT ) -#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn) == EXACTFA || OP(rn) == EXACTFA_NO_TRIE) -#define IS_TEXTF(rn) ( OP(rn)==EXACTF ) -#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL ) - -#endif - -/* - Search for mandatory following text node; for lookahead, the text must - follow but for lookbehind (rn->flags != 0) we skip to the next step. -*/ -#define FIND_NEXT_IMPT(rn) STMT_START { \ - while (JUMPABLE(rn)) { \ - const OPCODE type = OP(rn); \ - if (type == SUSPEND || PL_regkind[type] == CURLY) \ - rn = NEXTOPER(NEXTOPER(rn)); \ - else if (type == PLUS) \ - rn = NEXTOPER(rn); \ - else if (type == IFMATCH) \ - rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \ - else rn += NEXT_OFF(rn); \ - } \ -} STMT_END - -/* These constants are for finding GCB=LV and GCB=LVT in the CLUMP regnode. - * These are for the pre-composed Hangul syllables, which are all in a - * contiguous block and arranged there in such a way so as to facilitate - * alorithmic determination of their characteristics. As such, they don't need - * a swash, but can be determined by simple arithmetic. Almost all are - * GCB=LVT, but every 28th one is a GCB=LV */ -#define SBASE 0xAC00 /* Start of block */ -#define SCount 11172 /* Length of block */ -#define TCount 28 - -#define SLAB_FIRST(s) (&(s)->states[0]) -#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1]) - -static void S_setup_eval_state(pTHX_ regmatch_info *const reginfo); -static void S_cleanup_regmatch_info_aux(pTHX_ void *arg); -static regmatch_state * S_push_slab(pTHX); - -#define REGCP_PAREN_ELEMS 3 -#define REGCP_OTHER_ELEMS 3 -#define REGCP_FRAME_ELEMS 1 -/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and - * are needed for the regexp context stack bookkeeping. */ - -STATIC CHECKPOINT -S_regcppush(pTHX_ const regexp *rex, I32 parenfloor, U32 maxopenparen) -{ - dVAR; - const int retval = PL_savestack_ix; - const int paren_elems_to_push = - (maxopenparen - parenfloor) * REGCP_PAREN_ELEMS; - const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS; - const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT; - I32 p; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGCPPUSH; - - if (paren_elems_to_push < 0) - Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0, maxopenparen: %i parenfloor: %i REGCP_PAREN_ELEMS: %u", - (int)paren_elems_to_push, (int)maxopenparen, - (int)parenfloor, (unsigned)REGCP_PAREN_ELEMS); - - if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems) - Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf - " out of range (%lu-%ld)", - total_elems, - (unsigned long)maxopenparen, - (long)parenfloor); - - SSGROW(total_elems + REGCP_FRAME_ELEMS); - - DEBUG_BUFFERS_r( - if ((int)maxopenparen > (int)parenfloor) - PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" offs=0x%"UVxf": saving capture indices:\n", - PTR2UV(rex), - PTR2UV(rex->offs) - ); - ); - for (p = parenfloor+1; p <= (I32)maxopenparen; p++) { -/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */ - SSPUSHIV(rex->offs[p].end); - SSPUSHIV(rex->offs[p].start); - SSPUSHINT(rex->offs[p].start_tmp); - DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, - " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"\n", - (UV)p, - (IV)rex->offs[p].start, - (IV)rex->offs[p].start_tmp, - (IV)rex->offs[p].end - )); - } -/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */ - SSPUSHINT(maxopenparen); - SSPUSHINT(rex->lastparen); - SSPUSHINT(rex->lastcloseparen); - SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */ - - return retval; -} - -/* These are needed since we do not localize EVAL nodes: */ -#define REGCP_SET(cp) \ - DEBUG_STATE_r( \ - PerlIO_printf(Perl_debug_log, \ - " Setting an EVAL scope, savestack=%"IVdf"\n", \ - (IV)PL_savestack_ix)); \ - cp = PL_savestack_ix - -#define REGCP_UNWIND(cp) \ - DEBUG_STATE_r( \ - if (cp != PL_savestack_ix) \ - PerlIO_printf(Perl_debug_log, \ - " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \ - (IV)(cp), (IV)PL_savestack_ix)); \ - regcpblow(cp) - -#define UNWIND_PAREN(lp, lcp) \ - for (n = rex->lastparen; n > lp; n--) \ - rex->offs[n].end = -1; \ - rex->lastparen = n; \ - rex->lastcloseparen = lcp; - - -STATIC void -S_regcppop(pTHX_ regexp *rex, U32 *maxopenparen_p) -{ - dVAR; - UV i; - U32 paren; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGCPPOP; - - /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */ - i = SSPOPUV; - assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */ - i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */ - rex->lastcloseparen = SSPOPINT; - rex->lastparen = SSPOPINT; - *maxopenparen_p = SSPOPINT; - - i -= REGCP_OTHER_ELEMS; - /* Now restore the parentheses context. */ - DEBUG_BUFFERS_r( - if (i || rex->lastparen + 1 <= rex->nparens) - PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" offs=0x%"UVxf": restoring capture indices to:\n", - PTR2UV(rex), - PTR2UV(rex->offs) - ); - ); - paren = *maxopenparen_p; - for ( ; i > 0; i -= REGCP_PAREN_ELEMS) { - SSize_t tmps; - rex->offs[paren].start_tmp = SSPOPINT; - rex->offs[paren].start = SSPOPIV; - tmps = SSPOPIV; - if (paren <= rex->lastparen) - rex->offs[paren].end = tmps; - DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log, - " \\%"UVuf": %"IVdf"(%"IVdf")..%"IVdf"%s\n", - (UV)paren, - (IV)rex->offs[paren].start, - (IV)rex->offs[paren].start_tmp, - (IV)rex->offs[paren].end, - (paren > rex->lastparen ? "(skipped)" : "")); - ); - paren--; - } -#if 1 - /* It would seem that the similar code in regtry() - * already takes care of this, and in fact it is in - * a better location to since this code can #if 0-ed out - * but the code in regtry() is needed or otherwise tests - * requiring null fields (pat.t#187 and split.t#{13,14} - * (as of patchlevel 7877) will fail. Then again, - * this code seems to be necessary or otherwise - * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ - * --jhi updated by dapm */ - for (i = rex->lastparen + 1; i <= rex->nparens; i++) { - if (i > *maxopenparen_p) - rex->offs[i].start = -1; - rex->offs[i].end = -1; - DEBUG_BUFFERS_r( PerlIO_printf(Perl_debug_log, - " \\%"UVuf": %s ..-1 undeffing\n", - (UV)i, - (i > *maxopenparen_p) ? "-1" : " " - )); - } -#endif -} - -/* restore the parens and associated vars at savestack position ix, - * but without popping the stack */ - -STATIC void -S_regcp_restore(pTHX_ regexp *rex, I32 ix, U32 *maxopenparen_p) -{ - I32 tmpix = PL_savestack_ix; - PL_savestack_ix = ix; - regcppop(rex, maxopenparen_p); - PL_savestack_ix = tmpix; -} - -#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */ - -STATIC bool -S_isFOO_lc(pTHX_ const U8 classnum, const U8 character) -{ - /* Returns a boolean as to whether or not 'character' is a member of the - * Posix character class given by 'classnum' that should be equivalent to a - * value in the typedef '_char_class_number'. - * - * Ideally this could be replaced by a just an array of function pointers - * to the C library functions that implement the macros this calls. - * However, to compile, the precise function signatures are required, and - * these may vary from platform to to platform. To avoid having to figure - * out what those all are on each platform, I (khw) am using this method, - * which adds an extra layer of function call overhead (unless the C - * optimizer strips it away). But we don't particularly care about - * performance with locales anyway. */ - - switch ((_char_class_number) classnum) { - case _CC_ENUM_ALPHANUMERIC: return isALPHANUMERIC_LC(character); - case _CC_ENUM_ALPHA: return isALPHA_LC(character); - case _CC_ENUM_ASCII: return isASCII_LC(character); - case _CC_ENUM_BLANK: return isBLANK_LC(character); - case _CC_ENUM_CASED: return isLOWER_LC(character) - || isUPPER_LC(character); - case _CC_ENUM_CNTRL: return isCNTRL_LC(character); - case _CC_ENUM_DIGIT: return isDIGIT_LC(character); - case _CC_ENUM_GRAPH: return isGRAPH_LC(character); - case _CC_ENUM_LOWER: return isLOWER_LC(character); - case _CC_ENUM_PRINT: return isPRINT_LC(character); - case _CC_ENUM_PSXSPC: return isPSXSPC_LC(character); - case _CC_ENUM_PUNCT: return isPUNCT_LC(character); - case _CC_ENUM_SPACE: return isSPACE_LC(character); - case _CC_ENUM_UPPER: return isUPPER_LC(character); - case _CC_ENUM_WORDCHAR: return isWORDCHAR_LC(character); - case _CC_ENUM_XDIGIT: return isXDIGIT_LC(character); - default: /* VERTSPACE should never occur in locales */ - Perl_croak(aTHX_ "panic: isFOO_lc() has an unexpected character class '%d'", classnum); - } - - assert(0); /* NOTREACHED */ - return FALSE; -} - -STATIC bool -S_isFOO_utf8_lc(pTHX_ const U8 classnum, const U8* character) -{ - /* Returns a boolean as to whether or not the (well-formed) UTF-8-encoded - * 'character' is a member of the Posix character class given by 'classnum' - * that should be equivalent to a value in the typedef - * '_char_class_number'. - * - * This just calls isFOO_lc on the code point for the character if it is in - * the range 0-255. Outside that range, all characters avoid Unicode - * rules, ignoring any locale. So use the Unicode function if this class - * requires a swash, and use the Unicode macro otherwise. */ - - PERL_ARGS_ASSERT_ISFOO_UTF8_LC; - - if (UTF8_IS_INVARIANT(*character)) { - return isFOO_lc(classnum, *character); - } - else if (UTF8_IS_DOWNGRADEABLE_START(*character)) { - return isFOO_lc(classnum, - TWO_BYTE_UTF8_TO_NATIVE(*character, *(character + 1))); - } - - if (classnum < _FIRST_NON_SWASH_CC) { - - /* Initialize the swash unless done already */ - if (! PL_utf8_swash_ptrs[classnum]) { - U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; - PL_utf8_swash_ptrs[classnum] = - _core_swash_init("utf8", - "", - &PL_sv_undef, 1, 0, - PL_XPosix_ptrs[classnum], &flags); - } - - return cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], (U8 *) - character, - TRUE /* is UTF */ )); - } - - switch ((_char_class_number) classnum) { - case _CC_ENUM_SPACE: - case _CC_ENUM_PSXSPC: return is_XPERLSPACE_high(character); - - case _CC_ENUM_BLANK: return is_HORIZWS_high(character); - case _CC_ENUM_XDIGIT: return is_XDIGIT_high(character); - case _CC_ENUM_VERTSPACE: return is_VERTWS_high(character); - default: return 0; /* Things like CNTRL are always - below 256 */ - } - - assert(0); /* NOTREACHED */ - return FALSE; -} - -/* - * pregexec and friends - */ - -#ifndef PERL_IN_XSUB_RE -/* - - pregexec - match a regexp against a string - */ -I32 -Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, char *strend, - char *strbeg, SSize_t minend, SV *screamer, U32 nosave) -/* stringarg: the point in the string at which to begin matching */ -/* strend: pointer to null at end of string */ -/* strbeg: real beginning of string */ -/* minend: end of match must be >= minend bytes after stringarg. */ -/* screamer: SV being matched: only used for utf8 flag, pos() etc; string - * itself is accessed via the pointers above */ -/* nosave: For optimizations. */ -{ - PERL_ARGS_ASSERT_PREGEXEC; - - return - regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL, - nosave ? 0 : REXEC_COPY_STR); -} -#endif - - - -/* re_intuit_start(): - * - * Based on some optimiser hints, try to find the earliest position in the - * string where the regex could match. - * - * rx: the regex to match against - * sv: the SV being matched: only used for utf8 flag; the string - * itself is accessed via the pointers below. Note that on - * something like an overloaded SV, SvPOK(sv) may be false - * and the string pointers may point to something unrelated to - * the SV itself. - * strbeg: real beginning of string - * strpos: the point in the string at which to begin matching - * strend: pointer to the byte following the last char of the string - * flags currently unused; set to 0 - * data: currently unused; set to NULL - * - * The basic idea of re_intuit_start() is to use some known information - * about the pattern, namely: - * - * a) the longest known anchored substring (i.e. one that's at a - * constant offset from the beginning of the pattern; but not - * necessarily at a fixed offset from the beginning of the - * string); - * b) the longest floating substring (i.e. one that's not at a constant - * offset from the beginning of the pattern); - * c) Whether the pattern is anchored to the string; either - * an absolute anchor: /^../, or anchored to \n: /^.../m, - * or anchored to pos(): /\G/; - * d) A start class: a real or synthetic character class which - * represents which characters are legal at the start of the pattern; - * - * to either quickly reject the match, or to find the earliest position - * within the string at which the pattern might match, thus avoiding - * running the full NFA engine at those earlier locations, only to - * eventually fail and retry further along. - * - * Returns NULL if the pattern can't match, or returns the address within - * the string which is the earliest place the match could occur. - * - * The longest of the anchored and floating substrings is called 'check' - * and is checked first. The other is called 'other' and is checked - * second. The 'other' substring may not be present. For example, - * - * /(abc|xyz)ABC\d{0,3}DEFG/ - * - * will have - * - * check substr (float) = "DEFG", offset 6..9 chars - * other substr (anchored) = "ABC", offset 3..3 chars - * stclass = [ax] - * - * Be aware that during the course of this function, sometimes 'anchored' - * refers to a substring being anchored relative to the start of the - * pattern, and sometimes to the pattern itself being anchored relative to - * the string. For example: - * - * /\dabc/: "abc" is anchored to the pattern; - * /^\dabc/: "abc" is anchored to the pattern and the string; - * /\d+abc/: "abc" is anchored to neither the pattern nor the string; - * /^\d+abc/: "abc" is anchored to neither the pattern nor the string, - * but the pattern is anchored to the string. - */ - -char * -Perl_re_intuit_start(pTHX_ - REGEXP * const rx, - SV *sv, - const char * const strbeg, - char *strpos, - char *strend, - const U32 flags, - re_scream_pos_data *data) -{ - dVAR; - struct regexp *const prog = ReANY(rx); - SSize_t start_shift = prog->check_offset_min; - /* Should be nonnegative! */ - SSize_t end_shift = 0; - /* current lowest pos in string where the regex can start matching */ - char *rx_origin = strpos; - SV *check; - const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */ - U8 other_ix = 1 - prog->substrs->check_ix; - bool ml_anch = 0; - char *other_last = strpos;/* latest pos 'other' substr already checked to */ - char *check_at = NULL; /* check substr found at this pos */ - const I32 multiline = prog->extflags & RXf_PMf_MULTILINE; - RXi_GET_DECL(prog,progi); - regmatch_info reginfo_buf; /* create some info to pass to find_byclass */ - regmatch_info *const reginfo = ®info_buf; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_RE_INTUIT_START; - PERL_UNUSED_ARG(flags); - PERL_UNUSED_ARG(data); - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "Intuit: trying to determine minimum start position...\n")); - - /* for now, assume that all substr offsets are positive. If at some point - * in the future someone wants to do clever things with look-behind and - * -ve offsets, they'll need to fix up any code in this function - * which uses these offsets. See the thread beginning - * <20140113145929.GF27210@iabyn.com> - */ - assert(prog->substrs->data[0].min_offset >= 0); - assert(prog->substrs->data[0].max_offset >= 0); - assert(prog->substrs->data[1].min_offset >= 0); - assert(prog->substrs->data[1].max_offset >= 0); - assert(prog->substrs->data[2].min_offset >= 0); - assert(prog->substrs->data[2].max_offset >= 0); - - /* for now, assume that if both present, that the floating substring - * doesn't start before the anchored substring. - * If you break this assumption (e.g. doing better optimisations - * with lookahead/behind), then you'll need to audit the code in this - * function carefully first - */ - assert( - ! ( (prog->anchored_utf8 || prog->anchored_substr) - && (prog->float_utf8 || prog->float_substr)) - || (prog->float_min_offset >= prog->anchored_offset)); - - /* byte rather than char calculation for efficiency. It fails - * to quickly reject some cases that can't match, but will reject - * them later after doing full char arithmetic */ - if (prog->minlen > strend - strpos) { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " String too short...\n")); - goto fail; - } - - reginfo->is_utf8_target = cBOOL(utf8_target); - reginfo->info_aux = NULL; - reginfo->strbeg = strbeg; - reginfo->strend = strend; - reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx)); - reginfo->intuit = 1; - /* not actually used within intuit, but zero for safety anyway */ - reginfo->poscache_maxiter = 0; - - if (utf8_target) { - if (!prog->check_utf8 && prog->check_substr) - to_utf8_substr(prog); - check = prog->check_utf8; - } else { - if (!prog->check_substr && prog->check_utf8) { - if (! to_byte_substr(prog)) { - NON_UTF8_TARGET_BUT_UTF8_REQUIRED(fail); - } - } - check = prog->check_substr; - } - - /* dump the various substring data */ - DEBUG_OPTIMISE_MORE_r({ - int i; - for (i=0; i<=2; i++) { - SV *sv = (utf8_target ? prog->substrs->data[i].utf8_substr - : prog->substrs->data[i].substr); - if (!sv) - continue; - - PerlIO_printf(Perl_debug_log, - " substrs[%d]: min=%"IVdf" max=%"IVdf" end shift=%"IVdf - " useful=%"IVdf" utf8=%d [%s]\n", - i, - (IV)prog->substrs->data[i].min_offset, - (IV)prog->substrs->data[i].max_offset, - (IV)prog->substrs->data[i].end_shift, - BmUSEFUL(sv), - utf8_target ? 1 : 0, - SvPEEK(sv)); - } - }); - - if (prog->intflags & PREGf_ANCH) { /* Match at \G, beg-of-str or after \n */ - - /* ml_anch: check after \n? - * - * A note about IMPLICIT: on an un-anchored pattern beginning - * with /.*.../, these flags will have been added by the - * compiler: - * /.*abc/, /.*abc/m: PREGf_IMPLICIT | PREGf_ANCH_MBOL - * /.*abc/s: PREGf_IMPLICIT | PREGf_ANCH_SBOL - */ - ml_anch = (prog->intflags & PREGf_ANCH_MBOL) - && !(prog->intflags & PREGf_IMPLICIT); - - if (!ml_anch && !(prog->intflags & PREGf_IMPLICIT)) { - /* we are only allowed to match at BOS or \G */ - - /* trivially reject if there's a BOS anchor and we're not at BOS. - * - * Note that we don't try to do a similar quick reject for - * \G, since generally the caller will have calculated strpos - * based on pos() and gofs, so the string is already correctly - * anchored by definition; and handling the exceptions would - * be too fiddly (e.g. REXEC_IGNOREPOS). - */ - if ( strpos != strbeg - && (prog->intflags & (PREGf_ANCH_BOL|PREGf_ANCH_SBOL))) - { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Not at start...\n")); - goto fail; - } - - /* in the presence of an anchor, the anchored (relative to the - * start of the regex) substr must also be anchored relative - * to strpos. So quickly reject if substr isn't found there. - * This works for \G too, because the caller will already have - * subtracted gofs from pos, and gofs is the offset from the - * \G to the start of the regex. For example, in /.abc\Gdef/, - * where substr="abcdef", pos()=3, gofs=4, offset_min=1: - * caller will have set strpos=pos()-4; we look for the substr - * at position pos()-4+1, which lines up with the "a" */ - - if (prog->check_offset_min == prog->check_offset_max - && !(prog->intflags & PREGf_CANY_SEEN)) - { - /* Substring at constant offset from beg-of-str... */ - SSize_t slen = SvCUR(check); - char *s = HOP3c(strpos, prog->check_offset_min, strend); - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Looking for check substr at fixed offset %"IVdf"...\n", - (IV)prog->check_offset_min)); - - if (SvTAIL(check)) { - /* In this case, the regex is anchored at the end too. - * Unless it's a multiline match, the lengths must match - * exactly, give or take a \n. NB: slen >= 1 since - * the last char of check is \n */ - if (!multiline - && ( strend - s > slen - || strend - s < slen - 1 - || (strend - s == slen && strend[-1] != '\n'))) - { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " String too long...\n")); - goto fail_finish; - } - /* Now should match s[0..slen-2] */ - slen--; - } - if (slen && (*SvPVX_const(check) != *s - || (slen > 1 && memNE(SvPVX_const(check), s, slen)))) - { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " String not equal...\n")); - goto fail_finish; - } - - check_at = s; - goto success_at_start; - } - } - } - - end_shift = prog->check_end_shift; - -#ifdef DEBUGGING /* 7/99: reports of failure (with the older version) */ - if (end_shift < 0) - Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ", - (IV)end_shift, RX_PRECOMP(prog)); -#endif - - restart: - - /* This is the (re)entry point of the main loop in this function. - * The goal of this loop is to: - * 1) find the "check" substring in the region rx_origin..strend - * (adjusted by start_shift / end_shift). If not found, reject - * immediately. - * 2) If it exists, look for the "other" substr too if defined; for - * example, if the check substr maps to the anchored substr, then - * check the floating substr, and vice-versa. If not found, go - * back to (1) with rx_origin suitably incremented. - * 3) If we find an rx_origin position that doesn't contradict - * either of the substrings, then check the possible additional - * constraints on rx_origin of /^.../m or a known start class. - * If these fail, then depending on which constraints fail, jump - * back to here, or to various other re-entry points further along - * that skip some of the first steps. - * 4) If we pass all those tests, update the BmUSEFUL() count on the - * substring. If the start position was determined to be at the - * beginning of the string - so, not rejected, but not optimised, - * since we have to run regmatch from position 0 - decrement the - * BmUSEFUL() count. Otherwise increment it. - */ - - - /* first, look for the 'check' substring */ - - { - U8* start_point; - U8* end_point; - - DEBUG_OPTIMISE_MORE_r({ - PerlIO_printf(Perl_debug_log, - " At restart: rx_origin=%"IVdf" Check offset min: %"IVdf - " Start shift: %"IVdf" End shift %"IVdf - " Real end Shift: %"IVdf"\n", - (IV)(rx_origin - strpos), - (IV)prog->check_offset_min, - (IV)start_shift, - (IV)end_shift, - (IV)prog->check_end_shift); - }); - - if (prog->intflags & PREGf_CANY_SEEN) { - start_point= (U8*)(rx_origin + start_shift); - end_point= (U8*)(strend - end_shift); - if (start_point > end_point) - goto fail_finish; - } else { - end_point = HOP3(strend, -end_shift, strbeg); - start_point = HOPMAYBE3(rx_origin, start_shift, end_point); - if (!start_point) - goto fail_finish; - } - - - /* If the regex is absolutely anchored to either the start of the - * string (BOL,SBOL) or to pos() (ANCH_GPOS), then - * check_offset_max represents an upper bound on the string where - * the substr could start. For the ANCH_GPOS case, we assume that - * the caller of intuit will have already set strpos to - * pos()-gofs, so in this case strpos + offset_max will still be - * an upper bound on the substr. - */ - if (!ml_anch - && prog->intflags & PREGf_ANCH - && prog->check_offset_max != SSize_t_MAX) - { - SSize_t len = SvCUR(check) - !!SvTAIL(check); - const char * const anchor = - (prog->intflags & PREGf_ANCH_GPOS ? strpos : strbeg); - - /* do a bytes rather than chars comparison. It's conservative; - * so it skips doing the HOP if the result can't possibly end - * up earlier than the old value of end_point. - */ - if ((char*)end_point - anchor > prog->check_offset_max) { - end_point = HOP3lim((U8*)anchor, - prog->check_offset_max, - end_point -len) - + len; - } - } - - DEBUG_OPTIMISE_MORE_r({ - PerlIO_printf(Perl_debug_log, " fbm_instr len=%d str=<%.*s>\n", - (int)(end_point - start_point), - (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point), - start_point); - }); - - check_at = fbm_instr( start_point, end_point, - check, multiline ? FBMrf_MULTILINE : 0); - - /* Update the count-of-usability, remove useless subpatterns, - unshift s. */ - - DEBUG_EXECUTE_r({ - RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), - SvPVX_const(check), RE_SV_DUMPLEN(check), 30); - PerlIO_printf(Perl_debug_log, " %s %s substr %s%s%s", - (check_at ? "Found" : "Did not find"), - (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) - ? "anchored" : "floating"), - quoted, - RE_SV_TAIL(check), - (check_at ? " at offset " : "...\n") ); - }); - - if (!check_at) - goto fail_finish; - /* Finish the diagnostic message */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(check_at - strpos)) ); - - /* set rx_origin to the minimum position where the regex could start - * matching, given the constraint of the just-matched check substring. - * But don't set it lower than previously. - */ - - if (check_at - rx_origin > prog->check_offset_max) - rx_origin = HOP3c(check_at, -prog->check_offset_max, rx_origin); - } - - - /* now look for the 'other' substring if defined */ - - if (utf8_target ? prog->substrs->data[other_ix].utf8_substr - : prog->substrs->data[other_ix].substr) - { - /* Take into account the "other" substring. */ - char *last, *last1; - char *s; - SV* must; - struct reg_substr_datum *other; - - do_other_substr: - other = &prog->substrs->data[other_ix]; - - /* if "other" is anchored: - * we've previously found a floating substr starting at check_at. - * This means that the regex origin must lie somewhere - * between min (rx_origin): HOP3(check_at, -check_offset_max) - * and max: HOP3(check_at, -check_offset_min) - * (except that min will be >= strpos) - * So the fixed substr must lie somewhere between - * HOP3(min, anchored_offset) - * HOP3(max, anchored_offset) + SvCUR(substr) - */ - - /* if "other" is floating - * Calculate last1, the absolute latest point where the - * floating substr could start in the string, ignoring any - * constraints from the earlier fixed match. It is calculated - * as follows: - * - * strend - prog->minlen (in chars) is the absolute latest - * position within the string where the origin of the regex - * could appear. The latest start point for the floating - * substr is float_min_offset(*) on from the start of the - * regex. last1 simply combines thee two offsets. - * - * (*) You might think the latest start point should be - * float_max_offset from the regex origin, and technically - * you'd be correct. However, consider - * /a\d{2,4}bcd\w/ - * Here, float min, max are 3,5 and minlen is 7. - * This can match either - * /a\d\dbcd\w/ - * /a\d\d\dbcd\w/ - * /a\d\d\d\dbcd\w/ - * In the first case, the regex matches minlen chars; in the - * second, minlen+1, in the third, minlen+2. - * In the first case, the floating offset is 3 (which equals - * float_min), in the second, 4, and in the third, 5 (which - * equals float_max). In all cases, the floating string bcd - * can never start more than 4 chars from the end of the - * string, which equals minlen - float_min. As the substring - * starts to match more than float_min from the start of the - * regex, it makes the regex match more than minlen chars, - * and the two cancel each other out. So we can always use - * float_min - minlen, rather than float_max - minlen for the - * latest position in the string. - * - * Note that -minlen + float_min_offset is equivalent (AFAIKT) - * to CHR_SVLEN(must) - !!SvTAIL(must) + prog->float_end_shift - */ - - assert(prog->minlen >= other->min_offset); - last1 = HOP3c(strend, - other->min_offset - prog->minlen, strbeg); - - if (other_ix) {/* i.e. if (other-is-float) */ - /* last is the latest point where the floating substr could - * start, *given* any constraints from the earlier fixed - * match. This constraint is that the floating string starts - * <= float_max_offset chars from the regex origin (rx_origin). - * If this value is less than last1, use it instead. - */ - assert(rx_origin <= last1); - last = - /* this condition handles the offset==infinity case, and - * is a short-cut otherwise. Although it's comparing a - * byte offset to a char length, it does so in a safe way, - * since 1 char always occupies 1 or more bytes, - * so if a string range is (last1 - rx_origin) bytes, - * it will be less than or equal to (last1 - rx_origin) - * chars; meaning it errs towards doing the accurate HOP3 - * rather than just using last1 as a short-cut */ - (last1 - rx_origin) < other->max_offset - ? last1 - : (char*)HOP3lim(rx_origin, other->max_offset, last1); - } - else { - assert(strpos + start_shift <= check_at); - last = HOP4c(check_at, other->min_offset - start_shift, - strbeg, strend); - } - - s = HOP3c(rx_origin, other->min_offset, strend); - if (s < other_last) /* These positions already checked */ - s = other_last; - - must = utf8_target ? other->utf8_substr : other->substr; - assert(SvPOK(must)); - s = fbm_instr( - (unsigned char*)s, - (unsigned char*)last + SvCUR(must) - (SvTAIL(must)!=0), - must, - multiline ? FBMrf_MULTILINE : 0 - ); - DEBUG_EXECUTE_r({ - RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), - SvPVX_const(must), RE_SV_DUMPLEN(must), 30); - PerlIO_printf(Perl_debug_log, " %s %s substr %s%s", - s ? "Found" : "Contradicts", - other_ix ? "floating" : "anchored", - quoted, RE_SV_TAIL(must)); - }); - - - if (!s) { - /* last1 is latest possible substr location. If we didn't - * find it before there, we never will */ - if (last >= last1) { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - ", giving up...\n")); - goto fail_finish; - } - - /* try to find the check substr again at a later - * position. Maybe next time we'll find the "other" substr - * in range too */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - ", trying %s at offset %ld...\n", - (other_ix ? "floating" : "anchored"), - (long)(HOP3c(check_at, 1, strend) - strpos))); - - other_last = HOP3c(last, 1, strend) /* highest failure */; - rx_origin = - other_ix /* i.e. if other-is-float */ - ? HOP3c(rx_origin, 1, strend) - : HOP4c(last, 1 - other->min_offset, strbeg, strend); - goto restart; - } - else { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n", - (long)(s - strpos))); - - if (other_ix) { /* if (other-is-float) */ - /* other_last is set to s, not s+1, since its possible for - * a floating substr to fail first time, then succeed - * second time at the same floating position; e.g.: - * "-AB--AABZ" =~ /\wAB\d*Z/ - * The first time round, anchored and float match at - * "-(AB)--AAB(Z)" then fail on the initial \w character - * class. Second time round, they match at "-AB--A(AB)(Z)". - */ - other_last = s; - } - else { - rx_origin = HOP3c(s, -other->min_offset, strbeg); - other_last = HOP3c(s, 1, strend); - } - } - } - else { - DEBUG_OPTIMISE_MORE_r( - PerlIO_printf(Perl_debug_log, - " Check-only match: offset min:%"IVdf" max:%"IVdf - " check_at:%"IVdf" rx_origin:%"IVdf" rx_origin-check_at:%"IVdf - " strend-strpos:%"IVdf"\n", - (IV)prog->check_offset_min, - (IV)prog->check_offset_max, - (IV)(check_at-strpos), - (IV)(rx_origin-strpos), - (IV)(rx_origin-check_at), - (IV)(strend-strpos) - ) - ); - } - - postprocess_substr_matches: - - /* handle the extra constraint of /^.../m if present */ - - if (ml_anch && rx_origin != strbeg && rx_origin[-1] != '\n') { - char *s; - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " looking for /^/m anchor")); - - /* we have failed the constraint of a \n before rx_origin. - * Find the next \n, if any, even if it's beyond the current - * anchored and/or floating substrings. Whether we should be - * scanning ahead for the next \n or the next substr is debatable. - * On the one hand you'd expect rare substrings to appear less - * often than \n's. On the other hand, searching for \n means - * we're effectively flipping been check_substr and "\n" on each - * iteration as the current "rarest" string candidate, which - * means for example that we'll quickly reject the whole string if - * hasn't got a \n, rather than trying every substr position - * first - */ - - s = HOP3c(strend, - prog->minlen, strpos); - if (s <= rx_origin || - ! ( rx_origin = (char *)memchr(rx_origin, '\n', s - rx_origin))) - { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Did not find /%s^%s/m...\n", - PL_colors[0], PL_colors[1])); - goto fail_finish; - } - - /* earliest possible origin is 1 char after the \n. - * (since *rx_origin == '\n', it's safe to ++ here rather than - * HOP(rx_origin, 1)) */ - rx_origin++; - - if (prog->substrs->check_ix == 0 /* check is anchored */ - || rx_origin >= HOP3c(check_at, - prog->check_offset_min, strpos)) - { - /* Position contradicts check-string; either because - * check was anchored (and thus has no wiggle room), - * or check was float and rx_origin is above the float range */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n", - PL_colors[0], PL_colors[1], (long)(rx_origin - strpos))); - goto restart; - } - - /* if we get here, the check substr must have been float, - * is in range, and we may or may not have had an anchored - * "other" substr which still contradicts */ - assert(prog->substrs->check_ix); /* check is float */ - - if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) { - /* whoops, the anchored "other" substr exists, so we still - * contradict. On the other hand, the float "check" substr - * didn't contradict, so just retry the anchored "other" - * substr */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n", - PL_colors[0], PL_colors[1], - (long)(rx_origin - strpos), - (long)(rx_origin - strpos + prog->anchored_offset))); - goto do_other_substr; - } - - /* success: we don't contradict the found floating substring - * (and there's no anchored substr). */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Found /%s^%s/m at offset %ld...\n", - PL_colors[0], PL_colors[1], (long)(rx_origin - strpos))); - } - else { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " (multiline anchor test skipped)\n")); - } - - success_at_start: - - - /* if we have a starting character class, then test that extra constraint. - * (trie stclasses are too expensive to use here, we are better off to - * leave it to regmatch itself) */ - - if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) { - const U8* const str = (U8*)STRING(progi->regstclass); - - /* XXX this value could be pre-computed */ - const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT - ? (reginfo->is_utf8_pat - ? utf8_distance(str + STR_LEN(progi->regstclass), str) - : STR_LEN(progi->regstclass)) - : 1); - char * endpos; - char *s; - /* latest pos that a matching float substr constrains rx start to */ - char *rx_max_float = NULL; - - /* if the current rx_origin is anchored, either by satisfying an - * anchored substring constraint, or a /^.../m constraint, then we - * can reject the current origin if the start class isn't found - * at the current position. If we have a float-only match, then - * rx_origin is constrained to a range; so look for the start class - * in that range. if neither, then look for the start class in the - * whole rest of the string */ - - /* XXX DAPM it's not clear what the minlen test is for, and why - * it's not used in the floating case. Nothing in the test suite - * causes minlen == 0 here. See <20140313134639.GS12844@iabyn.com>. - * Here are some old comments, which may or may not be correct: - * - * minlen == 0 is possible if regstclass is \b or \B, - * and the fixed substr is ''$. - * Since minlen is already taken into account, rx_origin+1 is - * before strend; accidentally, minlen >= 1 guaranties no false - * positives at rx_origin + 1 even for \b or \B. But (minlen? 1 : - * 0) below assumes that regstclass does not come from lookahead... - * If regstclass takes bytelength more than 1: If charlength==1, OK. - * This leaves EXACTF-ish only, which are dealt with in - * find_byclass(). - */ - - if (prog->anchored_substr || prog->anchored_utf8 || ml_anch) - endpos= HOP3c(rx_origin, (prog->minlen ? cl_l : 0), strend); - else if (prog->float_substr || prog->float_utf8) { - rx_max_float = HOP3c(check_at, -start_shift, strbeg); - endpos= HOP3c(rx_max_float, cl_l, strend); - } - else - endpos= strend; - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " looking for class: start_shift: %"IVdf" check_at: %"IVdf - " rx_origin: %"IVdf" endpos: %"IVdf"\n", - (IV)start_shift, (IV)(check_at - strbeg), - (IV)(rx_origin - strbeg), (IV)(endpos - strbeg))); - - s = find_byclass(prog, progi->regstclass, rx_origin, endpos, - reginfo); - if (!s) { - if (endpos == strend) { - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " Could not match STCLASS...\n") ); - goto fail; - } - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " This position contradicts STCLASS...\n") ); - if ((prog->intflags & PREGf_ANCH) && !ml_anch - && !(prog->intflags & PREGf_IMPLICIT)) - goto fail; - - /* Contradict one of substrings */ - if (prog->anchored_substr || prog->anchored_utf8) { - if (prog->substrs->check_ix == 1) { /* check is float */ - /* Have both, check_string is floating */ - assert(rx_origin + start_shift <= check_at); - if (rx_origin + start_shift != check_at) { - /* not at latest position float substr could match: - * Recheck anchored substring, but not floating. - * The condition above is in bytes rather than - * chars for efficiency. It's conservative, in - * that it errs on the side of doing 'goto - * do_other_substr', where a more accurate - * char-based calculation will be done */ - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " Looking for anchored substr starting at offset %ld...\n", - (long)(other_last - strpos)) ); - goto do_other_substr; - } - } - } - else { - /* float-only */ - - if (ml_anch) { - /* In the presence of ml_anch, we might be able to - * find another \n without breaking the current float - * constraint. */ - - /* strictly speaking this should be HOP3c(..., 1, ...), - * but since we goto a block of code that's going to - * search for the next \n if any, its safe here */ - rx_origin++; - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " Looking for /%s^%s/m starting at offset %ld...\n", - PL_colors[0], PL_colors[1], - (long)(rx_origin - strpos)) ); - goto postprocess_substr_matches; - } - - /* strictly speaking this can never be true; but might - * be if we ever allow intuit without substrings */ - if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) - goto fail; - - rx_origin = rx_max_float; - } - - /* at this point, any matching substrings have been - * contradicted. Start again... */ - - rx_origin = HOP3c(rx_origin, 1, strend); - - /* uses bytes rather than char calculations for efficiency. - * It's conservative: it errs on the side of doing 'goto restart', - * where there is code that does a proper char-based test */ - if (rx_origin + start_shift + end_shift > strend) { - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " Could not match STCLASS...\n") ); - goto fail; - } - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - " Looking for %s substr starting at offset %ld...\n", - (prog->substrs->check_ix ? "floating" : "anchored"), - (long)(rx_origin + start_shift - strpos)) ); - goto restart; - } - - /* Success !!! */ - - if (rx_origin != s) { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " By STCLASS: moving %ld --> %ld\n", - (long)(rx_origin - strpos), (long)(s - strpos)) - ); - } - else { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - " Does not contradict STCLASS...\n"); - ); - } - } - - /* Decide whether using the substrings helped */ - - if (rx_origin != strpos) { - /* Fixed substring is found far enough so that the match - cannot start at strpos. */ - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " try at offset...\n")); - ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */ - } - else { - /* The found rx_origin position does not prohibit matching at - * strpos, so calling intuit didn't gain us anything. Decrement - * the BmUSEFUL() count on the check substring, and if we reach - * zero, free it. */ - if (!(prog->intflags & PREGf_NAUGHTY) - && (utf8_target ? ( - prog->check_utf8 /* Could be deleted already */ - && --BmUSEFUL(prog->check_utf8) < 0 - && (prog->check_utf8 == prog->float_utf8) - ) : ( - prog->check_substr /* Could be deleted already */ - && --BmUSEFUL(prog->check_substr) < 0 - && (prog->check_substr == prog->float_substr) - ))) - { - /* If flags & SOMETHING - do not do it many times on the same match */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " ... Disabling check substring...\n")); - /* XXX Does the destruction order has to change with utf8_target? */ - SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr); - SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8); - prog->check_substr = prog->check_utf8 = NULL; /* disable */ - prog->float_substr = prog->float_utf8 = NULL; /* clear */ - check = NULL; /* abort */ - /* XXXX This is a remnant of the old implementation. It - looks wasteful, since now INTUIT can use many - other heuristics. */ - prog->extflags &= ~RXf_USE_INTUIT; - } - } - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "Intuit: %sSuccessfully guessed:%s match at offset %ld\n", - PL_colors[4], PL_colors[5], (long)(rx_origin - strpos)) ); - - return rx_origin; - - fail_finish: /* Substring not found */ - if (prog->check_substr || prog->check_utf8) /* could be removed already */ - BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */ - fail: - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n", - PL_colors[4], PL_colors[5])); - return NULL; -} - - -#define DECL_TRIE_TYPE(scan) \ - const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold, \ - trie_utf8_exactfa_fold, trie_latin_utf8_exactfa_fold } \ - trie_type = ((scan->flags == EXACT) \ - ? (utf8_target ? trie_utf8 : trie_plain) \ - : (scan->flags == EXACTFA) \ - ? (utf8_target ? trie_utf8_exactfa_fold : trie_latin_utf8_exactfa_fold) \ - : (utf8_target ? trie_utf8_fold : trie_latin_utf8_fold)) - -#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, uvc, charid, foldlen, foldbuf, uniflags) \ -STMT_START { \ - STRLEN skiplen; \ - U8 flags = FOLD_FLAGS_FULL; \ - switch (trie_type) { \ - case trie_utf8_exactfa_fold: \ - flags |= FOLD_FLAGS_NOMIX_ASCII; \ - /* FALLTHROUGH */ \ - case trie_utf8_fold: \ - if ( foldlen>0 ) { \ - uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \ - foldlen -= len; \ - uscan += len; \ - len=0; \ - } else { \ - uvc = _to_utf8_fold_flags( (const U8*) uc, foldbuf, &foldlen, flags); \ - len = UTF8SKIP(uc); \ - skiplen = UNISKIP( uvc ); \ - foldlen -= skiplen; \ - uscan = foldbuf + skiplen; \ - } \ - break; \ - case trie_latin_utf8_exactfa_fold: \ - flags |= FOLD_FLAGS_NOMIX_ASCII; \ - /* FALLTHROUGH */ \ - case trie_latin_utf8_fold: \ - if ( foldlen>0 ) { \ - uvc = utf8n_to_uvchr( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \ - foldlen -= len; \ - uscan += len; \ - len=0; \ - } else { \ - len = 1; \ - uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, flags); \ - skiplen = UNISKIP( uvc ); \ - foldlen -= skiplen; \ - uscan = foldbuf + skiplen; \ - } \ - break; \ - case trie_utf8: \ - uvc = utf8n_to_uvchr( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \ - break; \ - case trie_plain: \ - uvc = (UV)*uc; \ - len = 1; \ - } \ - if (uvc < 256) { \ - charid = trie->charmap[ uvc ]; \ - } \ - else { \ - charid = 0; \ - if (widecharmap) { \ - SV** const svpp = hv_fetch(widecharmap, \ - (char*)&uvc, sizeof(UV), 0); \ - if (svpp) \ - charid = (U16)SvIV(*svpp); \ - } \ - } \ -} STMT_END - -#define REXEC_FBC_EXACTISH_SCAN(CoNd) \ -STMT_START { \ - while (s <= e) { \ - if ( (CoNd) \ - && (ln == 1 || folder(s, pat_string, ln)) \ - && (reginfo->intuit || regtry(reginfo, &s)) )\ - goto got_it; \ - s++; \ - } \ -} STMT_END - -#define REXEC_FBC_UTF8_SCAN(CoDe) \ -STMT_START { \ - while (s < strend) { \ - CoDe \ - s += UTF8SKIP(s); \ - } \ -} STMT_END - -#define REXEC_FBC_SCAN(CoDe) \ -STMT_START { \ - while (s < strend) { \ - CoDe \ - s++; \ - } \ -} STMT_END - -#define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \ -REXEC_FBC_UTF8_SCAN( \ - if (CoNd) { \ - if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \ - goto got_it; \ - else \ - tmp = doevery; \ - } \ - else \ - tmp = 1; \ -) - -#define REXEC_FBC_CLASS_SCAN(CoNd) \ -REXEC_FBC_SCAN( \ - if (CoNd) { \ - if (tmp && (reginfo->intuit || regtry(reginfo, &s))) \ - goto got_it; \ - else \ - tmp = doevery; \ - } \ - else \ - tmp = 1; \ -) - -#define REXEC_FBC_TRYIT \ -if ((reginfo->intuit || regtry(reginfo, &s))) \ - goto got_it - -#define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \ - if (utf8_target) { \ - REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \ - } \ - else { \ - REXEC_FBC_CLASS_SCAN(CoNd); \ - } - -#define DUMP_EXEC_POS(li,s,doutf8) \ - dump_exec_pos(li,s,(reginfo->strend),(reginfo->strbeg), \ - startpos, doutf8) - - -#define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ - tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \ - tmp = TEST_NON_UTF8(tmp); \ - REXEC_FBC_UTF8_SCAN( \ - if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ - tmp = !tmp; \ - IF_SUCCESS; \ - } \ - else { \ - IF_FAIL; \ - } \ - ); \ - -#define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \ - if (s == reginfo->strbeg) { \ - tmp = '\n'; \ - } \ - else { \ - U8 * const r = reghop3((U8*)s, -1, (U8*)reginfo->strbeg); \ - tmp = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, \ - 0, UTF8_ALLOW_DEFAULT); \ - } \ - tmp = TeSt1_UtF8; \ - LOAD_UTF8_CHARCLASS_ALNUM(); \ - REXEC_FBC_UTF8_SCAN( \ - if (tmp == ! (TeSt2_UtF8)) { \ - tmp = !tmp; \ - IF_SUCCESS; \ - } \ - else { \ - IF_FAIL; \ - } \ - ); \ - -/* The only difference between the BOUND and NBOUND cases is that - * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in - * NBOUND. This is accomplished by passing it in either the if or else clause, - * with the other one being empty */ -#define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ - FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) - -#define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ - FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER) - -#define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ - FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) - -#define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \ - FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT) - - -/* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to - * be passed in completely with the variable name being tested, which isn't - * such a clean interface, but this is easier to read than it was before. We - * are looking for the boundary (or non-boundary between a word and non-word - * character. The utf8 and non-utf8 cases have the same logic, but the details - * must be different. Find the "wordness" of the character just prior to this - * one, and compare it with the wordness of this one. If they differ, we have - * a boundary. At the beginning of the string, pretend that the previous - * character was a new-line */ -#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \ - if (utf8_target) { \ - UTF8_CODE \ - } \ - else { /* Not utf8 */ \ - tmp = (s != reginfo->strbeg) ? UCHARAT(s - 1) : '\n'; \ - tmp = TEST_NON_UTF8(tmp); \ - REXEC_FBC_SCAN( \ - if (tmp == ! TEST_NON_UTF8((U8) *s)) { \ - tmp = !tmp; \ - IF_SUCCESS; \ - } \ - else { \ - IF_FAIL; \ - } \ - ); \ - } \ - if ((!prog->minlen && tmp) && (reginfo->intuit || regtry(reginfo, &s))) \ - goto got_it; - -/* We know what class REx starts with. Try to find this position... */ -/* if reginfo->intuit, its a dryrun */ -/* annoyingly all the vars in this routine have different names from their counterparts - in regmatch. /grrr */ - -STATIC char * -S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s, - const char *strend, regmatch_info *reginfo) -{ - dVAR; - const I32 doevery = (prog->intflags & PREGf_SKIP) == 0; - char *pat_string; /* The pattern's exactish string */ - char *pat_end; /* ptr to end char of pat_string */ - re_fold_t folder; /* Function for computing non-utf8 folds */ - const U8 *fold_array; /* array for folding ords < 256 */ - STRLEN ln; - STRLEN lnc; - U8 c1; - U8 c2; - char *e; - I32 tmp = 1; /* Scratch variable? */ - const bool utf8_target = reginfo->is_utf8_target; - UV utf8_fold_flags = 0; - const bool is_utf8_pat = reginfo->is_utf8_pat; - bool to_complement = FALSE; /* Invert the result? Taking the xor of this - with a result inverts that result, as 0^1 = - 1 and 1^1 = 0 */ - _char_class_number classnum; - - RXi_GET_DECL(prog,progi); - - PERL_ARGS_ASSERT_FIND_BYCLASS; - - /* We know what class it must start with. */ - switch (OP(c)) { - case ANYOF: - if (utf8_target) { - REXEC_FBC_UTF8_CLASS_SCAN( - reginclass(prog, c, (U8*)s, (U8*) strend, utf8_target)); - } - else { - REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s)); - } - break; - case CANY: - REXEC_FBC_SCAN( - if (tmp && (reginfo->intuit || regtry(reginfo, &s))) - goto got_it; - else - tmp = doevery; - ); - break; - - case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */ - assert(! is_utf8_pat); - /* FALLTHROUGH */ - case EXACTFA: - if (is_utf8_pat || utf8_target) { - utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; - goto do_exactf_utf8; - } - fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */ - folder = foldEQ_latin1; /* /a, except the sharp s one which */ - goto do_exactf_non_utf8; /* isn't dealt with by these */ - - case EXACTF: /* This node only generated for non-utf8 patterns */ - assert(! is_utf8_pat); - if (utf8_target) { - utf8_fold_flags = 0; - goto do_exactf_utf8; - } - fold_array = PL_fold; - folder = foldEQ; - goto do_exactf_non_utf8; - - case EXACTFL: - if (is_utf8_pat || utf8_target || IN_UTF8_CTYPE_LOCALE) { - utf8_fold_flags = FOLDEQ_LOCALE; - goto do_exactf_utf8; - } - fold_array = PL_fold_locale; - folder = foldEQ_locale; - goto do_exactf_non_utf8; - - case EXACTFU_SS: - if (is_utf8_pat) { - utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED; - } - goto do_exactf_utf8; - - case EXACTFU: - if (is_utf8_pat || utf8_target) { - utf8_fold_flags = is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0; - goto do_exactf_utf8; - } - - /* Any 'ss' in the pattern should have been replaced by regcomp, - * so we don't have to worry here about this single special case - * in the Latin1 range */ - fold_array = PL_fold_latin1; - folder = foldEQ_latin1; - - /* FALLTHROUGH */ - - do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there - are no glitches with fold-length differences - between the target string and pattern */ - - /* The idea in the non-utf8 EXACTF* cases is to first find the - * first character of the EXACTF* node and then, if necessary, - * case-insensitively compare the full text of the node. c1 is the - * first character. c2 is its fold. This logic will not work for - * Unicode semantics and the german sharp ss, which hence should - * not be compiled into a node that gets here. */ - pat_string = STRING(c); - ln = STR_LEN(c); /* length to match in octets/bytes */ - - /* We know that we have to match at least 'ln' bytes (which is the - * same as characters, since not utf8). If we have to match 3 - * characters, and there are only 2 availabe, we know without - * trying that it will fail; so don't start a match past the - * required minimum number from the far end */ - e = HOP3c(strend, -((SSize_t)ln), s); - - if (reginfo->intuit && e < s) { - e = s; /* Due to minlen logic of intuit() */ - } - - c1 = *pat_string; - c2 = fold_array[c1]; - if (c1 == c2) { /* If char and fold are the same */ - REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1); - } - else { - REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2); - } - break; - - do_exactf_utf8: - { - unsigned expansion; - - /* If one of the operands is in utf8, we can't use the simpler folding - * above, due to the fact that many different characters can have the - * same fold, or portion of a fold, or different- length fold */ - pat_string = STRING(c); - ln = STR_LEN(c); /* length to match in octets/bytes */ - pat_end = pat_string + ln; - lnc = is_utf8_pat /* length to match in characters */ - ? utf8_length((U8 *) pat_string, (U8 *) pat_end) - : ln; - - /* We have 'lnc' characters to match in the pattern, but because of - * multi-character folding, each character in the target can match - * up to 3 characters (Unicode guarantees it will never exceed - * this) if it is utf8-encoded; and up to 2 if not (based on the - * fact that the Latin 1 folds are already determined, and the - * only multi-char fold in that range is the sharp-s folding to - * 'ss'. Thus, a pattern character can match as little as 1/3 of a - * string character. Adjust lnc accordingly, rounding up, so that - * if we need to match at least 4+1/3 chars, that really is 5. */ - expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2; - lnc = (lnc + expansion - 1) / expansion; - - /* As in the non-UTF8 case, if we have to match 3 characters, and - * only 2 are left, it's guaranteed to fail, so don't start a - * match that would require us to go beyond the end of the string - */ - e = HOP3c(strend, -((SSize_t)lnc), s); - - if (reginfo->intuit && e < s) { - e = s; /* Due to minlen logic of intuit() */ - } - - /* XXX Note that we could recalculate e to stop the loop earlier, - * as the worst case expansion above will rarely be met, and as we - * go along we would usually find that e moves further to the left. - * This would happen only after we reached the point in the loop - * where if there were no expansion we should fail. Unclear if - * worth the expense */ - - while (s <= e) { - char *my_strend= (char *)strend; - if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target, - pat_string, NULL, ln, is_utf8_pat, utf8_fold_flags) - && (reginfo->intuit || regtry(reginfo, &s)) ) - { - goto got_it; - } - s += (utf8_target) ? UTF8SKIP(s) : 1; - } - break; - } - case BOUNDL: - FBC_BOUND(isWORDCHAR_LC, - isWORDCHAR_LC_uvchr(tmp), - isWORDCHAR_LC_utf8((U8*)s)); - break; - case NBOUNDL: - FBC_NBOUND(isWORDCHAR_LC, - isWORDCHAR_LC_uvchr(tmp), - isWORDCHAR_LC_utf8((U8*)s)); - break; - case BOUND: - FBC_BOUND(isWORDCHAR, - isWORDCHAR_uni(tmp), - cBOOL(swash_fetch(PL_utf8_swash_ptrs[_CC_WORDCHAR], (U8*)s, utf8_target))); - break; - case BOUNDA: - FBC_BOUND_NOLOAD(isWORDCHAR_A, - isWORDCHAR_A(tmp), - isWORDCHAR_A((U8*)s)); - break; - case NBOUND: - FBC_NBOUND(isWORDCHAR, - isWORDCHAR_uni(tmp), - cBOOL(swash_fetch(PL_utf8_swash_ptrs[_CC_WORDCHAR], (U8*)s, utf8_target))); - break; - case NBOUNDA: - FBC_NBOUND_NOLOAD(isWORDCHAR_A, - isWORDCHAR_A(tmp), - isWORDCHAR_A((U8*)s)); - break; - case BOUNDU: - FBC_BOUND(isWORDCHAR_L1, - isWORDCHAR_uni(tmp), - cBOOL(swash_fetch(PL_utf8_swash_ptrs[_CC_WORDCHAR], (U8*)s, utf8_target))); - break; - case NBOUNDU: - FBC_NBOUND(isWORDCHAR_L1, - isWORDCHAR_uni(tmp), - cBOOL(swash_fetch(PL_utf8_swash_ptrs[_CC_WORDCHAR], (U8*)s, utf8_target))); - break; - case LNBREAK: - REXEC_FBC_CSCAN(is_LNBREAK_utf8_safe(s, strend), - is_LNBREAK_latin1_safe(s, strend) - ); - break; - - /* The argument to all the POSIX node types is the class number to pass to - * _generic_isCC() to build a mask for searching in PL_charclass[] */ - - case NPOSIXL: - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXL: - REXEC_FBC_CSCAN(to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(c), (U8 *) s)), - to_complement ^ cBOOL(isFOO_lc(FLAGS(c), *s))); - break; - - case NPOSIXD: - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXD: - if (utf8_target) { - goto posix_utf8; - } - goto posixa; - - case NPOSIXA: - if (utf8_target) { - /* The complement of something that matches only ASCII matches all - * non-ASCII, plus everything in ASCII that isn't in the class. */ - REXEC_FBC_UTF8_CLASS_SCAN(! isASCII_utf8(s) - || ! _generic_isCC_A(*s, FLAGS(c))); - break; - } - - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXA: - posixa: - /* Don't need to worry about utf8, as it can match only a single - * byte invariant character. */ - REXEC_FBC_CLASS_SCAN( - to_complement ^ cBOOL(_generic_isCC_A(*s, FLAGS(c)))); - break; - - case NPOSIXU: - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXU: - if (! utf8_target) { - REXEC_FBC_CLASS_SCAN(to_complement ^ cBOOL(_generic_isCC(*s, - FLAGS(c)))); - } - else { - - posix_utf8: - classnum = (_char_class_number) FLAGS(c); - if (classnum < _FIRST_NON_SWASH_CC) { - while (s < strend) { - - /* We avoid loading in the swash as long as possible, but - * should we have to, we jump to a separate loop. This - * extra 'if' statement is what keeps this code from being - * just a call to REXEC_FBC_UTF8_CLASS_SCAN() */ - if (UTF8_IS_ABOVE_LATIN1(*s)) { - goto found_above_latin1; - } - if ((UTF8_IS_INVARIANT(*s) - && to_complement ^ cBOOL(_generic_isCC((U8) *s, - classnum))) - || (UTF8_IS_DOWNGRADEABLE_START(*s) - && to_complement ^ cBOOL( - _generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*s, - *(s + 1)), - classnum)))) - { - if (tmp && (reginfo->intuit || regtry(reginfo, &s))) - goto got_it; - else { - tmp = doevery; - } - } - else { - tmp = 1; - } - s += UTF8SKIP(s); - } - } - else switch (classnum) { /* These classes are implemented as - macros */ - case _CC_ENUM_SPACE: /* XXX would require separate code if we - revert the change of \v matching this */ - /* FALLTHROUGH */ - - case _CC_ENUM_PSXSPC: - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(isSPACE_utf8(s))); - break; - - case _CC_ENUM_BLANK: - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(isBLANK_utf8(s))); - break; - - case _CC_ENUM_XDIGIT: - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(isXDIGIT_utf8(s))); - break; - - case _CC_ENUM_VERTSPACE: - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(isVERTWS_utf8(s))); - break; - - case _CC_ENUM_CNTRL: - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(isCNTRL_utf8(s))); - break; - - default: - Perl_croak(aTHX_ "panic: find_byclass() node %d='%s' has an unexpected character class '%d'", OP(c), PL_reg_name[OP(c)], classnum); - assert(0); /* NOTREACHED */ - } - } - break; - - found_above_latin1: /* Here we have to load a swash to get the result - for the current code point */ - if (! PL_utf8_swash_ptrs[classnum]) { - U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; - PL_utf8_swash_ptrs[classnum] = - _core_swash_init("utf8", - "", - &PL_sv_undef, 1, 0, - PL_XPosix_ptrs[classnum], &flags); - } - - /* This is a copy of the loop above for swash classes, though using the - * FBC macro instead of being expanded out. Since we've loaded the - * swash, we don't have to check for that each time through the loop */ - REXEC_FBC_UTF8_CLASS_SCAN( - to_complement ^ cBOOL(_generic_utf8( - classnum, - s, - swash_fetch(PL_utf8_swash_ptrs[classnum], - (U8 *) s, TRUE)))); - break; - - case AHOCORASICKC: - case AHOCORASICK: - { - DECL_TRIE_TYPE(c); - /* what trie are we using right now */ - reg_ac_data *aho = (reg_ac_data*)progi->data->data[ ARG( c ) ]; - reg_trie_data *trie = (reg_trie_data*)progi->data->data[ aho->trie ]; - HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]); - - const char *last_start = strend - trie->minlen; -#ifdef DEBUGGING - const char *real_start = s; -#endif - STRLEN maxlen = trie->maxlen; - SV *sv_points; - U8 **points; /* map of where we were in the input string - when reading a given char. For ASCII this - is unnecessary overhead as the relationship - is always 1:1, but for Unicode, especially - case folded Unicode this is not true. */ - U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; - U8 *bitmap=NULL; - - - GET_RE_DEBUG_FLAGS_DECL; - - /* We can't just allocate points here. We need to wrap it in - * an SV so it gets freed properly if there is a croak while - * running the match */ - ENTER; - SAVETMPS; - sv_points=newSV(maxlen * sizeof(U8 *)); - SvCUR_set(sv_points, - maxlen * sizeof(U8 *)); - SvPOK_on(sv_points); - sv_2mortal(sv_points); - points=(U8**)SvPV_nolen(sv_points ); - if ( trie_type != trie_utf8_fold - && (trie->bitmap || OP(c)==AHOCORASICKC) ) - { - if (trie->bitmap) - bitmap=(U8*)trie->bitmap; - else - bitmap=(U8*)ANYOF_BITMAP(c); - } - /* this is the Aho-Corasick algorithm modified a touch - to include special handling for long "unknown char" sequences. - The basic idea being that we use AC as long as we are dealing - with a possible matching char, when we encounter an unknown char - (and we have not encountered an accepting state) we scan forward - until we find a legal starting char. - AC matching is basically that of trie matching, except that when - we encounter a failing transition, we fall back to the current - states "fail state", and try the current char again, a process - we repeat until we reach the root state, state 1, or a legal - transition. If we fail on the root state then we can either - terminate if we have reached an accepting state previously, or - restart the entire process from the beginning if we have not. - - */ - while (s <= last_start) { - const U32 uniflags = UTF8_ALLOW_DEFAULT; - U8 *uc = (U8*)s; - U16 charid = 0; - U32 base = 1; - U32 state = 1; - UV uvc = 0; - STRLEN len = 0; - STRLEN foldlen = 0; - U8 *uscan = (U8*)NULL; - U8 *leftmost = NULL; -#ifdef DEBUGGING - U32 accepted_word= 0; -#endif - U32 pointpos = 0; - - while ( state && uc <= (U8*)strend ) { - int failed=0; - U32 word = aho->states[ state ].wordnum; - - if( state==1 ) { - if ( bitmap ) { - DEBUG_TRIE_EXECUTE_r( - if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { - dump_exec_pos( (char *)uc, c, strend, real_start, - (char *)uc, utf8_target ); - PerlIO_printf( Perl_debug_log, - " Scanning for legal start char...\n"); - } - ); - if (utf8_target) { - while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { - uc += UTF8SKIP(uc); - } - } else { - while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) { - uc++; - } - } - s= (char *)uc; - } - if (uc >(U8*)last_start) break; - } - - if ( word ) { - U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ]; - if (!leftmost || lpos < leftmost) { - DEBUG_r(accepted_word=word); - leftmost= lpos; - } - if (base==0) break; - - } - points[pointpos++ % maxlen]= uc; - if (foldlen || uc < (U8*)strend) { - REXEC_TRIE_READ_CHAR(trie_type, trie, - widecharmap, uc, - uscan, len, uvc, charid, foldlen, - foldbuf, uniflags); - DEBUG_TRIE_EXECUTE_r({ - dump_exec_pos( (char *)uc, c, strend, - real_start, s, utf8_target); - PerlIO_printf(Perl_debug_log, - " Charid:%3u CP:%4"UVxf" ", - charid, uvc); - }); - } - else { - len = 0; - charid = 0; - } - - - do { -#ifdef DEBUGGING - word = aho->states[ state ].wordnum; -#endif - base = aho->states[ state ].trans.base; - - DEBUG_TRIE_EXECUTE_r({ - if (failed) - dump_exec_pos( (char *)uc, c, strend, real_start, - s, utf8_target ); - PerlIO_printf( Perl_debug_log, - "%sState: %4"UVxf", word=%"UVxf, - failed ? " Fail transition to " : "", - (UV)state, (UV)word); - }); - if ( base ) { - U32 tmp; - I32 offset; - if (charid && - ( ((offset = base + charid - - 1 - trie->uniquecharcount)) >= 0) - && ((U32)offset < trie->lasttrans) - && trie->trans[offset].check == state - && (tmp=trie->trans[offset].next)) - { - DEBUG_TRIE_EXECUTE_r( - PerlIO_printf( Perl_debug_log," - legal\n")); - state = tmp; - break; - } - else { - DEBUG_TRIE_EXECUTE_r( - PerlIO_printf( Perl_debug_log," - fail\n")); - failed = 1; - state = aho->fail[state]; - } - } - else { - /* we must be accepting here */ - DEBUG_TRIE_EXECUTE_r( - PerlIO_printf( Perl_debug_log," - accepting\n")); - failed = 1; - break; - } - } while(state); - uc += len; - if (failed) { - if (leftmost) - break; - if (!state) state = 1; - } - } - if ( aho->states[ state ].wordnum ) { - U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ]; - if (!leftmost || lpos < leftmost) { - DEBUG_r(accepted_word=aho->states[ state ].wordnum); - leftmost = lpos; - } - } - if (leftmost) { - s = (char*)leftmost; - DEBUG_TRIE_EXECUTE_r({ - PerlIO_printf( - Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n", - (UV)accepted_word, (IV)(s - real_start) - ); - }); - if (reginfo->intuit || regtry(reginfo, &s)) { - FREETMPS; - LEAVE; - goto got_it; - } - s = HOPc(s,1); - DEBUG_TRIE_EXECUTE_r({ - PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n"); - }); - } else { - DEBUG_TRIE_EXECUTE_r( - PerlIO_printf( Perl_debug_log,"No match.\n")); - break; - } - } - FREETMPS; - LEAVE; - } - break; - default: - Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c)); - } - return 0; - got_it: - return s; -} - -/* set RX_SAVED_COPY, RX_SUBBEG etc. - * flags have same meanings as with regexec_flags() */ - -static void -S_reg_set_capture_string(pTHX_ REGEXP * const rx, - char *strbeg, - char *strend, - SV *sv, - U32 flags, - bool utf8_target) -{ - struct regexp *const prog = ReANY(rx); - - if (flags & REXEC_COPY_STR) { -#ifdef PERL_ANY_COW - if (SvCANCOW(sv)) { - if (DEBUG_C_TEST) { - PerlIO_printf(Perl_debug_log, - "Copy on write: regexp capture, type %d\n", - (int) SvTYPE(sv)); - } - /* Create a new COW SV to share the match string and store - * in saved_copy, unless the current COW SV in saved_copy - * is valid and suitable for our purpose */ - if (( prog->saved_copy - && SvIsCOW(prog->saved_copy) - && SvPOKp(prog->saved_copy) - && SvIsCOW(sv) - && SvPOKp(sv) - && SvPVX(sv) == SvPVX(prog->saved_copy))) - { - /* just reuse saved_copy SV */ - if (RXp_MATCH_COPIED(prog)) { - Safefree(prog->subbeg); - RXp_MATCH_COPIED_off(prog); - } - } - else { - /* create new COW SV to share string */ - RX_MATCH_COPY_FREE(rx); - prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv); - } - prog->subbeg = (char *)SvPVX_const(prog->saved_copy); - assert (SvPOKp(prog->saved_copy)); - prog->sublen = strend - strbeg; - prog->suboffset = 0; - prog->subcoffset = 0; - } else -#endif - { - SSize_t min = 0; - SSize_t max = strend - strbeg; - SSize_t sublen; - - if ( (flags & REXEC_COPY_SKIP_POST) - && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */ - && !(PL_sawampersand & SAWAMPERSAND_RIGHT) - ) { /* don't copy $' part of string */ - U32 n = 0; - max = -1; - /* calculate the right-most part of the string covered - * by a capture. Due to look-ahead, this may be to - * the right of $&, so we have to scan all captures */ - while (n <= prog->lastparen) { - if (prog->offs[n].end > max) - max = prog->offs[n].end; - n++; - } - if (max == -1) - max = (PL_sawampersand & SAWAMPERSAND_LEFT) - ? prog->offs[0].start - : 0; - assert(max >= 0 && max <= strend - strbeg); - } - - if ( (flags & REXEC_COPY_SKIP_PRE) - && !(prog->extflags & RXf_PMf_KEEPCOPY) /* //p */ - && !(PL_sawampersand & SAWAMPERSAND_LEFT) - ) { /* don't copy $` part of string */ - U32 n = 0; - min = max; - /* calculate the left-most part of the string covered - * by a capture. Due to look-behind, this may be to - * the left of $&, so we have to scan all captures */ - while (min && n <= prog->lastparen) { - if ( prog->offs[n].start != -1 - && prog->offs[n].start < min) - { - min = prog->offs[n].start; - } - n++; - } - if ((PL_sawampersand & SAWAMPERSAND_RIGHT) - && min > prog->offs[0].end - ) - min = prog->offs[0].end; - - } - - assert(min >= 0 && min <= max && min <= strend - strbeg); - sublen = max - min; - - if (RX_MATCH_COPIED(rx)) { - if (sublen > prog->sublen) - prog->subbeg = - (char*)saferealloc(prog->subbeg, sublen+1); - } - else - prog->subbeg = (char*)safemalloc(sublen+1); - Copy(strbeg + min, prog->subbeg, sublen, char); - prog->subbeg[sublen] = '\0'; - prog->suboffset = min; - prog->sublen = sublen; - RX_MATCH_COPIED_on(rx); - } - prog->subcoffset = prog->suboffset; - if (prog->suboffset && utf8_target) { - /* Convert byte offset to chars. - * XXX ideally should only compute this if @-/@+ - * has been seen, a la PL_sawampersand ??? */ - - /* If there's a direct correspondence between the - * string which we're matching and the original SV, - * then we can use the utf8 len cache associated with - * the SV. In particular, it means that under //g, - * sv_pos_b2u() will use the previously cached - * position to speed up working out the new length of - * subcoffset, rather than counting from the start of - * the string each time. This stops - * $x = "\x{100}" x 1E6; 1 while $x =~ /(.)/g; - * from going quadratic */ - if (SvPOKp(sv) && SvPVX(sv) == strbeg) - prog->subcoffset = sv_pos_b2u_flags(sv, prog->subcoffset, - SV_GMAGIC|SV_CONST_RETURN); - else - prog->subcoffset = utf8_length((U8*)strbeg, - (U8*)(strbeg+prog->suboffset)); - } - } - else { - RX_MATCH_COPY_FREE(rx); - prog->subbeg = strbeg; - prog->suboffset = 0; - prog->subcoffset = 0; - prog->sublen = strend - strbeg; - } -} - - - - -/* - - regexec_flags - match a regexp against a string - */ -I32 -Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, char *strend, - char *strbeg, SSize_t minend, SV *sv, void *data, U32 flags) -/* stringarg: the point in the string at which to begin matching */ -/* strend: pointer to null at end of string */ -/* strbeg: real beginning of string */ -/* minend: end of match must be >= minend bytes after stringarg. */ -/* sv: SV being matched: only used for utf8 flag, pos() etc; string - * itself is accessed via the pointers above */ -/* data: May be used for some additional optimizations. - Currently unused. */ -/* flags: For optimizations. See REXEC_* in regexp.h */ - -{ - dVAR; - struct regexp *const prog = ReANY(rx); - char *s; - regnode *c; - char *startpos; - SSize_t minlen; /* must match at least this many chars */ - SSize_t dontbother = 0; /* how many characters not to try at end */ - const bool utf8_target = cBOOL(DO_UTF8(sv)); - I32 multiline; - RXi_GET_DECL(prog,progi); - regmatch_info reginfo_buf; /* create some info to pass to regtry etc */ - regmatch_info *const reginfo = ®info_buf; - regexp_paren_pair *swap = NULL; - I32 oldsave; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGEXEC_FLAGS; - PERL_UNUSED_ARG(data); - - /* Be paranoid... */ - if (prog == NULL || stringarg == NULL) { - Perl_croak(aTHX_ "NULL regexp parameter"); - } - - DEBUG_EXECUTE_r( - debug_start_match(rx, utf8_target, stringarg, strend, - "Matching"); - ); - - startpos = stringarg; - - if (prog->intflags & PREGf_GPOS_SEEN) { - MAGIC *mg; - - /* set reginfo->ganch, the position where \G can match */ - - reginfo->ganch = - (flags & REXEC_IGNOREPOS) - ? stringarg /* use start pos rather than pos() */ - : (sv && (mg = mg_find_mglob(sv)) && mg->mg_len >= 0) - /* Defined pos(): */ - ? strbeg + MgBYTEPOS(mg, sv, strbeg, strend-strbeg) - : strbeg; /* pos() not defined; use start of string */ - - DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log, - "GPOS ganch set to strbeg[%"IVdf"]\n", (IV)(reginfo->ganch - strbeg))); - - /* in the presence of \G, we may need to start looking earlier in - * the string than the suggested start point of stringarg: - * if prog->gofs is set, then that's a known, fixed minimum - * offset, such as - * /..\G/: gofs = 2 - * /ab|c\G/: gofs = 1 - * or if the minimum offset isn't known, then we have to go back - * to the start of the string, e.g. /w+\G/ - */ - - if (prog->intflags & PREGf_ANCH_GPOS) { - startpos = reginfo->ganch - prog->gofs; - if (startpos < - ((flags & REXEC_FAIL_ON_UNDERFLOW) ? stringarg : strbeg)) - { - DEBUG_r(PerlIO_printf(Perl_debug_log, - "fail: ganch-gofs before earliest possible start\n")); - return 0; - } - } - else if (prog->gofs) { - if (startpos - prog->gofs < strbeg) - startpos = strbeg; - else - startpos -= prog->gofs; - } - else if (prog->intflags & PREGf_GPOS_FLOAT) - startpos = strbeg; - } - - minlen = prog->minlen; - if ((startpos + minlen) > strend || startpos < strbeg) { - DEBUG_r(PerlIO_printf(Perl_debug_log, - "Regex match can't succeed, so not even tried\n")); - return 0; - } - - /* at the end of this function, we'll do a LEAVE_SCOPE(oldsave), - * which will call destuctors to reset PL_regmatch_state, free higher - * PL_regmatch_slabs, and clean up regmatch_info_aux and - * regmatch_info_aux_eval */ - - oldsave = PL_savestack_ix; - - s = startpos; - - if ((prog->extflags & RXf_USE_INTUIT) - && !(flags & REXEC_CHECKED)) - { - s = re_intuit_start(rx, sv, strbeg, startpos, strend, - flags, NULL); - if (!s) - return 0; - - if (prog->extflags & RXf_CHECK_ALL) { - /* we can match based purely on the result of INTUIT. - * Set up captures etc just for $& and $-[0] - * (an intuit-only match wont have $1,$2,..) */ - assert(!prog->nparens); - - /* s/// doesn't like it if $& is earlier than where we asked it to - * start searching (which can happen on something like /.\G/) */ - if ( (flags & REXEC_FAIL_ON_UNDERFLOW) - && (s < stringarg)) - { - /* this should only be possible under \G */ - assert(prog->intflags & PREGf_GPOS_SEEN); - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n")); - goto phooey; - } - - /* match via INTUIT shouldn't have any captures. - * Let @-, @+, $^N know */ - prog->lastparen = prog->lastcloseparen = 0; - RX_MATCH_UTF8_set(rx, utf8_target); - prog->offs[0].start = s - strbeg; - prog->offs[0].end = utf8_target - ? (char*)utf8_hop((U8*)s, prog->minlenret) - strbeg - : s - strbeg + prog->minlenret; - if ( !(flags & REXEC_NOT_FIRST) ) - S_reg_set_capture_string(aTHX_ rx, - strbeg, strend, - sv, flags, utf8_target); - - return 1; - } - } - - multiline = prog->extflags & RXf_PMf_MULTILINE; - - if (strend - s < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "String too short [regexec_flags]...\n")); - goto phooey; - } - - /* Check validity of program. */ - if (UCHARAT(progi->program) != REG_MAGIC) { - Perl_croak(aTHX_ "corrupted regexp program"); - } - - RX_MATCH_TAINTED_off(rx); - - reginfo->prog = rx; /* Yes, sorry that this is confusing. */ - reginfo->intuit = 0; - reginfo->is_utf8_target = cBOOL(utf8_target); - reginfo->is_utf8_pat = cBOOL(RX_UTF8(rx)); - reginfo->warned = FALSE; - reginfo->strbeg = strbeg; - reginfo->sv = sv; - reginfo->poscache_maxiter = 0; /* not yet started a countdown */ - reginfo->strend = strend; - /* see how far we have to get to not match where we matched before */ - reginfo->till = stringarg + minend; - - if (prog->extflags & RXf_EVAL_SEEN && SvPADTMP(sv)) { - /* SAVEFREESV, not sv_mortalcopy, as this SV must last until after - S_cleanup_regmatch_info_aux has executed (registered by - SAVEDESTRUCTOR_X below). S_cleanup_regmatch_info_aux modifies - magic belonging to this SV. - Not newSVsv, either, as it does not COW. - */ - assert(!IS_PADGV(sv)); - reginfo->sv = newSV(0); - SvSetSV_nosteal(reginfo->sv, sv); - SAVEFREESV(reginfo->sv); - } - - /* reserve next 2 or 3 slots in PL_regmatch_state: - * slot N+0: may currently be in use: skip it - * slot N+1: use for regmatch_info_aux struct - * slot N+2: use for regmatch_info_aux_eval struct if we have (?{})'s - * slot N+3: ready for use by regmatch() - */ - - { - regmatch_state *old_regmatch_state; - regmatch_slab *old_regmatch_slab; - int i, max = (prog->extflags & RXf_EVAL_SEEN) ? 2 : 1; - - /* on first ever match, allocate first slab */ - if (!PL_regmatch_slab) { - Newx(PL_regmatch_slab, 1, regmatch_slab); - PL_regmatch_slab->prev = NULL; - PL_regmatch_slab->next = NULL; - PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab); - } - - old_regmatch_state = PL_regmatch_state; - old_regmatch_slab = PL_regmatch_slab; - - for (i=0; i <= max; i++) { - if (i == 1) - reginfo->info_aux = &(PL_regmatch_state->u.info_aux); - else if (i ==2) - reginfo->info_aux_eval = - reginfo->info_aux->info_aux_eval = - &(PL_regmatch_state->u.info_aux_eval); - - if (++PL_regmatch_state > SLAB_LAST(PL_regmatch_slab)) - PL_regmatch_state = S_push_slab(aTHX); - } - - /* note initial PL_regmatch_state position; at end of match we'll - * pop back to there and free any higher slabs */ - - reginfo->info_aux->old_regmatch_state = old_regmatch_state; - reginfo->info_aux->old_regmatch_slab = old_regmatch_slab; - reginfo->info_aux->poscache = NULL; - - SAVEDESTRUCTOR_X(S_cleanup_regmatch_info_aux, reginfo->info_aux); - - if ((prog->extflags & RXf_EVAL_SEEN)) - S_setup_eval_state(aTHX_ reginfo); - else - reginfo->info_aux_eval = reginfo->info_aux->info_aux_eval = NULL; - } - - /* If there is a "must appear" string, look for it. */ - - if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) { - /* We have to be careful. If the previous successful match - was from this regex we don't want a subsequent partially - successful match to clobber the old results. - So when we detect this possibility we add a swap buffer - to the re, and switch the buffer each match. If we fail, - we switch it back; otherwise we leave it swapped. - */ - swap = prog->offs; - /* do we need a save destructor here for eval dies? */ - Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair); - DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" saving offs: orig=0x%"UVxf" new=0x%"UVxf"\n", - PTR2UV(prog), - PTR2UV(swap), - PTR2UV(prog->offs) - )); - } - - /* Simplest case: anchored match need be tried only once. */ - /* [unless only anchor is BOL and multiline is set] */ - if (prog->intflags & (PREGf_ANCH & ~PREGf_ANCH_GPOS)) { - if (s == startpos && regtry(reginfo, &s)) - goto got_it; - else if (multiline || (prog->intflags & (PREGf_IMPLICIT | PREGf_ANCH_MBOL))) /* XXXX SBOL? */ - { - char *end; - - if (minlen) - dontbother = minlen - 1; - end = HOP3c(strend, -dontbother, strbeg) - 1; - /* for multiline we only have to try after newlines */ - if (prog->check_substr || prog->check_utf8) { - /* because of the goto we can not easily reuse the macros for bifurcating the - unicode/non-unicode match modes here like we do elsewhere - demerphq */ - if (utf8_target) { - if (s == startpos) - goto after_try_utf8; - while (1) { - if (regtry(reginfo, &s)) { - goto got_it; - } - after_try_utf8: - if (s > end) { - goto phooey; - } - if (prog->extflags & RXf_USE_INTUIT) { - s = re_intuit_start(rx, sv, strbeg, - s + UTF8SKIP(s), strend, flags, NULL); - if (!s) { - goto phooey; - } - } - else { - s += UTF8SKIP(s); - } - } - } /* end search for check string in unicode */ - else { - if (s == startpos) { - goto after_try_latin; - } - while (1) { - if (regtry(reginfo, &s)) { - goto got_it; - } - after_try_latin: - if (s > end) { - goto phooey; - } - if (prog->extflags & RXf_USE_INTUIT) { - s = re_intuit_start(rx, sv, strbeg, - s + 1, strend, flags, NULL); - if (!s) { - goto phooey; - } - } - else { - s++; - } - } - } /* end search for check string in latin*/ - } /* end search for check string */ - else { /* search for newline */ - if (s > startpos) { - /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/ - s--; - } - /* We can use a more efficient search as newlines are the same in unicode as they are in latin */ - while (s <= end) { /* note it could be possible to match at the end of the string */ - if (*s++ == '\n') { /* don't need PL_utf8skip here */ - if (regtry(reginfo, &s)) - goto got_it; - } - } - } /* end search for newline */ - } /* end anchored/multiline check string search */ - goto phooey; - } else if (prog->intflags & PREGf_ANCH_GPOS) - { - /* PREGf_ANCH_GPOS should never be true if PREGf_GPOS_SEEN is not true */ - assert(prog->intflags & PREGf_GPOS_SEEN); - /* For anchored \G, the only position it can match from is - * (ganch-gofs); we already set startpos to this above; if intuit - * moved us on from there, we can't possibly succeed */ - assert(startpos == reginfo->ganch - prog->gofs); - if (s == startpos && regtry(reginfo, &s)) - goto got_it; - goto phooey; - } - - /* Messy cases: unanchored match. */ - if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) { - /* we have /x+whatever/ */ - /* it must be a one character string (XXXX Except is_utf8_pat?) */ - char ch; -#ifdef DEBUGGING - int did_match = 0; -#endif - if (utf8_target) { - if (! prog->anchored_utf8) { - to_utf8_substr(prog); - } - ch = SvPVX_const(prog->anchored_utf8)[0]; - REXEC_FBC_SCAN( - if (*s == ch) { - DEBUG_EXECUTE_r( did_match = 1 ); - if (regtry(reginfo, &s)) goto got_it; - s += UTF8SKIP(s); - while (s < strend && *s == ch) - s += UTF8SKIP(s); - } - ); - - } - else { - if (! prog->anchored_substr) { - if (! to_byte_substr(prog)) { - NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); - } - } - ch = SvPVX_const(prog->anchored_substr)[0]; - REXEC_FBC_SCAN( - if (*s == ch) { - DEBUG_EXECUTE_r( did_match = 1 ); - if (regtry(reginfo, &s)) goto got_it; - s++; - while (s < strend && *s == ch) - s++; - } - ); - } - DEBUG_EXECUTE_r(if (!did_match) - PerlIO_printf(Perl_debug_log, - "Did not find anchored character...\n") - ); - } - else if (prog->anchored_substr != NULL - || prog->anchored_utf8 != NULL - || ((prog->float_substr != NULL || prog->float_utf8 != NULL) - && prog->float_max_offset < strend - s)) { - SV *must; - SSize_t back_max; - SSize_t back_min; - char *last; - char *last1; /* Last position checked before */ -#ifdef DEBUGGING - int did_match = 0; -#endif - if (prog->anchored_substr || prog->anchored_utf8) { - if (utf8_target) { - if (! prog->anchored_utf8) { - to_utf8_substr(prog); - } - must = prog->anchored_utf8; - } - else { - if (! prog->anchored_substr) { - if (! to_byte_substr(prog)) { - NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); - } - } - must = prog->anchored_substr; - } - back_max = back_min = prog->anchored_offset; - } else { - if (utf8_target) { - if (! prog->float_utf8) { - to_utf8_substr(prog); - } - must = prog->float_utf8; - } - else { - if (! prog->float_substr) { - if (! to_byte_substr(prog)) { - NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); - } - } - must = prog->float_substr; - } - back_max = prog->float_max_offset; - back_min = prog->float_min_offset; - } - - if (back_min<0) { - last = strend; - } else { - last = HOP3c(strend, /* Cannot start after this */ - -(SSize_t)(CHR_SVLEN(must) - - (SvTAIL(must) != 0) + back_min), strbeg); - } - if (s > reginfo->strbeg) - last1 = HOPc(s, -1); - else - last1 = s - 1; /* bogus */ - - /* XXXX check_substr already used to find "s", can optimize if - check_substr==must. */ - dontbother = 0; - strend = HOPc(strend, -dontbother); - while ( (s <= last) && - (s = fbm_instr((unsigned char*)HOP4c(s, back_min, strbeg, strend), - (unsigned char*)strend, must, - multiline ? FBMrf_MULTILINE : 0)) ) { - DEBUG_EXECUTE_r( did_match = 1 ); - if (HOPc(s, -back_max) > last1) { - last1 = HOPc(s, -back_min); - s = HOPc(s, -back_max); - } - else { - char * const t = (last1 >= reginfo->strbeg) - ? HOPc(last1, 1) : last1 + 1; - - last1 = HOPc(s, -back_min); - s = t; - } - if (utf8_target) { - while (s <= last1) { - if (regtry(reginfo, &s)) - goto got_it; - if (s >= last1) { - s++; /* to break out of outer loop */ - break; - } - s += UTF8SKIP(s); - } - } - else { - while (s <= last1) { - if (regtry(reginfo, &s)) - goto got_it; - s++; - } - } - } - DEBUG_EXECUTE_r(if (!did_match) { - RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0), - SvPVX_const(must), RE_SV_DUMPLEN(must), 30); - PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n", - ((must == prog->anchored_substr || must == prog->anchored_utf8) - ? "anchored" : "floating"), - quoted, RE_SV_TAIL(must)); - }); - goto phooey; - } - else if ( (c = progi->regstclass) ) { - if (minlen) { - const OPCODE op = OP(progi->regstclass); - /* don't bother with what can't match */ - if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE) - strend = HOPc(strend, -(minlen - 1)); - } - DEBUG_EXECUTE_r({ - SV * const prop = sv_newmortal(); - regprop(prog, prop, c, reginfo); - { - RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1), - s,strend-s,60); - PerlIO_printf(Perl_debug_log, - "Matching stclass %.*s against %s (%d bytes)\n", - (int)SvCUR(prop), SvPVX_const(prop), - quoted, (int)(strend - s)); - } - }); - if (find_byclass(prog, c, s, strend, reginfo)) - goto got_it; - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n")); - } - else { - dontbother = 0; - if (prog->float_substr != NULL || prog->float_utf8 != NULL) { - /* Trim the end. */ - char *last= NULL; - SV* float_real; - STRLEN len; - const char *little; - - if (utf8_target) { - if (! prog->float_utf8) { - to_utf8_substr(prog); - } - float_real = prog->float_utf8; - } - else { - if (! prog->float_substr) { - if (! to_byte_substr(prog)) { - NON_UTF8_TARGET_BUT_UTF8_REQUIRED(phooey); - } - } - float_real = prog->float_substr; - } - - little = SvPV_const(float_real, len); - if (SvTAIL(float_real)) { - /* This means that float_real contains an artificial \n on - * the end due to the presence of something like this: - * /foo$/ where we can match both "foo" and "foo\n" at the - * end of the string. So we have to compare the end of the - * string first against the float_real without the \n and - * then against the full float_real with the string. We - * have to watch out for cases where the string might be - * smaller than the float_real or the float_real without - * the \n. */ - char *checkpos= strend - len; - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, - "%sChecking for float_real.%s\n", - PL_colors[4], PL_colors[5])); - if (checkpos + 1 < strbeg) { - /* can't match, even if we remove the trailing \n - * string is too short to match */ - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%sString shorter than required trailing substring, cannot match.%s\n", - PL_colors[4], PL_colors[5])); - goto phooey; - } else if (memEQ(checkpos + 1, little, len - 1)) { - /* can match, the end of the string matches without the - * "\n" */ - last = checkpos + 1; - } else if (checkpos < strbeg) { - /* cant match, string is too short when the "\n" is - * included */ - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%sString does not contain required trailing substring, cannot match.%s\n", - PL_colors[4], PL_colors[5])); - goto phooey; - } else if (!multiline) { - /* non multiline match, so compare with the "\n" at the - * end of the string */ - if (memEQ(checkpos, little, len)) { - last= checkpos; - } else { - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%sString does not contain required trailing substring, cannot match.%s\n", - PL_colors[4], PL_colors[5])); - goto phooey; - } - } else { - /* multiline match, so we have to search for a place - * where the full string is located */ - goto find_last; - } - } else { - find_last: - if (len) - last = rninstr(s, strend, little, little + len); - else - last = strend; /* matching "$" */ - } - if (!last) { - /* at one point this block contained a comment which was - * probably incorrect, which said that this was a "should not - * happen" case. Even if it was true when it was written I am - * pretty sure it is not anymore, so I have removed the comment - * and replaced it with this one. Yves */ - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "String does not contain required substring, cannot match.\n" - )); - goto phooey; - } - dontbother = strend - last + prog->float_min_offset; - } - if (minlen && (dontbother < minlen)) - dontbother = minlen - 1; - strend -= dontbother; /* this one's always in bytes! */ - /* We don't know much -- general case. */ - if (utf8_target) { - for (;;) { - if (regtry(reginfo, &s)) - goto got_it; - if (s >= strend) - break; - s += UTF8SKIP(s); - }; - } - else { - do { - if (regtry(reginfo, &s)) - goto got_it; - } while (s++ < strend); - } - } - - /* Failure. */ - goto phooey; - -got_it: - /* s/// doesn't like it if $& is earlier than where we asked it to - * start searching (which can happen on something like /.\G/) */ - if ( (flags & REXEC_FAIL_ON_UNDERFLOW) - && (prog->offs[0].start < stringarg - strbeg)) - { - /* this should only be possible under \G */ - assert(prog->intflags & PREGf_GPOS_SEEN); - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "matched, but failing for REXEC_FAIL_ON_UNDERFLOW\n")); - goto phooey; - } - - DEBUG_BUFFERS_r( - if (swap) - PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" freeing offs: 0x%"UVxf"\n", - PTR2UV(prog), - PTR2UV(swap) - ); - ); - Safefree(swap); - - /* clean up; this will trigger destructors that will free all slabs - * above the current one, and cleanup the regmatch_info_aux - * and regmatch_info_aux_eval sructs */ - - LEAVE_SCOPE(oldsave); - - if (RXp_PAREN_NAMES(prog)) - (void)hv_iterinit(RXp_PAREN_NAMES(prog)); - - RX_MATCH_UTF8_set(rx, utf8_target); - - /* make sure $`, $&, $', and $digit will work later */ - if ( !(flags & REXEC_NOT_FIRST) ) - S_reg_set_capture_string(aTHX_ rx, - strbeg, reginfo->strend, - sv, flags, utf8_target); - - return 1; - -phooey: - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n", - PL_colors[4], PL_colors[5])); - - /* clean up; this will trigger destructors that will free all slabs - * above the current one, and cleanup the regmatch_info_aux - * and regmatch_info_aux_eval sructs */ - - LEAVE_SCOPE(oldsave); - - if (swap) { - /* we failed :-( roll it back */ - DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" rolling back offs: freeing=0x%"UVxf" restoring=0x%"UVxf"\n", - PTR2UV(prog), - PTR2UV(prog->offs), - PTR2UV(swap) - )); - Safefree(prog->offs); - prog->offs = swap; - } - return 0; -} - - -/* Set which rex is pointed to by PL_reg_curpm, handling ref counting. - * Do inc before dec, in case old and new rex are the same */ -#define SET_reg_curpm(Re2) \ - if (reginfo->info_aux_eval) { \ - (void)ReREFCNT_inc(Re2); \ - ReREFCNT_dec(PM_GETRE(PL_reg_curpm)); \ - PM_SETRE((PL_reg_curpm), (Re2)); \ - } - - -/* - - regtry - try match at specific point - */ -STATIC I32 /* 0 failure, 1 success */ -S_regtry(pTHX_ regmatch_info *reginfo, char **startposp) -{ - dVAR; - CHECKPOINT lastcp; - REGEXP *const rx = reginfo->prog; - regexp *const prog = ReANY(rx); - SSize_t result; - RXi_GET_DECL(prog,progi); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGTRY; - - reginfo->cutpoint=NULL; - - prog->offs[0].start = *startposp - reginfo->strbeg; - prog->lastparen = 0; - prog->lastcloseparen = 0; - - /* XXXX What this code is doing here?!!! There should be no need - to do this again and again, prog->lastparen should take care of - this! --ilya*/ - - /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code. - * Actually, the code in regcppop() (which Ilya may be meaning by - * prog->lastparen), is not needed at all by the test suite - * (op/regexp, op/pat, op/split), but that code is needed otherwise - * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/ - * Meanwhile, this code *is* needed for the - * above-mentioned test suite tests to succeed. The common theme - * on those tests seems to be returning null fields from matches. - * --jhi updated by dapm */ -#if 1 - if (prog->nparens) { - regexp_paren_pair *pp = prog->offs; - I32 i; - for (i = prog->nparens; i > (I32)prog->lastparen; i--) { - ++pp; - pp->start = -1; - pp->end = -1; - } - } -#endif - REGCP_SET(lastcp); - result = regmatch(reginfo, *startposp, progi->program + 1); - if (result != -1) { - prog->offs[0].end = result; - return 1; - } - if (reginfo->cutpoint) - *startposp= reginfo->cutpoint; - REGCP_UNWIND(lastcp); - return 0; -} - - -#define sayYES goto yes -#define sayNO goto no -#define sayNO_SILENT goto no_silent - -/* we dont use STMT_START/END here because it leads to - "unreachable code" warnings, which are bogus, but distracting. */ -#define CACHEsayNO \ - if (ST.cache_mask) \ - reginfo->info_aux->poscache[ST.cache_offset] |= ST.cache_mask; \ - sayNO - -/* this is used to determine how far from the left messages like - 'failed...' are printed. It should be set such that messages - are inline with the regop output that created them. -*/ -#define REPORT_CODE_OFF 32 - - -#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */ -#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */ -#define CHRTEST_NOT_A_CP_1 -999 -#define CHRTEST_NOT_A_CP_2 -998 - -/* grab a new slab and return the first slot in it */ - -STATIC regmatch_state * -S_push_slab(pTHX) -{ -#if PERL_VERSION < 9 && !defined(PERL_CORE) - dMY_CXT; -#endif - regmatch_slab *s = PL_regmatch_slab->next; - if (!s) { - Newx(s, 1, regmatch_slab); - s->prev = PL_regmatch_slab; - s->next = NULL; - PL_regmatch_slab->next = s; - } - PL_regmatch_slab = s; - return SLAB_FIRST(s); -} - - -/* push a new state then goto it */ - -#define PUSH_STATE_GOTO(state, node, input) \ - pushinput = input; \ - scan = node; \ - st->resume_state = state; \ - goto push_state; - -/* push a new state with success backtracking, then goto it */ - -#define PUSH_YES_STATE_GOTO(state, node, input) \ - pushinput = input; \ - scan = node; \ - st->resume_state = state; \ - goto push_yes_state; - - - - -/* - -regmatch() - main matching routine - -This is basically one big switch statement in a loop. We execute an op, -set 'next' to point the next op, and continue. If we come to a point which -we may need to backtrack to on failure such as (A|B|C), we push a -backtrack state onto the backtrack stack. On failure, we pop the top -state, and re-enter the loop at the state indicated. If there are no more -states to pop, we return failure. - -Sometimes we also need to backtrack on success; for example /A+/, where -after successfully matching one A, we need to go back and try to -match another one; similarly for lookahead assertions: if the assertion -completes successfully, we backtrack to the state just before the assertion -and then carry on. In these cases, the pushed state is marked as -'backtrack on success too'. This marking is in fact done by a chain of -pointers, each pointing to the previous 'yes' state. On success, we pop to -the nearest yes state, discarding any intermediate failure-only states. -Sometimes a yes state is pushed just to force some cleanup code to be -called at the end of a successful match or submatch; e.g. (??{$re}) uses -it to free the inner regex. - -Note that failure backtracking rewinds the cursor position, while -success backtracking leaves it alone. - -A pattern is complete when the END op is executed, while a subpattern -such as (?=foo) is complete when the SUCCESS op is executed. Both of these -ops trigger the "pop to last yes state if any, otherwise return true" -behaviour. - -A common convention in this function is to use A and B to refer to the two -subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is -the subpattern to be matched possibly multiple times, while B is the entire -rest of the pattern. Variable and state names reflect this convention. - -The states in the main switch are the union of ops and failure/success of -substates associated with with that op. For example, IFMATCH is the op -that does lookahead assertions /(?=A)B/ and so the IFMATCH state means -'execute IFMATCH'; while IFMATCH_A is a state saying that we have just -successfully matched A and IFMATCH_A_fail is a state saying that we have -just failed to match A. Resume states always come in pairs. The backtrack -state we push is marked as 'IFMATCH_A', but when that is popped, we resume -at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking -on success or failure. - -The struct that holds a backtracking state is actually a big union, with -one variant for each major type of op. The variable st points to the -top-most backtrack struct. To make the code clearer, within each -block of code we #define ST to alias the relevant union. - -Here's a concrete example of a (vastly oversimplified) IFMATCH -implementation: - - switch (state) { - .... - -#define ST st->u.ifmatch - - case IFMATCH: // we are executing the IFMATCH op, (?=A)B - ST.foo = ...; // some state we wish to save - ... - // push a yes backtrack state with a resume value of - // IFMATCH_A/IFMATCH_A_fail, then continue execution at the - // first node of A: - PUSH_YES_STATE_GOTO(IFMATCH_A, A, newinput); - // NOTREACHED - - case IFMATCH_A: // we have successfully executed A; now continue with B - next = B; - bar = ST.foo; // do something with the preserved value - break; - - case IFMATCH_A_fail: // A failed, so the assertion failed - ...; // do some housekeeping, then ... - sayNO; // propagate the failure - -#undef ST - - ... - } - -For any old-timers reading this who are familiar with the old recursive -approach, the code above is equivalent to: - - case IFMATCH: // we are executing the IFMATCH op, (?=A)B - { - int foo = ... - ... - if (regmatch(A)) { - next = B; - bar = foo; - break; - } - ...; // do some housekeeping, then ... - sayNO; // propagate the failure - } - -The topmost backtrack state, pointed to by st, is usually free. If you -want to claim it, populate any ST.foo fields in it with values you wish to -save, then do one of - - PUSH_STATE_GOTO(resume_state, node, newinput); - PUSH_YES_STATE_GOTO(resume_state, node, newinput); - -which sets that backtrack state's resume value to 'resume_state', pushes a -new free entry to the top of the backtrack stack, then goes to 'node'. -On backtracking, the free slot is popped, and the saved state becomes the -new free state. An ST.foo field in this new top state can be temporarily -accessed to retrieve values, but once the main loop is re-entered, it -becomes available for reuse. - -Note that the depth of the backtrack stack constantly increases during the -left-to-right execution of the pattern, rather than going up and down with -the pattern nesting. For example the stack is at its maximum at Z at the -end of the pattern, rather than at X in the following: - - /(((X)+)+)+....(Y)+....Z/ - -The only exceptions to this are lookahead/behind assertions and the cut, -(?>A), which pop all the backtrack states associated with A before -continuing. - -Backtrack state structs are allocated in slabs of about 4K in size. -PL_regmatch_state and st always point to the currently active state, -and PL_regmatch_slab points to the slab currently containing -PL_regmatch_state. The first time regmatch() is called, the first slab is -allocated, and is never freed until interpreter destruction. When the slab -is full, a new one is allocated and chained to the end. At exit from -regmatch(), slabs allocated since entry are freed. - -*/ - - -#define DEBUG_STATE_pp(pp) \ - DEBUG_STATE_r({ \ - DUMP_EXEC_POS(locinput, scan, utf8_target); \ - PerlIO_printf(Perl_debug_log, \ - " %*s"pp" %s%s%s%s%s\n", \ - depth*2, "", \ - PL_reg_name[st->resume_state], \ - ((st==yes_state||st==mark_state) ? "[" : ""), \ - ((st==yes_state) ? "Y" : ""), \ - ((st==mark_state) ? "M" : ""), \ - ((st==yes_state||st==mark_state) ? "]" : "") \ - ); \ - }); - - -#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1) - -#ifdef DEBUGGING - -STATIC void -S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target, - const char *start, const char *end, const char *blurb) -{ - const bool utf8_pat = RX_UTF8(prog) ? 1 : 0; - - PERL_ARGS_ASSERT_DEBUG_START_MATCH; - - if (!PL_colorset) - reginitcolors(); - { - RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0), - RX_PRECOMP_const(prog), RX_PRELEN(prog), 60); - - RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1), - start, end - start, 60); - - PerlIO_printf(Perl_debug_log, - "%s%s REx%s %s against %s\n", - PL_colors[4], blurb, PL_colors[5], s0, s1); - - if (utf8_target||utf8_pat) - PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n", - utf8_pat ? "pattern" : "", - utf8_pat && utf8_target ? " and " : "", - utf8_target ? "string" : "" - ); - } -} - -STATIC void -S_dump_exec_pos(pTHX_ const char *locinput, - const regnode *scan, - const char *loc_regeol, - const char *loc_bostr, - const char *loc_reg_starttry, - const bool utf8_target) -{ - const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4]; - const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */ - int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput); - /* The part of the string before starttry has one color - (pref0_len chars), between starttry and current - position another one (pref_len - pref0_len chars), - after the current position the third one. - We assume that pref0_len <= pref_len, otherwise we - decrease pref0_len. */ - int pref_len = (locinput - loc_bostr) > (5 + taill) - l - ? (5 + taill) - l : locinput - loc_bostr; - int pref0_len; - - PERL_ARGS_ASSERT_DUMP_EXEC_POS; - - while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len))) - pref_len++; - pref0_len = pref_len - (locinput - loc_reg_starttry); - if (l + pref_len < (5 + taill) && l < loc_regeol - locinput) - l = ( loc_regeol - locinput > (5 + taill) - pref_len - ? (5 + taill) - pref_len : loc_regeol - locinput); - while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l))) - l--; - if (pref0_len < 0) - pref0_len = 0; - if (pref0_len > pref_len) - pref0_len = pref_len; - { - const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0; - - RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0), - (locinput - pref_len),pref0_len, 60, 4, 5); - - RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1), - (locinput - pref_len + pref0_len), - pref_len - pref0_len, 60, 2, 3); - - RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2), - locinput, loc_regeol - locinput, 10, 0, 1); - - const STRLEN tlen=len0+len1+len2; - PerlIO_printf(Perl_debug_log, - "%4"IVdf" <%.*s%.*s%s%.*s>%*s|", - (IV)(locinput - loc_bostr), - len0, s0, - len1, s1, - (docolor ? "" : "> <"), - len2, s2, - (int)(tlen > 19 ? 0 : 19 - tlen), - ""); - } -} - -#endif - -/* reg_check_named_buff_matched() - * Checks to see if a named buffer has matched. The data array of - * buffer numbers corresponding to the buffer is expected to reside - * in the regexp->data->data array in the slot stored in the ARG() of - * node involved. Note that this routine doesn't actually care about the - * name, that information is not preserved from compilation to execution. - * Returns the index of the leftmost defined buffer with the given name - * or 0 if non of the buffers matched. - */ -STATIC I32 -S_reg_check_named_buff_matched(const regexp *rex, const regnode *scan) -{ - I32 n; - RXi_GET_DECL(rex,rexi); - SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); - I32 *nums=(I32*)SvPVX(sv_dat); - - PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED; - - for ( n=0; nlastparen >= nums[n] && - rex->offs[nums[n]].end != -1) - { - return nums[n]; - } - } - return 0; -} - - -static bool -S_setup_EXACTISH_ST_c1_c2(pTHX_ const regnode * const text_node, int *c1p, - U8* c1_utf8, int *c2p, U8* c2_utf8, regmatch_info *reginfo) -{ - /* This function determines if there are one or two characters that match - * the first character of the passed-in EXACTish node , and if - * so, returns them in the passed-in pointers. - * - * If it determines that no possible character in the target string can - * match, it returns FALSE; otherwise TRUE. (The FALSE situation occurs if - * the first character in requires UTF-8 to represent, and the - * target string isn't in UTF-8.) - * - * If there are more than two characters that could match the beginning of - * , or if more context is required to determine a match or not, - * it sets both * and * to CHRTEST_VOID. - * - * The motiviation behind this function is to allow the caller to set up - * tight loops for matching. If is of type EXACT, there is - * only one possible character that can match its first character, and so - * the situation is quite simple. But things get much more complicated if - * folding is involved. It may be that the first character of an EXACTFish - * node doesn't participate in any possible fold, e.g., punctuation, so it - * can be matched only by itself. The vast majority of characters that are - * in folds match just two things, their lower and upper-case equivalents. - * But not all are like that; some have multiple possible matches, or match - * sequences of more than one character. This function sorts all that out. - * - * Consider the patterns A*B or A*?B where A and B are arbitrary. In a - * loop of trying to match A*, we know we can't exit where the thing - * following it isn't a B. And something can't be a B unless it is the - * beginning of B. By putting a quick test for that beginning in a tight - * loop, we can rule out things that can't possibly be B without having to - * break out of the loop, thus avoiding work. Similarly, if A is a single - * character, we can make a tight loop matching A*, using the outputs of - * this function. - * - * If the target string to match isn't in UTF-8, and there aren't - * complications which require CHRTEST_VOID, * and * are set to - * the one or two possible octets (which are characters in this situation) - * that can match. In all cases, if there is only one character that can - * match, * and * will be identical. - * - * If the target string is in UTF-8, the buffers pointed to by - * and will contain the one or two UTF-8 sequences of bytes that - * can match the beginning of . They should be declared with at - * least length UTF8_MAXBYTES+1. (If the target string isn't in UTF-8, it is - * undefined what these contain.) If one or both of the buffers are - * invariant under UTF-8, *, and * will also be set to the - * corresponding invariant. If variant, the corresponding * and/or - * * will be set to a negative number(s) that shouldn't match any code - * point (unless inappropriately coerced to unsigned). * will equal - * * if and only if and are the same. */ - - const bool utf8_target = reginfo->is_utf8_target; - - UV c1 = CHRTEST_NOT_A_CP_1; - UV c2 = CHRTEST_NOT_A_CP_2; - bool use_chrtest_void = FALSE; - const bool is_utf8_pat = reginfo->is_utf8_pat; - - /* Used when we have both utf8 input and utf8 output, to avoid converting - * to/from code points */ - bool utf8_has_been_setup = FALSE; - - dVAR; - - U8 *pat = (U8*)STRING(text_node); - U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' }; - - if (OP(text_node) == EXACT) { - - /* In an exact node, only one thing can be matched, that first - * character. If both the pat and the target are UTF-8, we can just - * copy the input to the output, avoiding finding the code point of - * that character */ - if (!is_utf8_pat) { - c2 = c1 = *pat; - } - else if (utf8_target) { - Copy(pat, c1_utf8, UTF8SKIP(pat), U8); - Copy(pat, c2_utf8, UTF8SKIP(pat), U8); - utf8_has_been_setup = TRUE; - } - else { - c2 = c1 = valid_utf8_to_uvchr(pat, NULL); - } - } - else { /* an EXACTFish node */ - U8 *pat_end = pat + STR_LEN(text_node); - - /* An EXACTFL node has at least some characters unfolded, because what - * they match is not known until now. So, now is the time to fold - * the first few of them, as many as are needed to determine 'c1' and - * 'c2' later in the routine. If the pattern isn't UTF-8, we only need - * to fold if in a UTF-8 locale, and then only the Sharp S; everything - * else is 1-1 and isn't assumed to be folded. In a UTF-8 pattern, we - * need to fold as many characters as a single character can fold to, - * so that later we can check if the first ones are such a multi-char - * fold. But, in such a pattern only locale-problematic characters - * aren't folded, so we can skip this completely if the first character - * in the node isn't one of the tricky ones */ - if (OP(text_node) == EXACTFL) { - - if (! is_utf8_pat) { - if (IN_UTF8_CTYPE_LOCALE && *pat == LATIN_SMALL_LETTER_SHARP_S) - { - folded[0] = folded[1] = 's'; - pat = folded; - pat_end = folded + 2; - } - } - else if (is_PROBLEMATIC_LOCALE_FOLDEDS_START_utf8(pat)) { - U8 *s = pat; - U8 *d = folded; - int i; - - for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < pat_end; i++) { - if (isASCII(*s)) { - *(d++) = (U8) toFOLD_LC(*s); - s++; - } - else { - STRLEN len; - _to_utf8_fold_flags(s, - d, - &len, - FOLD_FLAGS_FULL | FOLD_FLAGS_LOCALE); - d += len; - s += UTF8SKIP(s); - } - } - - pat = folded; - pat_end = d; - } - } - - if ((is_utf8_pat && is_MULTI_CHAR_FOLD_utf8_safe(pat, pat_end)) - || (!is_utf8_pat && is_MULTI_CHAR_FOLD_latin1_safe(pat, pat_end))) - { - /* Multi-character folds require more context to sort out. Also - * PL_utf8_foldclosures used below doesn't handle them, so have to - * be handled outside this routine */ - use_chrtest_void = TRUE; - } - else { /* an EXACTFish node which doesn't begin with a multi-char fold */ - c1 = is_utf8_pat ? valid_utf8_to_uvchr(pat, NULL) : *pat; - if (c1 > 255) { - /* Load the folds hash, if not already done */ - SV** listp; - if (! PL_utf8_foldclosures) { - _load_PL_utf8_foldclosures(); - } - - /* The fold closures data structure is a hash with the keys - * being the UTF-8 of every character that is folded to, like - * 'k', and the values each an array of all code points that - * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ]. - * Multi-character folds are not included */ - if ((! (listp = hv_fetch(PL_utf8_foldclosures, - (char *) pat, - UTF8SKIP(pat), - FALSE)))) - { - /* Not found in the hash, therefore there are no folds - * containing it, so there is only a single character that - * could match */ - c2 = c1; - } - else { /* Does participate in folds */ - AV* list = (AV*) *listp; - if (av_tindex(list) != 1) { - - /* If there aren't exactly two folds to this, it is - * outside the scope of this function */ - use_chrtest_void = TRUE; - } - else { /* There are two. Get them */ - SV** c_p = av_fetch(list, 0, FALSE); - if (c_p == NULL) { - Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure"); - } - c1 = SvUV(*c_p); - - c_p = av_fetch(list, 1, FALSE); - if (c_p == NULL) { - Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure"); - } - c2 = SvUV(*c_p); - - /* Folds that cross the 255/256 boundary are forbidden - * if EXACTFL (and isnt a UTF8 locale), or EXACTFA and - * one is ASCIII. Since the pattern character is above - * 255, and its only other match is below 256, the only - * legal match will be to itself. We have thrown away - * the original, so have to compute which is the one - * above 255. */ - if ((c1 < 256) != (c2 < 256)) { - if ((OP(text_node) == EXACTFL - && ! IN_UTF8_CTYPE_LOCALE) - || ((OP(text_node) == EXACTFA - || OP(text_node) == EXACTFA_NO_TRIE) - && (isASCII(c1) || isASCII(c2)))) - { - if (c1 < 256) { - c1 = c2; - } - else { - c2 = c1; - } - } - } - } - } - } - else /* Here, c1 is <= 255 */ - if (utf8_target - && HAS_NONLATIN1_FOLD_CLOSURE(c1) - && ( ! (OP(text_node) == EXACTFL && ! IN_UTF8_CTYPE_LOCALE)) - && ((OP(text_node) != EXACTFA - && OP(text_node) != EXACTFA_NO_TRIE) - || ! isASCII(c1))) - { - /* Here, there could be something above Latin1 in the target - * which folds to this character in the pattern. All such - * cases except LATIN SMALL LETTER Y WITH DIAERESIS have more - * than two characters involved in their folds, so are outside - * the scope of this function */ - if (UNLIKELY(c1 == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) { - c2 = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS; - } - else { - use_chrtest_void = TRUE; - } - } - else { /* Here nothing above Latin1 can fold to the pattern - character */ - switch (OP(text_node)) { - - case EXACTFL: /* /l rules */ - c2 = PL_fold_locale[c1]; - break; - - case EXACTF: /* This node only generated for non-utf8 - patterns */ - assert(! is_utf8_pat); - if (! utf8_target) { /* /d rules */ - c2 = PL_fold[c1]; - break; - } - /* FALLTHROUGH */ - /* /u rules for all these. This happens to work for - * EXACTFA as nothing in Latin1 folds to ASCII */ - case EXACTFA_NO_TRIE: /* This node only generated for - non-utf8 patterns */ - assert(! is_utf8_pat); - /* FALLTHROUGH */ - case EXACTFA: - case EXACTFU_SS: - case EXACTFU: - c2 = PL_fold_latin1[c1]; - break; - - default: - Perl_croak(aTHX_ "panic: Unexpected op %u", OP(text_node)); - assert(0); /* NOTREACHED */ - } - } - } - } - - /* Here have figured things out. Set up the returns */ - if (use_chrtest_void) { - *c2p = *c1p = CHRTEST_VOID; - } - else if (utf8_target) { - if (! utf8_has_been_setup) { /* Don't have the utf8; must get it */ - uvchr_to_utf8(c1_utf8, c1); - uvchr_to_utf8(c2_utf8, c2); - } - - /* Invariants are stored in both the utf8 and byte outputs; Use - * negative numbers otherwise for the byte ones. Make sure that the - * byte ones are the same iff the utf8 ones are the same */ - *c1p = (UTF8_IS_INVARIANT(*c1_utf8)) ? *c1_utf8 : CHRTEST_NOT_A_CP_1; - *c2p = (UTF8_IS_INVARIANT(*c2_utf8)) - ? *c2_utf8 - : (c1 == c2) - ? CHRTEST_NOT_A_CP_1 - : CHRTEST_NOT_A_CP_2; - } - else if (c1 > 255) { - if (c2 > 255) { /* both possibilities are above what a non-utf8 string - can represent */ - return FALSE; - } - - *c1p = *c2p = c2; /* c2 is the only representable value */ - } - else { /* c1 is representable; see about c2 */ - *c1p = c1; - *c2p = (c2 < 256) ? c2 : c1; - } - - return TRUE; -} - -/* returns -1 on failure, $+[0] on success */ -STATIC SSize_t -S_regmatch(pTHX_ regmatch_info *reginfo, char *startpos, regnode *prog) -{ -#if PERL_VERSION < 9 && !defined(PERL_CORE) - dMY_CXT; -#endif - dVAR; - const bool utf8_target = reginfo->is_utf8_target; - const U32 uniflags = UTF8_ALLOW_DEFAULT; - REGEXP *rex_sv = reginfo->prog; - regexp *rex = ReANY(rex_sv); - RXi_GET_DECL(rex,rexi); - /* the current state. This is a cached copy of PL_regmatch_state */ - regmatch_state *st; - /* cache heavy used fields of st in registers */ - regnode *scan; - regnode *next; - U32 n = 0; /* general value; init to avoid compiler warning */ - SSize_t ln = 0; /* len or last; init to avoid compiler warning */ - char *locinput = startpos; - char *pushinput; /* where to continue after a PUSH */ - I32 nextchr; /* is always set to UCHARAT(locinput) */ - - bool result = 0; /* return value of S_regmatch */ - int depth = 0; /* depth of backtrack stack */ - U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */ - const U32 max_nochange_depth = - (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ? - 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH; - regmatch_state *yes_state = NULL; /* state to pop to on success of - subpattern */ - /* mark_state piggy backs on the yes_state logic so that when we unwind - the stack on success we can update the mark_state as we go */ - regmatch_state *mark_state = NULL; /* last mark state we have seen */ - regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */ - struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */ - U32 state_num; - bool no_final = 0; /* prevent failure from backtracking? */ - bool do_cutgroup = 0; /* no_final only until next branch/trie entry */ - char *startpoint = locinput; - SV *popmark = NULL; /* are we looking for a mark? */ - SV *sv_commit = NULL; /* last mark name seen in failure */ - SV *sv_yes_mark = NULL; /* last mark name we have seen - during a successful match */ - U32 lastopen = 0; /* last open we saw */ - bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0; - SV* const oreplsv = GvSVn(PL_replgv); - /* these three flags are set by various ops to signal information to - * the very next op. They have a useful lifetime of exactly one loop - * iteration, and are not preserved or restored by state pushes/pops - */ - bool sw = 0; /* the condition value in (?(cond)a|b) */ - bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */ - int logical = 0; /* the following EVAL is: - 0: (?{...}) - 1: (?(?{...})X|Y) - 2: (??{...}) - or the following IFMATCH/UNLESSM is: - false: plain (?=foo) - true: used as a condition: (?(?=foo)) - */ - PAD* last_pad = NULL; - dMULTICALL; - I32 gimme = G_SCALAR; - CV *caller_cv = NULL; /* who called us */ - CV *last_pushed_cv = NULL; /* most recently called (?{}) CV */ - CHECKPOINT runops_cp; /* savestack position before executing EVAL */ - U32 maxopenparen = 0; /* max '(' index seen so far */ - int to_complement; /* Invert the result? */ - _char_class_number classnum; - bool is_utf8_pat = reginfo->is_utf8_pat; - -#ifdef DEBUGGING - GET_RE_DEBUG_FLAGS_DECL; -#endif - - /* protect against undef(*^R) */ - SAVEFREESV(SvREFCNT_inc_simple_NN(oreplsv)); - - /* shut up 'may be used uninitialized' compiler warnings for dMULTICALL */ - multicall_oldcatch = 0; - multicall_cv = NULL; - cx = NULL; - PERL_UNUSED_VAR(multicall_cop); - PERL_UNUSED_VAR(newsp); - - - PERL_ARGS_ASSERT_REGMATCH; - - DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({ - PerlIO_printf(Perl_debug_log,"regmatch start\n"); - })); - - st = PL_regmatch_state; - - /* Note that nextchr is a byte even in UTF */ - SET_nextchr; - scan = prog; - while (scan != NULL) { - - DEBUG_EXECUTE_r( { - SV * const prop = sv_newmortal(); - regnode *rnext=regnext(scan); - DUMP_EXEC_POS( locinput, scan, utf8_target ); - regprop(rex, prop, scan, reginfo); - - PerlIO_printf(Perl_debug_log, - "%3"IVdf":%*s%s(%"IVdf")\n", - (IV)(scan - rexi->program), depth*2, "", - SvPVX_const(prop), - (PL_regkind[OP(scan)] == END || !rnext) ? - 0 : (IV)(rnext - rexi->program)); - }); - - next = scan + NEXT_OFF(scan); - if (next == scan) - next = NULL; - state_num = OP(scan); - - reenter_switch: - to_complement = 0; - - SET_nextchr; - assert(nextchr < 256 && (nextchr >= 0 || nextchr == NEXTCHR_EOS)); - - switch (state_num) { - case BOL: /* /^../ */ - case SBOL: /* /^../s */ - if (locinput == reginfo->strbeg) - break; - sayNO; - - case MBOL: /* /^../m */ - if (locinput == reginfo->strbeg || - (!NEXTCHR_IS_EOS && locinput[-1] == '\n')) - { - break; - } - sayNO; - - case GPOS: /* \G */ - if (locinput == reginfo->ganch) - break; - sayNO; - - case KEEPS: /* \K */ - /* update the startpoint */ - st->u.keeper.val = rex->offs[0].start; - rex->offs[0].start = locinput - reginfo->strbeg; - PUSH_STATE_GOTO(KEEPS_next, next, locinput); - assert(0); /*NOTREACHED*/ - case KEEPS_next_fail: - /* rollback the start point change */ - rex->offs[0].start = st->u.keeper.val; - sayNO_SILENT; - assert(0); /*NOTREACHED*/ - - case MEOL: /* /..$/m */ - if (!NEXTCHR_IS_EOS && nextchr != '\n') - sayNO; - break; - - case EOL: /* /..$/ */ - /* FALLTHROUGH */ - case SEOL: /* /..$/s */ - if (!NEXTCHR_IS_EOS && nextchr != '\n') - sayNO; - if (reginfo->strend - locinput > 1) - sayNO; - break; - - case EOS: /* \z */ - if (!NEXTCHR_IS_EOS) - sayNO; - break; - - case SANY: /* /./s */ - if (NEXTCHR_IS_EOS) - sayNO; - goto increment_locinput; - - case CANY: /* \C */ - if (NEXTCHR_IS_EOS) - sayNO; - locinput++; - break; - - case REG_ANY: /* /./ */ - if ((NEXTCHR_IS_EOS) || nextchr == '\n') - sayNO; - goto increment_locinput; - - -#undef ST -#define ST st->u.trie - case TRIEC: /* (ab|cd) with known charclass */ - /* In this case the charclass data is available inline so - we can fail fast without a lot of extra overhead. - */ - if(!NEXTCHR_IS_EOS && !ANYOF_BITMAP_TEST(scan, nextchr)) { - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s %sfailed to match trie start class...%s\n", - REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) - ); - sayNO_SILENT; - assert(0); /* NOTREACHED */ - } - /* FALLTHROUGH */ - case TRIE: /* (ab|cd) */ - /* the basic plan of execution of the trie is: - * At the beginning, run though all the states, and - * find the longest-matching word. Also remember the position - * of the shortest matching word. For example, this pattern: - * 1 2 3 4 5 - * ab|a|x|abcd|abc - * when matched against the string "abcde", will generate - * accept states for all words except 3, with the longest - * matching word being 4, and the shortest being 2 (with - * the position being after char 1 of the string). - * - * Then for each matching word, in word order (i.e. 1,2,4,5), - * we run the remainder of the pattern; on each try setting - * the current position to the character following the word, - * returning to try the next word on failure. - * - * We avoid having to build a list of words at runtime by - * using a compile-time structure, wordinfo[].prev, which - * gives, for each word, the previous accepting word (if any). - * In the case above it would contain the mappings 1->2, 2->0, - * 3->0, 4->5, 5->1. We can use this table to generate, from - * the longest word (4 above), a list of all words, by - * following the list of prev pointers; this gives us the - * unordered list 4,5,1,2. Then given the current word we have - * just tried, we can go through the list and find the - * next-biggest word to try (so if we just failed on word 2, - * the next in the list is 4). - * - * Since at runtime we don't record the matching position in - * the string for each word, we have to work that out for - * each word we're about to process. The wordinfo table holds - * the character length of each word; given that we recorded - * at the start: the position of the shortest word and its - * length in chars, we just need to move the pointer the - * difference between the two char lengths. Depending on - * Unicode status and folding, that's cheap or expensive. - * - * This algorithm is optimised for the case where are only a - * small number of accept states, i.e. 0,1, or maybe 2. - * With lots of accepts states, and having to try all of them, - * it becomes quadratic on number of accept states to find all - * the next words. - */ - - { - /* what type of TRIE am I? (utf8 makes this contextual) */ - DECL_TRIE_TYPE(scan); - - /* what trie are we using right now */ - reg_trie_data * const trie - = (reg_trie_data*)rexi->data->data[ ARG( scan ) ]; - HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]); - U32 state = trie->startstate; - - if ( trie->bitmap - && (NEXTCHR_IS_EOS || !TRIE_BITMAP_TEST(trie, nextchr))) - { - if (trie->states[ state ].wordnum) { - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s %smatched empty string...%s\n", - REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) - ); - if (!trie->jump) - break; - } else { - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s %sfailed to match trie start class...%s\n", - REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]) - ); - sayNO_SILENT; - } - } - - { - U8 *uc = ( U8* )locinput; - - STRLEN len = 0; - STRLEN foldlen = 0; - U8 *uscan = (U8*)NULL; - U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; - U32 charcount = 0; /* how many input chars we have matched */ - U32 accepted = 0; /* have we seen any accepting states? */ - - ST.jump = trie->jump; - ST.me = scan; - ST.firstpos = NULL; - ST.longfold = FALSE; /* char longer if folded => it's harder */ - ST.nextword = 0; - - /* fully traverse the TRIE; note the position of the - shortest accept state and the wordnum of the longest - accept state */ - - while ( state && uc <= (U8*)(reginfo->strend) ) { - U32 base = trie->states[ state ].trans.base; - UV uvc = 0; - U16 charid = 0; - U16 wordnum; - wordnum = trie->states[ state ].wordnum; - - if (wordnum) { /* it's an accept state */ - if (!accepted) { - accepted = 1; - /* record first match position */ - if (ST.longfold) { - ST.firstpos = (U8*)locinput; - ST.firstchars = 0; - } - else { - ST.firstpos = uc; - ST.firstchars = charcount; - } - } - if (!ST.nextword || wordnum < ST.nextword) - ST.nextword = wordnum; - ST.topword = wordnum; - } - - DEBUG_TRIE_EXECUTE_r({ - DUMP_EXEC_POS( (char *)uc, scan, utf8_target ); - PerlIO_printf( Perl_debug_log, - "%*s %sState: %4"UVxf" Accepted: %c ", - 2+depth * 2, "", PL_colors[4], - (UV)state, (accepted ? 'Y' : 'N')); - }); - - /* read a char and goto next state */ - if ( base && (foldlen || uc < (U8*)(reginfo->strend))) { - I32 offset; - REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, - uscan, len, uvc, charid, foldlen, - foldbuf, uniflags); - charcount++; - if (foldlen>0) - ST.longfold = TRUE; - if (charid && - ( ((offset = - base + charid - 1 - trie->uniquecharcount)) >= 0) - - && ((U32)offset < trie->lasttrans) - && trie->trans[offset].check == state) - { - state = trie->trans[offset].next; - } - else { - state = 0; - } - uc += len; - - } - else { - state = 0; - } - DEBUG_TRIE_EXECUTE_r( - PerlIO_printf( Perl_debug_log, - "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n", - charid, uvc, (UV)state, PL_colors[5] ); - ); - } - if (!accepted) - sayNO; - - /* calculate total number of accept states */ - { - U16 w = ST.topword; - accepted = 0; - while (w) { - w = trie->wordinfo[w].prev; - accepted++; - } - ST.accepted = accepted; - } - - DEBUG_EXECUTE_r( - PerlIO_printf( Perl_debug_log, - "%*s %sgot %"IVdf" possible matches%s\n", - REPORT_CODE_OFF + depth * 2, "", - PL_colors[4], (IV)ST.accepted, PL_colors[5] ); - ); - goto trie_first_try; /* jump into the fail handler */ - }} - assert(0); /* NOTREACHED */ - - case TRIE_next_fail: /* we failed - try next alternative */ - { - U8 *uc; - if ( ST.jump) { - REGCP_UNWIND(ST.cp); - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - } - if (!--ST.accepted) { - DEBUG_EXECUTE_r({ - PerlIO_printf( Perl_debug_log, - "%*s %sTRIE failed...%s\n", - REPORT_CODE_OFF+depth*2, "", - PL_colors[4], - PL_colors[5] ); - }); - sayNO_SILENT; - } - { - /* Find next-highest word to process. Note that this code - * is O(N^2) per trie run (O(N) per branch), so keep tight */ - U16 min = 0; - U16 word; - U16 const nextword = ST.nextword; - reg_trie_wordinfo * const wordinfo - = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo; - for (word=ST.topword; word; word=wordinfo[word].prev) { - if (word > nextword && (!min || word < min)) - min = word; - } - ST.nextword = min; - } - - trie_first_try: - if (do_cutgroup) { - do_cutgroup = 0; - no_final = 0; - } - - if ( ST.jump) { - ST.lastparen = rex->lastparen; - ST.lastcloseparen = rex->lastcloseparen; - REGCP_SET(ST.cp); - } - - /* find start char of end of current word */ - { - U32 chars; /* how many chars to skip */ - reg_trie_data * const trie - = (reg_trie_data*)rexi->data->data[ARG(ST.me)]; - - assert((trie->wordinfo[ST.nextword].len - trie->prefixlen) - >= ST.firstchars); - chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen) - - ST.firstchars; - uc = ST.firstpos; - - if (ST.longfold) { - /* the hard option - fold each char in turn and find - * its folded length (which may be different */ - U8 foldbuf[UTF8_MAXBYTES_CASE + 1]; - STRLEN foldlen; - STRLEN len; - UV uvc; - U8 *uscan; - - while (chars) { - if (utf8_target) { - uvc = utf8n_to_uvchr((U8*)uc, UTF8_MAXLEN, &len, - uniflags); - uc += len; - } - else { - uvc = *uc; - uc++; - } - uvc = to_uni_fold(uvc, foldbuf, &foldlen); - uscan = foldbuf; - while (foldlen) { - if (!--chars) - break; - uvc = utf8n_to_uvchr(uscan, UTF8_MAXLEN, &len, - uniflags); - uscan += len; - foldlen -= len; - } - } - } - else { - if (utf8_target) - while (chars--) - uc += UTF8SKIP(uc); - else - uc += chars; - } - } - - scan = ST.me + ((ST.jump && ST.jump[ST.nextword]) - ? ST.jump[ST.nextword] - : NEXT_OFF(ST.me)); - - DEBUG_EXECUTE_r({ - PerlIO_printf( Perl_debug_log, - "%*s %sTRIE matched word #%d, continuing%s\n", - REPORT_CODE_OFF+depth*2, "", - PL_colors[4], - ST.nextword, - PL_colors[5] - ); - }); - - if (ST.accepted > 1 || has_cutgroup) { - PUSH_STATE_GOTO(TRIE_next, scan, (char*)uc); - assert(0); /* NOTREACHED */ - } - /* only one choice left - just continue */ - DEBUG_EXECUTE_r({ - AV *const trie_words - = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]); - SV ** const tmp = av_fetch( trie_words, - ST.nextword-1, 0 ); - SV *sv= tmp ? sv_newmortal() : NULL; - - PerlIO_printf( Perl_debug_log, - "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n", - REPORT_CODE_OFF+depth*2, "", PL_colors[4], - ST.nextword, - tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0, - PL_colors[0], PL_colors[1], - (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII - ) - : "not compiled under -Dr", - PL_colors[5] ); - }); - - locinput = (char*)uc; - continue; /* execute rest of RE */ - assert(0); /* NOTREACHED */ - } -#undef ST - - case EXACT: { /* /abc/ */ - char *s = STRING(scan); - ln = STR_LEN(scan); - if (utf8_target != is_utf8_pat) { - /* The target and the pattern have differing utf8ness. */ - char *l = locinput; - const char * const e = s + ln; - - if (utf8_target) { - /* The target is utf8, the pattern is not utf8. - * Above-Latin1 code points can't match the pattern; - * invariants match exactly, and the other Latin1 ones need - * to be downgraded to a single byte in order to do the - * comparison. (If we could be confident that the target - * is not malformed, this could be refactored to have fewer - * tests by just assuming that if the first bytes match, it - * is an invariant, but there are tests in the test suite - * dealing with (??{...}) which violate this) */ - while (s < e) { - if (l >= reginfo->strend - || UTF8_IS_ABOVE_LATIN1(* (U8*) l)) - { - sayNO; - } - if (UTF8_IS_INVARIANT(*(U8*)l)) { - if (*l != *s) { - sayNO; - } - l++; - } - else { - if (TWO_BYTE_UTF8_TO_NATIVE(*l, *(l+1)) != * (U8*) s) - { - sayNO; - } - l += 2; - } - s++; - } - } - else { - /* The target is not utf8, the pattern is utf8. */ - while (s < e) { - if (l >= reginfo->strend - || UTF8_IS_ABOVE_LATIN1(* (U8*) s)) - { - sayNO; - } - if (UTF8_IS_INVARIANT(*(U8*)s)) { - if (*s != *l) { - sayNO; - } - s++; - } - else { - if (TWO_BYTE_UTF8_TO_NATIVE(*s, *(s+1)) != * (U8*) l) - { - sayNO; - } - s += 2; - } - l++; - } - } - locinput = l; - } - else { - /* The target and the pattern have the same utf8ness. */ - /* Inline the first character, for speed. */ - if (reginfo->strend - locinput < ln - || UCHARAT(s) != nextchr - || (ln > 1 && memNE(s, locinput, ln))) - { - sayNO; - } - locinput += ln; - } - break; - } - - case EXACTFL: { /* /abc/il */ - re_fold_t folder; - const U8 * fold_array; - const char * s; - U32 fold_utf8_flags; - - folder = foldEQ_locale; - fold_array = PL_fold_locale; - fold_utf8_flags = FOLDEQ_LOCALE; - goto do_exactf; - - case EXACTFU_SS: /* /\x{df}/iu */ - case EXACTFU: /* /abc/iu */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - fold_utf8_flags = is_utf8_pat ? FOLDEQ_S1_ALREADY_FOLDED : 0; - goto do_exactf; - - case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 - patterns */ - assert(! is_utf8_pat); - /* FALLTHROUGH */ - case EXACTFA: /* /abc/iaa */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII; - goto do_exactf; - - case EXACTF: /* /abc/i This node only generated for - non-utf8 patterns */ - assert(! is_utf8_pat); - folder = foldEQ; - fold_array = PL_fold; - fold_utf8_flags = 0; - - do_exactf: - s = STRING(scan); - ln = STR_LEN(scan); - - if (utf8_target - || is_utf8_pat - || state_num == EXACTFU_SS - || (state_num == EXACTFL && IN_UTF8_CTYPE_LOCALE)) - { - /* Either target or the pattern are utf8, or has the issue where - * the fold lengths may differ. */ - const char * const l = locinput; - char *e = reginfo->strend; - - if (! foldEQ_utf8_flags(s, 0, ln, is_utf8_pat, - l, &e, 0, utf8_target, fold_utf8_flags)) - { - sayNO; - } - locinput = e; - break; - } - - /* Neither the target nor the pattern are utf8 */ - if (UCHARAT(s) != nextchr - && !NEXTCHR_IS_EOS - && UCHARAT(s) != fold_array[nextchr]) - { - sayNO; - } - if (reginfo->strend - locinput < ln) - sayNO; - if (ln > 1 && ! folder(s, locinput, ln)) - sayNO; - locinput += ln; - break; - } - - /* XXX Could improve efficiency by separating these all out using a - * macro or in-line function. At that point regcomp.c would no longer - * have to set the FLAGS fields of these */ - case BOUNDL: /* /\b/l */ - case NBOUNDL: /* /\B/l */ - case BOUND: /* /\b/ */ - case BOUNDU: /* /\b/u */ - case BOUNDA: /* /\b/a */ - case NBOUND: /* /\B/ */ - case NBOUNDU: /* /\B/u */ - case NBOUNDA: /* /\B/a */ - /* was last char in word? */ - if (utf8_target - && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET - && FLAGS(scan) != REGEX_ASCII_MORE_RESTRICTED_CHARSET) - { - if (locinput == reginfo->strbeg) - ln = '\n'; - else { - const U8 * const r = - reghop3((U8*)locinput, -1, (U8*)(reginfo->strbeg)); - - ln = utf8n_to_uvchr(r, (U8*) reginfo->strend - r, - 0, uniflags); - } - if (FLAGS(scan) != REGEX_LOCALE_CHARSET) { - ln = isWORDCHAR_uni(ln); - if (NEXTCHR_IS_EOS) - n = 0; - else { - LOAD_UTF8_CHARCLASS_ALNUM(); - n = swash_fetch(PL_utf8_swash_ptrs[_CC_WORDCHAR], (U8*)locinput, - utf8_target); - } - } - else { - ln = isWORDCHAR_LC_uvchr(ln); - n = NEXTCHR_IS_EOS ? 0 : isWORDCHAR_LC_utf8((U8*)locinput); - } - } - else { - - /* Here the string isn't utf8, or is utf8 and only ascii - * characters are to match \w. In the latter case looking at - * the byte just prior to the current one may be just the final - * byte of a multi-byte character. This is ok. There are two - * cases: - * 1) it is a single byte character, and then the test is doing - * just what it's supposed to. - * 2) it is a multi-byte character, in which case the final - * byte is never mistakable for ASCII, and so the test - * will say it is not a word character, which is the - * correct answer. */ - ln = (locinput != reginfo->strbeg) ? - UCHARAT(locinput - 1) : '\n'; - switch (FLAGS(scan)) { - case REGEX_UNICODE_CHARSET: - ln = isWORDCHAR_L1(ln); - n = NEXTCHR_IS_EOS ? 0 : isWORDCHAR_L1(nextchr); - break; - case REGEX_LOCALE_CHARSET: - ln = isWORDCHAR_LC(ln); - n = NEXTCHR_IS_EOS ? 0 : isWORDCHAR_LC(nextchr); - break; - case REGEX_DEPENDS_CHARSET: - ln = isWORDCHAR(ln); - n = NEXTCHR_IS_EOS ? 0 : isWORDCHAR(nextchr); - break; - case REGEX_ASCII_RESTRICTED_CHARSET: - case REGEX_ASCII_MORE_RESTRICTED_CHARSET: - ln = isWORDCHAR_A(ln); - n = NEXTCHR_IS_EOS ? 0 : isWORDCHAR_A(nextchr); - break; - default: - Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan)); - } - } - /* Note requires that all BOUNDs be lower than all NBOUNDs in - * regcomp.sym */ - if (((!ln) == (!n)) == (OP(scan) < NBOUND)) - sayNO; - break; - - case ANYOF: /* /[abc]/ */ - if (NEXTCHR_IS_EOS) - sayNO; - if (utf8_target) { - if (!reginclass(rex, scan, (U8*)locinput, (U8*)reginfo->strend, - utf8_target)) - sayNO; - locinput += UTF8SKIP(locinput); - } - else { - if (!REGINCLASS(rex, scan, (U8*)locinput)) - sayNO; - locinput++; - } - break; - - /* The argument (FLAGS) to all the POSIX node types is the class number - * */ - - case NPOSIXL: /* \W or [:^punct:] etc. under /l */ - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXL: /* \w or [:punct:] etc. under /l */ - if (NEXTCHR_IS_EOS) - sayNO; - - /* Use isFOO_lc() for characters within Latin1. (Note that - * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else - * wouldn't be invariant) */ - if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) { - if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), (U8) nextchr)))) { - sayNO; - } - } - else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) { - if (! (to_complement ^ cBOOL(isFOO_lc(FLAGS(scan), - (U8) TWO_BYTE_UTF8_TO_NATIVE(nextchr, - *(locinput + 1)))))) - { - sayNO; - } - } - else { /* Here, must be an above Latin-1 code point */ - goto utf8_posix_not_eos; - } - - /* Here, must be utf8 */ - locinput += UTF8SKIP(locinput); - break; - - case NPOSIXD: /* \W or [:^punct:] etc. under /d */ - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXD: /* \w or [:punct:] etc. under /d */ - if (utf8_target) { - goto utf8_posix; - } - goto posixa; - - case NPOSIXA: /* \W or [:^punct:] etc. under /a */ - - if (NEXTCHR_IS_EOS) { - sayNO; - } - - /* All UTF-8 variants match */ - if (! UTF8_IS_INVARIANT(nextchr)) { - goto increment_locinput; - } - - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXA: /* \w or [:punct:] etc. under /a */ - - posixa: - /* We get here through POSIXD, NPOSIXD, and NPOSIXA when not in - * UTF-8, and also from NPOSIXA even in UTF-8 when the current - * character is a single byte */ - - if (NEXTCHR_IS_EOS - || ! (to_complement ^ cBOOL(_generic_isCC_A(nextchr, - FLAGS(scan))))) - { - sayNO; - } - - /* Here we are either not in utf8, or we matched a utf8-invariant, - * so the next char is the next byte */ - locinput++; - break; - - case NPOSIXU: /* \W or [:^punct:] etc. under /u */ - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXU: /* \w or [:punct:] etc. under /u */ - utf8_posix: - if (NEXTCHR_IS_EOS) { - sayNO; - } - utf8_posix_not_eos: - - /* Use _generic_isCC() for characters within Latin1. (Note that - * UTF8_IS_INVARIANT works even on non-UTF-8 strings, or else - * wouldn't be invariant) */ - if (UTF8_IS_INVARIANT(nextchr) || ! utf8_target) { - if (! (to_complement ^ cBOOL(_generic_isCC(nextchr, - FLAGS(scan))))) - { - sayNO; - } - locinput++; - } - else if (UTF8_IS_DOWNGRADEABLE_START(nextchr)) { - if (! (to_complement - ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(nextchr, - *(locinput + 1)), - FLAGS(scan))))) - { - sayNO; - } - locinput += 2; - } - else { /* Handle above Latin-1 code points */ - classnum = (_char_class_number) FLAGS(scan); - if (classnum < _FIRST_NON_SWASH_CC) { - - /* Here, uses a swash to find such code points. Load if if - * not done already */ - if (! PL_utf8_swash_ptrs[classnum]) { - U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; - PL_utf8_swash_ptrs[classnum] - = _core_swash_init("utf8", - "", - &PL_sv_undef, 1, 0, - PL_XPosix_ptrs[classnum], &flags); - } - if (! (to_complement - ^ cBOOL(swash_fetch(PL_utf8_swash_ptrs[classnum], - (U8 *) locinput, TRUE)))) - { - sayNO; - } - } - else { /* Here, uses macros to find above Latin-1 code points */ - switch (classnum) { - case _CC_ENUM_SPACE: /* XXX would require separate - code if we revert the change - of \v matching this */ - case _CC_ENUM_PSXSPC: - if (! (to_complement - ^ cBOOL(is_XPERLSPACE_high(locinput)))) - { - sayNO; - } - break; - case _CC_ENUM_BLANK: - if (! (to_complement - ^ cBOOL(is_HORIZWS_high(locinput)))) - { - sayNO; - } - break; - case _CC_ENUM_XDIGIT: - if (! (to_complement - ^ cBOOL(is_XDIGIT_high(locinput)))) - { - sayNO; - } - break; - case _CC_ENUM_VERTSPACE: - if (! (to_complement - ^ cBOOL(is_VERTWS_high(locinput)))) - { - sayNO; - } - break; - default: /* The rest, e.g. [:cntrl:], can't match - above Latin1 */ - if (! to_complement) { - sayNO; - } - break; - } - } - locinput += UTF8SKIP(locinput); - } - break; - - case CLUMP: /* Match \X: logical Unicode character. This is defined as - a Unicode extended Grapheme Cluster */ - /* From http://www.unicode.org/reports/tr29 (5.2 version). An - extended Grapheme Cluster is: - - CR LF - | Prepend* Begin Extend* - | . - - Begin is: ( Special_Begin | ! Control ) - Special_Begin is: ( Regional-Indicator+ | Hangul-syllable ) - Extend is: ( Grapheme_Extend | Spacing_Mark ) - Control is: [ GCB_Control | CR | LF ] - Hangul-syllable is: ( T+ | ( L* ( L | ( LVT | ( V | LV ) V* ) T* ) )) - - If we create a 'Regular_Begin' = Begin - Special_Begin, then - we can rewrite - - Begin is ( Regular_Begin + Special Begin ) - - It turns out that 98.4% of all Unicode code points match - Regular_Begin. Doing it this way eliminates a table match in - the previous implementation for almost all Unicode code points. - - There is a subtlety with Prepend* which showed up in testing. - Note that the Begin, and only the Begin is required in: - | Prepend* Begin Extend* - Also, Begin contains '! Control'. A Prepend must be a - '! Control', which means it must also be a Begin. What it - comes down to is that if we match Prepend* and then find no - suitable Begin afterwards, that if we backtrack the last - Prepend, that one will be a suitable Begin. - */ - - if (NEXTCHR_IS_EOS) - sayNO; - if (! utf8_target) { - - /* Match either CR LF or '.', as all the other possibilities - * require utf8 */ - locinput++; /* Match the . or CR */ - if (nextchr == '\r' /* And if it was CR, and the next is LF, - match the LF */ - && locinput < reginfo->strend - && UCHARAT(locinput) == '\n') - { - locinput++; - } - } - else { - - /* Utf8: See if is ( CR LF ); already know that locinput < - * reginfo->strend, so locinput+1 is in bounds */ - if ( nextchr == '\r' && locinput+1 < reginfo->strend - && UCHARAT(locinput + 1) == '\n') - { - locinput += 2; - } - else { - STRLEN len; - - /* In case have to backtrack to beginning, then match '.' */ - char *starting = locinput; - - /* In case have to backtrack the last prepend */ - char *previous_prepend = NULL; - - LOAD_UTF8_CHARCLASS_GCB(); - - /* Match (prepend)* */ - while (locinput < reginfo->strend - && (len = is_GCB_Prepend_utf8(locinput))) - { - previous_prepend = locinput; - locinput += len; - } - - /* As noted above, if we matched a prepend character, but - * the next thing won't match, back off the last prepend we - * matched, as it is guaranteed to match the begin */ - if (previous_prepend - && (locinput >= reginfo->strend - || (! swash_fetch(PL_utf8_X_regular_begin, - (U8*)locinput, utf8_target) - && ! is_GCB_SPECIAL_BEGIN_START_utf8(locinput))) - ) - { - locinput = previous_prepend; - } - - /* Note that here we know reginfo->strend > locinput, as we - * tested that upon input to this switch case, and if we - * moved locinput forward, we tested the result just above - * and it either passed, or we backed off so that it will - * now pass */ - if (swash_fetch(PL_utf8_X_regular_begin, - (U8*)locinput, utf8_target)) { - locinput += UTF8SKIP(locinput); - } - else if (! is_GCB_SPECIAL_BEGIN_START_utf8(locinput)) { - - /* Here did not match the required 'Begin' in the - * second term. So just match the very first - * character, the '.' of the final term of the regex */ - locinput = starting + UTF8SKIP(starting); - goto exit_utf8; - } else { - - /* Here is a special begin. It can be composed of - * several individual characters. One possibility is - * RI+ */ - if ((len = is_GCB_RI_utf8(locinput))) { - locinput += len; - while (locinput < reginfo->strend - && (len = is_GCB_RI_utf8(locinput))) - { - locinput += len; - } - } else if ((len = is_GCB_T_utf8(locinput))) { - /* Another possibility is T+ */ - locinput += len; - while (locinput < reginfo->strend - && (len = is_GCB_T_utf8(locinput))) - { - locinput += len; - } - } else { - - /* Here, neither RI+ nor T+; must be some other - * Hangul. That means it is one of the others: L, - * LV, LVT or V, and matches: - * L* (L | LVT T* | V * V* T* | LV V* T*) */ - - /* Match L* */ - while (locinput < reginfo->strend - && (len = is_GCB_L_utf8(locinput))) - { - locinput += len; - } - - /* Here, have exhausted L*. If the next character - * is not an LV, LVT nor V, it means we had to have - * at least one L, so matches L+ in the original - * equation, we have a complete hangul syllable. - * Are done. */ - - if (locinput < reginfo->strend - && is_GCB_LV_LVT_V_utf8(locinput)) - { - /* Otherwise keep going. Must be LV, LVT or V. - * See if LVT, by first ruling out V, then LV */ - if (! is_GCB_V_utf8(locinput) - /* All but every TCount one is LV */ - && (valid_utf8_to_uvchr((U8 *) locinput, - NULL) - - SBASE) - % TCount != 0) - { - locinput += UTF8SKIP(locinput); - } else { - - /* Must be V or LV. Take it, then match - * V* */ - locinput += UTF8SKIP(locinput); - while (locinput < reginfo->strend - && (len = is_GCB_V_utf8(locinput))) - { - locinput += len; - } - } - - /* And any of LV, LVT, or V can be followed - * by T* */ - while (locinput < reginfo->strend - && (len = is_GCB_T_utf8(locinput))) - { - locinput += len; - } - } - } - } - - /* Match any extender */ - while (locinput < reginfo->strend - && swash_fetch(PL_utf8_X_extend, - (U8*)locinput, utf8_target)) - { - locinput += UTF8SKIP(locinput); - } - } - exit_utf8: - if (locinput > reginfo->strend) sayNO; - } - break; - - case NREFFL: /* /\g{name}/il */ - { /* The capture buffer cases. The ones beginning with N for the - named buffers just convert to the equivalent numbered and - pretend they were called as the corresponding numbered buffer - op. */ - /* don't initialize these in the declaration, it makes C++ - unhappy */ - const char *s; - char type; - re_fold_t folder; - const U8 *fold_array; - UV utf8_fold_flags; - - folder = foldEQ_locale; - fold_array = PL_fold_locale; - type = REFFL; - utf8_fold_flags = FOLDEQ_LOCALE; - goto do_nref; - - case NREFFA: /* /\g{name}/iaa */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - type = REFFA; - utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; - goto do_nref; - - case NREFFU: /* /\g{name}/iu */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - type = REFFU; - utf8_fold_flags = 0; - goto do_nref; - - case NREFF: /* /\g{name}/i */ - folder = foldEQ; - fold_array = PL_fold; - type = REFF; - utf8_fold_flags = 0; - goto do_nref; - - case NREF: /* /\g{name}/ */ - type = REF; - folder = NULL; - fold_array = NULL; - utf8_fold_flags = 0; - do_nref: - - /* For the named back references, find the corresponding buffer - * number */ - n = reg_check_named_buff_matched(rex,scan); - - if ( ! n ) { - sayNO; - } - goto do_nref_ref_common; - - case REFFL: /* /\1/il */ - folder = foldEQ_locale; - fold_array = PL_fold_locale; - utf8_fold_flags = FOLDEQ_LOCALE; - goto do_ref; - - case REFFA: /* /\1/iaa */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII; - goto do_ref; - - case REFFU: /* /\1/iu */ - folder = foldEQ_latin1; - fold_array = PL_fold_latin1; - utf8_fold_flags = 0; - goto do_ref; - - case REFF: /* /\1/i */ - folder = foldEQ; - fold_array = PL_fold; - utf8_fold_flags = 0; - goto do_ref; - - case REF: /* /\1/ */ - folder = NULL; - fold_array = NULL; - utf8_fold_flags = 0; - - do_ref: - type = OP(scan); - n = ARG(scan); /* which paren pair */ - - do_nref_ref_common: - ln = rex->offs[n].start; - reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */ - if (rex->lastparen < n || ln == -1) - sayNO; /* Do not match unless seen CLOSEn. */ - if (ln == rex->offs[n].end) - break; - - s = reginfo->strbeg + ln; - if (type != REF /* REF can do byte comparison */ - && (utf8_target || type == REFFU || type == REFFL)) - { - char * limit = reginfo->strend; - - /* This call case insensitively compares the entire buffer - * at s, with the current input starting at locinput, but - * not going off the end given by reginfo->strend, and - * returns in upon success, how much of the - * current input was matched */ - if (! foldEQ_utf8_flags(s, NULL, rex->offs[n].end - ln, utf8_target, - locinput, &limit, 0, utf8_target, utf8_fold_flags)) - { - sayNO; - } - locinput = limit; - break; - } - - /* Not utf8: Inline the first character, for speed. */ - if (!NEXTCHR_IS_EOS && - UCHARAT(s) != nextchr && - (type == REF || - UCHARAT(s) != fold_array[nextchr])) - sayNO; - ln = rex->offs[n].end - ln; - if (locinput + ln > reginfo->strend) - sayNO; - if (ln > 1 && (type == REF - ? memNE(s, locinput, ln) - : ! folder(s, locinput, ln))) - sayNO; - locinput += ln; - break; - } - - case NOTHING: /* null op; e.g. the 'nothing' following - * the '*' in m{(a+|b)*}' */ - break; - case TAIL: /* placeholder while compiling (A|B|C) */ - break; - - case BACK: /* ??? doesn't appear to be used ??? */ - break; - -#undef ST -#define ST st->u.eval - { - SV *ret; - REGEXP *re_sv; - regexp *re; - regexp_internal *rei; - regnode *startpoint; - - case GOSTART: /* (?R) */ - case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */ - if (cur_eval && cur_eval->locinput==locinput) { - if (cur_eval->u.eval.close_paren == (U32)ARG(scan)) - Perl_croak(aTHX_ "Infinite recursion in regex"); - if ( ++nochange_depth > max_nochange_depth ) - Perl_croak(aTHX_ - "Pattern subroutine nesting without pos change" - " exceeded limit in regex"); - } else { - nochange_depth = 0; - } - re_sv = rex_sv; - re = rex; - rei = rexi; - if (OP(scan)==GOSUB) { - startpoint = scan + ARG2L(scan); - ST.close_paren = ARG(scan); - } else { - startpoint = rei->program+1; - ST.close_paren = 0; - } - - /* Save all the positions seen so far. */ - ST.cp = regcppush(rex, 0, maxopenparen); - REGCP_SET(ST.lastcp); - - /* and then jump to the code we share with EVAL */ - goto eval_recurse_doit; - - assert(0); /* NOTREACHED */ - - case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */ - if (cur_eval && cur_eval->locinput==locinput) { - if ( ++nochange_depth > max_nochange_depth ) - Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex"); - } else { - nochange_depth = 0; - } - { - /* execute the code in the {...} */ - - dSP; - IV before; - OP * const oop = PL_op; - COP * const ocurcop = PL_curcop; - OP *nop; - CV *newcv; - - /* save *all* paren positions */ - regcppush(rex, 0, maxopenparen); - REGCP_SET(runops_cp); - - if (!caller_cv) - caller_cv = find_runcv(NULL); - - n = ARG(scan); - - if (rexi->data->what[n] == 'r') { /* code from an external qr */ - newcv = (ReANY( - (REGEXP*)(rexi->data->data[n]) - ))->qr_anoncv - ; - nop = (OP*)rexi->data->data[n+1]; - } - else if (rexi->data->what[n] == 'l') { /* literal code */ - newcv = caller_cv; - nop = (OP*)rexi->data->data[n]; - assert(CvDEPTH(newcv)); - } - else { - /* literal with own CV */ - assert(rexi->data->what[n] == 'L'); - newcv = rex->qr_anoncv; - nop = (OP*)rexi->data->data[n]; - } - - /* normally if we're about to execute code from the same - * CV that we used previously, we just use the existing - * CX stack entry. However, its possible that in the - * meantime we may have backtracked, popped from the save - * stack, and undone the SAVECOMPPAD(s) associated with - * PUSH_MULTICALL; in which case PL_comppad no longer - * points to newcv's pad. */ - if (newcv != last_pushed_cv || PL_comppad != last_pad) - { - U8 flags = (CXp_SUB_RE | - ((newcv == caller_cv) ? CXp_SUB_RE_FAKE : 0)); - if (last_pushed_cv) { - CHANGE_MULTICALL_FLAGS(newcv, flags); - } - else { - PUSH_MULTICALL_FLAGS(newcv, flags); - } - last_pushed_cv = newcv; - } - else { - /* these assignments are just to silence compiler - * warnings */ - multicall_cop = NULL; - newsp = NULL; - } - last_pad = PL_comppad; - - /* the initial nextstate you would normally execute - * at the start of an eval (which would cause error - * messages to come from the eval), may be optimised - * away from the execution path in the regex code blocks; - * so manually set PL_curcop to it initially */ - { - OP *o = cUNOPx(nop)->op_first; - assert(o->op_type == OP_NULL); - if (o->op_targ == OP_SCOPE) { - o = cUNOPo->op_first; - } - else { - assert(o->op_targ == OP_LEAVE); - o = cUNOPo->op_first; - assert(o->op_type == OP_ENTER); - o = o->op_sibling; - } - - if (o->op_type != OP_STUB) { - assert( o->op_type == OP_NEXTSTATE - || o->op_type == OP_DBSTATE - || (o->op_type == OP_NULL - && ( o->op_targ == OP_NEXTSTATE - || o->op_targ == OP_DBSTATE - ) - ) - ); - PL_curcop = (COP*)o; - } - } - nop = nop->op_next; - - DEBUG_STATE_r( PerlIO_printf(Perl_debug_log, - " re EVAL PL_op=0x%"UVxf"\n", PTR2UV(nop)) ); - - rex->offs[0].end = locinput - reginfo->strbeg; - if (reginfo->info_aux_eval->pos_magic) - MgBYTEPOS_set(reginfo->info_aux_eval->pos_magic, - reginfo->sv, reginfo->strbeg, - locinput - reginfo->strbeg); - - if (sv_yes_mark) { - SV *sv_mrk = get_sv("REGMARK", 1); - sv_setsv(sv_mrk, sv_yes_mark); - } - - /* we don't use MULTICALL here as we want to call the - * first op of the block of interest, rather than the - * first op of the sub */ - before = (IV)(SP-PL_stack_base); - PL_op = nop; - CALLRUNOPS(aTHX); /* Scalar context. */ - SPAGAIN; - if ((IV)(SP-PL_stack_base) == before) - ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */ - else { - ret = POPs; - PUTBACK; - } - - /* before restoring everything, evaluate the returned - * value, so that 'uninit' warnings don't use the wrong - * PL_op or pad. Also need to process any magic vars - * (e.g. $1) *before* parentheses are restored */ - - PL_op = NULL; - - re_sv = NULL; - if (logical == 0) /* (?{})/ */ - sv_setsv(save_scalar(PL_replgv), ret); /* $^R */ - else if (logical == 1) { /* /(?(?{...})X|Y)/ */ - sw = cBOOL(SvTRUE(ret)); - logical = 0; - } - else { /* /(??{}) */ - /* if its overloaded, let the regex compiler handle - * it; otherwise extract regex, or stringify */ - if (SvGMAGICAL(ret)) - ret = sv_mortalcopy(ret); - if (!SvAMAGIC(ret)) { - SV *sv = ret; - if (SvROK(sv)) - sv = SvRV(sv); - if (SvTYPE(sv) == SVt_REGEXP) - re_sv = (REGEXP*) sv; - else if (SvSMAGICAL(ret)) { - MAGIC *mg = mg_find(ret, PERL_MAGIC_qr); - if (mg) - re_sv = (REGEXP *) mg->mg_obj; - } - - /* force any undef warnings here */ - if (!re_sv && !SvPOK(ret) && !SvNIOK(ret)) { - ret = sv_mortalcopy(ret); - (void) SvPV_force_nolen(ret); - } - } - - } - - /* *** Note that at this point we don't restore - * PL_comppad, (or pop the CxSUB) on the assumption it may - * be used again soon. This is safe as long as nothing - * in the regexp code uses the pad ! */ - PL_op = oop; - PL_curcop = ocurcop; - S_regcp_restore(aTHX_ rex, runops_cp, &maxopenparen); - PL_curpm = PL_reg_curpm; - - if (logical != 2) - break; - } - - /* only /(??{})/ from now on */ - logical = 0; - { - /* extract RE object from returned value; compiling if - * necessary */ - - if (re_sv) { - re_sv = reg_temp_copy(NULL, re_sv); - } - else { - U32 pm_flags = 0; - - if (SvUTF8(ret) && IN_BYTES) { - /* In use 'bytes': make a copy of the octet - * sequence, but without the flag on */ - STRLEN len; - const char *const p = SvPV(ret, len); - ret = newSVpvn_flags(p, len, SVs_TEMP); - } - if (rex->intflags & PREGf_USE_RE_EVAL) - pm_flags |= PMf_USE_RE_EVAL; - - /* if we got here, it should be an engine which - * supports compiling code blocks and stuff */ - assert(rex->engine && rex->engine->op_comp); - assert(!(scan->flags & ~RXf_PMf_COMPILETIME)); - re_sv = rex->engine->op_comp(aTHX_ &ret, 1, NULL, - rex->engine, NULL, NULL, - /* copy /msix etc to inner pattern */ - scan->flags, - pm_flags); - - if (!(SvFLAGS(ret) - & (SVs_TEMP | SVs_GMG | SVf_ROK)) - && (!SvPADTMP(ret) || SvREADONLY(ret))) { - /* This isn't a first class regexp. Instead, it's - caching a regexp onto an existing, Perl visible - scalar. */ - sv_magic(ret, MUTABLE_SV(re_sv), PERL_MAGIC_qr, 0, 0); - } - } - SAVEFREESV(re_sv); - re = ReANY(re_sv); - } - RXp_MATCH_COPIED_off(re); - re->subbeg = rex->subbeg; - re->sublen = rex->sublen; - re->suboffset = rex->suboffset; - re->subcoffset = rex->subcoffset; - re->lastparen = 0; - re->lastcloseparen = 0; - rei = RXi_GET(re); - DEBUG_EXECUTE_r( - debug_start_match(re_sv, utf8_target, locinput, - reginfo->strend, "Matching embedded"); - ); - startpoint = rei->program + 1; - ST.close_paren = 0; /* only used for GOSUB */ - /* Save all the seen positions so far. */ - ST.cp = regcppush(rex, 0, maxopenparen); - REGCP_SET(ST.lastcp); - /* and set maxopenparen to 0, since we are starting a "fresh" match */ - maxopenparen = 0; - /* run the pattern returned from (??{...}) */ - - eval_recurse_doit: /* Share code with GOSUB below this line - * At this point we expect the stack context to be - * set up correctly */ - - /* invalidate the S-L poscache. We're now executing a - * different set of WHILEM ops (and their associated - * indexes) against the same string, so the bits in the - * cache are meaningless. Setting maxiter to zero forces - * the cache to be invalidated and zeroed before reuse. - * XXX This is too dramatic a measure. Ideally we should - * save the old cache and restore when running the outer - * pattern again */ - reginfo->poscache_maxiter = 0; - - /* the new regexp might have a different is_utf8_pat than we do */ - is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(re_sv)); - - ST.prev_rex = rex_sv; - ST.prev_curlyx = cur_curlyx; - rex_sv = re_sv; - SET_reg_curpm(rex_sv); - rex = re; - rexi = rei; - cur_curlyx = NULL; - ST.B = next; - ST.prev_eval = cur_eval; - cur_eval = st; - /* now continue from first node in postoned RE */ - PUSH_YES_STATE_GOTO(EVAL_AB, startpoint, locinput); - assert(0); /* NOTREACHED */ - } - - case EVAL_AB: /* cleanup after a successful (??{A})B */ - /* note: this is called twice; first after popping B, then A */ - rex_sv = ST.prev_rex; - is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); - SET_reg_curpm(rex_sv); - rex = ReANY(rex_sv); - rexi = RXi_GET(rex); - { - /* preserve $^R across LEAVE's. See Bug 121070. */ - SV *save_sv= GvSV(PL_replgv); - SvREFCNT_inc(save_sv); - regcpblow(ST.cp); /* LEAVE in disguise */ - sv_setsv(GvSV(PL_replgv), save_sv); - SvREFCNT_dec(save_sv); - } - cur_eval = ST.prev_eval; - cur_curlyx = ST.prev_curlyx; - - /* Invalidate cache. See "invalidate" comment above. */ - reginfo->poscache_maxiter = 0; - if ( nochange_depth ) - nochange_depth--; - sayYES; - - - case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */ - /* note: this is called twice; first after popping B, then A */ - rex_sv = ST.prev_rex; - is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); - SET_reg_curpm(rex_sv); - rex = ReANY(rex_sv); - rexi = RXi_GET(rex); - - REGCP_UNWIND(ST.lastcp); - regcppop(rex, &maxopenparen); - cur_eval = ST.prev_eval; - cur_curlyx = ST.prev_curlyx; - /* Invalidate cache. See "invalidate" comment above. */ - reginfo->poscache_maxiter = 0; - if ( nochange_depth ) - nochange_depth--; - sayNO_SILENT; -#undef ST - - case OPEN: /* ( */ - n = ARG(scan); /* which paren pair */ - rex->offs[n].start_tmp = locinput - reginfo->strbeg; - if (n > maxopenparen) - maxopenparen = n; - DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, - "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf" tmp; maxopenparen=%"UVuf"\n", - PTR2UV(rex), - PTR2UV(rex->offs), - (UV)n, - (IV)rex->offs[n].start_tmp, - (UV)maxopenparen - )); - lastopen = n; - break; - -/* XXX really need to log other places start/end are set too */ -#define CLOSE_CAPTURE \ - rex->offs[n].start = rex->offs[n].start_tmp; \ - rex->offs[n].end = locinput - reginfo->strbeg; \ - DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log, \ - "rex=0x%"UVxf" offs=0x%"UVxf": \\%"UVuf": set %"IVdf"..%"IVdf"\n", \ - PTR2UV(rex), \ - PTR2UV(rex->offs), \ - (UV)n, \ - (IV)rex->offs[n].start, \ - (IV)rex->offs[n].end \ - )) - - case CLOSE: /* ) */ - n = ARG(scan); /* which paren pair */ - CLOSE_CAPTURE; - if (n > rex->lastparen) - rex->lastparen = n; - rex->lastcloseparen = n; - if (cur_eval && cur_eval->u.eval.close_paren == n) { - goto fake_end; - } - break; - - case ACCEPT: /* (*ACCEPT) */ - if (ARG(scan)){ - regnode *cursor; - for (cursor=scan; - cursor && OP(cursor)!=END; - cursor=regnext(cursor)) - { - if ( OP(cursor)==CLOSE ){ - n = ARG(cursor); - if ( n <= lastopen ) { - CLOSE_CAPTURE; - if (n > rex->lastparen) - rex->lastparen = n; - rex->lastcloseparen = n; - if ( n == ARG(scan) || (cur_eval && - cur_eval->u.eval.close_paren == n)) - break; - } - } - } - } - goto fake_end; - /*NOTREACHED*/ - - case GROUPP: /* (?(1)) */ - n = ARG(scan); /* which paren pair */ - sw = cBOOL(rex->lastparen >= n && rex->offs[n].end != -1); - break; - - case NGROUPP: /* (?()) */ - /* reg_check_named_buff_matched returns 0 for no match */ - sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan)); - break; - - case INSUBP: /* (?(R)) */ - n = ARG(scan); - sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n)); - break; - - case DEFINEP: /* (?(DEFINE)) */ - sw = 0; - break; - - case IFTHEN: /* (?(cond)A|B) */ - reginfo->poscache_iter = reginfo->poscache_maxiter; /* Void cache */ - if (sw) - next = NEXTOPER(NEXTOPER(scan)); - else { - next = scan + ARG(scan); - if (OP(next) == IFTHEN) /* Fake one. */ - next = NEXTOPER(NEXTOPER(next)); - } - break; - - case LOGICAL: /* modifier for EVAL and IFMATCH */ - logical = scan->flags; - break; - -/******************************************************************* - -The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/ -pattern, where A and B are subpatterns. (For simple A, CURLYM or -STAR/PLUS/CURLY/CURLYN are used instead.) - -A*B is compiled as - -On entry to the subpattern, CURLYX is called. This pushes a CURLYX -state, which contains the current count, initialised to -1. It also sets -cur_curlyx to point to this state, with any previous value saved in the -state block. - -CURLYX then jumps straight to the WHILEM op, rather than executing A, -since the pattern may possibly match zero times (i.e. it's a while {} loop -rather than a do {} while loop). - -Each entry to WHILEM represents a successful match of A. The count in the -CURLYX block is incremented, another WHILEM state is pushed, and execution -passes to A or B depending on greediness and the current count. - -For example, if matching against the string a1a2a3b (where the aN are -substrings that match /A/), then the match progresses as follows: (the -pushed states are interspersed with the bits of strings matched so far): - - - - a1 - a1 a2 - a1 a2 a3 - a1 a2 a3 b - -(Contrast this with something like CURLYM, which maintains only a single -backtrack state: - - a1 - a1 a2 - a1 a2 a3 - a1 a2 a3 b -) - -Each WHILEM state block marks a point to backtrack to upon partial failure -of A or B, and also contains some minor state data related to that -iteration. The CURLYX block, pointed to by cur_curlyx, contains the -overall state, such as the count, and pointers to the A and B ops. - -This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx -must always point to the *current* CURLYX block, the rules are: - -When executing CURLYX, save the old cur_curlyx in the CURLYX state block, -and set cur_curlyx to point the new block. - -When popping the CURLYX block after a successful or unsuccessful match, -restore the previous cur_curlyx. - -When WHILEM is about to execute B, save the current cur_curlyx, and set it -to the outer one saved in the CURLYX block. - -When popping the WHILEM block after a successful or unsuccessful B match, -restore the previous cur_curlyx. - -Here's an example for the pattern (AI* BI)*BO -I and O refer to inner and outer, C and W refer to CURLYX and WHILEM: - -cur_ -curlyx backtrack stack ------- --------------- -NULL -CO -CI ai -CO ai bi -NULL ai bi bo - -At this point the pattern succeeds, and we work back down the stack to -clean up, restoring as we go: - -CO ai bi -CI ai -CO -NULL - -*******************************************************************/ - -#define ST st->u.curlyx - - case CURLYX: /* start of /A*B/ (for complex A) */ - { - /* No need to save/restore up to this paren */ - I32 parenfloor = scan->flags; - - assert(next); /* keep Coverity happy */ - if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */ - next += ARG(next); - - /* XXXX Probably it is better to teach regpush to support - parenfloor > maxopenparen ... */ - if (parenfloor > (I32)rex->lastparen) - parenfloor = rex->lastparen; /* Pessimization... */ - - ST.prev_curlyx= cur_curlyx; - cur_curlyx = st; - ST.cp = PL_savestack_ix; - - /* these fields contain the state of the current curly. - * they are accessed by subsequent WHILEMs */ - ST.parenfloor = parenfloor; - ST.me = scan; - ST.B = next; - ST.minmod = minmod; - minmod = 0; - ST.count = -1; /* this will be updated by WHILEM */ - ST.lastloc = NULL; /* this will be updated by WHILEM */ - - PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next), locinput); - assert(0); /* NOTREACHED */ - } - - case CURLYX_end: /* just finished matching all of A*B */ - cur_curlyx = ST.prev_curlyx; - sayYES; - assert(0); /* NOTREACHED */ - - case CURLYX_end_fail: /* just failed to match all of A*B */ - regcpblow(ST.cp); - cur_curlyx = ST.prev_curlyx; - sayNO; - assert(0); /* NOTREACHED */ - - -#undef ST -#define ST st->u.whilem - - case WHILEM: /* just matched an A in /A*B/ (for complex A) */ - { - /* see the discussion above about CURLYX/WHILEM */ - I32 n; - int min = ARG1(cur_curlyx->u.curlyx.me); - int max = ARG2(cur_curlyx->u.curlyx.me); - regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS; - - assert(cur_curlyx); /* keep Coverity happy */ - n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */ - ST.save_lastloc = cur_curlyx->u.curlyx.lastloc; - ST.cache_offset = 0; - ST.cache_mask = 0; - - - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - "%*s whilem: matched %ld out of %d..%d\n", - REPORT_CODE_OFF+depth*2, "", (long)n, min, max) - ); - - /* First just match a string of min A's. */ - - if (n < min) { - ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, - maxopenparen); - cur_curlyx->u.curlyx.lastloc = locinput; - REGCP_SET(ST.lastcp); - - PUSH_STATE_GOTO(WHILEM_A_pre, A, locinput); - assert(0); /* NOTREACHED */ - } - - /* If degenerate A matches "", assume A done. */ - - if (locinput == cur_curlyx->u.curlyx.lastloc) { - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - "%*s whilem: empty match detected, trying continuation...\n", - REPORT_CODE_OFF+depth*2, "") - ); - goto do_whilem_B_max; - } - - /* super-linear cache processing. - * - * The idea here is that for certain types of CURLYX/WHILEM - - * principally those whose upper bound is infinity (and - * excluding regexes that have things like \1 and other very - * non-regular expresssiony things), then if a pattern like - * /....A*.../ fails and we backtrack to the WHILEM, then we - * make a note that this particular WHILEM op was at string - * position 47 (say) when the rest of pattern failed. Then, if - * we ever find ourselves back at that WHILEM, and at string - * position 47 again, we can just fail immediately rather than - * running the rest of the pattern again. - * - * This is very handy when patterns start to go - * 'super-linear', like in (a+)*(a+)*(a+)*, where you end up - * with a combinatorial explosion of backtracking. - * - * The cache is implemented as a bit array, with one bit per - * string byte position per WHILEM op (up to 16) - so its - * between 0.25 and 2x the string size. - * - * To avoid allocating a poscache buffer every time, we do an - * initially countdown; only after we have executed a WHILEM - * op (string-length x #WHILEMs) times do we allocate the - * cache. - * - * The top 4 bits of scan->flags byte say how many different - * relevant CURLLYX/WHILEM op pairs there are, while the - * bottom 4-bits is the identifying index number of this - * WHILEM. - */ - - if (scan->flags) { - - if (!reginfo->poscache_maxiter) { - /* start the countdown: Postpone detection until we - * know the match is not *that* much linear. */ - reginfo->poscache_maxiter - = (reginfo->strend - reginfo->strbeg + 1) - * (scan->flags>>4); - /* possible overflow for long strings and many CURLYX's */ - if (reginfo->poscache_maxiter < 0) - reginfo->poscache_maxiter = I32_MAX; - reginfo->poscache_iter = reginfo->poscache_maxiter; - } - - if (reginfo->poscache_iter-- == 0) { - /* initialise cache */ - const SSize_t size = (reginfo->poscache_maxiter + 7)/8; - regmatch_info_aux *const aux = reginfo->info_aux; - if (aux->poscache) { - if ((SSize_t)reginfo->poscache_size < size) { - Renew(aux->poscache, size, char); - reginfo->poscache_size = size; - } - Zero(aux->poscache, size, char); - } - else { - reginfo->poscache_size = size; - Newxz(aux->poscache, size, char); - } - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - "%swhilem: Detected a super-linear match, switching on caching%s...\n", - PL_colors[4], PL_colors[5]) - ); - } - - if (reginfo->poscache_iter < 0) { - /* have we already failed at this position? */ - SSize_t offset, mask; - - reginfo->poscache_iter = -1; /* stop eventual underflow */ - offset = (scan->flags & 0xf) - 1 - + (locinput - reginfo->strbeg) - * (scan->flags>>4); - mask = 1 << (offset % 8); - offset /= 8; - if (reginfo->info_aux->poscache[offset] & mask) { - DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log, - "%*s whilem: (cache) already tried at this position...\n", - REPORT_CODE_OFF+depth*2, "") - ); - sayNO; /* cache records failure */ - } - ST.cache_offset = offset; - ST.cache_mask = mask; - } - } - - /* Prefer B over A for minimal matching. */ - - if (cur_curlyx->u.curlyx.minmod) { - ST.save_curlyx = cur_curlyx; - cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; - ST.cp = regcppush(rex, ST.save_curlyx->u.curlyx.parenfloor, - maxopenparen); - REGCP_SET(ST.lastcp); - PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B, - locinput); - assert(0); /* NOTREACHED */ - } - - /* Prefer A over B for maximal matching. */ - - if (n < max) { /* More greed allowed? */ - ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, - maxopenparen); - cur_curlyx->u.curlyx.lastloc = locinput; - REGCP_SET(ST.lastcp); - PUSH_STATE_GOTO(WHILEM_A_max, A, locinput); - assert(0); /* NOTREACHED */ - } - goto do_whilem_B_max; - } - assert(0); /* NOTREACHED */ - - case WHILEM_B_min: /* just matched B in a minimal match */ - case WHILEM_B_max: /* just matched B in a maximal match */ - cur_curlyx = ST.save_curlyx; - sayYES; - assert(0); /* NOTREACHED */ - - case WHILEM_B_max_fail: /* just failed to match B in a maximal match */ - cur_curlyx = ST.save_curlyx; - cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; - cur_curlyx->u.curlyx.count--; - CACHEsayNO; - assert(0); /* NOTREACHED */ - - case WHILEM_A_min_fail: /* just failed to match A in a minimal match */ - /* FALLTHROUGH */ - case WHILEM_A_pre_fail: /* just failed to match even minimal A */ - REGCP_UNWIND(ST.lastcp); - regcppop(rex, &maxopenparen); - cur_curlyx->u.curlyx.lastloc = ST.save_lastloc; - cur_curlyx->u.curlyx.count--; - CACHEsayNO; - assert(0); /* NOTREACHED */ - - case WHILEM_A_max_fail: /* just failed to match A in a maximal match */ - REGCP_UNWIND(ST.lastcp); - regcppop(rex, &maxopenparen); /* Restore some previous $s? */ - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "%*s whilem: failed, trying continuation...\n", - REPORT_CODE_OFF+depth*2, "") - ); - do_whilem_B_max: - if (cur_curlyx->u.curlyx.count >= REG_INFTY - && ckWARN(WARN_REGEXP) - && !reginfo->warned) - { - reginfo->warned = TRUE; - Perl_warner(aTHX_ packWARN(WARN_REGEXP), - "Complex regular subexpression recursion limit (%d) " - "exceeded", - REG_INFTY - 1); - } - - /* now try B */ - ST.save_curlyx = cur_curlyx; - cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx; - PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B, - locinput); - assert(0); /* NOTREACHED */ - - case WHILEM_B_min_fail: /* just failed to match B in a minimal match */ - cur_curlyx = ST.save_curlyx; - REGCP_UNWIND(ST.lastcp); - regcppop(rex, &maxopenparen); - - if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) { - /* Maximum greed exceeded */ - if (cur_curlyx->u.curlyx.count >= REG_INFTY - && ckWARN(WARN_REGEXP) - && !reginfo->warned) - { - reginfo->warned = TRUE; - Perl_warner(aTHX_ packWARN(WARN_REGEXP), - "Complex regular subexpression recursion " - "limit (%d) exceeded", - REG_INFTY - 1); - } - cur_curlyx->u.curlyx.count--; - CACHEsayNO; - } - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "") - ); - /* Try grabbing another A and see if it helps. */ - cur_curlyx->u.curlyx.lastloc = locinput; - ST.cp = regcppush(rex, cur_curlyx->u.curlyx.parenfloor, - maxopenparen); - REGCP_SET(ST.lastcp); - PUSH_STATE_GOTO(WHILEM_A_min, - /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS, - locinput); - assert(0); /* NOTREACHED */ - -#undef ST -#define ST st->u.branch - - case BRANCHJ: /* /(...|A|...)/ with long next pointer */ - next = scan + ARG(scan); - if (next == scan) - next = NULL; - scan = NEXTOPER(scan); - /* FALLTHROUGH */ - - case BRANCH: /* /(...|A|...)/ */ - scan = NEXTOPER(scan); /* scan now points to inner node */ - ST.lastparen = rex->lastparen; - ST.lastcloseparen = rex->lastcloseparen; - ST.next_branch = next; - REGCP_SET(ST.cp); - - /* Now go into the branch */ - if (has_cutgroup) { - PUSH_YES_STATE_GOTO(BRANCH_next, scan, locinput); - } else { - PUSH_STATE_GOTO(BRANCH_next, scan, locinput); - } - assert(0); /* NOTREACHED */ - - case CUTGROUP: /* /(*THEN)/ */ - sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL : - MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); - PUSH_STATE_GOTO(CUTGROUP_next, next, locinput); - assert(0); /* NOTREACHED */ - - case CUTGROUP_next_fail: - do_cutgroup = 1; - no_final = 1; - if (st->u.mark.mark_name) - sv_commit = st->u.mark.mark_name; - sayNO; - assert(0); /* NOTREACHED */ - - case BRANCH_next: - sayYES; - assert(0); /* NOTREACHED */ - - case BRANCH_next_fail: /* that branch failed; try the next, if any */ - if (do_cutgroup) { - do_cutgroup = 0; - no_final = 0; - } - REGCP_UNWIND(ST.cp); - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - scan = ST.next_branch; - /* no more branches? */ - if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) { - DEBUG_EXECUTE_r({ - PerlIO_printf( Perl_debug_log, - "%*s %sBRANCH failed...%s\n", - REPORT_CODE_OFF+depth*2, "", - PL_colors[4], - PL_colors[5] ); - }); - sayNO_SILENT; - } - continue; /* execute next BRANCH[J] op */ - assert(0); /* NOTREACHED */ - - case MINMOD: /* next op will be non-greedy, e.g. A*? */ - minmod = 1; - break; - -#undef ST -#define ST st->u.curlym - - case CURLYM: /* /A{m,n}B/ where A is fixed-length */ - - /* This is an optimisation of CURLYX that enables us to push - * only a single backtracking state, no matter how many matches - * there are in {m,n}. It relies on the pattern being constant - * length, with no parens to influence future backrefs - */ - - ST.me = scan; - scan = NEXTOPER(scan) + NODE_STEP_REGNODE; - - ST.lastparen = rex->lastparen; - ST.lastcloseparen = rex->lastcloseparen; - - /* if paren positive, emulate an OPEN/CLOSE around A */ - if (ST.me->flags) { - U32 paren = ST.me->flags; - if (paren > maxopenparen) - maxopenparen = paren; - scan += NEXT_OFF(scan); /* Skip former OPEN. */ - } - ST.A = scan; - ST.B = next; - ST.alen = 0; - ST.count = 0; - ST.minmod = minmod; - minmod = 0; - ST.c1 = CHRTEST_UNINIT; - REGCP_SET(ST.cp); - - if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */ - goto curlym_do_B; - - curlym_do_A: /* execute the A in /A{m,n}B/ */ - PUSH_YES_STATE_GOTO(CURLYM_A, ST.A, locinput); /* match A */ - assert(0); /* NOTREACHED */ - - case CURLYM_A: /* we've just matched an A */ - ST.count++; - /* after first match, determine A's length: u.curlym.alen */ - if (ST.count == 1) { - if (reginfo->is_utf8_target) { - char *s = st->locinput; - while (s < locinput) { - ST.alen++; - s += UTF8SKIP(s); - } - } - else { - ST.alen = locinput - st->locinput; - } - if (ST.alen == 0) - ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me); - } - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n", - (int)(REPORT_CODE_OFF+(depth*2)), "", - (IV) ST.count, (IV)ST.alen) - ); - - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.me->flags) - goto fake_end; - - { - I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me)); - if ( max == REG_INFTY || ST.count < max ) - goto curlym_do_A; /* try to match another A */ - } - goto curlym_do_B; /* try to match B */ - - case CURLYM_A_fail: /* just failed to match an A */ - REGCP_UNWIND(ST.cp); - - if (ST.minmod || ST.count < ARG1(ST.me) /* min*/ - || (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.me->flags)) - sayNO; - - curlym_do_B: /* execute the B in /A{m,n}B/ */ - if (ST.c1 == CHRTEST_UNINIT) { - /* calculate c1 and c2 for possible match of 1st char - * following curly */ - ST.c1 = ST.c2 = CHRTEST_VOID; - if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) { - regnode *text_node = ST.B; - if (! HAS_TEXT(text_node)) - FIND_NEXT_IMPT(text_node); - /* this used to be - - (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT) - - But the former is redundant in light of the latter. - - if this changes back then the macro for - IS_TEXT and friends need to change. - */ - if (PL_regkind[OP(text_node)] == EXACT) { - if (! S_setup_EXACTISH_ST_c1_c2(aTHX_ - text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8, - reginfo)) - { - sayNO; - } - } - } - } - - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s CURLYM trying tail with matches=%"IVdf"...\n", - (int)(REPORT_CODE_OFF+(depth*2)), - "", (IV)ST.count) - ); - if (! NEXTCHR_IS_EOS && ST.c1 != CHRTEST_VOID) { - if (! UTF8_IS_INVARIANT(nextchr) && utf8_target) { - if (memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)) - && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput))) - { - /* simulate B failing */ - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, - "%*s CURLYM Fast bail next target=0x%"UVXf" c1=0x%"UVXf" c2=0x%"UVXf"\n", - (int)(REPORT_CODE_OFF+(depth*2)),"", - valid_utf8_to_uvchr((U8 *) locinput, NULL), - valid_utf8_to_uvchr(ST.c1_utf8, NULL), - valid_utf8_to_uvchr(ST.c2_utf8, NULL)) - ); - state_num = CURLYM_B_fail; - goto reenter_switch; - } - } - else if (nextchr != ST.c1 && nextchr != ST.c2) { - /* simulate B failing */ - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, - "%*s CURLYM Fast bail next target=0x%X c1=0x%X c2=0x%X\n", - (int)(REPORT_CODE_OFF+(depth*2)),"", - (int) nextchr, ST.c1, ST.c2) - ); - state_num = CURLYM_B_fail; - goto reenter_switch; - } - } - - if (ST.me->flags) { - /* emulate CLOSE: mark current A as captured */ - I32 paren = ST.me->flags; - if (ST.count) { - rex->offs[paren].start - = HOPc(locinput, -ST.alen) - reginfo->strbeg; - rex->offs[paren].end = locinput - reginfo->strbeg; - if ((U32)paren > rex->lastparen) - rex->lastparen = paren; - rex->lastcloseparen = paren; - } - else - rex->offs[paren].end = -1; - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.me->flags) - { - if (ST.count) - goto fake_end; - else - sayNO; - } - } - - PUSH_STATE_GOTO(CURLYM_B, ST.B, locinput); /* match B */ - assert(0); /* NOTREACHED */ - - case CURLYM_B_fail: /* just failed to match a B */ - REGCP_UNWIND(ST.cp); - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - if (ST.minmod) { - I32 max = ARG2(ST.me); - if (max != REG_INFTY && ST.count == max) - sayNO; - goto curlym_do_A; /* try to match a further A */ - } - /* backtrack one A */ - if (ST.count == ARG1(ST.me) /* min */) - sayNO; - ST.count--; - SET_locinput(HOPc(locinput, -ST.alen)); - goto curlym_do_B; /* try to match B */ - -#undef ST -#define ST st->u.curly - -#define CURLY_SETPAREN(paren, success) \ - if (paren) { \ - if (success) { \ - rex->offs[paren].start = HOPc(locinput, -1) - reginfo->strbeg; \ - rex->offs[paren].end = locinput - reginfo->strbeg; \ - if (paren > rex->lastparen) \ - rex->lastparen = paren; \ - rex->lastcloseparen = paren; \ - } \ - else { \ - rex->offs[paren].end = -1; \ - rex->lastparen = ST.lastparen; \ - rex->lastcloseparen = ST.lastcloseparen; \ - } \ - } - - case STAR: /* /A*B/ where A is width 1 char */ - ST.paren = 0; - ST.min = 0; - ST.max = REG_INFTY; - scan = NEXTOPER(scan); - goto repeat; - - case PLUS: /* /A+B/ where A is width 1 char */ - ST.paren = 0; - ST.min = 1; - ST.max = REG_INFTY; - scan = NEXTOPER(scan); - goto repeat; - - case CURLYN: /* /(A){m,n}B/ where A is width 1 char */ - ST.paren = scan->flags; /* Which paren to set */ - ST.lastparen = rex->lastparen; - ST.lastcloseparen = rex->lastcloseparen; - if (ST.paren > maxopenparen) - maxopenparen = ST.paren; - ST.min = ARG1(scan); /* min to match */ - ST.max = ARG2(scan); /* max to match */ - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.paren) { - ST.min=1; - ST.max=1; - } - scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE); - goto repeat; - - case CURLY: /* /A{m,n}B/ where A is width 1 char */ - ST.paren = 0; - ST.min = ARG1(scan); /* min to match */ - ST.max = ARG2(scan); /* max to match */ - scan = NEXTOPER(scan) + NODE_STEP_REGNODE; - repeat: - /* - * Lookahead to avoid useless match attempts - * when we know what character comes next. - * - * Used to only do .*x and .*?x, but now it allows - * for )'s, ('s and (?{ ... })'s to be in the way - * of the quantifier and the EXACT-like node. -- japhy - */ - - assert(ST.min <= ST.max); - if (! HAS_TEXT(next) && ! JUMPABLE(next)) { - ST.c1 = ST.c2 = CHRTEST_VOID; - } - else { - regnode *text_node = next; - - if (! HAS_TEXT(text_node)) - FIND_NEXT_IMPT(text_node); - - if (! HAS_TEXT(text_node)) - ST.c1 = ST.c2 = CHRTEST_VOID; - else { - if ( PL_regkind[OP(text_node)] != EXACT ) { - ST.c1 = ST.c2 = CHRTEST_VOID; - } - else { - - /* Currently we only get here when - - PL_rekind[OP(text_node)] == EXACT - - if this changes back then the macro for IS_TEXT and - friends need to change. */ - if (! S_setup_EXACTISH_ST_c1_c2(aTHX_ - text_node, &ST.c1, ST.c1_utf8, &ST.c2, ST.c2_utf8, - reginfo)) - { - sayNO; - } - } - } - } - - ST.A = scan; - ST.B = next; - if (minmod) { - char *li = locinput; - minmod = 0; - if (ST.min && - regrepeat(rex, &li, ST.A, reginfo, ST.min, depth) - < ST.min) - sayNO; - SET_locinput(li); - ST.count = ST.min; - REGCP_SET(ST.cp); - if (ST.c1 == CHRTEST_VOID) - goto curly_try_B_min; - - ST.oldloc = locinput; - - /* set ST.maxpos to the furthest point along the - * string that could possibly match */ - if (ST.max == REG_INFTY) { - ST.maxpos = reginfo->strend - 1; - if (utf8_target) - while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos)) - ST.maxpos--; - } - else if (utf8_target) { - int m = ST.max - ST.min; - for (ST.maxpos = locinput; - m >0 && ST.maxpos < reginfo->strend; m--) - ST.maxpos += UTF8SKIP(ST.maxpos); - } - else { - ST.maxpos = locinput + ST.max - ST.min; - if (ST.maxpos >= reginfo->strend) - ST.maxpos = reginfo->strend - 1; - } - goto curly_try_B_min_known; - - } - else { - /* avoid taking address of locinput, so it can remain - * a register var */ - char *li = locinput; - ST.count = regrepeat(rex, &li, ST.A, reginfo, ST.max, depth); - if (ST.count < ST.min) - sayNO; - SET_locinput(li); - if ((ST.count > ST.min) - && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL)) - { - /* A{m,n} must come at the end of the string, there's - * no point in backing off ... */ - ST.min = ST.count; - /* ...except that $ and \Z can match before *and* after - newline at the end. Consider "\n\n" =~ /\n+\Z\n/. - We may back off by one in this case. */ - if (UCHARAT(locinput - 1) == '\n' && OP(ST.B) != EOS) - ST.min--; - } - REGCP_SET(ST.cp); - goto curly_try_B_max; - } - assert(0); /* NOTREACHED */ - - - case CURLY_B_min_known_fail: - /* failed to find B in a non-greedy match where c1,c2 valid */ - - REGCP_UNWIND(ST.cp); - if (ST.paren) { - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - } - /* Couldn't or didn't -- move forward. */ - ST.oldloc = locinput; - if (utf8_target) - locinput += UTF8SKIP(locinput); - else - locinput++; - ST.count++; - curly_try_B_min_known: - /* find the next place where 'B' could work, then call B */ - { - int n; - if (utf8_target) { - n = (ST.oldloc == locinput) ? 0 : 1; - if (ST.c1 == ST.c2) { - /* set n to utf8_distance(oldloc, locinput) */ - while (locinput <= ST.maxpos - && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput))) - { - locinput += UTF8SKIP(locinput); - n++; - } - } - else { - /* set n to utf8_distance(oldloc, locinput) */ - while (locinput <= ST.maxpos - && memNE(locinput, ST.c1_utf8, UTF8SKIP(locinput)) - && memNE(locinput, ST.c2_utf8, UTF8SKIP(locinput))) - { - locinput += UTF8SKIP(locinput); - n++; - } - } - } - else { /* Not utf8_target */ - if (ST.c1 == ST.c2) { - while (locinput <= ST.maxpos && - UCHARAT(locinput) != ST.c1) - locinput++; - } - else { - while (locinput <= ST.maxpos - && UCHARAT(locinput) != ST.c1 - && UCHARAT(locinput) != ST.c2) - locinput++; - } - n = locinput - ST.oldloc; - } - if (locinput > ST.maxpos) - sayNO; - if (n) { - /* In /a{m,n}b/, ST.oldloc is at "a" x m, locinput is - * at b; check that everything between oldloc and - * locinput matches */ - char *li = ST.oldloc; - ST.count += n; - if (regrepeat(rex, &li, ST.A, reginfo, n, depth) < n) - sayNO; - assert(n == REG_INFTY || locinput == li); - } - CURLY_SETPAREN(ST.paren, ST.count); - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.paren) { - goto fake_end; - } - PUSH_STATE_GOTO(CURLY_B_min_known, ST.B, locinput); - } - assert(0); /* NOTREACHED */ - - - case CURLY_B_min_fail: - /* failed to find B in a non-greedy match where c1,c2 invalid */ - - REGCP_UNWIND(ST.cp); - if (ST.paren) { - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - } - /* failed -- move forward one */ - { - char *li = locinput; - if (!regrepeat(rex, &li, ST.A, reginfo, 1, depth)) { - sayNO; - } - locinput = li; - } - { - ST.count++; - if (ST.count <= ST.max || (ST.max == REG_INFTY && - ST.count > 0)) /* count overflow ? */ - { - curly_try_B_min: - CURLY_SETPAREN(ST.paren, ST.count); - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.paren) { - goto fake_end; - } - PUSH_STATE_GOTO(CURLY_B_min, ST.B, locinput); - } - } - sayNO; - assert(0); /* NOTREACHED */ - - - curly_try_B_max: - /* a successful greedy match: now try to match B */ - if (cur_eval && cur_eval->u.eval.close_paren && - cur_eval->u.eval.close_paren == (U32)ST.paren) { - goto fake_end; - } - { - bool could_match = locinput < reginfo->strend; - - /* If it could work, try it. */ - if (ST.c1 != CHRTEST_VOID && could_match) { - if (! UTF8_IS_INVARIANT(UCHARAT(locinput)) && utf8_target) - { - could_match = memEQ(locinput, - ST.c1_utf8, - UTF8SKIP(locinput)) - || memEQ(locinput, - ST.c2_utf8, - UTF8SKIP(locinput)); - } - else { - could_match = UCHARAT(locinput) == ST.c1 - || UCHARAT(locinput) == ST.c2; - } - } - if (ST.c1 == CHRTEST_VOID || could_match) { - CURLY_SETPAREN(ST.paren, ST.count); - PUSH_STATE_GOTO(CURLY_B_max, ST.B, locinput); - assert(0); /* NOTREACHED */ - } - } - /* FALLTHROUGH */ - - case CURLY_B_max_fail: - /* failed to find B in a greedy match */ - - REGCP_UNWIND(ST.cp); - if (ST.paren) { - UNWIND_PAREN(ST.lastparen, ST.lastcloseparen); - } - /* back up. */ - if (--ST.count < ST.min) - sayNO; - locinput = HOPc(locinput, -1); - goto curly_try_B_max; - -#undef ST - - case END: /* last op of main pattern */ - fake_end: - if (cur_eval) { - /* we've just finished A in /(??{A})B/; now continue with B */ - - st->u.eval.prev_rex = rex_sv; /* inner */ - - /* Save *all* the positions. */ - st->u.eval.cp = regcppush(rex, 0, maxopenparen); - rex_sv = cur_eval->u.eval.prev_rex; - is_utf8_pat = reginfo->is_utf8_pat = cBOOL(RX_UTF8(rex_sv)); - SET_reg_curpm(rex_sv); - rex = ReANY(rex_sv); - rexi = RXi_GET(rex); - cur_curlyx = cur_eval->u.eval.prev_curlyx; - - REGCP_SET(st->u.eval.lastcp); - - /* Restore parens of the outer rex without popping the - * savestack */ - S_regcp_restore(aTHX_ rex, cur_eval->u.eval.lastcp, - &maxopenparen); - - st->u.eval.prev_eval = cur_eval; - cur_eval = cur_eval->u.eval.prev_eval; - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n", - REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval));); - if ( nochange_depth ) - nochange_depth--; - - PUSH_YES_STATE_GOTO(EVAL_AB, st->u.eval.prev_eval->u.eval.B, - locinput); /* match B */ - } - - if (locinput < reginfo->till) { - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, - "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n", - PL_colors[4], - (long)(locinput - startpos), - (long)(reginfo->till - startpos), - PL_colors[5])); - - sayNO_SILENT; /* Cannot match: too short. */ - } - sayYES; /* Success! */ - - case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */ - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s %ssubpattern success...%s\n", - REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])); - sayYES; /* Success! */ - -#undef ST -#define ST st->u.ifmatch - - { - char *newstart; - - case SUSPEND: /* (?>A) */ - ST.wanted = 1; - newstart = locinput; - goto do_ifmatch; - - case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?flags) { - char * const s = HOPBACKc(locinput, scan->flags); - if (!s) { - /* trivial fail */ - if (logical) { - logical = 0; - sw = 1 - cBOOL(ST.wanted); - } - else if (ST.wanted) - sayNO; - next = scan + ARG(scan); - if (next == scan) - next = NULL; - break; - } - newstart = s; - } - else - newstart = locinput; - - do_ifmatch: - ST.me = scan; - ST.logical = logical; - logical = 0; /* XXX: reset state of logical once it has been saved into ST */ - - /* execute body of (?...A) */ - PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)), newstart); - assert(0); /* NOTREACHED */ - } - - case IFMATCH_A_fail: /* body of (?...A) failed */ - ST.wanted = !ST.wanted; - /* FALLTHROUGH */ - - case IFMATCH_A: /* body of (?...A) succeeded */ - if (ST.logical) { - sw = cBOOL(ST.wanted); - } - else if (!ST.wanted) - sayNO; - - if (OP(ST.me) != SUSPEND) { - /* restore old position except for (?>...) */ - locinput = st->locinput; - } - scan = ST.me + ARG(ST.me); - if (scan == ST.me) - scan = NULL; - continue; /* execute B */ - -#undef ST - - case LONGJMP: /* alternative with many branches compiles to - * (BRANCHJ; EXACT ...; LONGJMP ) x N */ - next = scan + ARG(scan); - if (next == scan) - next = NULL; - break; - - case COMMIT: /* (*COMMIT) */ - reginfo->cutpoint = reginfo->strend; - /* FALLTHROUGH */ - - case PRUNE: /* (*PRUNE) */ - if (!scan->flags) - sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); - PUSH_STATE_GOTO(COMMIT_next, next, locinput); - assert(0); /* NOTREACHED */ - - case COMMIT_next_fail: - no_final = 1; - /* FALLTHROUGH */ - - case OPFAIL: /* (*FAIL) */ - sayNO; - assert(0); /* NOTREACHED */ - -#define ST st->u.mark - case MARKPOINT: /* (*MARK:foo) */ - ST.prev_mark = mark_state; - ST.mark_name = sv_commit = sv_yes_mark - = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); - mark_state = st; - ST.mark_loc = locinput; - PUSH_YES_STATE_GOTO(MARKPOINT_next, next, locinput); - assert(0); /* NOTREACHED */ - - case MARKPOINT_next: - mark_state = ST.prev_mark; - sayYES; - assert(0); /* NOTREACHED */ - - case MARKPOINT_next_fail: - if (popmark && sv_eq(ST.mark_name,popmark)) - { - if (ST.mark_loc > startpoint) - reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); - popmark = NULL; /* we found our mark */ - sv_commit = ST.mark_name; - - DEBUG_EXECUTE_r({ - PerlIO_printf(Perl_debug_log, - "%*s %ssetting cutpoint to mark:%"SVf"...%s\n", - REPORT_CODE_OFF+depth*2, "", - PL_colors[4], SVfARG(sv_commit), PL_colors[5]); - }); - } - mark_state = ST.prev_mark; - sv_yes_mark = mark_state ? - mark_state->u.mark.mark_name : NULL; - sayNO; - assert(0); /* NOTREACHED */ - - case SKIP: /* (*SKIP) */ - if (scan->flags) { - /* (*SKIP) : if we fail we cut here*/ - ST.mark_name = NULL; - ST.mark_loc = locinput; - PUSH_STATE_GOTO(SKIP_next,next, locinput); - } else { - /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was, - otherwise do nothing. Meaning we need to scan - */ - regmatch_state *cur = mark_state; - SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]); - - while (cur) { - if ( sv_eq( cur->u.mark.mark_name, - find ) ) - { - ST.mark_name = find; - PUSH_STATE_GOTO( SKIP_next, next, locinput); - } - cur = cur->u.mark.prev_mark; - } - } - /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */ - break; - - case SKIP_next_fail: - if (ST.mark_name) { - /* (*CUT:NAME) - Set up to search for the name as we - collapse the stack*/ - popmark = ST.mark_name; - } else { - /* (*CUT) - No name, we cut here.*/ - if (ST.mark_loc > startpoint) - reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1); - /* but we set sv_commit to latest mark_name if there - is one so they can test to see how things lead to this - cut */ - if (mark_state) - sv_commit=mark_state->u.mark.mark_name; - } - no_final = 1; - sayNO; - assert(0); /* NOTREACHED */ -#undef ST - - case LNBREAK: /* \R */ - if ((n=is_LNBREAK_safe(locinput, reginfo->strend, utf8_target))) { - locinput += n; - } else - sayNO; - break; - - default: - PerlIO_printf(Perl_error_log, "%"UVxf" %d\n", - PTR2UV(scan), OP(scan)); - Perl_croak(aTHX_ "regexp memory corruption"); - - /* this is a point to jump to in order to increment - * locinput by one character */ - increment_locinput: - assert(!NEXTCHR_IS_EOS); - if (utf8_target) { - locinput += PL_utf8skip[nextchr]; - /* locinput is allowed to go 1 char off the end, but not 2+ */ - if (locinput > reginfo->strend) - sayNO; - } - else - locinput++; - break; - - } /* end switch */ - - /* switch break jumps here */ - scan = next; /* prepare to execute the next op and ... */ - continue; /* ... jump back to the top, reusing st */ - assert(0); /* NOTREACHED */ - - push_yes_state: - /* push a state that backtracks on success */ - st->u.yes.prev_yes_state = yes_state; - yes_state = st; - /* FALLTHROUGH */ - push_state: - /* push a new regex state, then continue at scan */ - { - regmatch_state *newst; - - DEBUG_STACK_r({ - regmatch_state *cur = st; - regmatch_state *curyes = yes_state; - int curd = depth; - regmatch_slab *slab = PL_regmatch_slab; - for (;curd > -1;cur--,curd--) { - if (cur < SLAB_FIRST(slab)) { - slab = slab->prev; - cur = SLAB_LAST(slab); - } - PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n", - REPORT_CODE_OFF + 2 + depth * 2,"", - curd, PL_reg_name[cur->resume_state], - (curyes == cur) ? "yes" : "" - ); - if (curyes == cur) - curyes = cur->u.yes.prev_yes_state; - } - } else - DEBUG_STATE_pp("push") - ); - depth++; - st->locinput = locinput; - newst = st+1; - if (newst > SLAB_LAST(PL_regmatch_slab)) - newst = S_push_slab(aTHX); - PL_regmatch_state = newst; - - locinput = pushinput; - st = newst; - continue; - assert(0); /* NOTREACHED */ - } - } - - /* - * We get here only if there's trouble -- normally "case END" is - * the terminating point. - */ - Perl_croak(aTHX_ "corrupted regexp pointers"); - /*NOTREACHED*/ - sayNO; - -yes: - if (yes_state) { - /* we have successfully completed a subexpression, but we must now - * pop to the state marked by yes_state and continue from there */ - assert(st != yes_state); -#ifdef DEBUGGING - while (st != yes_state) { - st--; - if (st < SLAB_FIRST(PL_regmatch_slab)) { - PL_regmatch_slab = PL_regmatch_slab->prev; - st = SLAB_LAST(PL_regmatch_slab); - } - DEBUG_STATE_r({ - if (no_final) { - DEBUG_STATE_pp("pop (no final)"); - } else { - DEBUG_STATE_pp("pop (yes)"); - } - }); - depth--; - } -#else - while (yes_state < SLAB_FIRST(PL_regmatch_slab) - || yes_state > SLAB_LAST(PL_regmatch_slab)) - { - /* not in this slab, pop slab */ - depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1); - PL_regmatch_slab = PL_regmatch_slab->prev; - st = SLAB_LAST(PL_regmatch_slab); - } - depth -= (st - yes_state); -#endif - st = yes_state; - yes_state = st->u.yes.prev_yes_state; - PL_regmatch_state = st; - - if (no_final) - locinput= st->locinput; - state_num = st->resume_state + no_final; - goto reenter_switch; - } - - DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n", - PL_colors[4], PL_colors[5])); - - if (reginfo->info_aux_eval) { - /* each successfully executed (?{...}) block does the equivalent of - * local $^R = do {...} - * When popping the save stack, all these locals would be undone; - * bypass this by setting the outermost saved $^R to the latest - * value */ - /* I dont know if this is needed or works properly now. - * see code related to PL_replgv elsewhere in this file. - * Yves - */ - if (oreplsv != GvSV(PL_replgv)) - sv_setsv(oreplsv, GvSV(PL_replgv)); - } - result = 1; - goto final_exit; - -no: - DEBUG_EXECUTE_r( - PerlIO_printf(Perl_debug_log, - "%*s %sfailed...%s\n", - REPORT_CODE_OFF+depth*2, "", - PL_colors[4], PL_colors[5]) - ); - -no_silent: - if (no_final) { - if (yes_state) { - goto yes; - } else { - goto final_exit; - } - } - if (depth) { - /* there's a previous state to backtrack to */ - st--; - if (st < SLAB_FIRST(PL_regmatch_slab)) { - PL_regmatch_slab = PL_regmatch_slab->prev; - st = SLAB_LAST(PL_regmatch_slab); - } - PL_regmatch_state = st; - locinput= st->locinput; - - DEBUG_STATE_pp("pop"); - depth--; - if (yes_state == st) - yes_state = st->u.yes.prev_yes_state; - - state_num = st->resume_state + 1; /* failure = success + 1 */ - goto reenter_switch; - } - result = 0; - - final_exit: - if (rex->intflags & PREGf_VERBARG_SEEN) { - SV *sv_err = get_sv("REGERROR", 1); - SV *sv_mrk = get_sv("REGMARK", 1); - if (result) { - sv_commit = &PL_sv_no; - if (!sv_yes_mark) - sv_yes_mark = &PL_sv_yes; - } else { - if (!sv_commit) - sv_commit = &PL_sv_yes; - sv_yes_mark = &PL_sv_no; - } - assert(sv_err); - assert(sv_mrk); - sv_setsv(sv_err, sv_commit); - sv_setsv(sv_mrk, sv_yes_mark); - } - - - if (last_pushed_cv) { - dSP; - POP_MULTICALL; - PERL_UNUSED_VAR(SP); - } - - assert(!result || locinput - reginfo->strbeg >= 0); - return result ? locinput - reginfo->strbeg : -1; -} - -/* - - regrepeat - repeatedly match something simple, report how many - * - * What 'simple' means is a node which can be the operand of a quantifier like - * '+', or {1,3} - * - * startposp - pointer a pointer to the start position. This is updated - * to point to the byte following the highest successful - * match. - * p - the regnode to be repeatedly matched against. - * reginfo - struct holding match state, such as strend - * max - maximum number of things to match. - * depth - (for debugging) backtracking depth. - */ -STATIC I32 -S_regrepeat(pTHX_ regexp *prog, char **startposp, const regnode *p, - regmatch_info *const reginfo, I32 max, int depth) -{ - dVAR; - char *scan; /* Pointer to current position in target string */ - I32 c; - char *loceol = reginfo->strend; /* local version */ - I32 hardcount = 0; /* How many matches so far */ - bool utf8_target = reginfo->is_utf8_target; - int to_complement = 0; /* Invert the result? */ - UV utf8_flags; - _char_class_number classnum; -#ifndef DEBUGGING - PERL_UNUSED_ARG(depth); -#endif - - PERL_ARGS_ASSERT_REGREPEAT; - - scan = *startposp; - if (max == REG_INFTY) - max = I32_MAX; - else if (! utf8_target && loceol - scan > max) - loceol = scan + max; - - /* Here, for the case of a non-UTF-8 target we have adjusted down - * to the maximum of how far we should go in it (leaving it set to the real - * end, if the maximum permissible would take us beyond that). This allows - * us to make the loop exit condition that we haven't gone past to - * also mean that we haven't exceeded the max permissible count, saving a - * test each time through the loop. But it assumes that the OP matches a - * single byte, which is true for most of the OPs below when applied to a - * non-UTF-8 target. Those relatively few OPs that don't have this - * characteristic will have to compensate. - * - * There is no adjustment for UTF-8 targets, as the number of bytes per - * character varies. OPs will have to test both that the count is less - * than the max permissible (using to keep track), and that we - * are still within the bounds of the string (using . A few OPs - * match a single byte no matter what the encoding. They can omit the max - * test if, for the UTF-8 case, they do the adjustment that was skipped - * above. - * - * Thus, the code above sets things up for the common case; and exceptional - * cases need extra work; the common case is to make sure doesn't - * go past , and for UTF-8 to also use to make sure the - * count doesn't exceed the maximum permissible */ - - switch (OP(p)) { - case REG_ANY: - if (utf8_target) { - while (scan < loceol && hardcount < max && *scan != '\n') { - scan += UTF8SKIP(scan); - hardcount++; - } - } else { - while (scan < loceol && *scan != '\n') - scan++; - } - break; - case SANY: - if (utf8_target) { - while (scan < loceol && hardcount < max) { - scan += UTF8SKIP(scan); - hardcount++; - } - } - else - scan = loceol; - break; - case CANY: /* Move forward bytes, unless goes off end */ - if (utf8_target && loceol - scan > max) { - - /* hadn't been adjusted in the UTF-8 case */ - scan += max; - } - else { - scan = loceol; - } - break; - case EXACT: - assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1); - - c = (U8)*STRING(p); - - /* Can use a simple loop if the pattern char to match on is invariant - * under UTF-8, or both target and pattern aren't UTF-8. Note that we - * can use UTF8_IS_INVARIANT() even if the pattern isn't UTF-8, as it's - * true iff it doesn't matter if the argument is in UTF-8 or not */ - if (UTF8_IS_INVARIANT(c) || (! utf8_target && ! reginfo->is_utf8_pat)) { - if (utf8_target && loceol - scan > max) { - /* We didn't adjust because is UTF-8, but ok to do so, - * since here, to match at all, 1 char == 1 byte */ - loceol = scan + max; - } - while (scan < loceol && UCHARAT(scan) == c) { - scan++; - } - } - else if (reginfo->is_utf8_pat) { - if (utf8_target) { - STRLEN scan_char_len; - - /* When both target and pattern are UTF-8, we have to do - * string EQ */ - while (hardcount < max - && scan < loceol - && (scan_char_len = UTF8SKIP(scan)) <= STR_LEN(p) - && memEQ(scan, STRING(p), scan_char_len)) - { - scan += scan_char_len; - hardcount++; - } - } - else if (! UTF8_IS_ABOVE_LATIN1(c)) { - - /* Target isn't utf8; convert the character in the UTF-8 - * pattern to non-UTF8, and do a simple loop */ - c = TWO_BYTE_UTF8_TO_NATIVE(c, *(STRING(p) + 1)); - while (scan < loceol && UCHARAT(scan) == c) { - scan++; - } - } /* else pattern char is above Latin1, can't possibly match the - non-UTF-8 target */ - } - else { - - /* Here, the string must be utf8; pattern isn't, and is - * different in utf8 than not, so can't compare them directly. - * Outside the loop, find the two utf8 bytes that represent c, and - * then look for those in sequence in the utf8 string */ - U8 high = UTF8_TWO_BYTE_HI(c); - U8 low = UTF8_TWO_BYTE_LO(c); - - while (hardcount < max - && scan + 1 < loceol - && UCHARAT(scan) == high - && UCHARAT(scan + 1) == low) - { - scan += 2; - hardcount++; - } - } - break; - - case EXACTFA_NO_TRIE: /* This node only generated for non-utf8 patterns */ - assert(! reginfo->is_utf8_pat); - /* FALLTHROUGH */ - case EXACTFA: - utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII; - goto do_exactf; - - case EXACTFL: - utf8_flags = FOLDEQ_LOCALE; - goto do_exactf; - - case EXACTF: /* This node only generated for non-utf8 patterns */ - assert(! reginfo->is_utf8_pat); - utf8_flags = 0; - goto do_exactf; - - case EXACTFU_SS: - case EXACTFU: - utf8_flags = reginfo->is_utf8_pat ? FOLDEQ_S2_ALREADY_FOLDED : 0; - - do_exactf: { - int c1, c2; - U8 c1_utf8[UTF8_MAXBYTES+1], c2_utf8[UTF8_MAXBYTES+1]; - - assert(STR_LEN(p) == reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1); - - if (S_setup_EXACTISH_ST_c1_c2(aTHX_ p, &c1, c1_utf8, &c2, c2_utf8, - reginfo)) - { - if (c1 == CHRTEST_VOID) { - /* Use full Unicode fold matching */ - char *tmpeol = reginfo->strend; - STRLEN pat_len = reginfo->is_utf8_pat ? UTF8SKIP(STRING(p)) : 1; - while (hardcount < max - && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target, - STRING(p), NULL, pat_len, - reginfo->is_utf8_pat, utf8_flags)) - { - scan = tmpeol; - tmpeol = reginfo->strend; - hardcount++; - } - } - else if (utf8_target) { - if (c1 == c2) { - while (scan < loceol - && hardcount < max - && memEQ(scan, c1_utf8, UTF8SKIP(scan))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - } - else { - while (scan < loceol - && hardcount < max - && (memEQ(scan, c1_utf8, UTF8SKIP(scan)) - || memEQ(scan, c2_utf8, UTF8SKIP(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - } - } - else if (c1 == c2) { - while (scan < loceol && UCHARAT(scan) == c1) { - scan++; - } - } - else { - while (scan < loceol && - (UCHARAT(scan) == c1 || UCHARAT(scan) == c2)) - { - scan++; - } - } - } - break; - } - case ANYOF: - if (utf8_target) { - while (hardcount < max - && scan < loceol - && reginclass(prog, p, (U8*)scan, (U8*) loceol, utf8_target)) - { - scan += UTF8SKIP(scan); - hardcount++; - } - } else { - while (scan < loceol && REGINCLASS(prog, p, (U8*)scan)) - scan++; - } - break; - - /* The argument (FLAGS) to all the POSIX node types is the class number */ - - case NPOSIXL: - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXL: - if (! utf8_target) { - while (scan < loceol && to_complement ^ cBOOL(isFOO_lc(FLAGS(p), - *scan))) - { - scan++; - } - } else { - while (hardcount < max && scan < loceol - && to_complement ^ cBOOL(isFOO_utf8_lc(FLAGS(p), - (U8 *) scan))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - } - break; - - case POSIXD: - if (utf8_target) { - goto utf8_posix; - } - /* FALLTHROUGH */ - - case POSIXA: - if (utf8_target && loceol - scan > max) { - - /* We didn't adjust at the beginning of this routine - * because is UTF-8, but it is actually ok to do so, since here, to - * match, 1 char == 1 byte. */ - loceol = scan + max; - } - while (scan < loceol && _generic_isCC_A((U8) *scan, FLAGS(p))) { - scan++; - } - break; - - case NPOSIXD: - if (utf8_target) { - to_complement = 1; - goto utf8_posix; - } - /* FALLTHROUGH */ - - case NPOSIXA: - if (! utf8_target) { - while (scan < loceol && ! _generic_isCC_A((U8) *scan, FLAGS(p))) { - scan++; - } - } - else { - - /* The complement of something that matches only ASCII matches all - * non-ASCII, plus everything in ASCII that isn't in the class. */ - while (hardcount < max && scan < loceol - && (! isASCII_utf8(scan) - || ! _generic_isCC_A((U8) *scan, FLAGS(p)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - } - break; - - case NPOSIXU: - to_complement = 1; - /* FALLTHROUGH */ - - case POSIXU: - if (! utf8_target) { - while (scan < loceol && to_complement - ^ cBOOL(_generic_isCC((U8) *scan, FLAGS(p)))) - { - scan++; - } - } - else { - utf8_posix: - classnum = (_char_class_number) FLAGS(p); - if (classnum < _FIRST_NON_SWASH_CC) { - - /* Here, a swash is needed for above-Latin1 code points. - * Process as many Latin1 code points using the built-in rules. - * Go to another loop to finish processing upon encountering - * the first Latin1 code point. We could do that in this loop - * as well, but the other way saves having to test if the swash - * has been loaded every time through the loop: extra space to - * save a test. */ - while (hardcount < max && scan < loceol) { - if (UTF8_IS_INVARIANT(*scan)) { - if (! (to_complement ^ cBOOL(_generic_isCC((U8) *scan, - classnum)))) - { - break; - } - scan++; - } - else if (UTF8_IS_DOWNGRADEABLE_START(*scan)) { - if (! (to_complement - ^ cBOOL(_generic_isCC(TWO_BYTE_UTF8_TO_NATIVE(*scan, - *(scan + 1)), - classnum)))) - { - break; - } - scan += 2; - } - else { - goto found_above_latin1; - } - - hardcount++; - } - } - else { - /* For these character classes, the knowledge of how to handle - * every code point is compiled in to Perl via a macro. This - * code is written for making the loops as tight as possible. - * It could be refactored to save space instead */ - switch (classnum) { - case _CC_ENUM_SPACE: /* XXX would require separate code - if we revert the change of \v - matching this */ - /* FALLTHROUGH */ - case _CC_ENUM_PSXSPC: - while (hardcount < max - && scan < loceol - && (to_complement ^ cBOOL(isSPACE_utf8(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - case _CC_ENUM_BLANK: - while (hardcount < max - && scan < loceol - && (to_complement ^ cBOOL(isBLANK_utf8(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - case _CC_ENUM_XDIGIT: - while (hardcount < max - && scan < loceol - && (to_complement ^ cBOOL(isXDIGIT_utf8(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - case _CC_ENUM_VERTSPACE: - while (hardcount < max - && scan < loceol - && (to_complement ^ cBOOL(isVERTWS_utf8(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - case _CC_ENUM_CNTRL: - while (hardcount < max - && scan < loceol - && (to_complement ^ cBOOL(isCNTRL_utf8(scan)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - default: - Perl_croak(aTHX_ "panic: regrepeat() node %d='%s' has an unexpected character class '%d'", OP(p), PL_reg_name[OP(p)], classnum); - } - } - } - break; - - found_above_latin1: /* Continuation of POSIXU and NPOSIXU */ - - /* Load the swash if not already present */ - if (! PL_utf8_swash_ptrs[classnum]) { - U8 flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; - PL_utf8_swash_ptrs[classnum] = _core_swash_init( - "utf8", - "", - &PL_sv_undef, 1, 0, - PL_XPosix_ptrs[classnum], &flags); - } - - while (hardcount < max && scan < loceol - && to_complement ^ cBOOL(_generic_utf8( - classnum, - scan, - swash_fetch(PL_utf8_swash_ptrs[classnum], - (U8 *) scan, - TRUE)))) - { - scan += UTF8SKIP(scan); - hardcount++; - } - break; - - case LNBREAK: - if (utf8_target) { - while (hardcount < max && scan < loceol && - (c=is_LNBREAK_utf8_safe(scan, loceol))) { - scan += c; - hardcount++; - } - } else { - /* LNBREAK can match one or two latin chars, which is ok, but we - * have to use hardcount in this situation, and throw away the - * adjustment to done before the switch statement */ - loceol = reginfo->strend; - while (scan < loceol && (c=is_LNBREAK_latin1_safe(scan, loceol))) { - scan+=c; - hardcount++; - } - } - break; - - case BOUND: - case BOUNDA: - case BOUNDL: - case BOUNDU: - case EOS: - case GPOS: - case KEEPS: - case NBOUND: - case NBOUNDA: - case NBOUNDL: - case NBOUNDU: - case OPFAIL: - case SBOL: - case SEOL: - /* These are all 0 width, so match right here or not at all. */ - break; - - default: - Perl_croak(aTHX_ "panic: regrepeat() called with unrecognized node type %d='%s'", OP(p), PL_reg_name[OP(p)]); - assert(0); /* NOTREACHED */ - - } - - if (hardcount) - c = hardcount; - else - c = scan - *startposp; - *startposp = scan; - - DEBUG_r({ - GET_RE_DEBUG_FLAGS_DECL; - DEBUG_EXECUTE_r({ - SV * const prop = sv_newmortal(); - regprop(prog, prop, p, reginfo); - PerlIO_printf(Perl_debug_log, - "%*s %s can match %"IVdf" times out of %"IVdf"...\n", - REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max); - }); - }); - - return(c); -} - - -#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) -/* -- regclass_swash - prepare the utf8 swash. Wraps the shared core version to -create a copy so that changes the caller makes won't change the shared one. -If is non-null, will return NULL in it, for back-compat. - */ -SV * -Perl_regclass_swash(pTHX_ const regexp *prog, const regnode* node, bool doinit, SV** listsvp, SV **altsvp) -{ - PERL_ARGS_ASSERT_REGCLASS_SWASH; - - if (altsvp) { - *altsvp = NULL; - } - - return newSVsv(_get_regclass_nonbitmap_data(prog, node, doinit, listsvp, NULL)); -} - -SV * -Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog, - const regnode* node, - bool doinit, - SV** listsvp, - SV** only_utf8_locale_ptr) -{ - /* For internal core use only. - * Returns the swash for the input 'node' in the regex 'prog'. - * If is 'true', will attempt to create the swash if not already - * done. - * If is non-null, will return the printable contents of the - * swash. This can be used to get debugging information even before the - * swash exists, by calling this function with 'doinit' set to false, in - * which case the components that will be used to eventually create the - * swash are returned (in a printable form). - * Tied intimately to how regcomp.c sets up the data structure */ - - dVAR; - SV *sw = NULL; - SV *si = NULL; /* Input swash initialization string */ - SV* invlist = NULL; - - RXi_GET_DECL(prog,progi); - const struct reg_data * const data = prog ? progi->data : NULL; - - PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA; - - assert(ANYOF_FLAGS(node) - & (ANYOF_UTF8|ANYOF_NONBITMAP_NON_UTF8|ANYOF_LOC_FOLD)); - - if (data && data->count) { - const U32 n = ARG(node); - - if (data->what[n] == 's') { - SV * const rv = MUTABLE_SV(data->data[n]); - AV * const av = MUTABLE_AV(SvRV(rv)); - SV **const ary = AvARRAY(av); - U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST; - - si = *ary; /* ary[0] = the string to initialize the swash with */ - - /* Elements 3 and 4 are either both present or both absent. [3] is - * any inversion list generated at compile time; [4] indicates if - * that inversion list has any user-defined properties in it. */ - if (av_tindex(av) >= 2) { - if (only_utf8_locale_ptr - && ary[2] - && ary[2] != &PL_sv_undef) - { - *only_utf8_locale_ptr = ary[2]; - } - else { - assert(only_utf8_locale_ptr); - *only_utf8_locale_ptr = NULL; - } - - if (av_tindex(av) >= 3) { - invlist = ary[3]; - if (SvUV(ary[4])) { - swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY; - } - } - else { - invlist = NULL; - } - } - - /* Element [1] is reserved for the set-up swash. If already there, - * return it; if not, create it and store it there */ - if (ary[1] && SvROK(ary[1])) { - sw = ary[1]; - } - else if (doinit && ((si && si != &PL_sv_undef) - || (invlist && invlist != &PL_sv_undef))) { - assert(si); - sw = _core_swash_init("utf8", /* the utf8 package */ - "", /* nameless */ - si, - 1, /* binary */ - 0, /* not from tr/// */ - invlist, - &swash_init_flags); - (void)av_store(av, 1, sw); - } - } - } - - /* If requested, return a printable version of what this swash matches */ - if (listsvp) { - SV* matches_string = newSVpvs(""); - - /* The swash should be used, if possible, to get the data, as it - * contains the resolved data. But this function can be called at - * compile-time, before everything gets resolved, in which case we - * return the currently best available information, which is the string - * that will eventually be used to do that resolving, 'si' */ - if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL) - && (si && si != &PL_sv_undef)) - { - sv_catsv(matches_string, si); - } - - /* Add the inversion list to whatever we have. This may have come from - * the swash, or from an input parameter */ - if (invlist) { - sv_catsv(matches_string, _invlist_contents(invlist)); - } - *listsvp = matches_string; - } - - return sw; -} -#endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */ - -/* - - reginclass - determine if a character falls into a character class - - n is the ANYOF regnode - p is the target string - p_end points to one byte beyond the end of the target string - utf8_target tells whether p is in UTF-8. - - Returns true if matched; false otherwise. - - Note that this can be a synthetic start class, a combination of various - nodes, so things you think might be mutually exclusive, such as locale, - aren't. It can match both locale and non-locale - - */ - -STATIC bool -S_reginclass(pTHX_ regexp * const prog, const regnode * const n, const U8* const p, const U8* const p_end, const bool utf8_target) -{ - dVAR; - const char flags = ANYOF_FLAGS(n); - bool match = FALSE; - UV c = *p; - - PERL_ARGS_ASSERT_REGINCLASS; - - /* If c is not already the code point, get it. Note that - * UTF8_IS_INVARIANT() works even if not in UTF-8 */ - if (! UTF8_IS_INVARIANT(c) && utf8_target) { - STRLEN c_len = 0; - c = utf8n_to_uvchr(p, p_end - p, &c_len, - (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV) - | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY); - /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for - * UTF8_ALLOW_FFFF */ - if (c_len == (STRLEN)-1) - Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)"); - } - - /* If this character is potentially in the bitmap, check it */ - if (c < 256) { - if (ANYOF_BITMAP_TEST(n, c)) - match = TRUE; - else if (flags & ANYOF_NON_UTF8_NON_ASCII_ALL - && ! utf8_target - && ! isASCII(c)) - { - match = TRUE; - } - else if (flags & ANYOF_LOCALE_FLAGS) { - if (flags & ANYOF_LOC_FOLD) { - if (ANYOF_BITMAP_TEST(n, PL_fold_locale[c])) { - match = TRUE; - } - } - if (! match && ANYOF_POSIXL_TEST_ANY_SET(n)) { - - /* The data structure is arranged so bits 0, 2, 4, ... are set - * if the class includes the Posix character class given by - * bit/2; and 1, 3, 5, ... are set if the class includes the - * complemented Posix class given by int(bit/2). So we loop - * through the bits, each time changing whether we complement - * the result or not. Suppose for the sake of illustration - * that bits 0-3 mean respectively, \w, \W, \s, \S. If bit 0 - * is set, it means there is a match for this ANYOF node if the - * character is in the class given by the expression (0 / 2 = 0 - * = \w). If it is in that class, isFOO_lc() will return 1, - * and since 'to_complement' is 0, the result will stay TRUE, - * and we exit the loop. Suppose instead that bit 0 is 0, but - * bit 1 is 1. That means there is a match if the character - * matches \W. We won't bother to call isFOO_lc() on bit 0, - * but will on bit 1. On the second iteration 'to_complement' - * will be 1, so the exclusive or will reverse things, so we - * are testing for \W. On the third iteration, 'to_complement' - * will be 0, and we would be testing for \s; the fourth - * iteration would test for \S, etc. - * - * Note that this code assumes that all the classes are closed - * under folding. For example, if a character matches \w, then - * its fold does too; and vice versa. This should be true for - * any well-behaved locale for all the currently defined Posix - * classes, except for :lower: and :upper:, which are handled - * by the pseudo-class :cased: which matches if either of the - * other two does. To get rid of this assumption, an outer - * loop could be used below to iterate over both the source - * character, and its fold (if different) */ - - int count = 0; - int to_complement = 0; - - while (count < ANYOF_MAX) { - if (ANYOF_POSIXL_TEST(n, count) - && to_complement ^ cBOOL(isFOO_lc(count/2, (U8) c))) - { - match = TRUE; - break; - } - count++; - to_complement ^= 1; - } - } - } - } - - - /* If the bitmap didn't (or couldn't) match, and something outside the - * bitmap could match, try that. */ - if (!match) { - if (c >= 256 && (flags & ANYOF_ABOVE_LATIN1_ALL)) { - match = TRUE; /* Everything above 255 matches */ - } - else if ((flags & ANYOF_NONBITMAP_NON_UTF8) - || (utf8_target && (flags & ANYOF_UTF8)) - || ((flags & ANYOF_LOC_FOLD) - && IN_UTF8_CTYPE_LOCALE - && ARG(n) != ANYOF_NONBITMAP_EMPTY)) - { - SV* only_utf8_locale = NULL; - SV * const sw = _get_regclass_nonbitmap_data(prog, n, TRUE, 0, - &only_utf8_locale); - if (sw) { - U8 utf8_buffer[2]; - U8 * utf8_p; - if (utf8_target) { - utf8_p = (U8 *) p; - } else { /* Convert to utf8 */ - utf8_p = utf8_buffer; - append_utf8_from_native_byte(*p, &utf8_p); - utf8_p = utf8_buffer; - } - - if (swash_fetch(sw, utf8_p, TRUE)) { - match = TRUE; - } - } - if (! match && only_utf8_locale && IN_UTF8_CTYPE_LOCALE) { - match = _invlist_contains_cp(only_utf8_locale, c); - } - } - - if (UNICODE_IS_SUPER(c) - && (flags & ANYOF_WARN_SUPER) - && ckWARN_d(WARN_NON_UNICODE)) - { - Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE), - "Matched non-Unicode code point 0x%04"UVXf" against Unicode property; may not be portable", c); - } - } - -#if ANYOF_INVERT != 1 - /* Depending on compiler optimization cBOOL takes time, so if don't have to - * use it, don't */ -# error ANYOF_INVERT needs to be set to 1, or guarded with cBOOL below, -#endif - - /* The xor complements the return if to invert: 1^1 = 0, 1^0 = 1 */ - return (flags & ANYOF_INVERT) ^ match; -} - -STATIC U8 * -S_reghop3(U8 *s, SSize_t off, const U8* lim) -{ - /* return the position 'off' UTF-8 characters away from 's', forward if - * 'off' >= 0, backwards if negative. But don't go outside of position - * 'lim', which better be < s if off < 0 */ - - dVAR; - - PERL_ARGS_ASSERT_REGHOP3; - - if (off >= 0) { - while (off-- && s < lim) { - /* XXX could check well-formedness here */ - s += UTF8SKIP(s); - } - } - else { - while (off++ && s > lim) { - s--; - if (UTF8_IS_CONTINUED(*s)) { - while (s > lim && UTF8_IS_CONTINUATION(*s)) - s--; - } - /* XXX could check well-formedness here */ - } - } - return s; -} - -STATIC U8 * -S_reghop4(U8 *s, SSize_t off, const U8* llim, const U8* rlim) -{ - dVAR; - - PERL_ARGS_ASSERT_REGHOP4; - - if (off >= 0) { - while (off-- && s < rlim) { - /* XXX could check well-formedness here */ - s += UTF8SKIP(s); - } - } - else { - while (off++ && s > llim) { - s--; - if (UTF8_IS_CONTINUED(*s)) { - while (s > llim && UTF8_IS_CONTINUATION(*s)) - s--; - } - /* XXX could check well-formedness here */ - } - } - return s; -} - -/* like reghop3, but returns NULL on overrun, rather than returning last - * char pos */ - -STATIC U8 * -S_reghopmaybe3(U8* s, SSize_t off, const U8* lim) -{ - dVAR; - - PERL_ARGS_ASSERT_REGHOPMAYBE3; - - if (off >= 0) { - while (off-- && s < lim) { - /* XXX could check well-formedness here */ - s += UTF8SKIP(s); - } - if (off >= 0) - return NULL; - } - else { - while (off++ && s > lim) { - s--; - if (UTF8_IS_CONTINUED(*s)) { - while (s > lim && UTF8_IS_CONTINUATION(*s)) - s--; - } - /* XXX could check well-formedness here */ - } - if (off <= 0) - return NULL; - } - return s; -} - - -/* when executing a regex that may have (?{}), extra stuff needs setting - up that will be visible to the called code, even before the current - match has finished. In particular: - - * $_ is localised to the SV currently being matched; - * pos($_) is created if necessary, ready to be updated on each call-out - to code; - * a fake PMOP is created that can be set to PL_curpm (normally PL_curpm - isn't set until the current pattern is successfully finished), so that - $1 etc of the match-so-far can be seen; - * save the old values of subbeg etc of the current regex, and set then - to the current string (again, this is normally only done at the end - of execution) -*/ - -static void -S_setup_eval_state(pTHX_ regmatch_info *const reginfo) -{ - MAGIC *mg; - regexp *const rex = ReANY(reginfo->prog); - regmatch_info_aux_eval *eval_state = reginfo->info_aux_eval; - - eval_state->rex = rex; - - if (reginfo->sv) { - /* Make $_ available to executed code. */ - if (reginfo->sv != DEFSV) { - SAVE_DEFSV; - DEFSV_set(reginfo->sv); - } - - if (!(mg = mg_find_mglob(reginfo->sv))) { - /* prepare for quick setting of pos */ - mg = sv_magicext_mglob(reginfo->sv); - mg->mg_len = -1; - } - eval_state->pos_magic = mg; - eval_state->pos = mg->mg_len; - eval_state->pos_flags = mg->mg_flags; - } - else - eval_state->pos_magic = NULL; - - if (!PL_reg_curpm) { - /* PL_reg_curpm is a fake PMOP that we can attach the current - * regex to and point PL_curpm at, so that $1 et al are visible - * within a /(?{})/. It's just allocated once per interpreter the - * first time its needed */ - Newxz(PL_reg_curpm, 1, PMOP); -#ifdef USE_ITHREADS - { - SV* const repointer = &PL_sv_undef; - /* this regexp is also owned by the new PL_reg_curpm, which - will try to free it. */ - av_push(PL_regex_padav, repointer); - PL_reg_curpm->op_pmoffset = av_tindex(PL_regex_padav); - PL_regex_pad = AvARRAY(PL_regex_padav); - } -#endif - } - SET_reg_curpm(reginfo->prog); - eval_state->curpm = PL_curpm; - PL_curpm = PL_reg_curpm; - if (RXp_MATCH_COPIED(rex)) { - /* Here is a serious problem: we cannot rewrite subbeg, - since it may be needed if this match fails. Thus - $` inside (?{}) could fail... */ - eval_state->subbeg = rex->subbeg; - eval_state->sublen = rex->sublen; - eval_state->suboffset = rex->suboffset; - eval_state->subcoffset = rex->subcoffset; -#ifdef PERL_ANY_COW - eval_state->saved_copy = rex->saved_copy; -#endif - RXp_MATCH_COPIED_off(rex); - } - else - eval_state->subbeg = NULL; - rex->subbeg = (char *)reginfo->strbeg; - rex->suboffset = 0; - rex->subcoffset = 0; - rex->sublen = reginfo->strend - reginfo->strbeg; -} - - -/* destructor to clear up regmatch_info_aux and regmatch_info_aux_eval */ - -static void -S_cleanup_regmatch_info_aux(pTHX_ void *arg) -{ - dVAR; - regmatch_info_aux *aux = (regmatch_info_aux *) arg; - regmatch_info_aux_eval *eval_state = aux->info_aux_eval; - regmatch_slab *s; - - Safefree(aux->poscache); - - if (eval_state) { - - /* undo the effects of S_setup_eval_state() */ - - if (eval_state->subbeg) { - regexp * const rex = eval_state->rex; - rex->subbeg = eval_state->subbeg; - rex->sublen = eval_state->sublen; - rex->suboffset = eval_state->suboffset; - rex->subcoffset = eval_state->subcoffset; -#ifdef PERL_ANY_COW - rex->saved_copy = eval_state->saved_copy; -#endif - RXp_MATCH_COPIED_on(rex); - } - if (eval_state->pos_magic) - { - eval_state->pos_magic->mg_len = eval_state->pos; - eval_state->pos_magic->mg_flags = - (eval_state->pos_magic->mg_flags & ~MGf_BYTES) - | (eval_state->pos_flags & MGf_BYTES); - } - - PL_curpm = eval_state->curpm; - } - - PL_regmatch_state = aux->old_regmatch_state; - PL_regmatch_slab = aux->old_regmatch_slab; - - /* free all slabs above current one - this must be the last action - * of this function, as aux and eval_state are allocated within - * slabs and may be freed here */ - - s = PL_regmatch_slab->next; - if (s) { - PL_regmatch_slab->next = NULL; - while (s) { - regmatch_slab * const osl = s; - s = s->next; - Safefree(osl); - } - } -} - - -STATIC void -S_to_utf8_substr(pTHX_ regexp *prog) -{ - /* Converts substr fields in prog from bytes to UTF-8, calling fbm_compile - * on the converted value */ - - int i = 1; - - PERL_ARGS_ASSERT_TO_UTF8_SUBSTR; - - do { - if (prog->substrs->data[i].substr - && !prog->substrs->data[i].utf8_substr) { - SV* const sv = newSVsv(prog->substrs->data[i].substr); - prog->substrs->data[i].utf8_substr = sv; - sv_utf8_upgrade(sv); - if (SvVALID(prog->substrs->data[i].substr)) { - if (SvTAIL(prog->substrs->data[i].substr)) { - /* Trim the trailing \n that fbm_compile added last - time. */ - SvCUR_set(sv, SvCUR(sv) - 1); - /* Whilst this makes the SV technically "invalid" (as its - buffer is no longer followed by "\0") when fbm_compile() - adds the "\n" back, a "\0" is restored. */ - fbm_compile(sv, FBMcf_TAIL); - } else - fbm_compile(sv, 0); - } - if (prog->substrs->data[i].substr == prog->check_substr) - prog->check_utf8 = sv; - } - } while (i--); -} - -STATIC bool -S_to_byte_substr(pTHX_ regexp *prog) -{ - /* Converts substr fields in prog from UTF-8 to bytes, calling fbm_compile - * on the converted value; returns FALSE if can't be converted. */ - - dVAR; - int i = 1; - - PERL_ARGS_ASSERT_TO_BYTE_SUBSTR; - - do { - if (prog->substrs->data[i].utf8_substr - && !prog->substrs->data[i].substr) { - SV* sv = newSVsv(prog->substrs->data[i].utf8_substr); - if (! sv_utf8_downgrade(sv, TRUE)) { - return FALSE; - } - if (SvVALID(prog->substrs->data[i].utf8_substr)) { - if (SvTAIL(prog->substrs->data[i].utf8_substr)) { - /* Trim the trailing \n that fbm_compile added last - time. */ - SvCUR_set(sv, SvCUR(sv) - 1); - fbm_compile(sv, FBMcf_TAIL); - } else - fbm_compile(sv, 0); - } - prog->substrs->data[i].substr = sv; - if (prog->substrs->data[i].utf8_substr == prog->check_utf8) - prog->check_substr = sv; - } - } while (i--); - - return TRUE; -} - -/* - * Local variables: - * c-indentation-style: bsd - * c-basic-offset: 4 - * indent-tabs-mode: nil - * End: - * - * ex: set ts=8 sts=4 sw=4 et: - */