X-Git-Url: http://git.vpit.fr/?p=perl%2Fmodules%2Fre-engine-Hooks.git;a=blobdiff_plain;f=src%2F5017007%2Fregcomp.c;fp=src%2F5017007%2Fregcomp.c;h=0000000000000000000000000000000000000000;hp=ffa782de1c8ae22360966182f2bd6369806a1ae7;hb=e43dfedd76e5ac667ee855586f9b6776c5957e05;hpb=3199c7cdba6c6921011393c8ba50afad202e11e6 diff --git a/src/5017007/regcomp.c b/src/5017007/regcomp.c deleted file mode 100644 index ffa782d..0000000 --- a/src/5017007/regcomp.c +++ /dev/null @@ -1,14958 +0,0 @@ -/* regcomp.c - */ - -/* - * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee - * - * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"] - */ - -/* This file contains functions for compiling a regular expression. See - * also regexec.c which funnily enough, contains functions for executing - * a regular expression. - * - * This file is also copied at build time to ext/re/re_comp.c, where - * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT. - * This causes the main functions to be compiled under new names and with - * debugging support added, which makes "use re 'debug'" work. - */ - -/* NOTE: this is derived from Henry Spencer's regexp code, and should not - * confused with the original package (see point 3 below). Thanks, Henry! - */ - -/* Additional note: this code is very heavily munged from Henry's version - * in places. In some spots I've traded clarity for efficiency, so don't - * blame Henry for some of the lack of readability. - */ - -/* The names of the functions have been changed from regcomp and - * regexec to pregcomp and pregexec in order to avoid conflicts - * with the POSIX routines of the same names. -*/ - -#ifdef PERL_EXT_RE_BUILD -#include "re_top.h" -#endif - -/* - * pregcomp and pregexec -- regsub and regerror are not used in perl - * - * Copyright (c) 1986 by University of Toronto. - * Written by Henry Spencer. Not derived from licensed software. - * - * Permission is granted to anyone to use this software for any - * purpose on any computer system, and to redistribute it freely, - * subject to the following restrictions: - * - * 1. The author is not responsible for the consequences of use of - * this software, no matter how awful, even if they arise - * from defects in it. - * - * 2. The origin of this software must not be misrepresented, either - * by explicit claim or by omission. - * - * 3. Altered versions must be plainly marked as such, and must not - * be misrepresented as being the original software. - * - * - **** Alterations to Henry's code are... - **** - **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, - **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 - **** by Larry Wall and others - **** - **** You may distribute under the terms of either the GNU General Public - **** License or the Artistic License, as specified in the README file. - - * - * Beware that some of this code is subtly aware of the way operator - * precedence is structured in regular expressions. Serious changes in - * regular-expression syntax might require a total rethink. - */ -#include "EXTERN.h" -#define PERL_IN_REGCOMP_C -#include "perl.h" - -#ifndef PERL_IN_XSUB_RE -#include "re_defs.h" -#endif - -#define REG_COMP_C -#ifdef PERL_IN_XSUB_RE -# include "re_comp.h" -extern const struct regexp_engine my_reg_engine; -#else -# include "regcomp.h" -#endif - -#include "dquote_static.c" -#include "charclass_invlists.h" -#include "inline_invlist.c" -#include "unicode_constants.h" - -#ifdef HAS_ISBLANK -# define hasISBLANK 1 -#else -# define hasISBLANK 0 -#endif - -#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i) -#define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) -#define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c) - -#ifdef op -#undef op -#endif /* op */ - -#ifdef MSDOS -# if defined(BUGGY_MSC6) - /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */ -# pragma optimize("a",off) - /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/ -# pragma optimize("w",on ) -# endif /* BUGGY_MSC6 */ -#endif /* MSDOS */ - -#ifndef STATIC -#define STATIC static -#endif - - -typedef struct RExC_state_t { - U32 flags; /* RXf_* are we folding, multilining? */ - U32 pm_flags; /* PMf_* stuff from the calling PMOP */ - char *precomp; /* uncompiled string. */ - REGEXP *rx_sv; /* The SV that is the regexp. */ - regexp *rx; /* perl core regexp structure */ - regexp_internal *rxi; /* internal data for regexp object pprivate field */ - char *start; /* Start of input for compile */ - char *end; /* End of input for compile */ - char *parse; /* Input-scan pointer. */ - I32 whilem_seen; /* number of WHILEM in this expr */ - regnode *emit_start; /* Start of emitted-code area */ - regnode *emit_bound; /* First regnode outside of the allocated space */ - regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */ - I32 naughty; /* How bad is this pattern? */ - I32 sawback; /* Did we see \1, ...? */ - U32 seen; - I32 size; /* Code size. */ - I32 npar; /* Capture buffer count, (OPEN). */ - I32 cpar; /* Capture buffer count, (CLOSE). */ - I32 nestroot; /* root parens we are in - used by accept */ - I32 extralen; - I32 seen_zerolen; - regnode **open_parens; /* pointers to open parens */ - regnode **close_parens; /* pointers to close parens */ - regnode *opend; /* END node in program */ - I32 utf8; /* whether the pattern is utf8 or not */ - I32 orig_utf8; /* whether the pattern was originally in utf8 */ - /* XXX use this for future optimisation of case - * where pattern must be upgraded to utf8. */ - I32 uni_semantics; /* If a d charset modifier should use unicode - rules, even if the pattern is not in - utf8 */ - HV *paren_names; /* Paren names */ - - regnode **recurse; /* Recurse regops */ - I32 recurse_count; /* Number of recurse regops */ - I32 in_lookbehind; - I32 contains_locale; - I32 override_recoding; - I32 in_multi_char_class; - struct reg_code_block *code_blocks; /* positions of literal (?{}) - within pattern */ - int num_code_blocks; /* size of code_blocks[] */ - int code_index; /* next code_blocks[] slot */ -#if ADD_TO_REGEXEC - char *starttry; /* -Dr: where regtry was called. */ -#define RExC_starttry (pRExC_state->starttry) -#endif - SV *runtime_code_qr; /* qr with the runtime code blocks */ -#ifdef DEBUGGING - const char *lastparse; - I32 lastnum; - AV *paren_name_list; /* idx -> name */ -#define RExC_lastparse (pRExC_state->lastparse) -#define RExC_lastnum (pRExC_state->lastnum) -#define RExC_paren_name_list (pRExC_state->paren_name_list) -#endif -} RExC_state_t; - -#define RExC_flags (pRExC_state->flags) -#define RExC_pm_flags (pRExC_state->pm_flags) -#define RExC_precomp (pRExC_state->precomp) -#define RExC_rx_sv (pRExC_state->rx_sv) -#define RExC_rx (pRExC_state->rx) -#define RExC_rxi (pRExC_state->rxi) -#define RExC_start (pRExC_state->start) -#define RExC_end (pRExC_state->end) -#define RExC_parse (pRExC_state->parse) -#define RExC_whilem_seen (pRExC_state->whilem_seen) -#ifdef RE_TRACK_PATTERN_OFFSETS -#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */ -#endif -#define RExC_emit (pRExC_state->emit) -#define RExC_emit_start (pRExC_state->emit_start) -#define RExC_emit_bound (pRExC_state->emit_bound) -#define RExC_naughty (pRExC_state->naughty) -#define RExC_sawback (pRExC_state->sawback) -#define RExC_seen (pRExC_state->seen) -#define RExC_size (pRExC_state->size) -#define RExC_npar (pRExC_state->npar) -#define RExC_nestroot (pRExC_state->nestroot) -#define RExC_extralen (pRExC_state->extralen) -#define RExC_seen_zerolen (pRExC_state->seen_zerolen) -#define RExC_utf8 (pRExC_state->utf8) -#define RExC_uni_semantics (pRExC_state->uni_semantics) -#define RExC_orig_utf8 (pRExC_state->orig_utf8) -#define RExC_open_parens (pRExC_state->open_parens) -#define RExC_close_parens (pRExC_state->close_parens) -#define RExC_opend (pRExC_state->opend) -#define RExC_paren_names (pRExC_state->paren_names) -#define RExC_recurse (pRExC_state->recurse) -#define RExC_recurse_count (pRExC_state->recurse_count) -#define RExC_in_lookbehind (pRExC_state->in_lookbehind) -#define RExC_contains_locale (pRExC_state->contains_locale) -#define RExC_override_recoding (pRExC_state->override_recoding) -#define RExC_in_multi_char_class (pRExC_state->in_multi_char_class) - - -#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?') -#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \ - ((*s) == '{' && regcurly(s))) - -#ifdef SPSTART -#undef SPSTART /* dratted cpp namespace... */ -#endif -/* - * Flags to be passed up and down. - */ -#define WORST 0 /* Worst case. */ -#define HASWIDTH 0x01 /* Known to match non-null strings. */ - -/* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single - * character. (There needs to be a case: in the switch statement in regexec.c - * for any node marked SIMPLE.) Note that this is not the same thing as - * REGNODE_SIMPLE */ -#define SIMPLE 0x02 -#define SPSTART 0x04 /* Starts with * or + */ -#define TRYAGAIN 0x08 /* Weeded out a declaration. */ -#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */ - -#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1) - -/* whether trie related optimizations are enabled */ -#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION -#define TRIE_STUDY_OPT -#define FULL_TRIE_STUDY -#define TRIE_STCLASS -#endif - - - -#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3] -#define PBITVAL(paren) (1 << ((paren) & 7)) -#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren)) -#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren) -#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren)) - -/* If not already in utf8, do a longjmp back to the beginning */ -#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */ -#define REQUIRE_UTF8 STMT_START { \ - if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \ - } STMT_END - -/* About scan_data_t. - - During optimisation we recurse through the regexp program performing - various inplace (keyhole style) optimisations. In addition study_chunk - and scan_commit populate this data structure with information about - what strings MUST appear in the pattern. We look for the longest - string that must appear at a fixed location, and we look for the - longest string that may appear at a floating location. So for instance - in the pattern: - - /FOO[xX]A.*B[xX]BAR/ - - Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating - strings (because they follow a .* construct). study_chunk will identify - both FOO and BAR as being the longest fixed and floating strings respectively. - - The strings can be composites, for instance - - /(f)(o)(o)/ - - will result in a composite fixed substring 'foo'. - - For each string some basic information is maintained: - - - offset or min_offset - This is the position the string must appear at, or not before. - It also implicitly (when combined with minlenp) tells us how many - characters must match before the string we are searching for. - Likewise when combined with minlenp and the length of the string it - tells us how many characters must appear after the string we have - found. - - - max_offset - Only used for floating strings. This is the rightmost point that - the string can appear at. If set to I32 max it indicates that the - string can occur infinitely far to the right. - - - minlenp - A pointer to the minimum number of characters of the pattern that the - string was found inside. This is important as in the case of positive - lookahead or positive lookbehind we can have multiple patterns - involved. Consider - - /(?=FOO).*F/ - - The minimum length of the pattern overall is 3, the minimum length - of the lookahead part is 3, but the minimum length of the part that - will actually match is 1. So 'FOO's minimum length is 3, but the - minimum length for the F is 1. This is important as the minimum length - is used to determine offsets in front of and behind the string being - looked for. Since strings can be composites this is the length of the - pattern at the time it was committed with a scan_commit. Note that - the length is calculated by study_chunk, so that the minimum lengths - are not known until the full pattern has been compiled, thus the - pointer to the value. - - - lookbehind - - In the case of lookbehind the string being searched for can be - offset past the start point of the final matching string. - If this value was just blithely removed from the min_offset it would - invalidate some of the calculations for how many chars must match - before or after (as they are derived from min_offset and minlen and - the length of the string being searched for). - When the final pattern is compiled and the data is moved from the - scan_data_t structure into the regexp structure the information - about lookbehind is factored in, with the information that would - have been lost precalculated in the end_shift field for the - associated string. - - The fields pos_min and pos_delta are used to store the minimum offset - and the delta to the maximum offset at the current point in the pattern. - -*/ - -typedef struct scan_data_t { - /*I32 len_min; unused */ - /*I32 len_delta; unused */ - I32 pos_min; - I32 pos_delta; - SV *last_found; - I32 last_end; /* min value, <0 unless valid. */ - I32 last_start_min; - I32 last_start_max; - SV **longest; /* Either &l_fixed, or &l_float. */ - SV *longest_fixed; /* longest fixed string found in pattern */ - I32 offset_fixed; /* offset where it starts */ - I32 *minlen_fixed; /* pointer to the minlen relevant to the string */ - I32 lookbehind_fixed; /* is the position of the string modfied by LB */ - SV *longest_float; /* longest floating string found in pattern */ - I32 offset_float_min; /* earliest point in string it can appear */ - I32 offset_float_max; /* latest point in string it can appear */ - I32 *minlen_float; /* pointer to the minlen relevant to the string */ - I32 lookbehind_float; /* is the position of the string modified by LB */ - I32 flags; - I32 whilem_c; - I32 *last_closep; - struct regnode_charclass_class *start_class; -} scan_data_t; - -/* - * Forward declarations for pregcomp()'s friends. - */ - -static const scan_data_t zero_scan_data = - { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0}; - -#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL) -#define SF_BEFORE_SEOL 0x0001 -#define SF_BEFORE_MEOL 0x0002 -#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL) -#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL) - -#ifdef NO_UNARY_PLUS -# define SF_FIX_SHIFT_EOL (0+2) -# define SF_FL_SHIFT_EOL (0+4) -#else -# define SF_FIX_SHIFT_EOL (+2) -# define SF_FL_SHIFT_EOL (+4) -#endif - -#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL) -#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL) - -#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL) -#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */ -#define SF_IS_INF 0x0040 -#define SF_HAS_PAR 0x0080 -#define SF_IN_PAR 0x0100 -#define SF_HAS_EVAL 0x0200 -#define SCF_DO_SUBSTR 0x0400 -#define SCF_DO_STCLASS_AND 0x0800 -#define SCF_DO_STCLASS_OR 0x1000 -#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR) -#define SCF_WHILEM_VISITED_POS 0x2000 - -#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */ -#define SCF_SEEN_ACCEPT 0x8000 - -#define UTF cBOOL(RExC_utf8) - -/* The enums for all these are ordered so things work out correctly */ -#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET) -#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET) -#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET) -#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET) -#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET) -#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET) -#define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET) - -#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD) - -#define OOB_NAMEDCLASS -1 - -/* There is no code point that is out-of-bounds, so this is problematic. But - * its only current use is to initialize a variable that is always set before - * looked at. */ -#define OOB_UNICODE 0xDEADBEEF - -#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv)) -#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b) - - -/* length of regex to show in messages that don't mark a position within */ -#define RegexLengthToShowInErrorMessages 127 - -/* - * If MARKER[12] are adjusted, be sure to adjust the constants at the top - * of t/op/regmesg.t, the tests in t/op/re_tests, and those in - * op/pragma/warn/regcomp. - */ -#define MARKER1 "<-- HERE" /* marker as it appears in the description */ -#define MARKER2 " <-- HERE " /* marker as it appears within the regex */ - -#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/" - -/* - * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given - * arg. Show regex, up to a maximum length. If it's too long, chop and add - * "...". - */ -#define _FAIL(code) STMT_START { \ - const char *ellipses = ""; \ - IV len = RExC_end - RExC_precomp; \ - \ - if (!SIZE_ONLY) \ - SAVEFREESV(RExC_rx_sv); \ - if (len > RegexLengthToShowInErrorMessages) { \ - /* chop 10 shorter than the max, to ensure meaning of "..." */ \ - len = RegexLengthToShowInErrorMessages - 10; \ - ellipses = "..."; \ - } \ - code; \ -} STMT_END - -#define FAIL(msg) _FAIL( \ - Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \ - msg, (int)len, RExC_precomp, ellipses)) - -#define FAIL2(msg,arg) _FAIL( \ - Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \ - arg, (int)len, RExC_precomp, ellipses)) - -/* - * Simple_vFAIL -- like FAIL, but marks the current location in the scan - */ -#define Simple_vFAIL(m) STMT_START { \ - const IV offset = RExC_parse - RExC_precomp; \ - Perl_croak(aTHX_ "%s" REPORT_LOCATION, \ - m, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -/* - * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL() - */ -#define vFAIL(m) STMT_START { \ - if (!SIZE_ONLY) \ - SAVEFREESV(RExC_rx_sv); \ - Simple_vFAIL(m); \ -} STMT_END - -/* - * Like Simple_vFAIL(), but accepts two arguments. - */ -#define Simple_vFAIL2(m,a1) STMT_START { \ - const IV offset = RExC_parse - RExC_precomp; \ - S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \ - (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -/* - * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2(). - */ -#define vFAIL2(m,a1) STMT_START { \ - if (!SIZE_ONLY) \ - SAVEFREESV(RExC_rx_sv); \ - Simple_vFAIL2(m, a1); \ -} STMT_END - - -/* - * Like Simple_vFAIL(), but accepts three arguments. - */ -#define Simple_vFAIL3(m, a1, a2) STMT_START { \ - const IV offset = RExC_parse - RExC_precomp; \ - S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \ - (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -/* - * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3(). - */ -#define vFAIL3(m,a1,a2) STMT_START { \ - if (!SIZE_ONLY) \ - SAVEFREESV(RExC_rx_sv); \ - Simple_vFAIL3(m, a1, a2); \ -} STMT_END - -/* - * Like Simple_vFAIL(), but accepts four arguments. - */ -#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \ - const IV offset = RExC_parse - RExC_precomp; \ - S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \ - (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARNreg(loc,m) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARNregdep(loc,m) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \ - m REPORT_LOCATION, \ - (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARN2regdep(loc,m, a1) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \ - m REPORT_LOCATION, \ - a1, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARN2reg(loc, m, a1) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define vWARN3(loc, m, a1, a2) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARN3reg(loc, m, a1, a2) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define vWARN4(loc, m, a1, a2, a3) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - -#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \ - const IV offset = loc - RExC_precomp; \ - Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \ - a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \ -} STMT_END - - -/* Allow for side effects in s */ -#define REGC(c,s) STMT_START { \ - if (!SIZE_ONLY) *(s) = (c); else (void)(s); \ -} STMT_END - -/* Macros for recording node offsets. 20001227 mjd@plover.com - * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in - * element 2*n-1 of the array. Element #2n holds the byte length node #n. - * Element 0 holds the number n. - * Position is 1 indexed. - */ -#ifndef RE_TRACK_PATTERN_OFFSETS -#define Set_Node_Offset_To_R(node,byte) -#define Set_Node_Offset(node,byte) -#define Set_Cur_Node_Offset -#define Set_Node_Length_To_R(node,len) -#define Set_Node_Length(node,len) -#define Set_Node_Cur_Length(node) -#define Node_Offset(n) -#define Node_Length(n) -#define Set_Node_Offset_Length(node,offset,len) -#define ProgLen(ri) ri->u.proglen -#define SetProgLen(ri,x) ri->u.proglen = x -#else -#define ProgLen(ri) ri->u.offsets[0] -#define SetProgLen(ri,x) ri->u.offsets[0] = x -#define Set_Node_Offset_To_R(node,byte) STMT_START { \ - if (! SIZE_ONLY) { \ - MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \ - __LINE__, (int)(node), (int)(byte))); \ - if((node) < 0) { \ - Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \ - } else { \ - RExC_offsets[2*(node)-1] = (byte); \ - } \ - } \ -} STMT_END - -#define Set_Node_Offset(node,byte) \ - Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start) -#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse) - -#define Set_Node_Length_To_R(node,len) STMT_START { \ - if (! SIZE_ONLY) { \ - MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \ - __LINE__, (int)(node), (int)(len))); \ - if((node) < 0) { \ - Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \ - } else { \ - RExC_offsets[2*(node)] = (len); \ - } \ - } \ -} STMT_END - -#define Set_Node_Length(node,len) \ - Set_Node_Length_To_R((node)-RExC_emit_start, len) -#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len) -#define Set_Node_Cur_Length(node) \ - Set_Node_Length(node, RExC_parse - parse_start) - -/* Get offsets and lengths */ -#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1]) -#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)]) - -#define Set_Node_Offset_Length(node,offset,len) STMT_START { \ - Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \ - Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \ -} STMT_END -#endif - -#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS -#define EXPERIMENTAL_INPLACESCAN -#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/ - -#define DEBUG_STUDYDATA(str,data,depth) \ -DEBUG_OPTIMISE_MORE_r(if(data){ \ - PerlIO_printf(Perl_debug_log, \ - "%*s" str "Pos:%"IVdf"/%"IVdf \ - " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \ - (int)(depth)*2, "", \ - (IV)((data)->pos_min), \ - (IV)((data)->pos_delta), \ - (UV)((data)->flags), \ - (IV)((data)->whilem_c), \ - (IV)((data)->last_closep ? *((data)->last_closep) : -1), \ - is_inf ? "INF " : "" \ - ); \ - if ((data)->last_found) \ - PerlIO_printf(Perl_debug_log, \ - "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \ - " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \ - SvPVX_const((data)->last_found), \ - (IV)((data)->last_end), \ - (IV)((data)->last_start_min), \ - (IV)((data)->last_start_max), \ - ((data)->longest && \ - (data)->longest==&((data)->longest_fixed)) ? "*" : "", \ - SvPVX_const((data)->longest_fixed), \ - (IV)((data)->offset_fixed), \ - ((data)->longest && \ - (data)->longest==&((data)->longest_float)) ? "*" : "", \ - SvPVX_const((data)->longest_float), \ - (IV)((data)->offset_float_min), \ - (IV)((data)->offset_float_max) \ - ); \ - PerlIO_printf(Perl_debug_log,"\n"); \ -}); - -/* Mark that we cannot extend a found fixed substring at this point. - Update the longest found anchored substring and the longest found - floating substrings if needed. */ - -STATIC void -S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf) -{ - const STRLEN l = CHR_SVLEN(data->last_found); - const STRLEN old_l = CHR_SVLEN(*data->longest); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_SCAN_COMMIT; - - if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) { - SvSetMagicSV(*data->longest, data->last_found); - if (*data->longest == data->longest_fixed) { - data->offset_fixed = l ? data->last_start_min : data->pos_min; - if (data->flags & SF_BEFORE_EOL) - data->flags - |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL); - else - data->flags &= ~SF_FIX_BEFORE_EOL; - data->minlen_fixed=minlenp; - data->lookbehind_fixed=0; - } - else { /* *data->longest == data->longest_float */ - data->offset_float_min = l ? data->last_start_min : data->pos_min; - data->offset_float_max = (l - ? data->last_start_max - : data->pos_min + data->pos_delta); - if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX) - data->offset_float_max = I32_MAX; - if (data->flags & SF_BEFORE_EOL) - data->flags - |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL); - else - data->flags &= ~SF_FL_BEFORE_EOL; - data->minlen_float=minlenp; - data->lookbehind_float=0; - } - } - SvCUR_set(data->last_found, 0); - { - SV * const sv = data->last_found; - if (SvUTF8(sv) && SvMAGICAL(sv)) { - MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8); - if (mg) - mg->mg_len = 0; - } - } - data->last_end = -1; - data->flags &= ~SF_BEFORE_EOL; - DEBUG_STUDYDATA("commit: ",data,0); -} - -/* Can match anything (initialization) */ -STATIC void -S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl) -{ - PERL_ARGS_ASSERT_CL_ANYTHING; - - ANYOF_BITMAP_SETALL(cl); - cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL - |ANYOF_NON_UTF8_LATIN1_ALL; - - /* If any portion of the regex is to operate under locale rules, - * initialization includes it. The reason this isn't done for all regexes - * is that the optimizer was written under the assumption that locale was - * all-or-nothing. Given the complexity and lack of documentation in the - * optimizer, and that there are inadequate test cases for locale, so many - * parts of it may not work properly, it is safest to avoid locale unless - * necessary. */ - if (RExC_contains_locale) { - ANYOF_CLASS_SETALL(cl); /* /l uses class */ - cl->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD; - } - else { - ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */ - } -} - -/* Can match anything (initialization) */ -STATIC int -S_cl_is_anything(const struct regnode_charclass_class *cl) -{ - int value; - - PERL_ARGS_ASSERT_CL_IS_ANYTHING; - - for (value = 0; value <= ANYOF_MAX; value += 2) - if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1)) - return 1; - if (!(cl->flags & ANYOF_UNICODE_ALL)) - return 0; - if (!ANYOF_BITMAP_TESTALLSET((const void*)cl)) - return 0; - return 1; -} - -/* Can match anything (initialization) */ -STATIC void -S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl) -{ - PERL_ARGS_ASSERT_CL_INIT; - - Zero(cl, 1, struct regnode_charclass_class); - cl->type = ANYOF; - cl_anything(pRExC_state, cl); - ARG_SET(cl, ANYOF_NONBITMAP_EMPTY); -} - -/* These two functions currently do the exact same thing */ -#define cl_init_zero S_cl_init - -/* 'AND' a given class with another one. Can create false positives. 'cl' - * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if - * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */ -STATIC void -S_cl_and(struct regnode_charclass_class *cl, - const struct regnode_charclass_class *and_with) -{ - PERL_ARGS_ASSERT_CL_AND; - - assert(and_with->type == ANYOF); - - /* I (khw) am not sure all these restrictions are necessary XXX */ - if (!(ANYOF_CLASS_TEST_ANY_SET(and_with)) - && !(ANYOF_CLASS_TEST_ANY_SET(cl)) - && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) - && !(and_with->flags & ANYOF_LOC_FOLD) - && !(cl->flags & ANYOF_LOC_FOLD)) { - int i; - - if (and_with->flags & ANYOF_INVERT) - for (i = 0; i < ANYOF_BITMAP_SIZE; i++) - cl->bitmap[i] &= ~and_with->bitmap[i]; - else - for (i = 0; i < ANYOF_BITMAP_SIZE; i++) - cl->bitmap[i] &= and_with->bitmap[i]; - } /* XXXX: logic is complicated otherwise, leave it along for a moment. */ - - if (and_with->flags & ANYOF_INVERT) { - - /* Here, the and'ed node is inverted. Get the AND of the flags that - * aren't affected by the inversion. Those that are affected are - * handled individually below */ - U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS; - cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS); - cl->flags |= affected_flags; - - /* We currently don't know how to deal with things that aren't in the - * bitmap, but we know that the intersection is no greater than what - * is already in cl, so let there be false positives that get sorted - * out after the synthetic start class succeeds, and the node is - * matched for real. */ - - /* The inversion of these two flags indicate that the resulting - * intersection doesn't have them */ - if (and_with->flags & ANYOF_UNICODE_ALL) { - cl->flags &= ~ANYOF_UNICODE_ALL; - } - if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) { - cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL; - } - } - else { /* and'd node is not inverted */ - U8 outside_bitmap_but_not_utf8; /* Temp variable */ - - if (! ANYOF_NONBITMAP(and_with)) { - - /* Here 'and_with' doesn't match anything outside the bitmap - * (except possibly ANYOF_UNICODE_ALL), which means the - * intersection can't either, except for ANYOF_UNICODE_ALL, in - * which case we don't know what the intersection is, but it's no - * greater than what cl already has, so can just leave it alone, - * with possible false positives */ - if (! (and_with->flags & ANYOF_UNICODE_ALL)) { - ARG_SET(cl, ANYOF_NONBITMAP_EMPTY); - cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8; - } - } - else if (! ANYOF_NONBITMAP(cl)) { - - /* Here, 'and_with' does match something outside the bitmap, and cl - * doesn't have a list of things to match outside the bitmap. If - * cl can match all code points above 255, the intersection will - * be those above-255 code points that 'and_with' matches. If cl - * can't match all Unicode code points, it means that it can't - * match anything outside the bitmap (since the 'if' that got us - * into this block tested for that), so we leave the bitmap empty. - */ - if (cl->flags & ANYOF_UNICODE_ALL) { - ARG_SET(cl, ARG(and_with)); - - /* and_with's ARG may match things that don't require UTF8. - * And now cl's will too, in spite of this being an 'and'. See - * the comments below about the kludge */ - cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8; - } - } - else { - /* Here, both 'and_with' and cl match something outside the - * bitmap. Currently we do not do the intersection, so just match - * whatever cl had at the beginning. */ - } - - - /* Take the intersection of the two sets of flags. However, the - * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a - * kludge around the fact that this flag is not treated like the others - * which are initialized in cl_anything(). The way the optimizer works - * is that the synthetic start class (SSC) is initialized to match - * anything, and then the first time a real node is encountered, its - * values are AND'd with the SSC's with the result being the values of - * the real node. However, there are paths through the optimizer where - * the AND never gets called, so those initialized bits are set - * inappropriately, which is not usually a big deal, as they just cause - * false positives in the SSC, which will just mean a probably - * imperceptible slow down in execution. However this bit has a - * higher false positive consequence in that it can cause utf8.pm, - * utf8_heavy.pl ... to be loaded when not necessary, which is a much - * bigger slowdown and also causes significant extra memory to be used. - * In order to prevent this, the code now takes a different tack. The - * bit isn't set unless some part of the regular expression needs it, - * but once set it won't get cleared. This means that these extra - * modules won't get loaded unless there was some path through the - * pattern that would have required them anyway, and so any false - * positives that occur by not ANDing them out when they could be - * aren't as severe as they would be if we treated this bit like all - * the others */ - outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags) - & ANYOF_NONBITMAP_NON_UTF8; - cl->flags &= and_with->flags; - cl->flags |= outside_bitmap_but_not_utf8; - } -} - -/* 'OR' a given class with another one. Can create false positives. 'cl' - * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if - * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */ -STATIC void -S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with) -{ - PERL_ARGS_ASSERT_CL_OR; - - if (or_with->flags & ANYOF_INVERT) { - - /* Here, the or'd node is to be inverted. This means we take the - * complement of everything not in the bitmap, but currently we don't - * know what that is, so give up and match anything */ - if (ANYOF_NONBITMAP(or_with)) { - cl_anything(pRExC_state, cl); - } - /* We do not use - * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2)) - * <= (B1 | !B2) | (CL1 | !CL2) - * which is wasteful if CL2 is small, but we ignore CL2: - * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1 - * XXXX Can we handle case-fold? Unclear: - * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) = - * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i')) - */ - else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) - && !(or_with->flags & ANYOF_LOC_FOLD) - && !(cl->flags & ANYOF_LOC_FOLD) ) { - int i; - - for (i = 0; i < ANYOF_BITMAP_SIZE; i++) - cl->bitmap[i] |= ~or_with->bitmap[i]; - } /* XXXX: logic is complicated otherwise */ - else { - cl_anything(pRExC_state, cl); - } - - /* And, we can just take the union of the flags that aren't affected - * by the inversion */ - cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS; - - /* For the remaining flags: - ANYOF_UNICODE_ALL and inverted means to not match anything above - 255, which means that the union with cl should just be - what cl has in it, so can ignore this flag - ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord - is 127-255 to match them, but then invert that, so the - union with cl should just be what cl has in it, so can - ignore this flag - */ - } else { /* 'or_with' is not inverted */ - /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */ - if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE) - && (!(or_with->flags & ANYOF_LOC_FOLD) - || (cl->flags & ANYOF_LOC_FOLD)) ) { - int i; - - /* OR char bitmap and class bitmap separately */ - for (i = 0; i < ANYOF_BITMAP_SIZE; i++) - cl->bitmap[i] |= or_with->bitmap[i]; - ANYOF_CLASS_OR(or_with, cl); - } - else { /* XXXX: logic is complicated, leave it along for a moment. */ - cl_anything(pRExC_state, cl); - } - - if (ANYOF_NONBITMAP(or_with)) { - - /* Use the added node's outside-the-bit-map match if there isn't a - * conflict. If there is a conflict (both nodes match something - * outside the bitmap, but what they match outside is not the same - * pointer, and hence not easily compared until XXX we extend - * inversion lists this far), give up and allow the start class to - * match everything outside the bitmap. If that stuff is all above - * 255, can just set UNICODE_ALL, otherwise caould be anything. */ - if (! ANYOF_NONBITMAP(cl)) { - ARG_SET(cl, ARG(or_with)); - } - else if (ARG(cl) != ARG(or_with)) { - - if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) { - cl_anything(pRExC_state, cl); - } - else { - cl->flags |= ANYOF_UNICODE_ALL; - } - } - } - - /* Take the union */ - cl->flags |= or_with->flags; - } -} - -#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ] -#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid ) -#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate ) -#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 ) - - -#ifdef DEBUGGING -/* - dump_trie(trie,widecharmap,revcharmap) - dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc) - dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc) - - These routines dump out a trie in a somewhat readable format. - The _interim_ variants are used for debugging the interim - tables that are used to generate the final compressed - representation which is what dump_trie expects. - - Part of the reason for their existence is to provide a form - of documentation as to how the different representations function. - -*/ - -/* - Dumps the final compressed table form of the trie to Perl_debug_log. - Used for debugging make_trie(). -*/ - -STATIC void -S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap, - AV *revcharmap, U32 depth) -{ - U32 state; - SV *sv=sv_newmortal(); - int colwidth= widecharmap ? 6 : 4; - U16 word; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_DUMP_TRIE; - - PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ", - (int)depth * 2 + 2,"", - "Match","Base","Ofs" ); - - for( state = 0 ; state < trie->uniquecharcount ; state++ ) { - SV ** const tmp = av_fetch( revcharmap, state, 0); - if ( tmp ) { - PerlIO_printf( Perl_debug_log, "%*s", - colwidth, - pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, - PL_colors[0], PL_colors[1], - (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | - PERL_PV_ESCAPE_FIRSTCHAR - ) - ); - } - } - PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------", - (int)depth * 2 + 2,""); - - for( state = 0 ; state < trie->uniquecharcount ; state++ ) - PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------"); - PerlIO_printf( Perl_debug_log, "\n"); - - for( state = 1 ; state < trie->statecount ; state++ ) { - const U32 base = trie->states[ state ].trans.base; - - PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state); - - if ( trie->states[ state ].wordnum ) { - PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum ); - } else { - PerlIO_printf( Perl_debug_log, "%6s", "" ); - } - - PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base ); - - if ( base ) { - U32 ofs = 0; - - while( ( base + ofs < trie->uniquecharcount ) || - ( base + ofs - trie->uniquecharcount < trie->lasttrans - && trie->trans[ base + ofs - trie->uniquecharcount ].check != state)) - ofs++; - - PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs); - - for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) { - if ( ( base + ofs >= trie->uniquecharcount ) && - ( base + ofs - trie->uniquecharcount < trie->lasttrans ) && - trie->trans[ base + ofs - trie->uniquecharcount ].check == state ) - { - PerlIO_printf( Perl_debug_log, "%*"UVXf, - colwidth, - (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next ); - } else { - PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." ); - } - } - - PerlIO_printf( Perl_debug_log, "]"); - - } - PerlIO_printf( Perl_debug_log, "\n" ); - } - PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, ""); - for (word=1; word <= trie->wordcount; word++) { - PerlIO_printf(Perl_debug_log, " %d:(%d,%d)", - (int)word, (int)(trie->wordinfo[word].prev), - (int)(trie->wordinfo[word].len)); - } - PerlIO_printf(Perl_debug_log, "\n" ); -} -/* - Dumps a fully constructed but uncompressed trie in list form. - List tries normally only are used for construction when the number of - possible chars (trie->uniquecharcount) is very high. - Used for debugging make_trie(). -*/ -STATIC void -S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie, - HV *widecharmap, AV *revcharmap, U32 next_alloc, - U32 depth) -{ - U32 state; - SV *sv=sv_newmortal(); - int colwidth= widecharmap ? 6 : 4; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST; - - /* print out the table precompression. */ - PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s", - (int)depth * 2 + 2,"", (int)depth * 2 + 2,"", - "------:-----+-----------------\n" ); - - for( state=1 ; state < next_alloc ; state ++ ) { - U16 charid; - - PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :", - (int)depth * 2 + 2,"", (UV)state ); - if ( ! trie->states[ state ].wordnum ) { - PerlIO_printf( Perl_debug_log, "%5s| ",""); - } else { - PerlIO_printf( Perl_debug_log, "W%4x| ", - trie->states[ state ].wordnum - ); - } - for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) { - SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0); - if ( tmp ) { - PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ", - colwidth, - pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, - PL_colors[0], PL_colors[1], - (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | - PERL_PV_ESCAPE_FIRSTCHAR - ) , - TRIE_LIST_ITEM(state,charid).forid, - (UV)TRIE_LIST_ITEM(state,charid).newstate - ); - if (!(charid % 10)) - PerlIO_printf(Perl_debug_log, "\n%*s| ", - (int)((depth * 2) + 14), ""); - } - } - PerlIO_printf( Perl_debug_log, "\n"); - } -} - -/* - Dumps a fully constructed but uncompressed trie in table form. - This is the normal DFA style state transition table, with a few - twists to facilitate compression later. - Used for debugging make_trie(). -*/ -STATIC void -S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie, - HV *widecharmap, AV *revcharmap, U32 next_alloc, - U32 depth) -{ - U32 state; - U16 charid; - SV *sv=sv_newmortal(); - int colwidth= widecharmap ? 6 : 4; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE; - - /* - print out the table precompression so that we can do a visual check - that they are identical. - */ - - PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" ); - - for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) { - SV ** const tmp = av_fetch( revcharmap, charid, 0); - if ( tmp ) { - PerlIO_printf( Perl_debug_log, "%*s", - colwidth, - pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth, - PL_colors[0], PL_colors[1], - (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | - PERL_PV_ESCAPE_FIRSTCHAR - ) - ); - } - } - - PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" ); - - for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) { - PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------"); - } - - PerlIO_printf( Perl_debug_log, "\n" ); - - for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) { - - PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ", - (int)depth * 2 + 2,"", - (UV)TRIE_NODENUM( state ) ); - - for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) { - UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next ); - if (v) - PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v ); - else - PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." ); - } - if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) { - PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check ); - } else { - PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check, - trie->states[ TRIE_NODENUM( state ) ].wordnum ); - } - } -} - -#endif - - -/* make_trie(startbranch,first,last,tail,word_count,flags,depth) - startbranch: the first branch in the whole branch sequence - first : start branch of sequence of branch-exact nodes. - May be the same as startbranch - last : Thing following the last branch. - May be the same as tail. - tail : item following the branch sequence - count : words in the sequence - flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/ - depth : indent depth - -Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node. - -A trie is an N'ary tree where the branches are determined by digital -decomposition of the key. IE, at the root node you look up the 1st character and -follow that branch repeat until you find the end of the branches. Nodes can be -marked as "accepting" meaning they represent a complete word. Eg: - - /he|she|his|hers/ - -would convert into the following structure. Numbers represent states, letters -following numbers represent valid transitions on the letter from that state, if -the number is in square brackets it represents an accepting state, otherwise it -will be in parenthesis. - - +-h->+-e->[3]-+-r->(8)-+-s->[9] - | | - | (2) - | | - (1) +-i->(6)-+-s->[7] - | - +-s->(3)-+-h->(4)-+-e->[5] - - Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers) - -This shows that when matching against the string 'hers' we will begin at state 1 -read 'h' and move to state 2, read 'e' and move to state 3 which is accepting, -then read 'r' and go to state 8 followed by 's' which takes us to state 9 which -is also accepting. Thus we know that we can match both 'he' and 'hers' with a -single traverse. We store a mapping from accepting to state to which word was -matched, and then when we have multiple possibilities we try to complete the -rest of the regex in the order in which they occured in the alternation. - -The only prior NFA like behaviour that would be changed by the TRIE support is -the silent ignoring of duplicate alternations which are of the form: - - / (DUPE|DUPE) X? (?{ ... }) Y /x - -Thus EVAL blocks following a trie may be called a different number of times with -and without the optimisation. With the optimisations dupes will be silently -ignored. This inconsistent behaviour of EVAL type nodes is well established as -the following demonstrates: - - 'words'=~/(word|word|word)(?{ print $1 })[xyz]/ - -which prints out 'word' three times, but - - 'words'=~/(word|word|word)(?{ print $1 })S/ - -which doesnt print it out at all. This is due to other optimisations kicking in. - -Example of what happens on a structural level: - -The regexp /(ac|ad|ab)+/ will produce the following debug output: - - 1: CURLYM[1] {1,32767}(18) - 5: BRANCH(8) - 6: EXACT (16) - 8: BRANCH(11) - 9: EXACT (16) - 11: BRANCH(14) - 12: EXACT (16) - 16: SUCCEED(0) - 17: NOTHING(18) - 18: END(0) - -This would be optimizable with startbranch=5, first=5, last=16, tail=16 -and should turn into: - - 1: CURLYM[1] {1,32767}(18) - 5: TRIE(16) - [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1] - - - - 16: SUCCEED(0) - 17: NOTHING(18) - 18: END(0) - -Cases where tail != last would be like /(?foo|bar)baz/: - - 1: BRANCH(4) - 2: EXACT (8) - 4: BRANCH(7) - 5: EXACT (8) - 7: TAIL(8) - 8: EXACT (10) - 10: END(0) - -which would be optimizable with startbranch=1, first=1, last=7, tail=8 -and would end up looking like: - - 1: TRIE(8) - [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1] - - - 7: TAIL(8) - 8: EXACT (10) - 10: END(0) - - d = uvuni_to_utf8_flags(d, uv, 0); - -is the recommended Unicode-aware way of saying - - *(d++) = uv; -*/ - -#define TRIE_STORE_REVCHAR(val) \ - STMT_START { \ - if (UTF) { \ - SV *zlopp = newSV(7); /* XXX: optimize me */ \ - unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \ - unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \ - SvCUR_set(zlopp, kapow - flrbbbbb); \ - SvPOK_on(zlopp); \ - SvUTF8_on(zlopp); \ - av_push(revcharmap, zlopp); \ - } else { \ - char ooooff = (char)val; \ - av_push(revcharmap, newSVpvn(&ooooff, 1)); \ - } \ - } STMT_END - -#define TRIE_READ_CHAR STMT_START { \ - wordlen++; \ - if ( UTF ) { \ - /* if it is UTF then it is either already folded, or does not need folding */ \ - uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \ - } \ - else if (folder == PL_fold_latin1) { \ - /* if we use this folder we have to obey unicode rules on latin-1 data */ \ - if ( foldlen > 0 ) { \ - uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \ - foldlen -= len; \ - scan += len; \ - len = 0; \ - } else { \ - len = 1; \ - uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \ - skiplen = UNISKIP(uvc); \ - foldlen -= skiplen; \ - scan = foldbuf + skiplen; \ - } \ - } else { \ - /* raw data, will be folded later if needed */ \ - uvc = (U32)*uc; \ - len = 1; \ - } \ -} STMT_END - - - -#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \ - if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \ - U32 ging = TRIE_LIST_LEN( state ) *= 2; \ - Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \ - } \ - TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \ - TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \ - TRIE_LIST_CUR( state )++; \ -} STMT_END - -#define TRIE_LIST_NEW(state) STMT_START { \ - Newxz( trie->states[ state ].trans.list, \ - 4, reg_trie_trans_le ); \ - TRIE_LIST_CUR( state ) = 1; \ - TRIE_LIST_LEN( state ) = 4; \ -} STMT_END - -#define TRIE_HANDLE_WORD(state) STMT_START { \ - U16 dupe= trie->states[ state ].wordnum; \ - regnode * const noper_next = regnext( noper ); \ - \ - DEBUG_r({ \ - /* store the word for dumping */ \ - SV* tmp; \ - if (OP(noper) != NOTHING) \ - tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \ - else \ - tmp = newSVpvn_utf8( "", 0, UTF ); \ - av_push( trie_words, tmp ); \ - }); \ - \ - curword++; \ - trie->wordinfo[curword].prev = 0; \ - trie->wordinfo[curword].len = wordlen; \ - trie->wordinfo[curword].accept = state; \ - \ - if ( noper_next < tail ) { \ - if (!trie->jump) \ - trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \ - trie->jump[curword] = (U16)(noper_next - convert); \ - if (!jumper) \ - jumper = noper_next; \ - if (!nextbranch) \ - nextbranch= regnext(cur); \ - } \ - \ - if ( dupe ) { \ - /* It's a dupe. Pre-insert into the wordinfo[].prev */\ - /* chain, so that when the bits of chain are later */\ - /* linked together, the dups appear in the chain */\ - trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \ - trie->wordinfo[dupe].prev = curword; \ - } else { \ - /* we haven't inserted this word yet. */ \ - trie->states[ state ].wordnum = curword; \ - } \ -} STMT_END - - -#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \ - ( ( base + charid >= ucharcount \ - && base + charid < ubound \ - && state == trie->trans[ base - ucharcount + charid ].check \ - && trie->trans[ base - ucharcount + charid ].next ) \ - ? trie->trans[ base - ucharcount + charid ].next \ - : ( state==1 ? special : 0 ) \ - ) - -#define MADE_TRIE 1 -#define MADE_JUMP_TRIE 2 -#define MADE_EXACT_TRIE 4 - -STATIC I32 -S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth) -{ - dVAR; - /* first pass, loop through and scan words */ - reg_trie_data *trie; - HV *widecharmap = NULL; - AV *revcharmap = newAV(); - regnode *cur; - const U32 uniflags = UTF8_ALLOW_DEFAULT; - STRLEN len = 0; - UV uvc = 0; - U16 curword = 0; - U32 next_alloc = 0; - regnode *jumper = NULL; - regnode *nextbranch = NULL; - regnode *convert = NULL; - U32 *prev_states; /* temp array mapping each state to previous one */ - /* we just use folder as a flag in utf8 */ - const U8 * folder = NULL; - -#ifdef DEBUGGING - const U32 data_slot = add_data( pRExC_state, 4, "tuuu" ); - AV *trie_words = NULL; - /* along with revcharmap, this only used during construction but both are - * useful during debugging so we store them in the struct when debugging. - */ -#else - const U32 data_slot = add_data( pRExC_state, 2, "tu" ); - STRLEN trie_charcount=0; -#endif - SV *re_trie_maxbuff; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_MAKE_TRIE; -#ifndef DEBUGGING - PERL_UNUSED_ARG(depth); -#endif - - switch (flags) { - case EXACT: break; - case EXACTFA: - case EXACTFU_SS: - case EXACTFU_TRICKYFOLD: - case EXACTFU: folder = PL_fold_latin1; break; - case EXACTF: folder = PL_fold; break; - case EXACTFL: folder = PL_fold_locale; break; - default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] ); - } - - trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) ); - trie->refcount = 1; - trie->startstate = 1; - trie->wordcount = word_count; - RExC_rxi->data->data[ data_slot ] = (void*)trie; - trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) ); - if (flags == EXACT) - trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 ); - trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc( - trie->wordcount+1, sizeof(reg_trie_wordinfo)); - - DEBUG_r({ - trie_words = newAV(); - }); - - re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1); - if (!SvIOK(re_trie_maxbuff)) { - sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT); - } - DEBUG_TRIE_COMPILE_r({ - PerlIO_printf( Perl_debug_log, - "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n", - (int)depth * 2 + 2, "", - REG_NODE_NUM(startbranch),REG_NODE_NUM(first), - REG_NODE_NUM(last), REG_NODE_NUM(tail), - (int)depth); - }); - - /* Find the node we are going to overwrite */ - if ( first == startbranch && OP( last ) != BRANCH ) { - /* whole branch chain */ - convert = first; - } else { - /* branch sub-chain */ - convert = NEXTOPER( first ); - } - - /* -- First loop and Setup -- - - We first traverse the branches and scan each word to determine if it - contains widechars, and how many unique chars there are, this is - important as we have to build a table with at least as many columns as we - have unique chars. - - We use an array of integers to represent the character codes 0..255 - (trie->charmap) and we use a an HV* to store Unicode characters. We use the - native representation of the character value as the key and IV's for the - coded index. - - *TODO* If we keep track of how many times each character is used we can - remap the columns so that the table compression later on is more - efficient in terms of memory by ensuring the most common value is in the - middle and the least common are on the outside. IMO this would be better - than a most to least common mapping as theres a decent chance the most - common letter will share a node with the least common, meaning the node - will not be compressible. With a middle is most common approach the worst - case is when we have the least common nodes twice. - - */ - - for ( cur = first ; cur < last ; cur = regnext( cur ) ) { - regnode *noper = NEXTOPER( cur ); - const U8 *uc = (U8*)STRING( noper ); - const U8 *e = uc + STR_LEN( noper ); - STRLEN foldlen = 0; - U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; - STRLEN skiplen = 0; - const U8 *scan = (U8*)NULL; - U32 wordlen = 0; /* required init */ - STRLEN chars = 0; - bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/ - - if (OP(noper) == NOTHING) { - regnode *noper_next= regnext(noper); - if (noper_next != tail && OP(noper_next) == flags) { - noper = noper_next; - uc= (U8*)STRING(noper); - e= uc + STR_LEN(noper); - trie->minlen= STR_LEN(noper); - } else { - trie->minlen= 0; - continue; - } - } - - if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */ - TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte - regardless of encoding */ - if (OP( noper ) == EXACTFU_SS) { - /* false positives are ok, so just set this */ - TRIE_BITMAP_SET(trie,0xDF); - } - } - for ( ; uc < e ; uc += len ) { - TRIE_CHARCOUNT(trie)++; - TRIE_READ_CHAR; - chars++; - if ( uvc < 256 ) { - if ( folder ) { - U8 folded= folder[ (U8) uvc ]; - if ( !trie->charmap[ folded ] ) { - trie->charmap[ folded ]=( ++trie->uniquecharcount ); - TRIE_STORE_REVCHAR( folded ); - } - } - if ( !trie->charmap[ uvc ] ) { - trie->charmap[ uvc ]=( ++trie->uniquecharcount ); - TRIE_STORE_REVCHAR( uvc ); - } - if ( set_bit ) { - /* store the codepoint in the bitmap, and its folded - * equivalent. */ - TRIE_BITMAP_SET(trie, uvc); - - /* store the folded codepoint */ - if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]); - - if ( !UTF ) { - /* store first byte of utf8 representation of - variant codepoints */ - if (! UNI_IS_INVARIANT(uvc)) { - TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc)); - } - } - set_bit = 0; /* We've done our bit :-) */ - } - } else { - SV** svpp; - if ( !widecharmap ) - widecharmap = newHV(); - - svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 ); - - if ( !svpp ) - Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc ); - - if ( !SvTRUE( *svpp ) ) { - sv_setiv( *svpp, ++trie->uniquecharcount ); - TRIE_STORE_REVCHAR(uvc); - } - } - } - if( cur == first ) { - trie->minlen = chars; - trie->maxlen = chars; - } else if (chars < trie->minlen) { - trie->minlen = chars; - } else if (chars > trie->maxlen) { - trie->maxlen = chars; - } - if (OP( noper ) == EXACTFU_SS) { - /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/ - if (trie->minlen > 1) - trie->minlen= 1; - } - if (OP( noper ) == EXACTFU_TRICKYFOLD) { - /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}" - * - We assume that any such sequence might match a 2 byte string */ - if (trie->minlen > 2 ) - trie->minlen= 2; - } - - } /* end first pass */ - DEBUG_TRIE_COMPILE_r( - PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n", - (int)depth * 2 + 2,"", - ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count, - (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount, - (int)trie->minlen, (int)trie->maxlen ) - ); - - /* - We now know what we are dealing with in terms of unique chars and - string sizes so we can calculate how much memory a naive - representation using a flat table will take. If it's over a reasonable - limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory - conservative but potentially much slower representation using an array - of lists. - - At the end we convert both representations into the same compressed - form that will be used in regexec.c for matching with. The latter - is a form that cannot be used to construct with but has memory - properties similar to the list form and access properties similar - to the table form making it both suitable for fast searches and - small enough that its feasable to store for the duration of a program. - - See the comment in the code where the compressed table is produced - inplace from the flat tabe representation for an explanation of how - the compression works. - - */ - - - Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32); - prev_states[1] = 0; - - if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) { - /* - Second Pass -- Array Of Lists Representation - - Each state will be represented by a list of charid:state records - (reg_trie_trans_le) the first such element holds the CUR and LEN - points of the allocated array. (See defines above). - - We build the initial structure using the lists, and then convert - it into the compressed table form which allows faster lookups - (but cant be modified once converted). - */ - - STRLEN transcount = 1; - - DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log, - "%*sCompiling trie using list compiler\n", - (int)depth * 2 + 2, "")); - - trie->states = (reg_trie_state *) - PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2, - sizeof(reg_trie_state) ); - TRIE_LIST_NEW(1); - next_alloc = 2; - - for ( cur = first ; cur < last ; cur = regnext( cur ) ) { - - regnode *noper = NEXTOPER( cur ); - U8 *uc = (U8*)STRING( noper ); - const U8 *e = uc + STR_LEN( noper ); - U32 state = 1; /* required init */ - U16 charid = 0; /* sanity init */ - U8 *scan = (U8*)NULL; /* sanity init */ - STRLEN foldlen = 0; /* required init */ - U32 wordlen = 0; /* required init */ - U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; - STRLEN skiplen = 0; - - if (OP(noper) == NOTHING) { - regnode *noper_next= regnext(noper); - if (noper_next != tail && OP(noper_next) == flags) { - noper = noper_next; - uc= (U8*)STRING(noper); - e= uc + STR_LEN(noper); - } - } - - if (OP(noper) != NOTHING) { - for ( ; uc < e ; uc += len ) { - - TRIE_READ_CHAR; - - if ( uvc < 256 ) { - charid = trie->charmap[ uvc ]; - } else { - SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0); - if ( !svpp ) { - charid = 0; - } else { - charid=(U16)SvIV( *svpp ); - } - } - /* charid is now 0 if we dont know the char read, or nonzero if we do */ - if ( charid ) { - - U16 check; - U32 newstate = 0; - - charid--; - if ( !trie->states[ state ].trans.list ) { - TRIE_LIST_NEW( state ); - } - for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) { - if ( TRIE_LIST_ITEM( state, check ).forid == charid ) { - newstate = TRIE_LIST_ITEM( state, check ).newstate; - break; - } - } - if ( ! newstate ) { - newstate = next_alloc++; - prev_states[newstate] = state; - TRIE_LIST_PUSH( state, charid, newstate ); - transcount++; - } - state = newstate; - } else { - Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc ); - } - } - } - TRIE_HANDLE_WORD(state); - - } /* end second pass */ - - /* next alloc is the NEXT state to be allocated */ - trie->statecount = next_alloc; - trie->states = (reg_trie_state *) - PerlMemShared_realloc( trie->states, - next_alloc - * sizeof(reg_trie_state) ); - - /* and now dump it out before we compress it */ - DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap, - revcharmap, next_alloc, - depth+1) - ); - - trie->trans = (reg_trie_trans *) - PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) ); - { - U32 state; - U32 tp = 0; - U32 zp = 0; - - - for( state=1 ; state < next_alloc ; state ++ ) { - U32 base=0; - - /* - DEBUG_TRIE_COMPILE_MORE_r( - PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp) - ); - */ - - if (trie->states[state].trans.list) { - U16 minid=TRIE_LIST_ITEM( state, 1).forid; - U16 maxid=minid; - U16 idx; - - for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) { - const U16 forid = TRIE_LIST_ITEM( state, idx).forid; - if ( forid < minid ) { - minid=forid; - } else if ( forid > maxid ) { - maxid=forid; - } - } - if ( transcount < tp + maxid - minid + 1) { - transcount *= 2; - trie->trans = (reg_trie_trans *) - PerlMemShared_realloc( trie->trans, - transcount - * sizeof(reg_trie_trans) ); - Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans ); - } - base = trie->uniquecharcount + tp - minid; - if ( maxid == minid ) { - U32 set = 0; - for ( ; zp < tp ; zp++ ) { - if ( ! trie->trans[ zp ].next ) { - base = trie->uniquecharcount + zp - minid; - trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate; - trie->trans[ zp ].check = state; - set = 1; - break; - } - } - if ( !set ) { - trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate; - trie->trans[ tp ].check = state; - tp++; - zp = tp; - } - } else { - for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) { - const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid; - trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate; - trie->trans[ tid ].check = state; - } - tp += ( maxid - minid + 1 ); - } - Safefree(trie->states[ state ].trans.list); - } - /* - DEBUG_TRIE_COMPILE_MORE_r( - PerlIO_printf( Perl_debug_log, " base: %d\n",base); - ); - */ - trie->states[ state ].trans.base=base; - } - trie->lasttrans = tp + 1; - } - } else { - /* - Second Pass -- Flat Table Representation. - - we dont use the 0 slot of either trans[] or states[] so we add 1 to each. - We know that we will need Charcount+1 trans at most to store the data - (one row per char at worst case) So we preallocate both structures - assuming worst case. - - We then construct the trie using only the .next slots of the entry - structs. - - We use the .check field of the first entry of the node temporarily to - make compression both faster and easier by keeping track of how many non - zero fields are in the node. - - Since trans are numbered from 1 any 0 pointer in the table is a FAIL - transition. - - There are two terms at use here: state as a TRIE_NODEIDX() which is a - number representing the first entry of the node, and state as a - TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and - TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there - are 2 entrys per node. eg: - - A B A B - 1. 2 4 1. 3 7 - 2. 0 3 3. 0 5 - 3. 0 0 5. 0 0 - 4. 0 0 7. 0 0 - - The table is internally in the right hand, idx form. However as we also - have to deal with the states array which is indexed by nodenum we have to - use TRIE_NODENUM() to convert. - - */ - DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log, - "%*sCompiling trie using table compiler\n", - (int)depth * 2 + 2, "")); - - trie->trans = (reg_trie_trans *) - PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 ) - * trie->uniquecharcount + 1, - sizeof(reg_trie_trans) ); - trie->states = (reg_trie_state *) - PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2, - sizeof(reg_trie_state) ); - next_alloc = trie->uniquecharcount + 1; - - - for ( cur = first ; cur < last ; cur = regnext( cur ) ) { - - regnode *noper = NEXTOPER( cur ); - const U8 *uc = (U8*)STRING( noper ); - const U8 *e = uc + STR_LEN( noper ); - - U32 state = 1; /* required init */ - - U16 charid = 0; /* sanity init */ - U32 accept_state = 0; /* sanity init */ - U8 *scan = (U8*)NULL; /* sanity init */ - - STRLEN foldlen = 0; /* required init */ - U32 wordlen = 0; /* required init */ - STRLEN skiplen = 0; - U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ]; - - if (OP(noper) == NOTHING) { - regnode *noper_next= regnext(noper); - if (noper_next != tail && OP(noper_next) == flags) { - noper = noper_next; - uc= (U8*)STRING(noper); - e= uc + STR_LEN(noper); - } - } - - if ( OP(noper) != NOTHING ) { - for ( ; uc < e ; uc += len ) { - - TRIE_READ_CHAR; - - if ( uvc < 256 ) { - charid = trie->charmap[ uvc ]; - } else { - SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0); - charid = svpp ? (U16)SvIV(*svpp) : 0; - } - if ( charid ) { - charid--; - if ( !trie->trans[ state + charid ].next ) { - trie->trans[ state + charid ].next = next_alloc; - trie->trans[ state ].check++; - prev_states[TRIE_NODENUM(next_alloc)] - = TRIE_NODENUM(state); - next_alloc += trie->uniquecharcount; - } - state = trie->trans[ state + charid ].next; - } else { - Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc ); - } - /* charid is now 0 if we dont know the char read, or nonzero if we do */ - } - } - accept_state = TRIE_NODENUM( state ); - TRIE_HANDLE_WORD(accept_state); - - } /* end second pass */ - - /* and now dump it out before we compress it */ - DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap, - revcharmap, - next_alloc, depth+1)); - - { - /* - * Inplace compress the table.* - - For sparse data sets the table constructed by the trie algorithm will - be mostly 0/FAIL transitions or to put it another way mostly empty. - (Note that leaf nodes will not contain any transitions.) - - This algorithm compresses the tables by eliminating most such - transitions, at the cost of a modest bit of extra work during lookup: - - - Each states[] entry contains a .base field which indicates the - index in the state[] array wheres its transition data is stored. - - - If .base is 0 there are no valid transitions from that node. - - - If .base is nonzero then charid is added to it to find an entry in - the trans array. - - -If trans[states[state].base+charid].check!=state then the - transition is taken to be a 0/Fail transition. Thus if there are fail - transitions at the front of the node then the .base offset will point - somewhere inside the previous nodes data (or maybe even into a node - even earlier), but the .check field determines if the transition is - valid. - - XXX - wrong maybe? - The following process inplace converts the table to the compressed - table: We first do not compress the root node 1,and mark all its - .check pointers as 1 and set its .base pointer as 1 as well. This - allows us to do a DFA construction from the compressed table later, - and ensures that any .base pointers we calculate later are greater - than 0. - - - We set 'pos' to indicate the first entry of the second node. - - - We then iterate over the columns of the node, finding the first and - last used entry at l and m. We then copy l..m into pos..(pos+m-l), - and set the .check pointers accordingly, and advance pos - appropriately and repreat for the next node. Note that when we copy - the next pointers we have to convert them from the original - NODEIDX form to NODENUM form as the former is not valid post - compression. - - - If a node has no transitions used we mark its base as 0 and do not - advance the pos pointer. - - - If a node only has one transition we use a second pointer into the - structure to fill in allocated fail transitions from other states. - This pointer is independent of the main pointer and scans forward - looking for null transitions that are allocated to a state. When it - finds one it writes the single transition into the "hole". If the - pointer doesnt find one the single transition is appended as normal. - - - Once compressed we can Renew/realloc the structures to release the - excess space. - - See "Table-Compression Methods" in sec 3.9 of the Red Dragon, - specifically Fig 3.47 and the associated pseudocode. - - demq - */ - const U32 laststate = TRIE_NODENUM( next_alloc ); - U32 state, charid; - U32 pos = 0, zp=0; - trie->statecount = laststate; - - for ( state = 1 ; state < laststate ; state++ ) { - U8 flag = 0; - const U32 stateidx = TRIE_NODEIDX( state ); - const U32 o_used = trie->trans[ stateidx ].check; - U32 used = trie->trans[ stateidx ].check; - trie->trans[ stateidx ].check = 0; - - for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) { - if ( flag || trie->trans[ stateidx + charid ].next ) { - if ( trie->trans[ stateidx + charid ].next ) { - if (o_used == 1) { - for ( ; zp < pos ; zp++ ) { - if ( ! trie->trans[ zp ].next ) { - break; - } - } - trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ; - trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next ); - trie->trans[ zp ].check = state; - if ( ++zp > pos ) pos = zp; - break; - } - used--; - } - if ( !flag ) { - flag = 1; - trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ; - } - trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next ); - trie->trans[ pos ].check = state; - pos++; - } - } - } - trie->lasttrans = pos + 1; - trie->states = (reg_trie_state *) - PerlMemShared_realloc( trie->states, laststate - * sizeof(reg_trie_state) ); - DEBUG_TRIE_COMPILE_MORE_r( - PerlIO_printf( Perl_debug_log, - "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n", - (int)depth * 2 + 2,"", - (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ), - (IV)next_alloc, - (IV)pos, - ( ( next_alloc - pos ) * 100 ) / (double)next_alloc ); - ); - - } /* end table compress */ - } - DEBUG_TRIE_COMPILE_MORE_r( - PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n", - (int)depth * 2 + 2, "", - (UV)trie->statecount, - (UV)trie->lasttrans) - ); - /* resize the trans array to remove unused space */ - trie->trans = (reg_trie_trans *) - PerlMemShared_realloc( trie->trans, trie->lasttrans - * sizeof(reg_trie_trans) ); - - { /* Modify the program and insert the new TRIE node */ - U8 nodetype =(U8)(flags & 0xFF); - char *str=NULL; - -#ifdef DEBUGGING - regnode *optimize = NULL; -#ifdef RE_TRACK_PATTERN_OFFSETS - - U32 mjd_offset = 0; - U32 mjd_nodelen = 0; -#endif /* RE_TRACK_PATTERN_OFFSETS */ -#endif /* DEBUGGING */ - /* - This means we convert either the first branch or the first Exact, - depending on whether the thing following (in 'last') is a branch - or not and whther first is the startbranch (ie is it a sub part of - the alternation or is it the whole thing.) - Assuming its a sub part we convert the EXACT otherwise we convert - the whole branch sequence, including the first. - */ - /* Find the node we are going to overwrite */ - if ( first != startbranch || OP( last ) == BRANCH ) { - /* branch sub-chain */ - NEXT_OFF( first ) = (U16)(last - first); -#ifdef RE_TRACK_PATTERN_OFFSETS - DEBUG_r({ - mjd_offset= Node_Offset((convert)); - mjd_nodelen= Node_Length((convert)); - }); -#endif - /* whole branch chain */ - } -#ifdef RE_TRACK_PATTERN_OFFSETS - else { - DEBUG_r({ - const regnode *nop = NEXTOPER( convert ); - mjd_offset= Node_Offset((nop)); - mjd_nodelen= Node_Length((nop)); - }); - } - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n", - (int)depth * 2 + 2, "", - (UV)mjd_offset, (UV)mjd_nodelen) - ); -#endif - /* But first we check to see if there is a common prefix we can - split out as an EXACT and put in front of the TRIE node. */ - trie->startstate= 1; - if ( trie->bitmap && !widecharmap && !trie->jump ) { - U32 state; - for ( state = 1 ; state < trie->statecount-1 ; state++ ) { - U32 ofs = 0; - I32 idx = -1; - U32 count = 0; - const U32 base = trie->states[ state ].trans.base; - - if ( trie->states[state].wordnum ) - count = 1; - - for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) { - if ( ( base + ofs >= trie->uniquecharcount ) && - ( base + ofs - trie->uniquecharcount < trie->lasttrans ) && - trie->trans[ base + ofs - trie->uniquecharcount ].check == state ) - { - if ( ++count > 1 ) { - SV **tmp = av_fetch( revcharmap, ofs, 0); - const U8 *ch = (U8*)SvPV_nolen_const( *tmp ); - if ( state == 1 ) break; - if ( count == 2 ) { - Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char); - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, - "%*sNew Start State=%"UVuf" Class: [", - (int)depth * 2 + 2, "", - (UV)state)); - if (idx >= 0) { - SV ** const tmp = av_fetch( revcharmap, idx, 0); - const U8 * const ch = (U8*)SvPV_nolen_const( *tmp ); - - TRIE_BITMAP_SET(trie,*ch); - if ( folder ) - TRIE_BITMAP_SET(trie, folder[ *ch ]); - DEBUG_OPTIMISE_r( - PerlIO_printf(Perl_debug_log, "%s", (char*)ch) - ); - } - } - TRIE_BITMAP_SET(trie,*ch); - if ( folder ) - TRIE_BITMAP_SET(trie,folder[ *ch ]); - DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch)); - } - idx = ofs; - } - } - if ( count == 1 ) { - SV **tmp = av_fetch( revcharmap, idx, 0); - STRLEN len; - char *ch = SvPV( *tmp, len ); - DEBUG_OPTIMISE_r({ - SV *sv=sv_newmortal(); - PerlIO_printf( Perl_debug_log, - "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n", - (int)depth * 2 + 2, "", - (UV)state, (UV)idx, - pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6, - PL_colors[0], PL_colors[1], - (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) | - PERL_PV_ESCAPE_FIRSTCHAR - ) - ); - }); - if ( state==1 ) { - OP( convert ) = nodetype; - str=STRING(convert); - STR_LEN(convert)=0; - } - STR_LEN(convert) += len; - while (len--) - *str++ = *ch++; - } else { -#ifdef DEBUGGING - if (state>1) - DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n")); -#endif - break; - } - } - trie->prefixlen = (state-1); - if (str) { - regnode *n = convert+NODE_SZ_STR(convert); - NEXT_OFF(convert) = NODE_SZ_STR(convert); - trie->startstate = state; - trie->minlen -= (state - 1); - trie->maxlen -= (state - 1); -#ifdef DEBUGGING - /* At least the UNICOS C compiler choked on this - * being argument to DEBUG_r(), so let's just have - * it right here. */ - if ( -#ifdef PERL_EXT_RE_BUILD - 1 -#else - DEBUG_r_TEST -#endif - ) { - regnode *fix = convert; - U32 word = trie->wordcount; - mjd_nodelen++; - Set_Node_Offset_Length(convert, mjd_offset, state - 1); - while( ++fix < n ) { - Set_Node_Offset_Length(fix, 0, 0); - } - while (word--) { - SV ** const tmp = av_fetch( trie_words, word, 0 ); - if (tmp) { - if ( STR_LEN(convert) <= SvCUR(*tmp) ) - sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert)); - else - sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp)); - } - } - } -#endif - if (trie->maxlen) { - convert = n; - } else { - NEXT_OFF(convert) = (U16)(tail - convert); - DEBUG_r(optimize= n); - } - } - } - if (!jumper) - jumper = last; - if ( trie->maxlen ) { - NEXT_OFF( convert ) = (U16)(tail - convert); - ARG_SET( convert, data_slot ); - /* Store the offset to the first unabsorbed branch in - jump[0], which is otherwise unused by the jump logic. - We use this when dumping a trie and during optimisation. */ - if (trie->jump) - trie->jump[0] = (U16)(nextbranch - convert); - - /* If the start state is not accepting (meaning there is no empty string/NOTHING) - * and there is a bitmap - * and the first "jump target" node we found leaves enough room - * then convert the TRIE node into a TRIEC node, with the bitmap - * embedded inline in the opcode - this is hypothetically faster. - */ - if ( !trie->states[trie->startstate].wordnum - && trie->bitmap - && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) ) - { - OP( convert ) = TRIEC; - Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char); - PerlMemShared_free(trie->bitmap); - trie->bitmap= NULL; - } else - OP( convert ) = TRIE; - - /* store the type in the flags */ - convert->flags = nodetype; - DEBUG_r({ - optimize = convert - + NODE_STEP_REGNODE - + regarglen[ OP( convert ) ]; - }); - /* XXX We really should free up the resource in trie now, - as we won't use them - (which resources?) dmq */ - } - /* needed for dumping*/ - DEBUG_r(if (optimize) { - regnode *opt = convert; - - while ( ++opt < optimize) { - Set_Node_Offset_Length(opt,0,0); - } - /* - Try to clean up some of the debris left after the - optimisation. - */ - while( optimize < jumper ) { - mjd_nodelen += Node_Length((optimize)); - OP( optimize ) = OPTIMIZED; - Set_Node_Offset_Length(optimize,0,0); - optimize++; - } - Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen); - }); - } /* end node insert */ - REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert); - - /* Finish populating the prev field of the wordinfo array. Walk back - * from each accept state until we find another accept state, and if - * so, point the first word's .prev field at the second word. If the - * second already has a .prev field set, stop now. This will be the - * case either if we've already processed that word's accept state, - * or that state had multiple words, and the overspill words were - * already linked up earlier. - */ - { - U16 word; - U32 state; - U16 prev; - - for (word=1; word <= trie->wordcount; word++) { - prev = 0; - if (trie->wordinfo[word].prev) - continue; - state = trie->wordinfo[word].accept; - while (state) { - state = prev_states[state]; - if (!state) - break; - prev = trie->states[state].wordnum; - if (prev) - break; - } - trie->wordinfo[word].prev = prev; - } - Safefree(prev_states); - } - - - /* and now dump out the compressed format */ - DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1)); - - RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap; -#ifdef DEBUGGING - RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words; - RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap; -#else - SvREFCNT_dec(revcharmap); -#endif - return trie->jump - ? MADE_JUMP_TRIE - : trie->startstate>1 - ? MADE_EXACT_TRIE - : MADE_TRIE; -} - -STATIC void -S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth) -{ -/* The Trie is constructed and compressed now so we can build a fail array if it's needed - - This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the - "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88 - ISBN 0-201-10088-6 - - We find the fail state for each state in the trie, this state is the longest proper - suffix of the current state's 'word' that is also a proper prefix of another word in our - trie. State 1 represents the word '' and is thus the default fail state. This allows - the DFA not to have to restart after its tried and failed a word at a given point, it - simply continues as though it had been matching the other word in the first place. - Consider - 'abcdgu'=~/abcdefg|cdgu/ - When we get to 'd' we are still matching the first word, we would encounter 'g' which would - fail, which would bring us to the state representing 'd' in the second word where we would - try 'g' and succeed, proceeding to match 'cdgu'. - */ - /* add a fail transition */ - const U32 trie_offset = ARG(source); - reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset]; - U32 *q; - const U32 ucharcount = trie->uniquecharcount; - const U32 numstates = trie->statecount; - const U32 ubound = trie->lasttrans + ucharcount; - U32 q_read = 0; - U32 q_write = 0; - U32 charid; - U32 base = trie->states[ 1 ].trans.base; - U32 *fail; - reg_ac_data *aho; - const U32 data_slot = add_data( pRExC_state, 1, "T" ); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE; -#ifndef DEBUGGING - PERL_UNUSED_ARG(depth); -#endif - - - ARG_SET( stclass, data_slot ); - aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) ); - RExC_rxi->data->data[ data_slot ] = (void*)aho; - aho->trie=trie_offset; - aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) ); - Copy( trie->states, aho->states, numstates, reg_trie_state ); - Newxz( q, numstates, U32); - aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) ); - aho->refcount = 1; - fail = aho->fail; - /* initialize fail[0..1] to be 1 so that we always have - a valid final fail state */ - fail[ 0 ] = fail[ 1 ] = 1; - - for ( charid = 0; charid < ucharcount ; charid++ ) { - const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 ); - if ( newstate ) { - q[ q_write ] = newstate; - /* set to point at the root */ - fail[ q[ q_write++ ] ]=1; - } - } - while ( q_read < q_write) { - const U32 cur = q[ q_read++ % numstates ]; - base = trie->states[ cur ].trans.base; - - for ( charid = 0 ; charid < ucharcount ; charid++ ) { - const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 ); - if (ch_state) { - U32 fail_state = cur; - U32 fail_base; - do { - fail_state = fail[ fail_state ]; - fail_base = aho->states[ fail_state ].trans.base; - } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) ); - - fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ); - fail[ ch_state ] = fail_state; - if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum ) - { - aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum; - } - q[ q_write++ % numstates] = ch_state; - } - } - } - /* restore fail[0..1] to 0 so that we "fall out" of the AC loop - when we fail in state 1, this allows us to use the - charclass scan to find a valid start char. This is based on the principle - that theres a good chance the string being searched contains lots of stuff - that cant be a start char. - */ - fail[ 0 ] = fail[ 1 ] = 0; - DEBUG_TRIE_COMPILE_r({ - PerlIO_printf(Perl_debug_log, - "%*sStclass Failtable (%"UVuf" states): 0", - (int)(depth * 2), "", (UV)numstates - ); - for( q_read=1; q_read%3d: %s (%d)\n", \ - (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\ - Next ? (REG_NODE_NUM(Next)) : 0 ); \ - }}); - - -/* The below joins as many adjacent EXACTish nodes as possible into a single - * one. The regop may be changed if the node(s) contain certain sequences that - * require special handling. The joining is only done if: - * 1) there is room in the current conglomerated node to entirely contain the - * next one. - * 2) they are the exact same node type - * - * The adjacent nodes actually may be separated by NOTHING-kind nodes, and - * these get optimized out - * - * If a node is to match under /i (folded), the number of characters it matches - * can be different than its character length if it contains a multi-character - * fold. *min_subtract is set to the total delta of the input nodes. - * - * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF - * and contains LATIN SMALL LETTER SHARP S - * - * This is as good a place as any to discuss the design of handling these - * multi-character fold sequences. It's been wrong in Perl for a very long - * time. There are three code points in Unicode whose multi-character folds - * were long ago discovered to mess things up. The previous designs for - * dealing with these involved assigning a special node for them. This - * approach doesn't work, as evidenced by this example: - * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches - * Both these fold to "sss", but if the pattern is parsed to create a node that - * would match just the \xDF, it won't be able to handle the case where a - * successful match would have to cross the node's boundary. The new approach - * that hopefully generally solves the problem generates an EXACTFU_SS node - * that is "sss". - * - * It turns out that there are problems with all multi-character folds, and not - * just these three. Now the code is general, for all such cases, but the - * three still have some special handling. The approach taken is: - * 1) This routine examines each EXACTFish node that could contain multi- - * character fold sequences. It returns in *min_subtract how much to - * subtract from the the actual length of the string to get a real minimum - * match length; it is 0 if there are no multi-char folds. This delta is - * used by the caller to adjust the min length of the match, and the delta - * between min and max, so that the optimizer doesn't reject these - * possibilities based on size constraints. - * 2) Certain of these sequences require special handling by the trie code, - * so, if found, this code changes the joined node type to special ops: - * EXACTFU_TRICKYFOLD and EXACTFU_SS. - * 3) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS - * is used for an EXACTFU node that contains at least one "ss" sequence in - * it. For non-UTF-8 patterns and strings, this is the only case where - * there is a possible fold length change. That means that a regular - * EXACTFU node without UTF-8 involvement doesn't have to concern itself - * with length changes, and so can be processed faster. regexec.c takes - * advantage of this. Generally, an EXACTFish node that is in UTF-8 is - * pre-folded by regcomp.c. This saves effort in regex matching. - * However, the pre-folding isn't done for non-UTF8 patterns because the - * fold of the MICRO SIGN requires UTF-8, and we don't want to slow things - * down by forcing the pattern into UTF8 unless necessary. Also what - * EXACTF and EXACTFL nodes fold to isn't known until runtime. The fold - * possibilities for the non-UTF8 patterns are quite simple, except for - * the sharp s. All the ones that don't involve a UTF-8 target string are - * members of a fold-pair, and arrays are set up for all of them so that - * the other member of the pair can be found quickly. Code elsewhere in - * this file makes sure that in EXACTFU nodes, the sharp s gets folded to - * 'ss', even if the pattern isn't UTF-8. This avoids the issues - * described in the next item. - * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches - * 'ss' or not is not knowable at compile time. It will match iff the - * target string is in UTF-8, unlike the EXACTFU nodes, where it always - * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus - * it can't be folded to "ss" at compile time, unlike EXACTFU does (as - * described in item 3). An assumption that the optimizer part of - * regexec.c (probably unwittingly) makes is that a character in the - * pattern corresponds to at most a single character in the target string. - * (And I do mean character, and not byte here, unlike other parts of the - * documentation that have never been updated to account for multibyte - * Unicode.) This assumption is wrong only in this case, as all other - * cases are either 1-1 folds when no UTF-8 is involved; or is true by - * virtue of having this file pre-fold UTF-8 patterns. I'm - * reluctant to try to change this assumption, so instead the code punts. - * This routine examines EXACTF nodes for the sharp s, and returns a - * boolean indicating whether or not the node is an EXACTF node that - * contains a sharp s. When it is true, the caller sets a flag that later - * causes the optimizer in this file to not set values for the floating - * and fixed string lengths, and thus avoids the optimizer code in - * regexec.c that makes the invalid assumption. Thus, there is no - * optimization based on string lengths for EXACTF nodes that contain the - * sharp s. This only happens for /id rules (which means the pattern - * isn't in UTF-8). - */ - -#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \ - if (PL_regkind[OP(scan)] == EXACT) \ - join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1) - -STATIC U32 -S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) { - /* Merge several consecutive EXACTish nodes into one. */ - regnode *n = regnext(scan); - U32 stringok = 1; - regnode *next = scan + NODE_SZ_STR(scan); - U32 merged = 0; - U32 stopnow = 0; -#ifdef DEBUGGING - regnode *stop = scan; - GET_RE_DEBUG_FLAGS_DECL; -#else - PERL_UNUSED_ARG(depth); -#endif - - PERL_ARGS_ASSERT_JOIN_EXACT; -#ifndef EXPERIMENTAL_INPLACESCAN - PERL_UNUSED_ARG(flags); - PERL_UNUSED_ARG(val); -#endif - DEBUG_PEEP("join",scan,depth); - - /* Look through the subsequent nodes in the chain. Skip NOTHING, merge - * EXACT ones that are mergeable to the current one. */ - while (n - && (PL_regkind[OP(n)] == NOTHING - || (stringok && OP(n) == OP(scan))) - && NEXT_OFF(n) - && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) - { - - if (OP(n) == TAIL || n > next) - stringok = 0; - if (PL_regkind[OP(n)] == NOTHING) { - DEBUG_PEEP("skip:",n,depth); - NEXT_OFF(scan) += NEXT_OFF(n); - next = n + NODE_STEP_REGNODE; -#ifdef DEBUGGING - if (stringok) - stop = n; -#endif - n = regnext(n); - } - else if (stringok) { - const unsigned int oldl = STR_LEN(scan); - regnode * const nnext = regnext(n); - - /* XXX I (khw) kind of doubt that this works on platforms where - * U8_MAX is above 255 because of lots of other assumptions */ - if (oldl + STR_LEN(n) > U8_MAX) - break; - - DEBUG_PEEP("merg",n,depth); - merged++; - - NEXT_OFF(scan) += NEXT_OFF(n); - STR_LEN(scan) += STR_LEN(n); - next = n + NODE_SZ_STR(n); - /* Now we can overwrite *n : */ - Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char); -#ifdef DEBUGGING - stop = next - 1; -#endif - n = nnext; - if (stopnow) break; - } - -#ifdef EXPERIMENTAL_INPLACESCAN - if (flags && !NEXT_OFF(n)) { - DEBUG_PEEP("atch", val, depth); - if (reg_off_by_arg[OP(n)]) { - ARG_SET(n, val - n); - } - else { - NEXT_OFF(n) = val - n; - } - stopnow = 1; - } -#endif - } - - *min_subtract = 0; - *has_exactf_sharp_s = FALSE; - - /* Here, all the adjacent mergeable EXACTish nodes have been merged. We - * can now analyze for sequences of problematic code points. (Prior to - * this final joining, sequences could have been split over boundaries, and - * hence missed). The sequences only happen in folding, hence for any - * non-EXACT EXACTish node */ - if (OP(scan) != EXACT) { - const U8 * const s0 = (U8*) STRING(scan); - const U8 * s = s0; - const U8 * const s_end = s0 + STR_LEN(scan); - - /* One pass is made over the node's string looking for all the - * possibilities. to avoid some tests in the loop, there are two main - * cases, for UTF-8 patterns (which can't have EXACTF nodes) and - * non-UTF-8 */ - if (UTF) { - - /* Examine the string for a multi-character fold sequence. UTF-8 - * patterns have all characters pre-folded by the time this code is - * executed */ - while (s < s_end - 1) /* Can stop 1 before the end, as minimum - length sequence we are looking for is 2 */ - { - int count = 0; - int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end); - if (! len) { /* Not a multi-char fold: get next char */ - s += UTF8SKIP(s); - continue; - } - - /* Nodes with 'ss' require special handling, except for EXACTFL - * and EXACTFA for which there is no multi-char fold to this */ - if (len == 2 && *s == 's' && *(s+1) == 's' - && OP(scan) != EXACTFL && OP(scan) != EXACTFA) - { - count = 2; - OP(scan) = EXACTFU_SS; - s += 2; - } - else if (len == 6 /* len is the same in both ASCII and EBCDIC for these */ - && (memEQ(s, GREEK_SMALL_LETTER_IOTA_UTF8 - COMBINING_DIAERESIS_UTF8 - COMBINING_ACUTE_ACCENT_UTF8, - 6) - || memEQ(s, GREEK_SMALL_LETTER_UPSILON_UTF8 - COMBINING_DIAERESIS_UTF8 - COMBINING_ACUTE_ACCENT_UTF8, - 6))) - { - count = 3; - - /* These two folds require special handling by trie's, so - * change the node type to indicate this. If EXACTFA and - * EXACTFL were ever to be handled by trie's, this would - * have to be changed. If this node has already been - * changed to EXACTFU_SS in this loop, leave it as is. (I - * (khw) think it doesn't matter in regexec.c for UTF - * patterns, but no need to change it */ - if (OP(scan) == EXACTFU) { - OP(scan) = EXACTFU_TRICKYFOLD; - } - s += 6; - } - else { /* Here is a generic multi-char fold. */ - const U8* multi_end = s + len; - - /* Count how many characters in it. In the case of /l and - * /aa, no folds which contain ASCII code points are - * allowed, so check for those, and skip if found. (In - * EXACTFL, no folds are allowed to any Latin1 code point, - * not just ASCII. But there aren't any of these - * currently, nor ever likely, so don't take the time to - * test for them. The code that generates the - * is_MULTI_foo() macros croaks should one actually get put - * into Unicode .) */ - if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) { - count = utf8_length(s, multi_end); - s = multi_end; - } - else { - while (s < multi_end) { - if (isASCII(*s)) { - s++; - goto next_iteration; - } - else { - s += UTF8SKIP(s); - } - count++; - } - } - } - - /* The delta is how long the sequence is minus 1 (1 is how long - * the character that folds to the sequence is) */ - *min_subtract += count - 1; - next_iteration: ; - } - } - else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) { - - /* Here, the pattern is not UTF-8. Look for the multi-char folds - * that are all ASCII. As in the above case, EXACTFL and EXACTFA - * nodes can't have multi-char folds to this range (and there are - * no existing ones in the upper latin1 range). In the EXACTF - * case we look also for the sharp s, which can be in the final - * position. Otherwise we can stop looking 1 byte earlier because - * have to find at least two characters for a multi-fold */ - const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1; - - /* The below is perhaps overboard, but this allows us to save a - * test each time through the loop at the expense of a mask. This - * is because on both EBCDIC and ASCII machines, 'S' and 's' differ - * by a single bit. On ASCII they are 32 apart; on EBCDIC, they - * are 64. This uses an exclusive 'or' to find that bit and then - * inverts it to form a mask, with just a single 0, in the bit - * position where 'S' and 's' differ. */ - const U8 S_or_s_mask = (U8) ~ ('S' ^ 's'); - const U8 s_masked = 's' & S_or_s_mask; - - while (s < upper) { - int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end); - if (! len) { /* Not a multi-char fold. */ - if (*s == LATIN_SMALL_LETTER_SHARP_S && OP(scan) == EXACTF) - { - *has_exactf_sharp_s = TRUE; - } - s++; - continue; - } - - if (len == 2 - && ((*s & S_or_s_mask) == s_masked) - && ((*(s+1) & S_or_s_mask) == s_masked)) - { - - /* EXACTF nodes need to know that the minimum length - * changed so that a sharp s in the string can match this - * ss in the pattern, but they remain EXACTF nodes, as they - * won't match this unless the target string is is UTF-8, - * which we don't know until runtime */ - if (OP(scan) != EXACTF) { - OP(scan) = EXACTFU_SS; - } - } - - *min_subtract += len - 1; - s += len; - } - } - } - -#ifdef DEBUGGING - /* Allow dumping but overwriting the collection of skipped - * ops and/or strings with fake optimized ops */ - n = scan + NODE_SZ_STR(scan); - while (n <= stop) { - OP(n) = OPTIMIZED; - FLAGS(n) = 0; - NEXT_OFF(n) = 0; - n++; - } -#endif - DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)}); - return stopnow; -} - -/* REx optimizer. Converts nodes into quicker variants "in place". - Finds fixed substrings. */ - -/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set - to the position after last scanned or to NULL. */ - -#define INIT_AND_WITHP \ - assert(!and_withp); \ - Newx(and_withp,1,struct regnode_charclass_class); \ - SAVEFREEPV(and_withp) - -/* this is a chain of data about sub patterns we are processing that - need to be handled separately/specially in study_chunk. Its so - we can simulate recursion without losing state. */ -struct scan_frame; -typedef struct scan_frame { - regnode *last; /* last node to process in this frame */ - regnode *next; /* next node to process when last is reached */ - struct scan_frame *prev; /*previous frame*/ - I32 stop; /* what stopparen do we use */ -} scan_frame; - - -#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf) - -#define CASE_SYNST_FNC(nAmE) \ -case nAmE: \ - if (flags & SCF_DO_STCLASS_AND) { \ - for (value = 0; value < 256; value++) \ - if (!is_ ## nAmE ## _cp(value)) \ - ANYOF_BITMAP_CLEAR(data->start_class, value); \ - } \ - else { \ - for (value = 0; value < 256; value++) \ - if (is_ ## nAmE ## _cp(value)) \ - ANYOF_BITMAP_SET(data->start_class, value); \ - } \ - break; \ -case N ## nAmE: \ - if (flags & SCF_DO_STCLASS_AND) { \ - for (value = 0; value < 256; value++) \ - if (is_ ## nAmE ## _cp(value)) \ - ANYOF_BITMAP_CLEAR(data->start_class, value); \ - } \ - else { \ - for (value = 0; value < 256; value++) \ - if (!is_ ## nAmE ## _cp(value)) \ - ANYOF_BITMAP_SET(data->start_class, value); \ - } \ - break - - - -STATIC I32 -S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp, - I32 *minlenp, I32 *deltap, - regnode *last, - scan_data_t *data, - I32 stopparen, - U8* recursed, - struct regnode_charclass_class *and_withp, - U32 flags, U32 depth) - /* scanp: Start here (read-write). */ - /* deltap: Write maxlen-minlen here. */ - /* last: Stop before this one. */ - /* data: string data about the pattern */ - /* stopparen: treat close N as END */ - /* recursed: which subroutines have we recursed into */ - /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */ -{ - dVAR; - I32 min = 0; /* There must be at least this number of characters to match */ - I32 pars = 0, code; - regnode *scan = *scanp, *next; - I32 delta = 0; - int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF); - int is_inf_internal = 0; /* The studied chunk is infinite */ - I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0; - scan_data_t data_fake; - SV *re_trie_maxbuff = NULL; - regnode *first_non_open = scan; - I32 stopmin = I32_MAX; - scan_frame *frame = NULL; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_STUDY_CHUNK; - -#ifdef DEBUGGING - StructCopy(&zero_scan_data, &data_fake, scan_data_t); -#endif - - if ( depth == 0 ) { - while (first_non_open && OP(first_non_open) == OPEN) - first_non_open=regnext(first_non_open); - } - - - fake_study_recurse: - while ( scan && OP(scan) != END && scan < last ){ - UV min_subtract = 0; /* How mmany chars to subtract from the minimum - node length to get a real minimum (because - the folded version may be shorter) */ - bool has_exactf_sharp_s = FALSE; - /* Peephole optimizer: */ - DEBUG_STUDYDATA("Peep:", data,depth); - DEBUG_PEEP("Peep",scan,depth); - - /* Its not clear to khw or hv why this is done here, and not in the - * clauses that deal with EXACT nodes. khw's guess is that it's - * because of a previous design */ - JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0); - - /* Follow the next-chain of the current node and optimize - away all the NOTHINGs from it. */ - if (OP(scan) != CURLYX) { - const int max = (reg_off_by_arg[OP(scan)] - ? I32_MAX - /* I32 may be smaller than U16 on CRAYs! */ - : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX)); - int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan)); - int noff; - regnode *n = scan; - - /* Skip NOTHING and LONGJMP. */ - while ((n = regnext(n)) - && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n))) - || ((OP(n) == LONGJMP) && (noff = ARG(n)))) - && off + noff < max) - off += noff; - if (reg_off_by_arg[OP(scan)]) - ARG(scan) = off; - else - NEXT_OFF(scan) = off; - } - - - - /* The principal pseudo-switch. Cannot be a switch, since we - look into several different things. */ - if (OP(scan) == BRANCH || OP(scan) == BRANCHJ - || OP(scan) == IFTHEN) { - next = regnext(scan); - code = OP(scan); - /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */ - - if (OP(next) == code || code == IFTHEN) { - /* NOTE - There is similar code to this block below for handling - TRIE nodes on a re-study. If you change stuff here check there - too. */ - I32 max1 = 0, min1 = I32_MAX, num = 0; - struct regnode_charclass_class accum; - regnode * const startbranch=scan; - - if (flags & SCF_DO_SUBSTR) - SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */ - if (flags & SCF_DO_STCLASS) - cl_init_zero(pRExC_state, &accum); - - while (OP(scan) == code) { - I32 deltanext, minnext, f = 0, fake; - struct regnode_charclass_class this_class; - - num++; - data_fake.flags = 0; - if (data) { - data_fake.whilem_c = data->whilem_c; - data_fake.last_closep = data->last_closep; - } - else - data_fake.last_closep = &fake; - - data_fake.pos_delta = delta; - next = regnext(scan); - scan = NEXTOPER(scan); - if (code != BRANCH) - scan = NEXTOPER(scan); - if (flags & SCF_DO_STCLASS) { - cl_init(pRExC_state, &this_class); - data_fake.start_class = &this_class; - f = SCF_DO_STCLASS_AND; - } - if (flags & SCF_WHILEM_VISITED_POS) - f |= SCF_WHILEM_VISITED_POS; - - /* we suppose the run is continuous, last=next...*/ - minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext, - next, &data_fake, - stopparen, recursed, NULL, f,depth+1); - if (min1 > minnext) - min1 = minnext; - if (max1 < minnext + deltanext) - max1 = minnext + deltanext; - if (deltanext == I32_MAX) - is_inf = is_inf_internal = 1; - scan = next; - if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) - pars++; - if (data_fake.flags & SCF_SEEN_ACCEPT) { - if ( stopmin > minnext) - stopmin = min + min1; - flags &= ~SCF_DO_SUBSTR; - if (data) - data->flags |= SCF_SEEN_ACCEPT; - } - if (data) { - if (data_fake.flags & SF_HAS_EVAL) - data->flags |= SF_HAS_EVAL; - data->whilem_c = data_fake.whilem_c; - } - if (flags & SCF_DO_STCLASS) - cl_or(pRExC_state, &accum, &this_class); - } - if (code == IFTHEN && num < 2) /* Empty ELSE branch */ - min1 = 0; - if (flags & SCF_DO_SUBSTR) { - data->pos_min += min1; - data->pos_delta += max1 - min1; - if (max1 != min1 || is_inf) - data->longest = &(data->longest_float); - } - min += min1; - delta += max1 - min1; - if (flags & SCF_DO_STCLASS_OR) { - cl_or(pRExC_state, data->start_class, &accum); - if (min1) { - cl_and(data->start_class, and_withp); - flags &= ~SCF_DO_STCLASS; - } - } - else if (flags & SCF_DO_STCLASS_AND) { - if (min1) { - cl_and(data->start_class, &accum); - flags &= ~SCF_DO_STCLASS; - } - else { - /* Switch to OR mode: cache the old value of - * data->start_class */ - INIT_AND_WITHP; - StructCopy(data->start_class, and_withp, - struct regnode_charclass_class); - flags &= ~SCF_DO_STCLASS_AND; - StructCopy(&accum, data->start_class, - struct regnode_charclass_class); - flags |= SCF_DO_STCLASS_OR; - data->start_class->flags |= ANYOF_EOS; - } - } - - if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) { - /* demq. - - Assuming this was/is a branch we are dealing with: 'scan' now - points at the item that follows the branch sequence, whatever - it is. We now start at the beginning of the sequence and look - for subsequences of - - BRANCH->EXACT=>x1 - BRANCH->EXACT=>x2 - tail - - which would be constructed from a pattern like /A|LIST|OF|WORDS/ - - If we can find such a subsequence we need to turn the first - element into a trie and then add the subsequent branch exact - strings to the trie. - - We have two cases - - 1. patterns where the whole set of branches can be converted. - - 2. patterns where only a subset can be converted. - - In case 1 we can replace the whole set with a single regop - for the trie. In case 2 we need to keep the start and end - branches so - - 'BRANCH EXACT; BRANCH EXACT; BRANCH X' - becomes BRANCH TRIE; BRANCH X; - - There is an additional case, that being where there is a - common prefix, which gets split out into an EXACT like node - preceding the TRIE node. - - If x(1..n)==tail then we can do a simple trie, if not we make - a "jump" trie, such that when we match the appropriate word - we "jump" to the appropriate tail node. Essentially we turn - a nested if into a case structure of sorts. - - */ - - int made=0; - if (!re_trie_maxbuff) { - re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1); - if (!SvIOK(re_trie_maxbuff)) - sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT); - } - if ( SvIV(re_trie_maxbuff)>=0 ) { - regnode *cur; - regnode *first = (regnode *)NULL; - regnode *last = (regnode *)NULL; - regnode *tail = scan; - U8 trietype = 0; - U32 count=0; - -#ifdef DEBUGGING - SV * const mysv = sv_newmortal(); /* for dumping */ -#endif - /* var tail is used because there may be a TAIL - regop in the way. Ie, the exacts will point to the - thing following the TAIL, but the last branch will - point at the TAIL. So we advance tail. If we - have nested (?:) we may have to move through several - tails. - */ - - while ( OP( tail ) == TAIL ) { - /* this is the TAIL generated by (?:) */ - tail = regnext( tail ); - } - - - DEBUG_TRIE_COMPILE_r({ - regprop(RExC_rx, mysv, tail ); - PerlIO_printf( Perl_debug_log, "%*s%s%s\n", - (int)depth * 2 + 2, "", - "Looking for TRIE'able sequences. Tail node is: ", - SvPV_nolen_const( mysv ) - ); - }); - - /* - - Step through the branches - cur represents each branch, - noper is the first thing to be matched as part of that branch - noper_next is the regnext() of that node. - - We normally handle a case like this /FOO[xyz]|BAR[pqr]/ - via a "jump trie" but we also support building with NOJUMPTRIE, - which restricts the trie logic to structures like /FOO|BAR/. - - If noper is a trieable nodetype then the branch is a possible optimization - target. If we are building under NOJUMPTRIE then we require that noper_next - is the same as scan (our current position in the regex program). - - Once we have two or more consecutive such branches we can create a - trie of the EXACT's contents and stitch it in place into the program. - - If the sequence represents all of the branches in the alternation we - replace the entire thing with a single TRIE node. - - Otherwise when it is a subsequence we need to stitch it in place and - replace only the relevant branches. This means the first branch has - to remain as it is used by the alternation logic, and its next pointer, - and needs to be repointed at the item on the branch chain following - the last branch we have optimized away. - - This could be either a BRANCH, in which case the subsequence is internal, - or it could be the item following the branch sequence in which case the - subsequence is at the end (which does not necessarily mean the first node - is the start of the alternation). - - TRIE_TYPE(X) is a define which maps the optype to a trietype. - - optype | trietype - ----------------+----------- - NOTHING | NOTHING - EXACT | EXACT - EXACTFU | EXACTFU - EXACTFU_SS | EXACTFU - EXACTFU_TRICKYFOLD | EXACTFU - EXACTFA | 0 - - - */ -#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \ - ( EXACT == (X) ) ? EXACT : \ - ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \ - 0 ) - - /* dont use tail as the end marker for this traverse */ - for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) { - regnode * const noper = NEXTOPER( cur ); - U8 noper_type = OP( noper ); - U8 noper_trietype = TRIE_TYPE( noper_type ); -#if defined(DEBUGGING) || defined(NOJUMPTRIE) - regnode * const noper_next = regnext( noper ); - U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0; - U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0; -#endif - - DEBUG_TRIE_COMPILE_r({ - regprop(RExC_rx, mysv, cur); - PerlIO_printf( Perl_debug_log, "%*s- %s (%d)", - (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) ); - - regprop(RExC_rx, mysv, noper); - PerlIO_printf( Perl_debug_log, " -> %s", - SvPV_nolen_const(mysv)); - - if ( noper_next ) { - regprop(RExC_rx, mysv, noper_next ); - PerlIO_printf( Perl_debug_log,"\t=> %s\t", - SvPV_nolen_const(mysv)); - } - PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n", - REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur), - PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype] - ); - }); - - /* Is noper a trieable nodetype that can be merged with the - * current trie (if there is one)? */ - if ( noper_trietype - && - ( - ( noper_trietype == NOTHING) - || ( trietype == NOTHING ) - || ( trietype == noper_trietype ) - ) -#ifdef NOJUMPTRIE - && noper_next == tail -#endif - && count < U16_MAX) - { - /* Handle mergable triable node - * Either we are the first node in a new trieable sequence, - * in which case we do some bookkeeping, otherwise we update - * the end pointer. */ - if ( !first ) { - first = cur; - if ( noper_trietype == NOTHING ) { -#if !defined(DEBUGGING) && !defined(NOJUMPTRIE) - regnode * const noper_next = regnext( noper ); - U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0; - U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0; -#endif - - if ( noper_next_trietype ) { - trietype = noper_next_trietype; - } else if (noper_next_type) { - /* a NOTHING regop is 1 regop wide. We need at least two - * for a trie so we can't merge this in */ - first = NULL; - } - } else { - trietype = noper_trietype; - } - } else { - if ( trietype == NOTHING ) - trietype = noper_trietype; - last = cur; - } - if (first) - count++; - } /* end handle mergable triable node */ - else { - /* handle unmergable node - - * noper may either be a triable node which can not be tried - * together with the current trie, or a non triable node */ - if ( last ) { - /* If last is set and trietype is not NOTHING then we have found - * at least two triable branch sequences in a row of a similar - * trietype so we can turn them into a trie. If/when we - * allow NOTHING to start a trie sequence this condition will be - * required, and it isn't expensive so we leave it in for now. */ - if ( trietype && trietype != NOTHING ) - make_trie( pRExC_state, - startbranch, first, cur, tail, count, - trietype, depth+1 ); - last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */ - } - if ( noper_trietype -#ifdef NOJUMPTRIE - && noper_next == tail -#endif - ){ - /* noper is triable, so we can start a new trie sequence */ - count = 1; - first = cur; - trietype = noper_trietype; - } else if (first) { - /* if we already saw a first but the current node is not triable then we have - * to reset the first information. */ - count = 0; - first = NULL; - trietype = 0; - } - } /* end handle unmergable node */ - } /* loop over branches */ - DEBUG_TRIE_COMPILE_r({ - regprop(RExC_rx, mysv, cur); - PerlIO_printf( Perl_debug_log, - "%*s- %s (%d) \n", (int)depth * 2 + 2, - "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur)); - - }); - if ( last && trietype ) { - if ( trietype != NOTHING ) { - /* the last branch of the sequence was part of a trie, - * so we have to construct it here outside of the loop - */ - made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 ); -#ifdef TRIE_STUDY_OPT - if ( ((made == MADE_EXACT_TRIE && - startbranch == first) - || ( first_non_open == first )) && - depth==0 ) { - flags |= SCF_TRIE_RESTUDY; - if ( startbranch == first - && scan == tail ) - { - RExC_seen &=~REG_TOP_LEVEL_BRANCHES; - } - } -#endif - } else { - /* at this point we know whatever we have is a NOTHING sequence/branch - * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING - */ - if ( startbranch == first ) { - regnode *opt; - /* the entire thing is a NOTHING sequence, something like this: - * (?:|) So we can turn it into a plain NOTHING op. */ - DEBUG_TRIE_COMPILE_r({ - regprop(RExC_rx, mysv, cur); - PerlIO_printf( Perl_debug_log, - "%*s- %s (%d) \n", (int)depth * 2 + 2, - "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur)); - - }); - OP(startbranch)= NOTHING; - NEXT_OFF(startbranch)= tail - startbranch; - for ( opt= startbranch + 1; opt < tail ; opt++ ) - OP(opt)= OPTIMIZED; - } - } - } /* end if ( last) */ - } /* TRIE_MAXBUF is non zero */ - - } /* do trie */ - - } - else if ( code == BRANCHJ ) { /* single branch is optimized. */ - scan = NEXTOPER(NEXTOPER(scan)); - } else /* single branch is optimized. */ - scan = NEXTOPER(scan); - continue; - } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) { - scan_frame *newframe = NULL; - I32 paren; - regnode *start; - regnode *end; - - if (OP(scan) != SUSPEND) { - /* set the pointer */ - if (OP(scan) == GOSUB) { - paren = ARG(scan); - RExC_recurse[ARG2L(scan)] = scan; - start = RExC_open_parens[paren-1]; - end = RExC_close_parens[paren-1]; - } else { - paren = 0; - start = RExC_rxi->program + 1; - end = RExC_opend; - } - if (!recursed) { - Newxz(recursed, (((RExC_npar)>>3) +1), U8); - SAVEFREEPV(recursed); - } - if (!PAREN_TEST(recursed,paren+1)) { - PAREN_SET(recursed,paren+1); - Newx(newframe,1,scan_frame); - } else { - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); - data->longest = &(data->longest_float); - } - is_inf = is_inf_internal = 1; - if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ - cl_anything(pRExC_state, data->start_class); - flags &= ~SCF_DO_STCLASS; - } - } else { - Newx(newframe,1,scan_frame); - paren = stopparen; - start = scan+2; - end = regnext(scan); - } - if (newframe) { - assert(start); - assert(end); - SAVEFREEPV(newframe); - newframe->next = regnext(scan); - newframe->last = last; - newframe->stop = stopparen; - newframe->prev = frame; - - frame = newframe; - scan = start; - stopparen = paren; - last = end; - - continue; - } - } - else if (OP(scan) == EXACT) { - I32 l = STR_LEN(scan); - UV uc; - if (UTF) { - const U8 * const s = (U8*)STRING(scan); - uc = utf8_to_uvchr_buf(s, s + l, NULL); - l = utf8_length(s, s + l); - } else { - uc = *((U8*)STRING(scan)); - } - min += l; - if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */ - /* The code below prefers earlier match for fixed - offset, later match for variable offset. */ - if (data->last_end == -1) { /* Update the start info. */ - data->last_start_min = data->pos_min; - data->last_start_max = is_inf - ? I32_MAX : data->pos_min + data->pos_delta; - } - sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan)); - if (UTF) - SvUTF8_on(data->last_found); - { - SV * const sv = data->last_found; - MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ? - mg_find(sv, PERL_MAGIC_utf8) : NULL; - if (mg && mg->mg_len >= 0) - mg->mg_len += utf8_length((U8*)STRING(scan), - (U8*)STRING(scan)+STR_LEN(scan)); - } - data->last_end = data->pos_min + l; - data->pos_min += l; /* As in the first entry. */ - data->flags &= ~SF_BEFORE_EOL; - } - if (flags & SCF_DO_STCLASS_AND) { - /* Check whether it is compatible with what we know already! */ - int compat = 1; - - - /* If compatible, we or it in below. It is compatible if is - * in the bitmp and either 1) its bit or its fold is set, or 2) - * it's for a locale. Even if there isn't unicode semantics - * here, at runtime there may be because of matching against a - * utf8 string, so accept a possible false positive for - * latin1-range folds */ - if (uc >= 0x100 || - (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE)) - && !ANYOF_BITMAP_TEST(data->start_class, uc) - && (!(data->start_class->flags & ANYOF_LOC_FOLD) - || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc]))) - ) - { - compat = 0; - } - ANYOF_CLASS_ZERO(data->start_class); - ANYOF_BITMAP_ZERO(data->start_class); - if (compat) - ANYOF_BITMAP_SET(data->start_class, uc); - else if (uc >= 0x100) { - int i; - - /* Some Unicode code points fold to the Latin1 range; as - * XXX temporary code, instead of figuring out if this is - * one, just assume it is and set all the start class bits - * that could be some such above 255 code point's fold - * which will generate fals positives. As the code - * elsewhere that does compute the fold settles down, it - * can be extracted out and re-used here */ - for (i = 0; i < 256; i++){ - if (HAS_NONLATIN1_FOLD_CLOSURE(i)) { - ANYOF_BITMAP_SET(data->start_class, i); - } - } - } - data->start_class->flags &= ~ANYOF_EOS; - if (uc < 0x100) - data->start_class->flags &= ~ANYOF_UNICODE_ALL; - } - else if (flags & SCF_DO_STCLASS_OR) { - /* false positive possible if the class is case-folded */ - if (uc < 0x100) - ANYOF_BITMAP_SET(data->start_class, uc); - else - data->start_class->flags |= ANYOF_UNICODE_ALL; - data->start_class->flags &= ~ANYOF_EOS; - cl_and(data->start_class, and_withp); - } - flags &= ~SCF_DO_STCLASS; - } - else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */ - I32 l = STR_LEN(scan); - UV uc = *((U8*)STRING(scan)); - - /* Search for fixed substrings supports EXACT only. */ - if (flags & SCF_DO_SUBSTR) { - assert(data); - SCAN_COMMIT(pRExC_state, data, minlenp); - } - if (UTF) { - const U8 * const s = (U8 *)STRING(scan); - uc = utf8_to_uvchr_buf(s, s + l, NULL); - l = utf8_length(s, s + l); - } - if (has_exactf_sharp_s) { - RExC_seen |= REG_SEEN_EXACTF_SHARP_S; - } - min += l - min_subtract; - assert (min >= 0); - delta += min_subtract; - if (flags & SCF_DO_SUBSTR) { - data->pos_min += l - min_subtract; - if (data->pos_min < 0) { - data->pos_min = 0; - } - data->pos_delta += min_subtract; - if (min_subtract) { - data->longest = &(data->longest_float); - } - } - if (flags & SCF_DO_STCLASS_AND) { - /* Check whether it is compatible with what we know already! */ - int compat = 1; - if (uc >= 0x100 || - (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE)) - && !ANYOF_BITMAP_TEST(data->start_class, uc) - && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc]))) - { - compat = 0; - } - ANYOF_CLASS_ZERO(data->start_class); - ANYOF_BITMAP_ZERO(data->start_class); - if (compat) { - ANYOF_BITMAP_SET(data->start_class, uc); - data->start_class->flags &= ~ANYOF_EOS; - if (OP(scan) == EXACTFL) { - /* XXX This set is probably no longer necessary, and - * probably wrong as LOCALE now is on in the initial - * state */ - data->start_class->flags |= ANYOF_LOCALE|ANYOF_LOC_FOLD; - } - else { - - /* Also set the other member of the fold pair. In case - * that unicode semantics is called for at runtime, use - * the full latin1 fold. (Can't do this for locale, - * because not known until runtime) */ - ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]); - - /* All other (EXACTFL handled above) folds except under - * /iaa that include s, S, and sharp_s also may include - * the others */ - if (OP(scan) != EXACTFA) { - if (uc == 's' || uc == 'S') { - ANYOF_BITMAP_SET(data->start_class, - LATIN_SMALL_LETTER_SHARP_S); - } - else if (uc == LATIN_SMALL_LETTER_SHARP_S) { - ANYOF_BITMAP_SET(data->start_class, 's'); - ANYOF_BITMAP_SET(data->start_class, 'S'); - } - } - } - } - else if (uc >= 0x100) { - int i; - for (i = 0; i < 256; i++){ - if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) { - ANYOF_BITMAP_SET(data->start_class, i); - } - } - } - } - else if (flags & SCF_DO_STCLASS_OR) { - if (data->start_class->flags & ANYOF_LOC_FOLD) { - /* false positive possible if the class is case-folded. - Assume that the locale settings are the same... */ - if (uc < 0x100) { - ANYOF_BITMAP_SET(data->start_class, uc); - if (OP(scan) != EXACTFL) { - - /* And set the other member of the fold pair, but - * can't do that in locale because not known until - * run-time */ - ANYOF_BITMAP_SET(data->start_class, - PL_fold_latin1[uc]); - - /* All folds except under /iaa that include s, S, - * and sharp_s also may include the others */ - if (OP(scan) != EXACTFA) { - if (uc == 's' || uc == 'S') { - ANYOF_BITMAP_SET(data->start_class, - LATIN_SMALL_LETTER_SHARP_S); - } - else if (uc == LATIN_SMALL_LETTER_SHARP_S) { - ANYOF_BITMAP_SET(data->start_class, 's'); - ANYOF_BITMAP_SET(data->start_class, 'S'); - } - } - } - } - data->start_class->flags &= ~ANYOF_EOS; - } - cl_and(data->start_class, and_withp); - } - flags &= ~SCF_DO_STCLASS; - } - else if (REGNODE_VARIES(OP(scan))) { - I32 mincount, maxcount, minnext, deltanext, fl = 0; - I32 f = flags, pos_before = 0; - regnode * const oscan = scan; - struct regnode_charclass_class this_class; - struct regnode_charclass_class *oclass = NULL; - I32 next_is_eval = 0; - - switch (PL_regkind[OP(scan)]) { - case WHILEM: /* End of (?:...)* . */ - scan = NEXTOPER(scan); - goto finish; - case PLUS: - if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) { - next = NEXTOPER(scan); - if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) { - mincount = 1; - maxcount = REG_INFTY; - next = regnext(scan); - scan = NEXTOPER(scan); - goto do_curly; - } - } - if (flags & SCF_DO_SUBSTR) - data->pos_min++; - min++; - /* Fall through. */ - case STAR: - if (flags & SCF_DO_STCLASS) { - mincount = 0; - maxcount = REG_INFTY; - next = regnext(scan); - scan = NEXTOPER(scan); - goto do_curly; - } - is_inf = is_inf_internal = 1; - scan = regnext(scan); - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */ - data->longest = &(data->longest_float); - } - goto optimize_curly_tail; - case CURLY: - if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM) - && (scan->flags == stopparen)) - { - mincount = 1; - maxcount = 1; - } else { - mincount = ARG1(scan); - maxcount = ARG2(scan); - } - next = regnext(scan); - if (OP(scan) == CURLYX) { - I32 lp = (data ? *(data->last_closep) : 0); - scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX); - } - scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS; - next_is_eval = (OP(scan) == EVAL); - do_curly: - if (flags & SCF_DO_SUBSTR) { - if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */ - pos_before = data->pos_min; - } - if (data) { - fl = data->flags; - data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL); - if (is_inf) - data->flags |= SF_IS_INF; - } - if (flags & SCF_DO_STCLASS) { - cl_init(pRExC_state, &this_class); - oclass = data->start_class; - data->start_class = &this_class; - f |= SCF_DO_STCLASS_AND; - f &= ~SCF_DO_STCLASS_OR; - } - /* Exclude from super-linear cache processing any {n,m} - regops for which the combination of input pos and regex - pos is not enough information to determine if a match - will be possible. - - For example, in the regex /foo(bar\s*){4,8}baz/ with the - regex pos at the \s*, the prospects for a match depend not - only on the input position but also on how many (bar\s*) - repeats into the {4,8} we are. */ - if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY)) - f &= ~SCF_WHILEM_VISITED_POS; - - /* This will finish on WHILEM, setting scan, or on NULL: */ - minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext, - last, data, stopparen, recursed, NULL, - (mincount == 0 - ? (f & ~SCF_DO_SUBSTR) : f),depth+1); - - if (flags & SCF_DO_STCLASS) - data->start_class = oclass; - if (mincount == 0 || minnext == 0) { - if (flags & SCF_DO_STCLASS_OR) { - cl_or(pRExC_state, data->start_class, &this_class); - } - else if (flags & SCF_DO_STCLASS_AND) { - /* Switch to OR mode: cache the old value of - * data->start_class */ - INIT_AND_WITHP; - StructCopy(data->start_class, and_withp, - struct regnode_charclass_class); - flags &= ~SCF_DO_STCLASS_AND; - StructCopy(&this_class, data->start_class, - struct regnode_charclass_class); - flags |= SCF_DO_STCLASS_OR; - data->start_class->flags |= ANYOF_EOS; - } - } else { /* Non-zero len */ - if (flags & SCF_DO_STCLASS_OR) { - cl_or(pRExC_state, data->start_class, &this_class); - cl_and(data->start_class, and_withp); - } - else if (flags & SCF_DO_STCLASS_AND) - cl_and(data->start_class, &this_class); - flags &= ~SCF_DO_STCLASS; - } - if (!scan) /* It was not CURLYX, but CURLY. */ - scan = next; - if ( /* ? quantifier ok, except for (?{ ... }) */ - (next_is_eval || !(mincount == 0 && maxcount == 1)) - && (minnext == 0) && (deltanext == 0) - && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR)) - && maxcount <= REG_INFTY/3) /* Complement check for big count */ - { - /* Fatal warnings may leak the regexp without this: */ - SAVEFREESV(RExC_rx_sv); - ckWARNreg(RExC_parse, - "Quantifier unexpected on zero-length expression"); - (void)ReREFCNT_inc(RExC_rx_sv); - } - - min += minnext * mincount; - is_inf_internal |= ((maxcount == REG_INFTY - && (minnext + deltanext) > 0) - || deltanext == I32_MAX); - is_inf |= is_inf_internal; - delta += (minnext + deltanext) * maxcount - minnext * mincount; - - /* Try powerful optimization CURLYX => CURLYN. */ - if ( OP(oscan) == CURLYX && data - && data->flags & SF_IN_PAR - && !(data->flags & SF_HAS_EVAL) - && !deltanext && minnext == 1 ) { - /* Try to optimize to CURLYN. */ - regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; - regnode * const nxt1 = nxt; -#ifdef DEBUGGING - regnode *nxt2; -#endif - - /* Skip open. */ - nxt = regnext(nxt); - if (!REGNODE_SIMPLE(OP(nxt)) - && !(PL_regkind[OP(nxt)] == EXACT - && STR_LEN(nxt) == 1)) - goto nogo; -#ifdef DEBUGGING - nxt2 = nxt; -#endif - nxt = regnext(nxt); - if (OP(nxt) != CLOSE) - goto nogo; - if (RExC_open_parens) { - RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/ - RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/ - } - /* Now we know that nxt2 is the only contents: */ - oscan->flags = (U8)ARG(nxt); - OP(oscan) = CURLYN; - OP(nxt1) = NOTHING; /* was OPEN. */ - -#ifdef DEBUGGING - OP(nxt1 + 1) = OPTIMIZED; /* was count. */ - NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */ - NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */ - OP(nxt) = OPTIMIZED; /* was CLOSE. */ - OP(nxt + 1) = OPTIMIZED; /* was count. */ - NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */ -#endif - } - nogo: - - /* Try optimization CURLYX => CURLYM. */ - if ( OP(oscan) == CURLYX && data - && !(data->flags & SF_HAS_PAR) - && !(data->flags & SF_HAS_EVAL) - && !deltanext /* atom is fixed width */ - && minnext != 0 /* CURLYM can't handle zero width */ - && ! (RExC_seen & REG_SEEN_EXACTF_SHARP_S) /* Nor \xDF */ - ) { - /* XXXX How to optimize if data == 0? */ - /* Optimize to a simpler form. */ - regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */ - regnode *nxt2; - - OP(oscan) = CURLYM; - while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/ - && (OP(nxt2) != WHILEM)) - nxt = nxt2; - OP(nxt2) = SUCCEED; /* Whas WHILEM */ - /* Need to optimize away parenths. */ - if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) { - /* Set the parenth number. */ - regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/ - - oscan->flags = (U8)ARG(nxt); - if (RExC_open_parens) { - RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/ - RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/ - } - OP(nxt1) = OPTIMIZED; /* was OPEN. */ - OP(nxt) = OPTIMIZED; /* was CLOSE. */ - -#ifdef DEBUGGING - OP(nxt1 + 1) = OPTIMIZED; /* was count. */ - OP(nxt + 1) = OPTIMIZED; /* was count. */ - NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */ - NEXT_OFF(nxt + 1) = 0; /* just for consistency. */ -#endif -#if 0 - while ( nxt1 && (OP(nxt1) != WHILEM)) { - regnode *nnxt = regnext(nxt1); - if (nnxt == nxt) { - if (reg_off_by_arg[OP(nxt1)]) - ARG_SET(nxt1, nxt2 - nxt1); - else if (nxt2 - nxt1 < U16_MAX) - NEXT_OFF(nxt1) = nxt2 - nxt1; - else - OP(nxt) = NOTHING; /* Cannot beautify */ - } - nxt1 = nnxt; - } -#endif - /* Optimize again: */ - study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt, - NULL, stopparen, recursed, NULL, 0,depth+1); - } - else - oscan->flags = 0; - } - else if ((OP(oscan) == CURLYX) - && (flags & SCF_WHILEM_VISITED_POS) - /* See the comment on a similar expression above. - However, this time it's not a subexpression - we care about, but the expression itself. */ - && (maxcount == REG_INFTY) - && data && ++data->whilem_c < 16) { - /* This stays as CURLYX, we can put the count/of pair. */ - /* Find WHILEM (as in regexec.c) */ - regnode *nxt = oscan + NEXT_OFF(oscan); - - if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */ - nxt += ARG(nxt); - PREVOPER(nxt)->flags = (U8)(data->whilem_c - | (RExC_whilem_seen << 4)); /* On WHILEM */ - } - if (data && fl & (SF_HAS_PAR|SF_IN_PAR)) - pars++; - if (flags & SCF_DO_SUBSTR) { - SV *last_str = NULL; - int counted = mincount != 0; - - if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */ -#if defined(SPARC64_GCC_WORKAROUND) - I32 b = 0; - STRLEN l = 0; - const char *s = NULL; - I32 old = 0; - - if (pos_before >= data->last_start_min) - b = pos_before; - else - b = data->last_start_min; - - l = 0; - s = SvPV_const(data->last_found, l); - old = b - data->last_start_min; - -#else - I32 b = pos_before >= data->last_start_min - ? pos_before : data->last_start_min; - STRLEN l; - const char * const s = SvPV_const(data->last_found, l); - I32 old = b - data->last_start_min; -#endif - - if (UTF) - old = utf8_hop((U8*)s, old) - (U8*)s; - l -= old; - /* Get the added string: */ - last_str = newSVpvn_utf8(s + old, l, UTF); - if (deltanext == 0 && pos_before == b) { - /* What was added is a constant string */ - if (mincount > 1) { - SvGROW(last_str, (mincount * l) + 1); - repeatcpy(SvPVX(last_str) + l, - SvPVX_const(last_str), l, mincount - 1); - SvCUR_set(last_str, SvCUR(last_str) * mincount); - /* Add additional parts. */ - SvCUR_set(data->last_found, - SvCUR(data->last_found) - l); - sv_catsv(data->last_found, last_str); - { - SV * sv = data->last_found; - MAGIC *mg = - SvUTF8(sv) && SvMAGICAL(sv) ? - mg_find(sv, PERL_MAGIC_utf8) : NULL; - if (mg && mg->mg_len >= 0) - mg->mg_len += CHR_SVLEN(last_str) - l; - } - data->last_end += l * (mincount - 1); - } - } else { - /* start offset must point into the last copy */ - data->last_start_min += minnext * (mincount - 1); - data->last_start_max += is_inf ? I32_MAX - : (maxcount - 1) * (minnext + data->pos_delta); - } - } - /* It is counted once already... */ - data->pos_min += minnext * (mincount - counted); - data->pos_delta += - counted * deltanext + - (minnext + deltanext) * maxcount - minnext * mincount; - if (mincount != maxcount) { - /* Cannot extend fixed substrings found inside - the group. */ - SCAN_COMMIT(pRExC_state,data,minlenp); - if (mincount && last_str) { - SV * const sv = data->last_found; - MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ? - mg_find(sv, PERL_MAGIC_utf8) : NULL; - - if (mg) - mg->mg_len = -1; - sv_setsv(sv, last_str); - data->last_end = data->pos_min; - data->last_start_min = - data->pos_min - CHR_SVLEN(last_str); - data->last_start_max = is_inf - ? I32_MAX - : data->pos_min + data->pos_delta - - CHR_SVLEN(last_str); - } - data->longest = &(data->longest_float); - } - SvREFCNT_dec(last_str); - } - if (data && (fl & SF_HAS_EVAL)) - data->flags |= SF_HAS_EVAL; - optimize_curly_tail: - if (OP(oscan) != CURLYX) { - while (PL_regkind[OP(next = regnext(oscan))] == NOTHING - && NEXT_OFF(next)) - NEXT_OFF(oscan) += NEXT_OFF(next); - } - continue; - default: /* REF, ANYOFV, and CLUMP only? */ - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ - data->longest = &(data->longest_float); - } - is_inf = is_inf_internal = 1; - if (flags & SCF_DO_STCLASS_OR) - cl_anything(pRExC_state, data->start_class); - flags &= ~SCF_DO_STCLASS; - break; - } - } - else if (OP(scan) == LNBREAK) { - if (flags & SCF_DO_STCLASS) { - int value = 0; - data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */ - if (flags & SCF_DO_STCLASS_AND) { - for (value = 0; value < 256; value++) - if (!is_VERTWS_cp(value)) - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - else { - for (value = 0; value < 256; value++) - if (is_VERTWS_cp(value)) - ANYOF_BITMAP_SET(data->start_class, value); - } - if (flags & SCF_DO_STCLASS_OR) - cl_and(data->start_class, and_withp); - flags &= ~SCF_DO_STCLASS; - } - min++; - delta++; /* Because of the 2 char string cr-lf */ - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ - data->pos_min += 1; - data->pos_delta += 1; - data->longest = &(data->longest_float); - } - } - else if (REGNODE_SIMPLE(OP(scan))) { - int value = 0; - - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); - data->pos_min++; - } - min++; - if (flags & SCF_DO_STCLASS) { - data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */ - - /* Some of the logic below assumes that switching - locale on will only add false positives. */ - switch (PL_regkind[OP(scan)]) { - case SANY: - default: - do_default: - /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */ - if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ - cl_anything(pRExC_state, data->start_class); - break; - case REG_ANY: - if (OP(scan) == SANY) - goto do_default; - if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */ - value = (ANYOF_BITMAP_TEST(data->start_class,'\n') - || ANYOF_CLASS_TEST_ANY_SET(data->start_class)); - cl_anything(pRExC_state, data->start_class); - } - if (flags & SCF_DO_STCLASS_AND || !value) - ANYOF_BITMAP_CLEAR(data->start_class,'\n'); - break; - case ANYOF: - if (flags & SCF_DO_STCLASS_AND) - cl_and(data->start_class, - (struct regnode_charclass_class*)scan); - else - cl_or(pRExC_state, data->start_class, - (struct regnode_charclass_class*)scan); - break; - case ALNUM: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) { - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NWORDCHAR); - if (OP(scan) == ALNUMU) { - for (value = 0; value < 256; value++) { - if (!isWORDCHAR_L1(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (!isALNUM(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } - } - } - else { - if (data->start_class->flags & ANYOF_LOCALE) - ANYOF_CLASS_SET(data->start_class,ANYOF_WORDCHAR); - - /* Even if under locale, set the bits for non-locale - * in case it isn't a true locale-node. This will - * create false positives if it truly is locale */ - if (OP(scan) == ALNUMU) { - for (value = 0; value < 256; value++) { - if (isWORDCHAR_L1(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (isALNUM(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } - } - break; - case NALNUM: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) { - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_WORDCHAR); - if (OP(scan) == NALNUMU) { - for (value = 0; value < 256; value++) { - if (isWORDCHAR_L1(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (isALNUM(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } - } - } - else { - if (data->start_class->flags & ANYOF_LOCALE) - ANYOF_CLASS_SET(data->start_class,ANYOF_NWORDCHAR); - - /* Even if under locale, set the bits for non-locale in - * case it isn't a true locale-node. This will create - * false positives if it truly is locale */ - if (OP(scan) == NALNUMU) { - for (value = 0; value < 256; value++) { - if (! isWORDCHAR_L1(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (! isALNUM(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } - } - break; - case SPACE: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) { - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE); - if (OP(scan) == SPACEU) { - for (value = 0; value < 256; value++) { - if (!isSPACE_L1(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (!isSPACE(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } - } - } - else { - if (data->start_class->flags & ANYOF_LOCALE) { - ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE); - } - if (OP(scan) == SPACEU) { - for (value = 0; value < 256; value++) { - if (isSPACE_L1(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (isSPACE(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } - } - break; - case NSPACE: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) { - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE); - if (OP(scan) == NSPACEU) { - for (value = 0; value < 256; value++) { - if (isSPACE_L1(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } else { - for (value = 0; value < 256; value++) { - if (isSPACE(value)) { - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - } - } - } - else { - if (data->start_class->flags & ANYOF_LOCALE) - ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE); - if (OP(scan) == NSPACEU) { - for (value = 0; value < 256; value++) { - if (!isSPACE_L1(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } - else { - for (value = 0; value < 256; value++) { - if (!isSPACE(value)) { - ANYOF_BITMAP_SET(data->start_class, value); - } - } - } - } - break; - case DIGIT: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) { - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT); - for (value = 0; value < 256; value++) - if (!isDIGIT(value)) - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - } - else { - if (data->start_class->flags & ANYOF_LOCALE) - ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT); - for (value = 0; value < 256; value++) - if (isDIGIT(value)) - ANYOF_BITMAP_SET(data->start_class, value); - } - break; - case NDIGIT: - if (flags & SCF_DO_STCLASS_AND) { - if (!(data->start_class->flags & ANYOF_LOCALE)) - ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT); - for (value = 0; value < 256; value++) - if (isDIGIT(value)) - ANYOF_BITMAP_CLEAR(data->start_class, value); - } - else { - if (data->start_class->flags & ANYOF_LOCALE) - ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT); - for (value = 0; value < 256; value++) - if (!isDIGIT(value)) - ANYOF_BITMAP_SET(data->start_class, value); - } - break; - CASE_SYNST_FNC(VERTWS); - CASE_SYNST_FNC(HORIZWS); - - } - if (flags & SCF_DO_STCLASS_OR) - cl_and(data->start_class, and_withp); - flags &= ~SCF_DO_STCLASS; - } - } - else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) { - data->flags |= (OP(scan) == MEOL - ? SF_BEFORE_MEOL - : SF_BEFORE_SEOL); - SCAN_COMMIT(pRExC_state, data, minlenp); - - } - else if ( PL_regkind[OP(scan)] == BRANCHJ - /* Lookbehind, or need to calculate parens/evals/stclass: */ - && (scan->flags || data || (flags & SCF_DO_STCLASS)) - && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) { - if ( OP(scan) == UNLESSM && - scan->flags == 0 && - OP(NEXTOPER(NEXTOPER(scan))) == NOTHING && - OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED - ) { - regnode *opt; - regnode *upto= regnext(scan); - DEBUG_PARSE_r({ - SV * const mysv_val=sv_newmortal(); - DEBUG_STUDYDATA("OPFAIL",data,depth); - - /*DEBUG_PARSE_MSG("opfail");*/ - regprop(RExC_rx, mysv_val, upto); - PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n", - SvPV_nolen_const(mysv_val), - (IV)REG_NODE_NUM(upto), - (IV)(upto - scan) - ); - }); - OP(scan) = OPFAIL; - NEXT_OFF(scan) = upto - scan; - for (opt= scan + 1; opt < upto ; opt++) - OP(opt) = OPTIMIZED; - scan= upto; - continue; - } - if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY - || OP(scan) == UNLESSM ) - { - /* Negative Lookahead/lookbehind - In this case we can't do fixed string optimisation. - */ - - I32 deltanext, minnext, fake = 0; - regnode *nscan; - struct regnode_charclass_class intrnl; - int f = 0; - - data_fake.flags = 0; - if (data) { - data_fake.whilem_c = data->whilem_c; - data_fake.last_closep = data->last_closep; - } - else - data_fake.last_closep = &fake; - data_fake.pos_delta = delta; - if ( flags & SCF_DO_STCLASS && !scan->flags - && OP(scan) == IFMATCH ) { /* Lookahead */ - cl_init(pRExC_state, &intrnl); - data_fake.start_class = &intrnl; - f |= SCF_DO_STCLASS_AND; - } - if (flags & SCF_WHILEM_VISITED_POS) - f |= SCF_WHILEM_VISITED_POS; - next = regnext(scan); - nscan = NEXTOPER(NEXTOPER(scan)); - minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext, - last, &data_fake, stopparen, recursed, NULL, f, depth+1); - if (scan->flags) { - if (deltanext) { - FAIL("Variable length lookbehind not implemented"); - } - else if (minnext > (I32)U8_MAX) { - FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX); - } - scan->flags = (U8)minnext; - } - if (data) { - if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) - pars++; - if (data_fake.flags & SF_HAS_EVAL) - data->flags |= SF_HAS_EVAL; - data->whilem_c = data_fake.whilem_c; - } - if (f & SCF_DO_STCLASS_AND) { - if (flags & SCF_DO_STCLASS_OR) { - /* OR before, AND after: ideally we would recurse with - * data_fake to get the AND applied by study of the - * remainder of the pattern, and then derecurse; - * *** HACK *** for now just treat as "no information". - * See [perl #56690]. - */ - cl_init(pRExC_state, data->start_class); - } else { - /* AND before and after: combine and continue */ - const int was = (data->start_class->flags & ANYOF_EOS); - - cl_and(data->start_class, &intrnl); - if (was) - data->start_class->flags |= ANYOF_EOS; - } - } - } -#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY - else { - /* Positive Lookahead/lookbehind - In this case we can do fixed string optimisation, - but we must be careful about it. Note in the case of - lookbehind the positions will be offset by the minimum - length of the pattern, something we won't know about - until after the recurse. - */ - I32 deltanext, fake = 0; - regnode *nscan; - struct regnode_charclass_class intrnl; - int f = 0; - /* We use SAVEFREEPV so that when the full compile - is finished perl will clean up the allocated - minlens when it's all done. This way we don't - have to worry about freeing them when we know - they wont be used, which would be a pain. - */ - I32 *minnextp; - Newx( minnextp, 1, I32 ); - SAVEFREEPV(minnextp); - - if (data) { - StructCopy(data, &data_fake, scan_data_t); - if ((flags & SCF_DO_SUBSTR) && data->last_found) { - f |= SCF_DO_SUBSTR; - if (scan->flags) - SCAN_COMMIT(pRExC_state, &data_fake,minlenp); - data_fake.last_found=newSVsv(data->last_found); - } - } - else - data_fake.last_closep = &fake; - data_fake.flags = 0; - data_fake.pos_delta = delta; - if (is_inf) - data_fake.flags |= SF_IS_INF; - if ( flags & SCF_DO_STCLASS && !scan->flags - && OP(scan) == IFMATCH ) { /* Lookahead */ - cl_init(pRExC_state, &intrnl); - data_fake.start_class = &intrnl; - f |= SCF_DO_STCLASS_AND; - } - if (flags & SCF_WHILEM_VISITED_POS) - f |= SCF_WHILEM_VISITED_POS; - next = regnext(scan); - nscan = NEXTOPER(NEXTOPER(scan)); - - *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext, - last, &data_fake, stopparen, recursed, NULL, f,depth+1); - if (scan->flags) { - if (deltanext) { - FAIL("Variable length lookbehind not implemented"); - } - else if (*minnextp > (I32)U8_MAX) { - FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX); - } - scan->flags = (U8)*minnextp; - } - - *minnextp += min; - - if (f & SCF_DO_STCLASS_AND) { - const int was = (data->start_class->flags & ANYOF_EOS); - - cl_and(data->start_class, &intrnl); - if (was) - data->start_class->flags |= ANYOF_EOS; - } - if (data) { - if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) - pars++; - if (data_fake.flags & SF_HAS_EVAL) - data->flags |= SF_HAS_EVAL; - data->whilem_c = data_fake.whilem_c; - if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) { - if (RExC_rx->minlen<*minnextp) - RExC_rx->minlen=*minnextp; - SCAN_COMMIT(pRExC_state, &data_fake, minnextp); - SvREFCNT_dec(data_fake.last_found); - - if ( data_fake.minlen_fixed != minlenp ) - { - data->offset_fixed= data_fake.offset_fixed; - data->minlen_fixed= data_fake.minlen_fixed; - data->lookbehind_fixed+= scan->flags; - } - if ( data_fake.minlen_float != minlenp ) - { - data->minlen_float= data_fake.minlen_float; - data->offset_float_min=data_fake.offset_float_min; - data->offset_float_max=data_fake.offset_float_max; - data->lookbehind_float+= scan->flags; - } - } - } - } -#endif - } - else if (OP(scan) == OPEN) { - if (stopparen != (I32)ARG(scan)) - pars++; - } - else if (OP(scan) == CLOSE) { - if (stopparen == (I32)ARG(scan)) { - break; - } - if ((I32)ARG(scan) == is_par) { - next = regnext(scan); - - if ( next && (OP(next) != WHILEM) && next < last) - is_par = 0; /* Disable optimization */ - } - if (data) - *(data->last_closep) = ARG(scan); - } - else if (OP(scan) == EVAL) { - if (data) - data->flags |= SF_HAS_EVAL; - } - else if ( PL_regkind[OP(scan)] == ENDLIKE ) { - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); - flags &= ~SCF_DO_SUBSTR; - } - if (data && OP(scan)==ACCEPT) { - data->flags |= SCF_SEEN_ACCEPT; - if (stopmin > min) - stopmin = min; - } - } - else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */ - { - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); - data->longest = &(data->longest_float); - } - is_inf = is_inf_internal = 1; - if (flags & SCF_DO_STCLASS_OR) /* Allow everything */ - cl_anything(pRExC_state, data->start_class); - flags &= ~SCF_DO_STCLASS; - } - else if (OP(scan) == GPOS) { - if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) && - !(delta || is_inf || (data && data->pos_delta))) - { - if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR)) - RExC_rx->extflags |= RXf_ANCH_GPOS; - if (RExC_rx->gofs < (U32)min) - RExC_rx->gofs = min; - } else { - RExC_rx->extflags |= RXf_GPOS_FLOAT; - RExC_rx->gofs = 0; - } - } -#ifdef TRIE_STUDY_OPT -#ifdef FULL_TRIE_STUDY - else if (PL_regkind[OP(scan)] == TRIE) { - /* NOTE - There is similar code to this block above for handling - BRANCH nodes on the initial study. If you change stuff here - check there too. */ - regnode *trie_node= scan; - regnode *tail= regnext(scan); - reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ]; - I32 max1 = 0, min1 = I32_MAX; - struct regnode_charclass_class accum; - - if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */ - SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */ - if (flags & SCF_DO_STCLASS) - cl_init_zero(pRExC_state, &accum); - - if (!trie->jump) { - min1= trie->minlen; - max1= trie->maxlen; - } else { - const regnode *nextbranch= NULL; - U32 word; - - for ( word=1 ; word <= trie->wordcount ; word++) - { - I32 deltanext=0, minnext=0, f = 0, fake; - struct regnode_charclass_class this_class; - - data_fake.flags = 0; - if (data) { - data_fake.whilem_c = data->whilem_c; - data_fake.last_closep = data->last_closep; - } - else - data_fake.last_closep = &fake; - data_fake.pos_delta = delta; - if (flags & SCF_DO_STCLASS) { - cl_init(pRExC_state, &this_class); - data_fake.start_class = &this_class; - f = SCF_DO_STCLASS_AND; - } - if (flags & SCF_WHILEM_VISITED_POS) - f |= SCF_WHILEM_VISITED_POS; - - if (trie->jump[word]) { - if (!nextbranch) - nextbranch = trie_node + trie->jump[0]; - scan= trie_node + trie->jump[word]; - /* We go from the jump point to the branch that follows - it. Note this means we need the vestigal unused branches - even though they arent otherwise used. - */ - minnext = study_chunk(pRExC_state, &scan, minlenp, - &deltanext, (regnode *)nextbranch, &data_fake, - stopparen, recursed, NULL, f,depth+1); - } - if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH) - nextbranch= regnext((regnode*)nextbranch); - - if (min1 > (I32)(minnext + trie->minlen)) - min1 = minnext + trie->minlen; - if (max1 < (I32)(minnext + deltanext + trie->maxlen)) - max1 = minnext + deltanext + trie->maxlen; - if (deltanext == I32_MAX) - is_inf = is_inf_internal = 1; - - if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR)) - pars++; - if (data_fake.flags & SCF_SEEN_ACCEPT) { - if ( stopmin > min + min1) - stopmin = min + min1; - flags &= ~SCF_DO_SUBSTR; - if (data) - data->flags |= SCF_SEEN_ACCEPT; - } - if (data) { - if (data_fake.flags & SF_HAS_EVAL) - data->flags |= SF_HAS_EVAL; - data->whilem_c = data_fake.whilem_c; - } - if (flags & SCF_DO_STCLASS) - cl_or(pRExC_state, &accum, &this_class); - } - } - if (flags & SCF_DO_SUBSTR) { - data->pos_min += min1; - data->pos_delta += max1 - min1; - if (max1 != min1 || is_inf) - data->longest = &(data->longest_float); - } - min += min1; - delta += max1 - min1; - if (flags & SCF_DO_STCLASS_OR) { - cl_or(pRExC_state, data->start_class, &accum); - if (min1) { - cl_and(data->start_class, and_withp); - flags &= ~SCF_DO_STCLASS; - } - } - else if (flags & SCF_DO_STCLASS_AND) { - if (min1) { - cl_and(data->start_class, &accum); - flags &= ~SCF_DO_STCLASS; - } - else { - /* Switch to OR mode: cache the old value of - * data->start_class */ - INIT_AND_WITHP; - StructCopy(data->start_class, and_withp, - struct regnode_charclass_class); - flags &= ~SCF_DO_STCLASS_AND; - StructCopy(&accum, data->start_class, - struct regnode_charclass_class); - flags |= SCF_DO_STCLASS_OR; - data->start_class->flags |= ANYOF_EOS; - } - } - scan= tail; - continue; - } -#else - else if (PL_regkind[OP(scan)] == TRIE) { - reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ]; - U8*bang=NULL; - - min += trie->minlen; - delta += (trie->maxlen - trie->minlen); - flags &= ~SCF_DO_STCLASS; /* xxx */ - if (flags & SCF_DO_SUBSTR) { - SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */ - data->pos_min += trie->minlen; - data->pos_delta += (trie->maxlen - trie->minlen); - if (trie->maxlen != trie->minlen) - data->longest = &(data->longest_float); - } - if (trie->jump) /* no more substrings -- for now /grr*/ - flags &= ~SCF_DO_SUBSTR; - } -#endif /* old or new */ -#endif /* TRIE_STUDY_OPT */ - - /* Else: zero-length, ignore. */ - scan = regnext(scan); - } - if (frame) { - last = frame->last; - scan = frame->next; - stopparen = frame->stop; - frame = frame->prev; - goto fake_study_recurse; - } - - finish: - assert(!frame); - DEBUG_STUDYDATA("pre-fin:",data,depth); - - *scanp = scan; - *deltap = is_inf_internal ? I32_MAX : delta; - if (flags & SCF_DO_SUBSTR && is_inf) - data->pos_delta = I32_MAX - data->pos_min; - if (is_par > (I32)U8_MAX) - is_par = 0; - if (is_par && pars==1 && data) { - data->flags |= SF_IN_PAR; - data->flags &= ~SF_HAS_PAR; - } - else if (pars && data) { - data->flags |= SF_HAS_PAR; - data->flags &= ~SF_IN_PAR; - } - if (flags & SCF_DO_STCLASS_OR) - cl_and(data->start_class, and_withp); - if (flags & SCF_TRIE_RESTUDY) - data->flags |= SCF_TRIE_RESTUDY; - - DEBUG_STUDYDATA("post-fin:",data,depth); - - return min < stopmin ? min : stopmin; -} - -STATIC U32 -S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s) -{ - U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0; - - PERL_ARGS_ASSERT_ADD_DATA; - - Renewc(RExC_rxi->data, - sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1), - char, struct reg_data); - if(count) - Renew(RExC_rxi->data->what, count + n, U8); - else - Newx(RExC_rxi->data->what, n, U8); - RExC_rxi->data->count = count + n; - Copy(s, RExC_rxi->data->what + count, n, U8); - return count; -} - -/*XXX: todo make this not included in a non debugging perl */ -#ifndef PERL_IN_XSUB_RE -void -Perl_reginitcolors(pTHX) -{ - dVAR; - const char * const s = PerlEnv_getenv("PERL_RE_COLORS"); - if (s) { - char *t = savepv(s); - int i = 0; - PL_colors[0] = t; - while (++i < 6) { - t = strchr(t, '\t'); - if (t) { - *t = '\0'; - PL_colors[i] = ++t; - } - else - PL_colors[i] = t = (char *)""; - } - } else { - int i = 0; - while (i < 6) - PL_colors[i++] = (char *)""; - } - PL_colorset = 1; -} -#endif - - -#ifdef TRIE_STUDY_OPT -#define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \ - STMT_START { \ - if ( \ - (data.flags & SCF_TRIE_RESTUDY) \ - && ! restudied++ \ - ) { \ - dOsomething; \ - goto reStudy; \ - } \ - } STMT_END -#else -#define CHECK_RESTUDY_GOTO_butfirst -#endif - -/* - * pregcomp - compile a regular expression into internal code - * - * Decides which engine's compiler to call based on the hint currently in - * scope - */ - -#ifndef PERL_IN_XSUB_RE - -/* return the currently in-scope regex engine (or the default if none) */ - -regexp_engine const * -Perl_current_re_engine(pTHX) -{ - dVAR; - - if (IN_PERL_COMPILETIME) { - HV * const table = GvHV(PL_hintgv); - SV **ptr; - - if (!table) - return &reh_regexp_engine; - ptr = hv_fetchs(table, "regcomp", FALSE); - if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr))) - return &reh_regexp_engine; - return INT2PTR(regexp_engine*,SvIV(*ptr)); - } - else { - SV *ptr; - if (!PL_curcop->cop_hints_hash) - return &reh_regexp_engine; - ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0); - if ( !(ptr && SvIOK(ptr) && SvIV(ptr))) - return &reh_regexp_engine; - return INT2PTR(regexp_engine*,SvIV(ptr)); - } -} - - -REGEXP * -Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags) -{ - dVAR; - regexp_engine const *eng = current_re_engine(); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_PREGCOMP; - - /* Dispatch a request to compile a regexp to correct regexp engine. */ - DEBUG_COMPILE_r({ - PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n", - PTR2UV(eng)); - }); - return CALLREGCOMP_ENG(eng, pattern, flags); -} -#endif - -/* public(ish) entry point for the perl core's own regex compiling code. - * It's actually a wrapper for Perl_re_op_compile that only takes an SV - * pattern rather than a list of OPs, and uses the internal engine rather - * than the current one */ - -REGEXP * -Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags) -{ - SV *pat = pattern; /* defeat constness! */ - PERL_ARGS_ASSERT_RE_COMPILE; - return Perl_re_op_compile(aTHX_ &pat, 1, NULL, -#ifdef PERL_IN_XSUB_RE - &my_reg_engine, -#else - &reh_regexp_engine, -#endif - NULL, NULL, rx_flags, 0); -} - -/* see if there are any run-time code blocks in the pattern. - * False positives are allowed */ - -static bool -S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state, OP *expr, - U32 pm_flags, char *pat, STRLEN plen) -{ - int n = 0; - STRLEN s; - - /* avoid infinitely recursing when we recompile the pattern parcelled up - * as qr'...'. A single constant qr// string can't have have any - * run-time component in it, and thus, no runtime code. (A non-qr - * string, however, can, e.g. $x =~ '(?{})') */ - if ((pm_flags & PMf_IS_QR) && expr && expr->op_type == OP_CONST) - return 0; - - for (s = 0; s < plen; s++) { - if (n < pRExC_state->num_code_blocks - && s == pRExC_state->code_blocks[n].start) - { - s = pRExC_state->code_blocks[n].end; - n++; - continue; - } - /* TODO ideally should handle [..], (#..), /#.../x to reduce false - * positives here */ - if (pat[s] == '(' && pat[s+1] == '?' && - (pat[s+2] == '{' || (pat[s+2] == '?' && pat[s+3] == '{')) - ) - return 1; - } - return 0; -} - -/* Handle run-time code blocks. We will already have compiled any direct - * or indirect literal code blocks. Now, take the pattern 'pat' and make a - * copy of it, but with any literal code blocks blanked out and - * appropriate chars escaped; then feed it into - * - * eval "qr'modified_pattern'" - * - * For example, - * - * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno - * - * becomes - * - * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno' - * - * After eval_sv()-ing that, grab any new code blocks from the returned qr - * and merge them with any code blocks of the original regexp. - * - * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge; - * instead, just save the qr and return FALSE; this tells our caller that - * the original pattern needs upgrading to utf8. - */ - -static bool -S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state, - char *pat, STRLEN plen) -{ - SV *qr; - - GET_RE_DEBUG_FLAGS_DECL; - - if (pRExC_state->runtime_code_qr) { - /* this is the second time we've been called; this should - * only happen if the main pattern got upgraded to utf8 - * during compilation; re-use the qr we compiled first time - * round (which should be utf8 too) - */ - qr = pRExC_state->runtime_code_qr; - pRExC_state->runtime_code_qr = NULL; - assert(RExC_utf8 && SvUTF8(qr)); - } - else { - int n = 0; - STRLEN s; - char *p, *newpat; - int newlen = plen + 6; /* allow for "qr''x\0" extra chars */ - SV *sv, *qr_ref; - dSP; - - /* determine how many extra chars we need for ' and \ escaping */ - for (s = 0; s < plen; s++) { - if (pat[s] == '\'' || pat[s] == '\\') - newlen++; - } - - Newx(newpat, newlen, char); - p = newpat; - *p++ = 'q'; *p++ = 'r'; *p++ = '\''; - - for (s = 0; s < plen; s++) { - if (n < pRExC_state->num_code_blocks - && s == pRExC_state->code_blocks[n].start) - { - /* blank out literal code block */ - assert(pat[s] == '('); - while (s <= pRExC_state->code_blocks[n].end) { - *p++ = '_'; - s++; - } - s--; - n++; - continue; - } - if (pat[s] == '\'' || pat[s] == '\\') - *p++ = '\\'; - *p++ = pat[s]; - } - *p++ = '\''; - if (pRExC_state->pm_flags & RXf_PMf_EXTENDED) - *p++ = 'x'; - *p++ = '\0'; - DEBUG_COMPILE_r({ - PerlIO_printf(Perl_debug_log, - "%sre-parsing pattern for runtime code:%s %s\n", - PL_colors[4],PL_colors[5],newpat); - }); - - sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0); - Safefree(newpat); - - ENTER; - SAVETMPS; - save_re_context(); - PUSHSTACKi(PERLSI_REQUIRE); - /* this causes the toker to collapse \\ into \ when parsing - * qr''; normally only q'' does this. It also alters hints - * handling */ - PL_reg_state.re_reparsing = TRUE; - eval_sv(sv, G_SCALAR); - SvREFCNT_dec(sv); - SPAGAIN; - qr_ref = POPs; - PUTBACK; - { - SV * const errsv = ERRSV; - if (SvTRUE_NN(errsv)) - { - Safefree(pRExC_state->code_blocks); - /* use croak_sv ? */ - Perl_croak_nocontext("%s", SvPV_nolen_const(errsv)); - } - } - assert(SvROK(qr_ref)); - qr = SvRV(qr_ref); - assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp); - /* the leaving below frees the tmp qr_ref. - * Give qr a life of its own */ - SvREFCNT_inc(qr); - POPSTACK; - FREETMPS; - LEAVE; - - } - - if (!RExC_utf8 && SvUTF8(qr)) { - /* first time through; the pattern got upgraded; save the - * qr for the next time through */ - assert(!pRExC_state->runtime_code_qr); - pRExC_state->runtime_code_qr = qr; - return 0; - } - - - /* extract any code blocks within the returned qr// */ - - - /* merge the main (r1) and run-time (r2) code blocks into one */ - { - RXi_GET_DECL(ReANY((REGEXP *)qr), r2); - struct reg_code_block *new_block, *dst; - RExC_state_t * const r1 = pRExC_state; /* convenient alias */ - int i1 = 0, i2 = 0; - - if (!r2->num_code_blocks) /* we guessed wrong */ - { - SvREFCNT_dec(qr); - return 1; - } - - Newx(new_block, - r1->num_code_blocks + r2->num_code_blocks, - struct reg_code_block); - dst = new_block; - - while ( i1 < r1->num_code_blocks - || i2 < r2->num_code_blocks) - { - struct reg_code_block *src; - bool is_qr = 0; - - if (i1 == r1->num_code_blocks) { - src = &r2->code_blocks[i2++]; - is_qr = 1; - } - else if (i2 == r2->num_code_blocks) - src = &r1->code_blocks[i1++]; - else if ( r1->code_blocks[i1].start - < r2->code_blocks[i2].start) - { - src = &r1->code_blocks[i1++]; - assert(src->end < r2->code_blocks[i2].start); - } - else { - assert( r1->code_blocks[i1].start - > r2->code_blocks[i2].start); - src = &r2->code_blocks[i2++]; - is_qr = 1; - assert(src->end < r1->code_blocks[i1].start); - } - - assert(pat[src->start] == '('); - assert(pat[src->end] == ')'); - dst->start = src->start; - dst->end = src->end; - dst->block = src->block; - dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr) - : src->src_regex; - dst++; - } - r1->num_code_blocks += r2->num_code_blocks; - Safefree(r1->code_blocks); - r1->code_blocks = new_block; - } - - SvREFCNT_dec(qr); - return 1; -} - - -STATIC bool -S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest, SV** rx_utf8, SV** rx_substr, I32* rx_end_shift, I32 lookbehind, I32 offset, I32 *minlen, STRLEN longest_length, bool eol, bool meol) -{ - /* This is the common code for setting up the floating and fixed length - * string data extracted from Perlre_op_compile() below. Returns a boolean - * as to whether succeeded or not */ - - I32 t,ml; - - if (! (longest_length - || (eol /* Can't have SEOL and MULTI */ - && (! meol || (RExC_flags & RXf_PMf_MULTILINE))) - ) - /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */ - || (RExC_seen & REG_SEEN_EXACTF_SHARP_S)) - { - return FALSE; - } - - /* copy the information about the longest from the reg_scan_data - over to the program. */ - if (SvUTF8(sv_longest)) { - *rx_utf8 = sv_longest; - *rx_substr = NULL; - } else { - *rx_substr = sv_longest; - *rx_utf8 = NULL; - } - /* end_shift is how many chars that must be matched that - follow this item. We calculate it ahead of time as once the - lookbehind offset is added in we lose the ability to correctly - calculate it.*/ - ml = minlen ? *(minlen) : (I32)longest_length; - *rx_end_shift = ml - offset - - longest_length + (SvTAIL(sv_longest) != 0) - + lookbehind; - - t = (eol/* Can't have SEOL and MULTI */ - && (! meol || (RExC_flags & RXf_PMf_MULTILINE))); - fbm_compile(sv_longest, t ? FBMcf_TAIL : 0); - - return TRUE; -} - -/* - * Perl_re_op_compile - the perl internal RE engine's function to compile a - * regular expression into internal code. - * The pattern may be passed either as: - * a list of SVs (patternp plus pat_count) - * a list of OPs (expr) - * If both are passed, the SV list is used, but the OP list indicates - * which SVs are actually pre-compiled code blocks - * - * The SVs in the list have magic and qr overloading applied to them (and - * the list may be modified in-place with replacement SVs in the latter - * case). - * - * If the pattern hasn't changed from old_re, then old_re will be - * returned. - * - * eng is the current engine. If that engine has an op_comp method, then - * handle directly (i.e. we assume that op_comp was us); otherwise, just - * do the initial concatenation of arguments and pass on to the external - * engine. - * - * If is_bare_re is not null, set it to a boolean indicating whether the - * arg list reduced (after overloading) to a single bare regex which has - * been returned (i.e. /$qr/). - * - * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details. - * - * pm_flags contains the PMf_* flags, typically based on those from the - * pm_flags field of the related PMOP. Currently we're only interested in - * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL. - * - * We can't allocate space until we know how big the compiled form will be, - * but we can't compile it (and thus know how big it is) until we've got a - * place to put the code. So we cheat: we compile it twice, once with code - * generation turned off and size counting turned on, and once "for real". - * This also means that we don't allocate space until we are sure that the - * thing really will compile successfully, and we never have to move the - * code and thus invalidate pointers into it. (Note that it has to be in - * one piece because free() must be able to free it all.) [NB: not true in perl] - * - * Beware that the optimization-preparation code in here knows about some - * of the structure of the compiled regexp. [I'll say.] - */ - -REGEXP * -Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count, - OP *expr, const regexp_engine* eng, REGEXP *VOL old_re, - bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags) -{ - dVAR; - REGEXP *rx; - struct regexp *r; - regexp_internal *ri; - STRLEN plen; - char * VOL exp; - char* xend; - regnode *scan; - I32 flags; - I32 minlen = 0; - U32 rx_flags; - SV * VOL pat; - SV * VOL code_blocksv = NULL; - - /* these are all flags - maybe they should be turned - * into a single int with different bit masks */ - I32 sawlookahead = 0; - I32 sawplus = 0; - I32 sawopen = 0; - bool used_setjump = FALSE; - regex_charset initial_charset = get_regex_charset(orig_rx_flags); - bool code_is_utf8 = 0; - bool VOL recompile = 0; - bool runtime_code = 0; - U8 jump_ret = 0; - dJMPENV; - scan_data_t data; - RExC_state_t RExC_state; - RExC_state_t * const pRExC_state = &RExC_state; -#ifdef TRIE_STUDY_OPT - int restudied; - RExC_state_t copyRExC_state; -#endif - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_RE_OP_COMPILE; - - DEBUG_r(if (!PL_colorset) reginitcolors()); - -#ifndef PERL_IN_XSUB_RE - /* Initialize these here instead of as-needed, as is quick and avoids - * having to test them each time otherwise */ - if (! PL_AboveLatin1) { - PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist); - PL_ASCII = _new_invlist_C_array(ASCII_invlist); - PL_Latin1 = _new_invlist_C_array(Latin1_invlist); - - PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist); - PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist); - - PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist); - PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist); - - PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist); - PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist); - - PL_L1Cased = _new_invlist_C_array(L1Cased_invlist); - - PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist); - PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist); - - PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist); - - PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist); - PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist); - - PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist); - PL_PosixLower = _new_invlist_C_array(PosixLower_invlist); - - PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist); - PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist); - - PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist); - PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist); - - PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist); - PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist); - - PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist); - PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist); - - PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist); - PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist); - - PL_VertSpace = _new_invlist_C_array(VertSpace_invlist); - - PL_PosixWord = _new_invlist_C_array(PosixWord_invlist); - PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist); - - PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist); - PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist); - - PL_HasMultiCharFold = _new_invlist_C_array(_Perl_Multi_Char_Folds_invlist); - } -#endif - - pRExC_state->code_blocks = NULL; - pRExC_state->num_code_blocks = 0; - - if (is_bare_re) - *is_bare_re = FALSE; - - if (expr && (expr->op_type == OP_LIST || - (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) { - - /* is the source UTF8, and how many code blocks are there? */ - OP *o; - int ncode = 0; - - for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) { - if (o->op_type == OP_CONST && SvUTF8(cSVOPo_sv)) - code_is_utf8 = 1; - else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) - /* count of DO blocks */ - ncode++; - } - if (ncode) { - pRExC_state->num_code_blocks = ncode; - Newx(pRExC_state->code_blocks, ncode, struct reg_code_block); - } - } - - if (pat_count) { - /* handle a list of SVs */ - - SV **svp; - - /* apply magic and RE overloading to each arg */ - for (svp = patternp; svp < patternp + pat_count; svp++) { - SV *rx = *svp; - SvGETMAGIC(rx); - if (SvROK(rx) && SvAMAGIC(rx)) { - SV *sv = AMG_CALLunary(rx, regexp_amg); - if (sv) { - if (SvROK(sv)) - sv = SvRV(sv); - if (SvTYPE(sv) != SVt_REGEXP) - Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP"); - *svp = sv; - } - } - } - - if (pat_count > 1) { - /* concat multiple args and find any code block indexes */ - - OP *o = NULL; - int n = 0; - bool utf8 = 0; - STRLEN orig_patlen = 0; - - if (pRExC_state->num_code_blocks) { - o = cLISTOPx(expr)->op_first; - assert( o->op_type == OP_PUSHMARK - || (o->op_type == OP_NULL && o->op_targ == OP_PUSHMARK) - || o->op_type == OP_PADRANGE); - o = o->op_sibling; - } - - pat = newSVpvn("", 0); - SAVEFREESV(pat); - - /* determine if the pattern is going to be utf8 (needed - * in advance to align code block indices correctly). - * XXX This could fail to be detected for an arg with - * overloading but not concat overloading; but the main effect - * in this obscure case is to need a 'use re eval' for a - * literal code block */ - for (svp = patternp; svp < patternp + pat_count; svp++) { - if (SvUTF8(*svp)) - utf8 = 1; - } - if (utf8) - SvUTF8_on(pat); - - for (svp = patternp; svp < patternp + pat_count; svp++) { - SV *sv, *msv = *svp; - SV *rx; - bool code = 0; - /* we make the assumption here that each op in the list of - * op_siblings maps to one SV pushed onto the stack, - * except for code blocks, with have both an OP_NULL and - * and OP_CONST. - * This allows us to match up the list of SVs against the - * list of OPs to find the next code block. - * - * Note that PUSHMARK PADSV PADSV .. - * is optimised to - * PADRANGE NULL NULL .. - * so the alignment still works. */ - if (o) { - if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) { - assert(n < pRExC_state->num_code_blocks); - pRExC_state->code_blocks[n].start = SvCUR(pat); - pRExC_state->code_blocks[n].block = o; - pRExC_state->code_blocks[n].src_regex = NULL; - n++; - code = 1; - o = o->op_sibling; /* skip CONST */ - assert(o); - } - o = o->op_sibling;; - } - - if ((SvAMAGIC(pat) || SvAMAGIC(msv)) && - (sv = amagic_call(pat, msv, concat_amg, AMGf_assign))) - { - sv_setsv(pat, sv); - /* overloading involved: all bets are off over literal - * code. Pretend we haven't seen it */ - pRExC_state->num_code_blocks -= n; - n = 0; - rx = NULL; - - } - else { - while (SvAMAGIC(msv) - && (sv = AMG_CALLunary(msv, string_amg)) - && sv != msv - && !( SvROK(msv) - && SvROK(sv) - && SvRV(msv) == SvRV(sv)) - ) { - msv = sv; - SvGETMAGIC(msv); - } - if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP) - msv = SvRV(msv); - orig_patlen = SvCUR(pat); - sv_catsv_nomg(pat, msv); - rx = msv; - if (code) - pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1; - } - - /* extract any code blocks within any embedded qr//'s */ - if (rx && SvTYPE(rx) == SVt_REGEXP - && RX_ENGINE((REGEXP*)rx)->op_comp) - { - - RXi_GET_DECL(ReANY((REGEXP *)rx), ri); - if (ri->num_code_blocks) { - int i; - /* the presence of an embedded qr// with code means - * we should always recompile: the text of the - * qr// may not have changed, but it may be a - * different closure than last time */ - recompile = 1; - Renew(pRExC_state->code_blocks, - pRExC_state->num_code_blocks + ri->num_code_blocks, - struct reg_code_block); - pRExC_state->num_code_blocks += ri->num_code_blocks; - for (i=0; i < ri->num_code_blocks; i++) { - struct reg_code_block *src, *dst; - STRLEN offset = orig_patlen - + ReANY((REGEXP *)rx)->pre_prefix; - assert(n < pRExC_state->num_code_blocks); - src = &ri->code_blocks[i]; - dst = &pRExC_state->code_blocks[n]; - dst->start = src->start + offset; - dst->end = src->end + offset; - dst->block = src->block; - dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*) - src->src_regex - ? src->src_regex - : (REGEXP*)rx); - n++; - } - } - } - } - SvSETMAGIC(pat); - } - else { - SV *sv; - pat = *patternp; - while (SvAMAGIC(pat) - && (sv = AMG_CALLunary(pat, string_amg)) - && sv != pat) - { - pat = sv; - SvGETMAGIC(pat); - } - } - - /* handle bare regex: foo =~ $re */ - { - SV *re = pat; - if (SvROK(re)) - re = SvRV(re); - if (SvTYPE(re) == SVt_REGEXP) { - if (is_bare_re) - *is_bare_re = TRUE; - SvREFCNT_inc(re); - Safefree(pRExC_state->code_blocks); - return (REGEXP*)re; - } - } - } - else { - /* not a list of SVs, so must be a list of OPs */ - assert(expr); - if (expr->op_type == OP_LIST) { - int i = -1; - bool is_code = 0; - OP *o; - - pat = newSVpvn("", 0); - SAVEFREESV(pat); - if (code_is_utf8) - SvUTF8_on(pat); - - /* given a list of CONSTs and DO blocks in expr, append all - * the CONSTs to pat, and record the start and end of each - * code block in code_blocks[] (each DO{} op is followed by an - * OP_CONST containing the corresponding literal '(?{...}) - * text) - */ - for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) { - if (o->op_type == OP_CONST) { - sv_catsv(pat, cSVOPo_sv); - if (is_code) { - pRExC_state->code_blocks[i].end = SvCUR(pat)-1; - is_code = 0; - } - } - else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) { - assert(i+1 < pRExC_state->num_code_blocks); - pRExC_state->code_blocks[++i].start = SvCUR(pat); - pRExC_state->code_blocks[i].block = o; - pRExC_state->code_blocks[i].src_regex = NULL; - is_code = 1; - } - } - } - else { - assert(expr->op_type == OP_CONST); - pat = cSVOPx_sv(expr); - } - } - - exp = SvPV_nomg(pat, plen); - - if (!eng->op_comp) { - if ((SvUTF8(pat) && IN_BYTES) - || SvGMAGICAL(pat) || SvAMAGIC(pat)) - { - /* make a temporary copy; either to convert to bytes, - * or to avoid repeating get-magic / overloaded stringify */ - pat = newSVpvn_flags(exp, plen, SVs_TEMP | - (IN_BYTES ? 0 : SvUTF8(pat))); - } - Safefree(pRExC_state->code_blocks); - return CALLREGCOMP_ENG(eng, pat, orig_rx_flags); - } - - /* ignore the utf8ness if the pattern is 0 length */ - RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat); - RExC_uni_semantics = 0; - RExC_contains_locale = 0; - pRExC_state->runtime_code_qr = NULL; - - /****************** LONG JUMP TARGET HERE***********************/ - /* Longjmp back to here if have to switch in midstream to utf8 */ - if (! RExC_orig_utf8) { - JMPENV_PUSH(jump_ret); - used_setjump = TRUE; - } - - if (jump_ret == 0) { /* First time through */ - xend = exp + plen; - - DEBUG_COMPILE_r({ - SV *dsv= sv_newmortal(); - RE_PV_QUOTED_DECL(s, RExC_utf8, - dsv, exp, plen, 60); - PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n", - PL_colors[4],PL_colors[5],s); - }); - } - else { /* longjumped back */ - U8 *src, *dst; - int n=0; - STRLEN s = 0, d = 0; - bool do_end = 0; - - /* If the cause for the longjmp was other than changing to utf8, pop - * our own setjmp, and longjmp to the correct handler */ - if (jump_ret != UTF8_LONGJMP) { - JMPENV_POP; - JMPENV_JUMP(jump_ret); - } - - GET_RE_DEBUG_FLAGS; - - /* It's possible to write a regexp in ascii that represents Unicode - codepoints outside of the byte range, such as via \x{100}. If we - detect such a sequence we have to convert the entire pattern to utf8 - and then recompile, as our sizing calculation will have been based - on 1 byte == 1 character, but we will need to use utf8 to encode - at least some part of the pattern, and therefore must convert the whole - thing. - -- dmq */ - DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, - "UTF8 mismatch! Converting to utf8 for resizing and compile\n")); - - /* upgrade pattern to UTF8, and if there are code blocks, - * recalculate the indices. - * This is essentially an unrolled Perl_bytes_to_utf8() */ - - src = (U8*)SvPV_nomg(pat, plen); - Newx(dst, plen * 2 + 1, U8); - - while (s < plen) { - const UV uv = NATIVE_TO_ASCII(src[s]); - if (UNI_IS_INVARIANT(uv)) - dst[d] = (U8)UTF_TO_NATIVE(uv); - else { - dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv); - dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv); - } - if (n < pRExC_state->num_code_blocks) { - if (!do_end && pRExC_state->code_blocks[n].start == s) { - pRExC_state->code_blocks[n].start = d; - assert(dst[d] == '('); - do_end = 1; - } - else if (do_end && pRExC_state->code_blocks[n].end == s) { - pRExC_state->code_blocks[n].end = d; - assert(dst[d] == ')'); - do_end = 0; - n++; - } - } - s++; - d++; - } - dst[d] = '\0'; - plen = d; - exp = (char*) dst; - xend = exp + plen; - SAVEFREEPV(exp); - RExC_orig_utf8 = RExC_utf8 = 1; - } - - /* return old regex if pattern hasn't changed */ - - if ( old_re - && !recompile - && !!RX_UTF8(old_re) == !!RExC_utf8 - && RX_PRECOMP(old_re) - && RX_PRELEN(old_re) == plen - && memEQ(RX_PRECOMP(old_re), exp, plen)) - { - /* with runtime code, always recompile */ - runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags, - exp, plen); - if (!runtime_code) { - if (used_setjump) { - JMPENV_POP; - } - Safefree(pRExC_state->code_blocks); - return old_re; - } - } - else if ((pm_flags & PMf_USE_RE_EVAL) - /* this second condition covers the non-regex literal case, - * i.e. $foo =~ '(?{})'. */ - || ( !PL_reg_state.re_reparsing && IN_PERL_COMPILETIME - && (PL_hints & HINT_RE_EVAL)) - ) - runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags, - exp, plen); - -#ifdef TRIE_STUDY_OPT - restudied = 0; -#endif - - rx_flags = orig_rx_flags; - - if (initial_charset == REGEX_LOCALE_CHARSET) { - RExC_contains_locale = 1; - } - else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) { - - /* Set to use unicode semantics if the pattern is in utf8 and has the - * 'depends' charset specified, as it means unicode when utf8 */ - set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET); - } - - RExC_precomp = exp; - RExC_flags = rx_flags; - RExC_pm_flags = pm_flags; - - if (runtime_code) { - if (TAINTING_get && TAINT_get) - Perl_croak(aTHX_ "Eval-group in insecure regular expression"); - - if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) { - /* whoops, we have a non-utf8 pattern, whilst run-time code - * got compiled as utf8. Try again with a utf8 pattern */ - JMPENV_JUMP(UTF8_LONGJMP); - } - } - assert(!pRExC_state->runtime_code_qr); - - RExC_sawback = 0; - - RExC_seen = 0; - RExC_in_lookbehind = 0; - RExC_seen_zerolen = *exp == '^' ? -1 : 0; - RExC_extralen = 0; - RExC_override_recoding = 0; - RExC_in_multi_char_class = 0; - - /* First pass: determine size, legality. */ - RExC_parse = exp; - RExC_start = exp; - RExC_end = xend; - RExC_naughty = 0; - RExC_npar = 1; - RExC_nestroot = 0; - RExC_size = 0L; - RExC_emit = &PL_regdummy; - RExC_whilem_seen = 0; - RExC_open_parens = NULL; - RExC_close_parens = NULL; - RExC_opend = NULL; - RExC_paren_names = NULL; -#ifdef DEBUGGING - RExC_paren_name_list = NULL; -#endif - RExC_recurse = NULL; - RExC_recurse_count = 0; - pRExC_state->code_index = 0; - -#if 0 /* REGC() is (currently) a NOP at the first pass. - * Clever compilers notice this and complain. --jhi */ - REGC((U8)REG_MAGIC, (char*)RExC_emit); -#endif - DEBUG_PARSE_r( - PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"); - RExC_lastnum=0; - RExC_lastparse=NULL; - ); - /* reg may croak on us, not giving us a chance to free - pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may - need it to survive as long as the regexp (qr/(?{})/). - We must check that code_blocksv is not already set, because we may - have longjmped back. */ - if (pRExC_state->code_blocks && !code_blocksv) { - code_blocksv = newSV_type(SVt_PV); - SAVEFREESV(code_blocksv); - SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks); - SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/ - } - if (reg(pRExC_state, 0, &flags,1) == NULL) { - RExC_precomp = NULL; - return(NULL); - } - if (code_blocksv) - SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */ - - /* Here, finished first pass. Get rid of any added setjmp */ - if (used_setjump) { - JMPENV_POP; - } - - DEBUG_PARSE_r({ - PerlIO_printf(Perl_debug_log, - "Required size %"IVdf" nodes\n" - "Starting second pass (creation)\n", - (IV)RExC_size); - RExC_lastnum=0; - RExC_lastparse=NULL; - }); - - /* The first pass could have found things that force Unicode semantics */ - if ((RExC_utf8 || RExC_uni_semantics) - && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET) - { - set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET); - } - - /* Small enough for pointer-storage convention? - If extralen==0, this means that we will not need long jumps. */ - if (RExC_size >= 0x10000L && RExC_extralen) - RExC_size += RExC_extralen; - else - RExC_extralen = 0; - if (RExC_whilem_seen > 15) - RExC_whilem_seen = 15; - - /* Allocate space and zero-initialize. Note, the two step process - of zeroing when in debug mode, thus anything assigned has to - happen after that */ - rx = (REGEXP*) newSV_type(SVt_REGEXP); - r = ReANY(rx); - Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), - char, regexp_internal); - if ( r == NULL || ri == NULL ) - FAIL("Regexp out of space"); -#ifdef DEBUGGING - /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */ - Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char); -#else - /* bulk initialize base fields with 0. */ - Zero(ri, sizeof(regexp_internal), char); -#endif - - /* non-zero initialization begins here */ - RXi_SET( r, ri ); - r->engine= eng; - r->extflags = rx_flags; - if (pm_flags & PMf_IS_QR) { - ri->code_blocks = pRExC_state->code_blocks; - ri->num_code_blocks = pRExC_state->num_code_blocks; - } - else - { - int n; - for (n = 0; n < pRExC_state->num_code_blocks; n++) - if (pRExC_state->code_blocks[n].src_regex) - SAVEFREESV(pRExC_state->code_blocks[n].src_regex); - SAVEFREEPV(pRExC_state->code_blocks); - } - - { - bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY); - bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET); - - /* The caret is output if there are any defaults: if not all the STD - * flags are set, or if no character set specifier is needed */ - bool has_default = - (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD) - || ! has_charset); - bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT); - U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD) - >> RXf_PMf_STD_PMMOD_SHIFT); - const char *fptr = STD_PAT_MODS; /*"msix"*/ - char *p; - /* Allocate for the worst case, which is all the std flags are turned - * on. If more precision is desired, we could do a population count of - * the flags set. This could be done with a small lookup table, or by - * shifting, masking and adding, or even, when available, assembly - * language for a machine-language population count. - * We never output a minus, as all those are defaults, so are - * covered by the caret */ - const STRLEN wraplen = plen + has_p + has_runon - + has_default /* If needs a caret */ - - /* If needs a character set specifier */ - + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0) - + (sizeof(STD_PAT_MODS) - 1) - + (sizeof("(?:)") - 1); - - Newx(p, wraplen + 1, char); /* +1 for the ending NUL */ - r->xpv_len_u.xpvlenu_pv = p; - if (RExC_utf8) - SvFLAGS(rx) |= SVf_UTF8; - *p++='('; *p++='?'; - - /* If a default, cover it using the caret */ - if (has_default) { - *p++= DEFAULT_PAT_MOD; - } - if (has_charset) { - STRLEN len; - const char* const name = get_regex_charset_name(r->extflags, &len); - Copy(name, p, len, char); - p += len; - } - if (has_p) - *p++ = KEEPCOPY_PAT_MOD; /*'p'*/ - { - char ch; - while((ch = *fptr++)) { - if(reganch & 1) - *p++ = ch; - reganch >>= 1; - } - } - - *p++ = ':'; - Copy(RExC_precomp, p, plen, char); - assert ((RX_WRAPPED(rx) - p) < 16); - r->pre_prefix = p - RX_WRAPPED(rx); - p += plen; - if (has_runon) - *p++ = '\n'; - *p++ = ')'; - *p = 0; - SvCUR_set(rx, p - RX_WRAPPED(rx)); - } - - r->intflags = 0; - r->nparens = RExC_npar - 1; /* set early to validate backrefs */ - - if (RExC_seen & REG_SEEN_RECURSE) { - Newxz(RExC_open_parens, RExC_npar,regnode *); - SAVEFREEPV(RExC_open_parens); - Newxz(RExC_close_parens,RExC_npar,regnode *); - SAVEFREEPV(RExC_close_parens); - } - - /* Useful during FAIL. */ -#ifdef RE_TRACK_PATTERN_OFFSETS - Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */ - DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log, - "%s %"UVuf" bytes for offset annotations.\n", - ri->u.offsets ? "Got" : "Couldn't get", - (UV)((2*RExC_size+1) * sizeof(U32)))); -#endif - SetProgLen(ri,RExC_size); - RExC_rx_sv = rx; - RExC_rx = r; - RExC_rxi = ri; - REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx); - - /* Second pass: emit code. */ - RExC_flags = rx_flags; /* don't let top level (?i) bleed */ - RExC_pm_flags = pm_flags; - RExC_parse = exp; - RExC_end = xend; - RExC_naughty = 0; - RExC_npar = 1; - RExC_emit_start = ri->program; - RExC_emit = ri->program; - RExC_emit_bound = ri->program + RExC_size + 1; - pRExC_state->code_index = 0; - - REGC((U8)REG_MAGIC, (char*) RExC_emit++); - if (reg(pRExC_state, 0, &flags,1) == NULL) { - ReREFCNT_dec(rx); - return(NULL); - } - /* XXXX To minimize changes to RE engine we always allocate - 3-units-long substrs field. */ - Newx(r->substrs, 1, struct reg_substr_data); - if (RExC_recurse_count) { - Newxz(RExC_recurse,RExC_recurse_count,regnode *); - SAVEFREEPV(RExC_recurse); - } - -reStudy: - r->minlen = minlen = sawlookahead = sawplus = sawopen = 0; - Zero(r->substrs, 1, struct reg_substr_data); - -#ifdef TRIE_STUDY_OPT - if (!restudied) { - StructCopy(&zero_scan_data, &data, scan_data_t); - copyRExC_state = RExC_state; - } else { - U32 seen=RExC_seen; - DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n")); - - RExC_state = copyRExC_state; - if (seen & REG_TOP_LEVEL_BRANCHES) - RExC_seen |= REG_TOP_LEVEL_BRANCHES; - else - RExC_seen &= ~REG_TOP_LEVEL_BRANCHES; - StructCopy(&zero_scan_data, &data, scan_data_t); - } -#else - StructCopy(&zero_scan_data, &data, scan_data_t); -#endif - - /* Dig out information for optimizations. */ - r->extflags = RExC_flags; /* was pm_op */ - /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */ - - if (UTF) - SvUTF8_on(rx); /* Unicode in it? */ - ri->regstclass = NULL; - if (RExC_naughty >= 10) /* Probably an expensive pattern. */ - r->intflags |= PREGf_NAUGHTY; - scan = ri->program + 1; /* First BRANCH. */ - - /* testing for BRANCH here tells us whether there is "must appear" - data in the pattern. If there is then we can use it for optimisations */ - if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */ - I32 fake; - STRLEN longest_float_length, longest_fixed_length; - struct regnode_charclass_class ch_class; /* pointed to by data */ - int stclass_flag; - I32 last_close = 0; /* pointed to by data */ - regnode *first= scan; - regnode *first_next= regnext(first); - /* - * Skip introductions and multiplicators >= 1 - * so that we can extract the 'meat' of the pattern that must - * match in the large if() sequence following. - * NOTE that EXACT is NOT covered here, as it is normally - * picked up by the optimiser separately. - * - * This is unfortunate as the optimiser isnt handling lookahead - * properly currently. - * - */ - while ((OP(first) == OPEN && (sawopen = 1)) || - /* An OR of *one* alternative - should not happen now. */ - (OP(first) == BRANCH && OP(first_next) != BRANCH) || - /* for now we can't handle lookbehind IFMATCH*/ - (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) || - (OP(first) == PLUS) || - (OP(first) == MINMOD) || - /* An {n,m} with n>0 */ - (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) || - (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END )) - { - /* - * the only op that could be a regnode is PLUS, all the rest - * will be regnode_1 or regnode_2. - * - */ - if (OP(first) == PLUS) - sawplus = 1; - else - first += regarglen[OP(first)]; - - first = NEXTOPER(first); - first_next= regnext(first); - } - - /* Starting-point info. */ - again: - DEBUG_PEEP("first:",first,0); - /* Ignore EXACT as we deal with it later. */ - if (PL_regkind[OP(first)] == EXACT) { - if (OP(first) == EXACT) - NOOP; /* Empty, get anchored substr later. */ - else - ri->regstclass = first; - } -#ifdef TRIE_STCLASS - else if (PL_regkind[OP(first)] == TRIE && - ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0) - { - regnode *trie_op; - /* this can happen only on restudy */ - if ( OP(first) == TRIE ) { - struct regnode_1 *trieop = (struct regnode_1 *) - PerlMemShared_calloc(1, sizeof(struct regnode_1)); - StructCopy(first,trieop,struct regnode_1); - trie_op=(regnode *)trieop; - } else { - struct regnode_charclass *trieop = (struct regnode_charclass *) - PerlMemShared_calloc(1, sizeof(struct regnode_charclass)); - StructCopy(first,trieop,struct regnode_charclass); - trie_op=(regnode *)trieop; - } - OP(trie_op)+=2; - make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0); - ri->regstclass = trie_op; - } -#endif - else if (REGNODE_SIMPLE(OP(first))) - ri->regstclass = first; - else if (PL_regkind[OP(first)] == BOUND || - PL_regkind[OP(first)] == NBOUND) - ri->regstclass = first; - else if (PL_regkind[OP(first)] == BOL) { - r->extflags |= (OP(first) == MBOL - ? RXf_ANCH_MBOL - : (OP(first) == SBOL - ? RXf_ANCH_SBOL - : RXf_ANCH_BOL)); - first = NEXTOPER(first); - goto again; - } - else if (OP(first) == GPOS) { - r->extflags |= RXf_ANCH_GPOS; - first = NEXTOPER(first); - goto again; - } - else if ((!sawopen || !RExC_sawback) && - (OP(first) == STAR && - PL_regkind[OP(NEXTOPER(first))] == REG_ANY) && - !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks) - { - /* turn .* into ^.* with an implied $*=1 */ - const int type = - (OP(NEXTOPER(first)) == REG_ANY) - ? RXf_ANCH_MBOL - : RXf_ANCH_SBOL; - r->extflags |= type; - r->intflags |= PREGf_IMPLICIT; - first = NEXTOPER(first); - goto again; - } - if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback) - && !pRExC_state->num_code_blocks) /* May examine pos and $& */ - /* x+ must match at the 1st pos of run of x's */ - r->intflags |= PREGf_SKIP; - - /* Scan is after the zeroth branch, first is atomic matcher. */ -#ifdef TRIE_STUDY_OPT - DEBUG_PARSE_r( - if (!restudied) - PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n", - (IV)(first - scan + 1)) - ); -#else - DEBUG_PARSE_r( - PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n", - (IV)(first - scan + 1)) - ); -#endif - - - /* - * If there's something expensive in the r.e., find the - * longest literal string that must appear and make it the - * regmust. Resolve ties in favor of later strings, since - * the regstart check works with the beginning of the r.e. - * and avoiding duplication strengthens checking. Not a - * strong reason, but sufficient in the absence of others. - * [Now we resolve ties in favor of the earlier string if - * it happens that c_offset_min has been invalidated, since the - * earlier string may buy us something the later one won't.] - */ - - data.longest_fixed = newSVpvs(""); - data.longest_float = newSVpvs(""); - data.last_found = newSVpvs(""); - data.longest = &(data.longest_fixed); - ENTER_with_name("study_chunk"); - SAVEFREESV(data.longest_fixed); - SAVEFREESV(data.longest_float); - SAVEFREESV(data.last_found); - first = scan; - if (!ri->regstclass) { - cl_init(pRExC_state, &ch_class); - data.start_class = &ch_class; - stclass_flag = SCF_DO_STCLASS_AND; - } else /* XXXX Check for BOUND? */ - stclass_flag = 0; - data.last_closep = &last_close; - - minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */ - &data, -1, NULL, NULL, - SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0); - - - CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk")); - - - if ( RExC_npar == 1 && data.longest == &(data.longest_fixed) - && data.last_start_min == 0 && data.last_end > 0 - && !RExC_seen_zerolen - && !(RExC_seen & REG_SEEN_VERBARG) - && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS))) - r->extflags |= RXf_CHECK_ALL; - scan_commit(pRExC_state, &data,&minlen,0); - - longest_float_length = CHR_SVLEN(data.longest_float); - - if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */ - && data.offset_fixed == data.offset_float_min - && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))) - && S_setup_longest (aTHX_ pRExC_state, - data.longest_float, - &(r->float_utf8), - &(r->float_substr), - &(r->float_end_shift), - data.lookbehind_float, - data.offset_float_min, - data.minlen_float, - longest_float_length, - data.flags & SF_FL_BEFORE_EOL, - data.flags & SF_FL_BEFORE_MEOL)) - { - r->float_min_offset = data.offset_float_min - data.lookbehind_float; - r->float_max_offset = data.offset_float_max; - if (data.offset_float_max < I32_MAX) /* Don't offset infinity */ - r->float_max_offset -= data.lookbehind_float; - SvREFCNT_inc_simple_void_NN(data.longest_float); - } - else { - r->float_substr = r->float_utf8 = NULL; - longest_float_length = 0; - } - - longest_fixed_length = CHR_SVLEN(data.longest_fixed); - - if (S_setup_longest (aTHX_ pRExC_state, - data.longest_fixed, - &(r->anchored_utf8), - &(r->anchored_substr), - &(r->anchored_end_shift), - data.lookbehind_fixed, - data.offset_fixed, - data.minlen_fixed, - longest_fixed_length, - data.flags & SF_FIX_BEFORE_EOL, - data.flags & SF_FIX_BEFORE_MEOL)) - { - r->anchored_offset = data.offset_fixed - data.lookbehind_fixed; - SvREFCNT_inc_simple_void_NN(data.longest_fixed); - } - else { - r->anchored_substr = r->anchored_utf8 = NULL; - longest_fixed_length = 0; - } - LEAVE_with_name("study_chunk"); - - if (ri->regstclass - && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY)) - ri->regstclass = NULL; - - if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset) - && stclass_flag - && !(data.start_class->flags & ANYOF_EOS) - && !cl_is_anything(data.start_class)) - { - const U32 n = add_data(pRExC_state, 1, "f"); - data.start_class->flags |= ANYOF_IS_SYNTHETIC; - - Newx(RExC_rxi->data->data[n], 1, - struct regnode_charclass_class); - StructCopy(data.start_class, - (struct regnode_charclass_class*)RExC_rxi->data->data[n], - struct regnode_charclass_class); - ri->regstclass = (regnode*)RExC_rxi->data->data[n]; - r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */ - DEBUG_COMPILE_r({ SV *sv = sv_newmortal(); - regprop(r, sv, (regnode*)data.start_class); - PerlIO_printf(Perl_debug_log, - "synthetic stclass \"%s\".\n", - SvPVX_const(sv));}); - } - - /* A temporary algorithm prefers floated substr to fixed one to dig more info. */ - if (longest_fixed_length > longest_float_length) { - r->check_end_shift = r->anchored_end_shift; - r->check_substr = r->anchored_substr; - r->check_utf8 = r->anchored_utf8; - r->check_offset_min = r->check_offset_max = r->anchored_offset; - if (r->extflags & RXf_ANCH_SINGLE) - r->extflags |= RXf_NOSCAN; - } - else { - r->check_end_shift = r->float_end_shift; - r->check_substr = r->float_substr; - r->check_utf8 = r->float_utf8; - r->check_offset_min = r->float_min_offset; - r->check_offset_max = r->float_max_offset; - } - /* XXXX Currently intuiting is not compatible with ANCH_GPOS. - This should be changed ASAP! */ - if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) { - r->extflags |= RXf_USE_INTUIT; - if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8)) - r->extflags |= RXf_INTUIT_TAIL; - } - /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere) - if ( (STRLEN)minlen < longest_float_length ) - minlen= longest_float_length; - if ( (STRLEN)minlen < longest_fixed_length ) - minlen= longest_fixed_length; - */ - } - else { - /* Several toplevels. Best we can is to set minlen. */ - I32 fake; - struct regnode_charclass_class ch_class; - I32 last_close = 0; - - DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n")); - - scan = ri->program + 1; - cl_init(pRExC_state, &ch_class); - data.start_class = &ch_class; - data.last_closep = &last_close; - - - minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size, - &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0); - - CHECK_RESTUDY_GOTO_butfirst(NOOP); - - r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8 - = r->float_substr = r->float_utf8 = NULL; - - if (!(data.start_class->flags & ANYOF_EOS) - && !cl_is_anything(data.start_class)) - { - const U32 n = add_data(pRExC_state, 1, "f"); - data.start_class->flags |= ANYOF_IS_SYNTHETIC; - - Newx(RExC_rxi->data->data[n], 1, - struct regnode_charclass_class); - StructCopy(data.start_class, - (struct regnode_charclass_class*)RExC_rxi->data->data[n], - struct regnode_charclass_class); - ri->regstclass = (regnode*)RExC_rxi->data->data[n]; - r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */ - DEBUG_COMPILE_r({ SV* sv = sv_newmortal(); - regprop(r, sv, (regnode*)data.start_class); - PerlIO_printf(Perl_debug_log, - "synthetic stclass \"%s\".\n", - SvPVX_const(sv));}); - } - } - - /* Guard against an embedded (?=) or (?<=) with a longer minlen than - the "real" pattern. */ - DEBUG_OPTIMISE_r({ - PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n", - (IV)minlen, (IV)r->minlen); - }); - r->minlenret = minlen; - if (r->minlen < minlen) - r->minlen = minlen; - - if (RExC_seen & REG_SEEN_GPOS) - r->extflags |= RXf_GPOS_SEEN; - if (RExC_seen & REG_SEEN_LOOKBEHIND) - r->extflags |= RXf_LOOKBEHIND_SEEN; - if (pRExC_state->num_code_blocks) - r->extflags |= RXf_EVAL_SEEN; - if (RExC_seen & REG_SEEN_CANY) - r->extflags |= RXf_CANY_SEEN; - if (RExC_seen & REG_SEEN_VERBARG) - { - r->intflags |= PREGf_VERBARG_SEEN; - r->extflags |= RXf_MODIFIES_VARS; - } - if (RExC_seen & REG_SEEN_CUTGROUP) - r->intflags |= PREGf_CUTGROUP_SEEN; - if (pm_flags & PMf_USE_RE_EVAL) - r->intflags |= PREGf_USE_RE_EVAL; - if (RExC_paren_names) - RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names)); - else - RXp_PAREN_NAMES(r) = NULL; - -#ifdef STUPID_PATTERN_CHECKS - if (RX_PRELEN(rx) == 0) - r->extflags |= RXf_NULL; - if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3)) - r->extflags |= RXf_WHITE; - else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^') - r->extflags |= RXf_START_ONLY; -#else - { - regnode *first = ri->program + 1; - U8 fop = OP(first); - - if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END) - r->extflags |= RXf_NULL; - else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END) - r->extflags |= RXf_START_ONLY; - else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE - && OP(regnext(first)) == END) - r->extflags |= RXf_WHITE; - } -#endif -#ifdef DEBUGGING - if (RExC_paren_names) { - ri->name_list_idx = add_data( pRExC_state, 1, "a" ); - ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list); - } else -#endif - ri->name_list_idx = 0; - - if (RExC_recurse_count) { - for ( ; RExC_recurse_count ; RExC_recurse_count-- ) { - const regnode *scan = RExC_recurse[RExC_recurse_count-1]; - ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan ); - } - } - Newxz(r->offs, RExC_npar, regexp_paren_pair); - /* assume we don't need to swap parens around before we match */ - - DEBUG_DUMP_r({ - PerlIO_printf(Perl_debug_log,"Final program:\n"); - regdump(r); - }); -#ifdef RE_TRACK_PATTERN_OFFSETS - DEBUG_OFFSETS_r(if (ri->u.offsets) { - const U32 len = ri->u.offsets[0]; - U32 i; - GET_RE_DEBUG_FLAGS_DECL; - PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]); - for (i = 1; i <= len; i++) { - if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2]) - PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ", - (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]); - } - PerlIO_printf(Perl_debug_log, "\n"); - }); -#endif - return rx; -} - - -SV* -Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value, - const U32 flags) -{ - PERL_ARGS_ASSERT_REG_NAMED_BUFF; - - PERL_UNUSED_ARG(value); - - if (flags & RXapif_FETCH) { - return reg_named_buff_fetch(rx, key, flags); - } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) { - Perl_croak_no_modify(); - return NULL; - } else if (flags & RXapif_EXISTS) { - return reg_named_buff_exists(rx, key, flags) - ? &PL_sv_yes - : &PL_sv_no; - } else if (flags & RXapif_REGNAMES) { - return reg_named_buff_all(rx, flags); - } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) { - return reg_named_buff_scalar(rx, flags); - } else { - Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags); - return NULL; - } -} - -SV* -Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey, - const U32 flags) -{ - PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER; - PERL_UNUSED_ARG(lastkey); - - if (flags & RXapif_FIRSTKEY) - return reg_named_buff_firstkey(rx, flags); - else if (flags & RXapif_NEXTKEY) - return reg_named_buff_nextkey(rx, flags); - else { - Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags); - return NULL; - } -} - -SV* -Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv, - const U32 flags) -{ - AV *retarray = NULL; - SV *ret; - struct regexp *const rx = ReANY(r); - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH; - - if (flags & RXapif_ALL) - retarray=newAV(); - - if (rx && RXp_PAREN_NAMES(rx)) { - HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 ); - if (he_str) { - IV i; - SV* sv_dat=HeVAL(he_str); - I32 *nums=(I32*)SvPVX(sv_dat); - for ( i=0; inparens) >= nums[i] - && rx->offs[nums[i]].start != -1 - && rx->offs[nums[i]].end != -1) - { - ret = newSVpvs(""); - CALLREG_NUMBUF_FETCH(r,nums[i],ret); - if (!retarray) - return ret; - } else { - if (retarray) - ret = newSVsv(&PL_sv_undef); - } - if (retarray) - av_push(retarray, ret); - } - if (retarray) - return newRV_noinc(MUTABLE_SV(retarray)); - } - } - return NULL; -} - -bool -Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key, - const U32 flags) -{ - struct regexp *const rx = ReANY(r); - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS; - - if (rx && RXp_PAREN_NAMES(rx)) { - if (flags & RXapif_ALL) { - return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0); - } else { - SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags); - if (sv) { - SvREFCNT_dec(sv); - return TRUE; - } else { - return FALSE; - } - } - } else { - return FALSE; - } -} - -SV* -Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags) -{ - struct regexp *const rx = ReANY(r); - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY; - - if ( rx && RXp_PAREN_NAMES(rx) ) { - (void)hv_iterinit(RXp_PAREN_NAMES(rx)); - - return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY); - } else { - return FALSE; - } -} - -SV* -Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags) -{ - struct regexp *const rx = ReANY(r); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY; - - if (rx && RXp_PAREN_NAMES(rx)) { - HV *hv = RXp_PAREN_NAMES(rx); - HE *temphe; - while ( (temphe = hv_iternext_flags(hv,0)) ) { - IV i; - IV parno = 0; - SV* sv_dat = HeVAL(temphe); - I32 *nums = (I32*)SvPVX(sv_dat); - for ( i = 0; i < SvIVX(sv_dat); i++ ) { - if ((I32)(rx->lastparen) >= nums[i] && - rx->offs[nums[i]].start != -1 && - rx->offs[nums[i]].end != -1) - { - parno = nums[i]; - break; - } - } - if (parno || flags & RXapif_ALL) { - return newSVhek(HeKEY_hek(temphe)); - } - } - } - return NULL; -} - -SV* -Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags) -{ - SV *ret; - AV *av; - I32 length; - struct regexp *const rx = ReANY(r); - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR; - - if (rx && RXp_PAREN_NAMES(rx)) { - if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) { - return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx))); - } else if (flags & RXapif_ONE) { - ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES)); - av = MUTABLE_AV(SvRV(ret)); - length = av_len(av); - SvREFCNT_dec(ret); - return newSViv(length + 1); - } else { - Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags); - return NULL; - } - } - return &PL_sv_undef; -} - -SV* -Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags) -{ - struct regexp *const rx = ReANY(r); - AV *av = newAV(); - - PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL; - - if (rx && RXp_PAREN_NAMES(rx)) { - HV *hv= RXp_PAREN_NAMES(rx); - HE *temphe; - (void)hv_iterinit(hv); - while ( (temphe = hv_iternext_flags(hv,0)) ) { - IV i; - IV parno = 0; - SV* sv_dat = HeVAL(temphe); - I32 *nums = (I32*)SvPVX(sv_dat); - for ( i = 0; i < SvIVX(sv_dat); i++ ) { - if ((I32)(rx->lastparen) >= nums[i] && - rx->offs[nums[i]].start != -1 && - rx->offs[nums[i]].end != -1) - { - parno = nums[i]; - break; - } - } - if (parno || flags & RXapif_ALL) { - av_push(av, newSVhek(HeKEY_hek(temphe))); - } - } - } - - return newRV_noinc(MUTABLE_SV(av)); -} - -void -Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren, - SV * const sv) -{ - struct regexp *const rx = ReANY(r); - char *s = NULL; - I32 i = 0; - I32 s1, t1; - I32 n = paren; - - PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH; - - if ( ( n == RX_BUFF_IDX_CARET_PREMATCH - || n == RX_BUFF_IDX_CARET_FULLMATCH - || n == RX_BUFF_IDX_CARET_POSTMATCH - ) - && !(rx->extflags & RXf_PMf_KEEPCOPY) - ) - goto ret_undef; - - if (!rx->subbeg) - goto ret_undef; - - if (n == RX_BUFF_IDX_CARET_FULLMATCH) - /* no need to distinguish between them any more */ - n = RX_BUFF_IDX_FULLMATCH; - - if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH) - && rx->offs[0].start != -1) - { - /* $`, ${^PREMATCH} */ - i = rx->offs[0].start; - s = rx->subbeg; - } - else - if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH) - && rx->offs[0].end != -1) - { - /* $', ${^POSTMATCH} */ - s = rx->subbeg - rx->suboffset + rx->offs[0].end; - i = rx->sublen + rx->suboffset - rx->offs[0].end; - } - else - if ( 0 <= n && n <= (I32)rx->nparens && - (s1 = rx->offs[n].start) != -1 && - (t1 = rx->offs[n].end) != -1) - { - /* $&, ${^MATCH}, $1 ... */ - i = t1 - s1; - s = rx->subbeg + s1 - rx->suboffset; - } else { - goto ret_undef; - } - - assert(s >= rx->subbeg); - assert(rx->sublen >= (s - rx->subbeg) + i ); - if (i >= 0) { -#if NO_TAINT_SUPPORT - sv_setpvn(sv, s, i); -#else - const int oldtainted = TAINT_get; - TAINT_NOT; - sv_setpvn(sv, s, i); - TAINT_set(oldtainted); -#endif - if ( (rx->extflags & RXf_CANY_SEEN) - ? (RXp_MATCH_UTF8(rx) - && (!i || is_utf8_string((U8*)s, i))) - : (RXp_MATCH_UTF8(rx)) ) - { - SvUTF8_on(sv); - } - else - SvUTF8_off(sv); - if (TAINTING_get) { - if (RXp_MATCH_TAINTED(rx)) { - if (SvTYPE(sv) >= SVt_PVMG) { - MAGIC* const mg = SvMAGIC(sv); - MAGIC* mgt; - TAINT; - SvMAGIC_set(sv, mg->mg_moremagic); - SvTAINT(sv); - if ((mgt = SvMAGIC(sv))) { - mg->mg_moremagic = mgt; - SvMAGIC_set(sv, mg); - } - } else { - TAINT; - SvTAINT(sv); - } - } else - SvTAINTED_off(sv); - } - } else { - ret_undef: - sv_setsv(sv,&PL_sv_undef); - return; - } -} - -void -Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren, - SV const * const value) -{ - PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE; - - PERL_UNUSED_ARG(rx); - PERL_UNUSED_ARG(paren); - PERL_UNUSED_ARG(value); - - if (!PL_localizing) - Perl_croak_no_modify(); -} - -I32 -Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv, - const I32 paren) -{ - struct regexp *const rx = ReANY(r); - I32 i; - I32 s1, t1; - - PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH; - - /* Some of this code was originally in C in F */ - switch (paren) { - case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */ - if (!(rx->extflags & RXf_PMf_KEEPCOPY)) - goto warn_undef; - /*FALLTHROUGH*/ - - case RX_BUFF_IDX_PREMATCH: /* $` */ - if (rx->offs[0].start != -1) { - i = rx->offs[0].start; - if (i > 0) { - s1 = 0; - t1 = i; - goto getlen; - } - } - return 0; - - case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */ - if (!(rx->extflags & RXf_PMf_KEEPCOPY)) - goto warn_undef; - case RX_BUFF_IDX_POSTMATCH: /* $' */ - if (rx->offs[0].end != -1) { - i = rx->sublen - rx->offs[0].end; - if (i > 0) { - s1 = rx->offs[0].end; - t1 = rx->sublen; - goto getlen; - } - } - return 0; - - case RX_BUFF_IDX_CARET_FULLMATCH: /* ${^MATCH} */ - if (!(rx->extflags & RXf_PMf_KEEPCOPY)) - goto warn_undef; - /*FALLTHROUGH*/ - - /* $& / ${^MATCH}, $1, $2, ... */ - default: - if (paren <= (I32)rx->nparens && - (s1 = rx->offs[paren].start) != -1 && - (t1 = rx->offs[paren].end) != -1) - { - i = t1 - s1; - goto getlen; - } else { - warn_undef: - if (ckWARN(WARN_UNINITIALIZED)) - report_uninit((const SV *)sv); - return 0; - } - } - getlen: - if (i > 0 && RXp_MATCH_UTF8(rx)) { - const char * const s = rx->subbeg - rx->suboffset + s1; - const U8 *ep; - STRLEN el; - - i = t1 - s1; - if (is_utf8_string_loclen((U8*)s, i, &ep, &el)) - i = el; - } - return i; -} - -SV* -Perl_reg_qr_package(pTHX_ REGEXP * const rx) -{ - PERL_ARGS_ASSERT_REG_QR_PACKAGE; - PERL_UNUSED_ARG(rx); - if (0) - return NULL; - else - return newSVpvs("Regexp"); -} - -/* Scans the name of a named buffer from the pattern. - * If flags is REG_RSN_RETURN_NULL returns null. - * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name - * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding - * to the parsed name as looked up in the RExC_paren_names hash. - * If there is an error throws a vFAIL().. type exception. - */ - -#define REG_RSN_RETURN_NULL 0 -#define REG_RSN_RETURN_NAME 1 -#define REG_RSN_RETURN_DATA 2 - -STATIC SV* -S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags) -{ - char *name_start = RExC_parse; - - PERL_ARGS_ASSERT_REG_SCAN_NAME; - - if (isIDFIRST_lazy_if(RExC_parse, UTF)) { - /* skip IDFIRST by using do...while */ - if (UTF) - do { - RExC_parse += UTF8SKIP(RExC_parse); - } while (isALNUM_utf8((U8*)RExC_parse)); - else - do { - RExC_parse++; - } while (isALNUM(*RExC_parse)); - } else { - RExC_parse++; /* so the <- from the vFAIL is after the offending character */ - vFAIL("Group name must start with a non-digit word character"); - } - if ( flags ) { - SV* sv_name - = newSVpvn_flags(name_start, (int)(RExC_parse - name_start), - SVs_TEMP | (UTF ? SVf_UTF8 : 0)); - if ( flags == REG_RSN_RETURN_NAME) - return sv_name; - else if (flags==REG_RSN_RETURN_DATA) { - HE *he_str = NULL; - SV *sv_dat = NULL; - if ( ! sv_name ) /* should not happen*/ - Perl_croak(aTHX_ "panic: no svname in reg_scan_name"); - if (RExC_paren_names) - he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 ); - if ( he_str ) - sv_dat = HeVAL(he_str); - if ( ! sv_dat ) - vFAIL("Reference to nonexistent named group"); - return sv_dat; - } - else { - Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name", - (unsigned long) flags); - } - assert(0); /* NOT REACHED */ - } - return NULL; -} - -#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \ - int rem=(int)(RExC_end - RExC_parse); \ - int cut; \ - int num; \ - int iscut=0; \ - if (rem>10) { \ - rem=10; \ - iscut=1; \ - } \ - cut=10-rem; \ - if (RExC_lastparse!=RExC_parse) \ - PerlIO_printf(Perl_debug_log," >%.*s%-*s", \ - rem, RExC_parse, \ - cut + 4, \ - iscut ? "..." : "<" \ - ); \ - else \ - PerlIO_printf(Perl_debug_log,"%16s",""); \ - \ - if (SIZE_ONLY) \ - num = RExC_size + 1; \ - else \ - num=REG_NODE_NUM(RExC_emit); \ - if (RExC_lastnum!=num) \ - PerlIO_printf(Perl_debug_log,"|%4d",num); \ - else \ - PerlIO_printf(Perl_debug_log,"|%4s",""); \ - PerlIO_printf(Perl_debug_log,"|%*s%-4s", \ - (int)((depth*2)), "", \ - (funcname) \ - ); \ - RExC_lastnum=num; \ - RExC_lastparse=RExC_parse; \ -}) - - - -#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \ - DEBUG_PARSE_MSG((funcname)); \ - PerlIO_printf(Perl_debug_log,"%4s","\n"); \ -}) -#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \ - DEBUG_PARSE_MSG((funcname)); \ - PerlIO_printf(Perl_debug_log,fmt "\n",args); \ -}) - -/* This section of code defines the inversion list object and its methods. The - * interfaces are highly subject to change, so as much as possible is static to - * this file. An inversion list is here implemented as a malloc'd C UV array - * with some added info that is placed as UVs at the beginning in a header - * portion. An inversion list for Unicode is an array of code points, sorted - * by ordinal number. The zeroth element is the first code point in the list. - * The 1th element is the first element beyond that not in the list. In other - * words, the first range is - * invlist[0]..(invlist[1]-1) - * The other ranges follow. Thus every element whose index is divisible by two - * marks the beginning of a range that is in the list, and every element not - * divisible by two marks the beginning of a range not in the list. A single - * element inversion list that contains the single code point N generally - * consists of two elements - * invlist[0] == N - * invlist[1] == N+1 - * (The exception is when N is the highest representable value on the - * machine, in which case the list containing just it would be a single - * element, itself. By extension, if the last range in the list extends to - * infinity, then the first element of that range will be in the inversion list - * at a position that is divisible by two, and is the final element in the - * list.) - * Taking the complement (inverting) an inversion list is quite simple, if the - * first element is 0, remove it; otherwise add a 0 element at the beginning. - * This implementation reserves an element at the beginning of each inversion - * list to contain 0 when the list contains 0, and contains 1 otherwise. The - * actual beginning of the list is either that element if 0, or the next one if - * 1. - * - * More about inversion lists can be found in "Unicode Demystified" - * Chapter 13 by Richard Gillam, published by Addison-Wesley. - * More will be coming when functionality is added later. - * - * The inversion list data structure is currently implemented as an SV pointing - * to an array of UVs that the SV thinks are bytes. This allows us to have an - * array of UV whose memory management is automatically handled by the existing - * facilities for SV's. - * - * Some of the methods should always be private to the implementation, and some - * should eventually be made public */ - -/* The header definitions are in F */ - -#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV)) -#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH) - -#define INVLIST_INITIAL_LEN 10 - -PERL_STATIC_INLINE UV* -S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0) -{ - /* Returns a pointer to the first element in the inversion list's array. - * This is called upon initialization of an inversion list. Where the - * array begins depends on whether the list has the code point U+0000 - * in it or not. The other parameter tells it whether the code that - * follows this call is about to put a 0 in the inversion list or not. - * The first element is either the element with 0, if 0, or the next one, - * if 1 */ - - UV* zero = get_invlist_zero_addr(invlist); - - PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT; - - /* Must be empty */ - assert(! *_get_invlist_len_addr(invlist)); - - /* 1^1 = 0; 1^0 = 1 */ - *zero = 1 ^ will_have_0; - return zero + *zero; -} - -PERL_STATIC_INLINE UV* -S_invlist_array(pTHX_ SV* const invlist) -{ - /* Returns the pointer to the inversion list's array. Every time the - * length changes, this needs to be called in case malloc or realloc moved - * it */ - - PERL_ARGS_ASSERT_INVLIST_ARRAY; - - /* Must not be empty. If these fail, you probably didn't check for - * being non-zero before trying to get the array */ - assert(*_get_invlist_len_addr(invlist)); - assert(*get_invlist_zero_addr(invlist) == 0 - || *get_invlist_zero_addr(invlist) == 1); - - /* The array begins either at the element reserved for zero if the - * list contains 0 (that element will be set to 0), or otherwise the next - * element (in which case the reserved element will be set to 1). */ - return (UV *) (get_invlist_zero_addr(invlist) - + *get_invlist_zero_addr(invlist)); -} - -PERL_STATIC_INLINE void -S_invlist_set_len(pTHX_ SV* const invlist, const UV len) -{ - /* Sets the current number of elements stored in the inversion list */ - - PERL_ARGS_ASSERT_INVLIST_SET_LEN; - - *_get_invlist_len_addr(invlist) = len; - - assert(len <= SvLEN(invlist)); - - SvCUR_set(invlist, TO_INTERNAL_SIZE(len)); - /* If the list contains U+0000, that element is part of the header, - * and should not be counted as part of the array. It will contain - * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and - * subtract: - * SvCUR_set(invlist, - * TO_INTERNAL_SIZE(len - * - (*get_invlist_zero_addr(inv_list) ^ 1))); - * But, this is only valid if len is not 0. The consequences of not doing - * this is that the memory allocation code may think that 1 more UV is - * being used than actually is, and so might do an unnecessary grow. That - * seems worth not bothering to make this the precise amount. - * - * Note that when inverting, SvCUR shouldn't change */ -} - -PERL_STATIC_INLINE IV* -S_get_invlist_previous_index_addr(pTHX_ SV* invlist) -{ - /* Return the address of the UV that is reserved to hold the cached index - * */ - - PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR; - - return (IV *) (SvPVX(invlist) + (INVLIST_PREVIOUS_INDEX_OFFSET * sizeof (UV))); -} - -PERL_STATIC_INLINE IV -S_invlist_previous_index(pTHX_ SV* const invlist) -{ - /* Returns cached index of previous search */ - - PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX; - - return *get_invlist_previous_index_addr(invlist); -} - -PERL_STATIC_INLINE void -S_invlist_set_previous_index(pTHX_ SV* const invlist, const IV index) -{ - /* Caches for later retrieval */ - - PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX; - - assert(index == 0 || index < (int) _invlist_len(invlist)); - - *get_invlist_previous_index_addr(invlist) = index; -} - -PERL_STATIC_INLINE UV -S_invlist_max(pTHX_ SV* const invlist) -{ - /* Returns the maximum number of elements storable in the inversion list's - * array, without having to realloc() */ - - PERL_ARGS_ASSERT_INVLIST_MAX; - - return FROM_INTERNAL_SIZE(SvLEN(invlist)); -} - -PERL_STATIC_INLINE UV* -S_get_invlist_zero_addr(pTHX_ SV* invlist) -{ - /* Return the address of the UV that is reserved to hold 0 if the inversion - * list contains 0. This has to be the last element of the heading, as the - * list proper starts with either it if 0, or the next element if not. - * (But we force it to contain either 0 or 1) */ - - PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR; - - return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV))); -} - -#ifndef PERL_IN_XSUB_RE -SV* -Perl__new_invlist(pTHX_ IV initial_size) -{ - - /* Return a pointer to a newly constructed inversion list, with enough - * space to store 'initial_size' elements. If that number is negative, a - * system default is used instead */ - - SV* new_list; - - if (initial_size < 0) { - initial_size = INVLIST_INITIAL_LEN; - } - - /* Allocate the initial space */ - new_list = newSV(TO_INTERNAL_SIZE(initial_size)); - invlist_set_len(new_list, 0); - - /* Force iterinit() to be used to get iteration to work */ - *get_invlist_iter_addr(new_list) = UV_MAX; - - /* This should force a segfault if a method doesn't initialize this - * properly */ - *get_invlist_zero_addr(new_list) = UV_MAX; - - *get_invlist_previous_index_addr(new_list) = 0; - *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID; -#if HEADER_LENGTH != 5 -# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length -#endif - - return new_list; -} -#endif - -STATIC SV* -S__new_invlist_C_array(pTHX_ UV* list) -{ - /* Return a pointer to a newly constructed inversion list, initialized to - * point to , which has to be in the exact correct inversion list - * form, including internal fields. Thus this is a dangerous routine that - * should not be used in the wrong hands */ - - SV* invlist = newSV_type(SVt_PV); - - PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY; - - SvPV_set(invlist, (char *) list); - SvLEN_set(invlist, 0); /* Means we own the contents, and the system - shouldn't touch it */ - SvCUR_set(invlist, TO_INTERNAL_SIZE(_invlist_len(invlist))); - - if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) { - Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list"); - } - - return invlist; -} - -STATIC void -S_invlist_extend(pTHX_ SV* const invlist, const UV new_max) -{ - /* Grow the maximum size of an inversion list */ - - PERL_ARGS_ASSERT_INVLIST_EXTEND; - - SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max)); -} - -PERL_STATIC_INLINE void -S_invlist_trim(pTHX_ SV* const invlist) -{ - PERL_ARGS_ASSERT_INVLIST_TRIM; - - /* Change the length of the inversion list to how many entries it currently - * has */ - - SvPV_shrink_to_cur((SV *) invlist); -} - -#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output) - -STATIC void -S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end) -{ - /* Subject to change or removal. Append the range from 'start' to 'end' at - * the end of the inversion list. The range must be above any existing - * ones. */ - - UV* array; - UV max = invlist_max(invlist); - UV len = _invlist_len(invlist); - - PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST; - - if (len == 0) { /* Empty lists must be initialized */ - array = _invlist_array_init(invlist, start == 0); - } - else { - /* Here, the existing list is non-empty. The current max entry in the - * list is generally the first value not in the set, except when the - * set extends to the end of permissible values, in which case it is - * the first entry in that final set, and so this call is an attempt to - * append out-of-order */ - - UV final_element = len - 1; - array = invlist_array(invlist); - if (array[final_element] > start - || ELEMENT_RANGE_MATCHES_INVLIST(final_element)) - { - Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c", - array[final_element], start, - ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f'); - } - - /* Here, it is a legal append. If the new range begins with the first - * value not in the set, it is extending the set, so the new first - * value not in the set is one greater than the newly extended range. - * */ - if (array[final_element] == start) { - if (end != UV_MAX) { - array[final_element] = end + 1; - } - else { - /* But if the end is the maximum representable on the machine, - * just let the range that this would extend to have no end */ - invlist_set_len(invlist, len - 1); - } - return; - } - } - - /* Here the new range doesn't extend any existing set. Add it */ - - len += 2; /* Includes an element each for the start and end of range */ - - /* If overflows the existing space, extend, which may cause the array to be - * moved */ - if (max < len) { - invlist_extend(invlist, len); - invlist_set_len(invlist, len); /* Have to set len here to avoid assert - failure in invlist_array() */ - array = invlist_array(invlist); - } - else { - invlist_set_len(invlist, len); - } - - /* The next item on the list starts the range, the one after that is - * one past the new range. */ - array[len - 2] = start; - if (end != UV_MAX) { - array[len - 1] = end + 1; - } - else { - /* But if the end is the maximum representable on the machine, just let - * the range have no end */ - invlist_set_len(invlist, len - 1); - } -} - -#ifndef PERL_IN_XSUB_RE - -IV -Perl__invlist_search(pTHX_ SV* const invlist, const UV cp) -{ - /* Searches the inversion list for the entry that contains the input code - * point . If is not in the list, -1 is returned. Otherwise, the - * return value is the index into the list's array of the range that - * contains */ - - IV low = 0; - IV mid; - IV high = _invlist_len(invlist); - const IV highest_element = high - 1; - const UV* array; - - PERL_ARGS_ASSERT__INVLIST_SEARCH; - - /* If list is empty, return failure. */ - if (high == 0) { - return -1; - } - - /* If the code point is before the first element, return failure. (We - * can't combine this with the test above, because we can't get the array - * unless we know the list is non-empty) */ - array = invlist_array(invlist); - - mid = invlist_previous_index(invlist); - assert(mid >=0 && mid <= highest_element); - - /* contains the cache of the result of the previous call to this - * function (0 the first time). See if this call is for the same result, - * or if it is for mid-1. This is under the theory that calls to this - * function will often be for related code points that are near each other. - * And benchmarks show that caching gives better results. We also test - * here if the code point is within the bounds of the list. These tests - * replace others that would have had to be made anyway to make sure that - * the array bounds were not exceeded, and these give us extra information - * at the same time */ - if (cp >= array[mid]) { - if (cp >= array[highest_element]) { - return highest_element; - } - - /* Here, array[mid] <= cp < array[highest_element]. This means that - * the final element is not the answer, so can exclude it; it also - * means that is not the final element, so can refer to 'mid + 1' - * safely */ - if (cp < array[mid + 1]) { - return mid; - } - high--; - low = mid + 1; - } - else { /* cp < aray[mid] */ - if (cp < array[0]) { /* Fail if outside the array */ - return -1; - } - high = mid; - if (cp >= array[mid - 1]) { - goto found_entry; - } - } - - /* Binary search. What we are looking for is such that - * array[i] <= cp < array[i+1] - * The loop below converges on the i+1. Note that there may not be an - * (i+1)th element in the array, and things work nonetheless */ - while (low < high) { - mid = (low + high) / 2; - assert(mid <= highest_element); - if (array[mid] <= cp) { /* cp >= array[mid] */ - low = mid + 1; - - /* We could do this extra test to exit the loop early. - if (cp < array[low]) { - return mid; - } - */ - } - else { /* cp < array[mid] */ - high = mid; - } - } - - found_entry: - high--; - invlist_set_previous_index(invlist, high); - return high; -} - -void -Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch) -{ - /* populates a swatch of a swash the same way swatch_get() does in utf8.c, - * but is used when the swash has an inversion list. This makes this much - * faster, as it uses a binary search instead of a linear one. This is - * intimately tied to that function, and perhaps should be in utf8.c, - * except it is intimately tied to inversion lists as well. It assumes - * that is all 0's on input */ - - UV current = start; - const IV len = _invlist_len(invlist); - IV i; - const UV * array; - - PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH; - - if (len == 0) { /* Empty inversion list */ - return; - } - - array = invlist_array(invlist); - - /* Find which element it is */ - i = _invlist_search(invlist, start); - - /* We populate from to */ - while (current < end) { - UV upper; - - /* The inversion list gives the results for every possible code point - * after the first one in the list. Only those ranges whose index is - * even are ones that the inversion list matches. For the odd ones, - * and if the initial code point is not in the list, we have to skip - * forward to the next element */ - if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) { - i++; - if (i >= len) { /* Finished if beyond the end of the array */ - return; - } - current = array[i]; - if (current >= end) { /* Finished if beyond the end of what we - are populating */ - if (LIKELY(end < UV_MAX)) { - return; - } - - /* We get here when the upper bound is the maximum - * representable on the machine, and we are looking for just - * that code point. Have to special case it */ - i = len; - goto join_end_of_list; - } - } - assert(current >= start); - - /* The current range ends one below the next one, except don't go past - * */ - i++; - upper = (i < len && array[i] < end) ? array[i] : end; - - /* Here we are in a range that matches. Populate a bit in the 3-bit U8 - * for each code point in it */ - for (; current < upper; current++) { - const STRLEN offset = (STRLEN)(current - start); - swatch[offset >> 3] |= 1 << (offset & 7); - } - - join_end_of_list: - - /* Quit if at the end of the list */ - if (i >= len) { - - /* But first, have to deal with the highest possible code point on - * the platform. The previous code assumes that is one - * beyond where we want to populate, but that is impossible at the - * platform's infinity, so have to handle it specially */ - if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1))) - { - const STRLEN offset = (STRLEN)(end - start); - swatch[offset >> 3] |= 1 << (offset & 7); - } - return; - } - - /* Advance to the next range, which will be for code points not in the - * inversion list */ - current = array[i]; - } - - return; -} - -void -Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output) -{ - /* Take the union of two inversion lists and point to it. *output - * should be defined upon input, and if it points to one of the two lists, - * the reference count to that list will be decremented. The first list, - * , may be NULL, in which case a copy of the second list is returned. - * If is TRUE, the union is taken of the complement - * (inversion) of instead of b itself. - * - * The basis for this comes from "Unicode Demystified" Chapter 13 by - * Richard Gillam, published by Addison-Wesley, and explained at some - * length there. The preface says to incorporate its examples into your - * code at your own risk. - * - * The algorithm is like a merge sort. - * - * XXX A potential performance improvement is to keep track as we go along - * if only one of the inputs contributes to the result, meaning the other - * is a subset of that one. In that case, we can skip the final copy and - * return the larger of the input lists, but then outside code might need - * to keep track of whether to free the input list or not */ - - UV* array_a; /* a's array */ - UV* array_b; - UV len_a; /* length of a's array */ - UV len_b; - - SV* u; /* the resulting union */ - UV* array_u; - UV len_u; - - UV i_a = 0; /* current index into a's array */ - UV i_b = 0; - UV i_u = 0; - - /* running count, as explained in the algorithm source book; items are - * stopped accumulating and are output when the count changes to/from 0. - * The count is incremented when we start a range that's in the set, and - * decremented when we start a range that's not in the set. So its range - * is 0 to 2. Only when the count is zero is something not in the set. - */ - UV count = 0; - - PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND; - assert(a != b); - - /* If either one is empty, the union is the other one */ - if (a == NULL || ((len_a = _invlist_len(a)) == 0)) { - if (*output == a) { - if (a != NULL) { - SvREFCNT_dec(a); - } - } - if (*output != b) { - *output = invlist_clone(b); - if (complement_b) { - _invlist_invert(*output); - } - } /* else *output already = b; */ - return; - } - else if ((len_b = _invlist_len(b)) == 0) { - if (*output == b) { - SvREFCNT_dec(b); - } - - /* The complement of an empty list is a list that has everything in it, - * so the union with includes everything too */ - if (complement_b) { - if (a == *output) { - SvREFCNT_dec(a); - } - *output = _new_invlist(1); - _append_range_to_invlist(*output, 0, UV_MAX); - } - else if (*output != a) { - *output = invlist_clone(a); - } - /* else *output already = a; */ - return; - } - - /* Here both lists exist and are non-empty */ - array_a = invlist_array(a); - array_b = invlist_array(b); - - /* If are to take the union of 'a' with the complement of b, set it - * up so are looking at b's complement. */ - if (complement_b) { - - /* To complement, we invert: if the first element is 0, remove it. To - * do this, we just pretend the array starts one later, and clear the - * flag as we don't have to do anything else later */ - if (array_b[0] == 0) { - array_b++; - len_b--; - complement_b = FALSE; - } - else { - - /* But if the first element is not zero, we unshift a 0 before the - * array. The data structure reserves a space for that 0 (which - * should be a '1' right now), so physical shifting is unneeded, - * but temporarily change that element to 0. Before exiting the - * routine, we must restore the element to '1' */ - array_b--; - len_b++; - array_b[0] = 0; - } - } - - /* Size the union for the worst case: that the sets are completely - * disjoint */ - u = _new_invlist(len_a + len_b); - - /* Will contain U+0000 if either component does */ - array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0) - || (len_b > 0 && array_b[0] == 0)); - - /* Go through each list item by item, stopping when exhausted one of - * them */ - while (i_a < len_a && i_b < len_b) { - UV cp; /* The element to potentially add to the union's array */ - bool cp_in_set; /* is it in the the input list's set or not */ - - /* We need to take one or the other of the two inputs for the union. - * Since we are merging two sorted lists, we take the smaller of the - * next items. In case of a tie, we take the one that is in its set - * first. If we took one not in the set first, it would decrement the - * count, possibly to 0 which would cause it to be output as ending the - * range, and the next time through we would take the same number, and - * output it again as beginning the next range. By doing it the - * opposite way, there is no possibility that the count will be - * momentarily decremented to 0, and thus the two adjoining ranges will - * be seamlessly merged. (In a tie and both are in the set or both not - * in the set, it doesn't matter which we take first.) */ - if (array_a[i_a] < array_b[i_b] - || (array_a[i_a] == array_b[i_b] - && ELEMENT_RANGE_MATCHES_INVLIST(i_a))) - { - cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a); - cp= array_a[i_a++]; - } - else { - cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b); - cp= array_b[i_b++]; - } - - /* Here, have chosen which of the two inputs to look at. Only output - * if the running count changes to/from 0, which marks the - * beginning/end of a range in that's in the set */ - if (cp_in_set) { - if (count == 0) { - array_u[i_u++] = cp; - } - count++; - } - else { - count--; - if (count == 0) { - array_u[i_u++] = cp; - } - } - } - - /* Here, we are finished going through at least one of the lists, which - * means there is something remaining in at most one. We check if the list - * that hasn't been exhausted is positioned such that we are in the middle - * of a range in its set or not. (i_a and i_b point to the element beyond - * the one we care about.) If in the set, we decrement 'count'; if 0, there - * is potentially more to output. - * There are four cases: - * 1) Both weren't in their sets, count is 0, and remains 0. What's left - * in the union is entirely from the non-exhausted set. - * 2) Both were in their sets, count is 2. Nothing further should - * be output, as everything that remains will be in the exhausted - * list's set, hence in the union; decrementing to 1 but not 0 insures - * that - * 3) the exhausted was in its set, non-exhausted isn't, count is 1. - * Nothing further should be output because the union includes - * everything from the exhausted set. Not decrementing ensures that. - * 4) the exhausted wasn't in its set, non-exhausted is, count is 1; - * decrementing to 0 insures that we look at the remainder of the - * non-exhausted set */ - if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a)) - || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b))) - { - count--; - } - - /* The final length is what we've output so far, plus what else is about to - * be output. (If 'count' is non-zero, then the input list we exhausted - * has everything remaining up to the machine's limit in its set, and hence - * in the union, so there will be no further output. */ - len_u = i_u; - if (count == 0) { - /* At most one of the subexpressions will be non-zero */ - len_u += (len_a - i_a) + (len_b - i_b); - } - - /* Set result to final length, which can change the pointer to array_u, so - * re-find it */ - if (len_u != _invlist_len(u)) { - invlist_set_len(u, len_u); - invlist_trim(u); - array_u = invlist_array(u); - } - - /* When 'count' is 0, the list that was exhausted (if one was shorter than - * the other) ended with everything above it not in its set. That means - * that the remaining part of the union is precisely the same as the - * non-exhausted list, so can just copy it unchanged. (If both list were - * exhausted at the same time, then the operations below will be both 0.) - */ - if (count == 0) { - IV copy_count; /* At most one will have a non-zero copy count */ - if ((copy_count = len_a - i_a) > 0) { - Copy(array_a + i_a, array_u + i_u, copy_count, UV); - } - else if ((copy_count = len_b - i_b) > 0) { - Copy(array_b + i_b, array_u + i_u, copy_count, UV); - } - } - - /* We may be removing a reference to one of the inputs */ - if (a == *output || b == *output) { - SvREFCNT_dec(*output); - } - - /* If we've changed b, restore it */ - if (complement_b) { - array_b[0] = 1; - } - - *output = u; - return; -} - -void -Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i) -{ - /* Take the intersection of two inversion lists and point to it. *i - * should be defined upon input, and if it points to one of the two lists, - * the reference count to that list will be decremented. - * If is TRUE, the result will be the intersection of - * and the complement (or inversion) of instead of directly. - * - * The basis for this comes from "Unicode Demystified" Chapter 13 by - * Richard Gillam, published by Addison-Wesley, and explained at some - * length there. The preface says to incorporate its examples into your - * code at your own risk. In fact, it had bugs - * - * The algorithm is like a merge sort, and is essentially the same as the - * union above - */ - - UV* array_a; /* a's array */ - UV* array_b; - UV len_a; /* length of a's array */ - UV len_b; - - SV* r; /* the resulting intersection */ - UV* array_r; - UV len_r; - - UV i_a = 0; /* current index into a's array */ - UV i_b = 0; - UV i_r = 0; - - /* running count, as explained in the algorithm source book; items are - * stopped accumulating and are output when the count changes to/from 2. - * The count is incremented when we start a range that's in the set, and - * decremented when we start a range that's not in the set. So its range - * is 0 to 2. Only when the count is 2 is something in the intersection. - */ - UV count = 0; - - PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND; - assert(a != b); - - /* Special case if either one is empty */ - len_a = _invlist_len(a); - if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) { - - if (len_a != 0 && complement_b) { - - /* Here, 'a' is not empty, therefore from the above 'if', 'b' must - * be empty. Here, also we are using 'b's complement, which hence - * must be every possible code point. Thus the intersection is - * simply 'a'. */ - if (*i != a) { - *i = invlist_clone(a); - - if (*i == b) { - SvREFCNT_dec(b); - } - } - /* else *i is already 'a' */ - return; - } - - /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The - * intersection must be empty */ - if (*i == a) { - SvREFCNT_dec(a); - } - else if (*i == b) { - SvREFCNT_dec(b); - } - *i = _new_invlist(0); - return; - } - - /* Here both lists exist and are non-empty */ - array_a = invlist_array(a); - array_b = invlist_array(b); - - /* If are to take the intersection of 'a' with the complement of b, set it - * up so are looking at b's complement. */ - if (complement_b) { - - /* To complement, we invert: if the first element is 0, remove it. To - * do this, we just pretend the array starts one later, and clear the - * flag as we don't have to do anything else later */ - if (array_b[0] == 0) { - array_b++; - len_b--; - complement_b = FALSE; - } - else { - - /* But if the first element is not zero, we unshift a 0 before the - * array. The data structure reserves a space for that 0 (which - * should be a '1' right now), so physical shifting is unneeded, - * but temporarily change that element to 0. Before exiting the - * routine, we must restore the element to '1' */ - array_b--; - len_b++; - array_b[0] = 0; - } - } - - /* Size the intersection for the worst case: that the intersection ends up - * fragmenting everything to be completely disjoint */ - r= _new_invlist(len_a + len_b); - - /* Will contain U+0000 iff both components do */ - array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0 - && len_b > 0 && array_b[0] == 0); - - /* Go through each list item by item, stopping when exhausted one of - * them */ - while (i_a < len_a && i_b < len_b) { - UV cp; /* The element to potentially add to the intersection's - array */ - bool cp_in_set; /* Is it in the input list's set or not */ - - /* We need to take one or the other of the two inputs for the - * intersection. Since we are merging two sorted lists, we take the - * smaller of the next items. In case of a tie, we take the one that - * is not in its set first (a difference from the union algorithm). If - * we took one in the set first, it would increment the count, possibly - * to 2 which would cause it to be output as starting a range in the - * intersection, and the next time through we would take that same - * number, and output it again as ending the set. By doing it the - * opposite of this, there is no possibility that the count will be - * momentarily incremented to 2. (In a tie and both are in the set or - * both not in the set, it doesn't matter which we take first.) */ - if (array_a[i_a] < array_b[i_b] - || (array_a[i_a] == array_b[i_b] - && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a))) - { - cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a); - cp= array_a[i_a++]; - } - else { - cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b); - cp= array_b[i_b++]; - } - - /* Here, have chosen which of the two inputs to look at. Only output - * if the running count changes to/from 2, which marks the - * beginning/end of a range that's in the intersection */ - if (cp_in_set) { - count++; - if (count == 2) { - array_r[i_r++] = cp; - } - } - else { - if (count == 2) { - array_r[i_r++] = cp; - } - count--; - } - } - - /* Here, we are finished going through at least one of the lists, which - * means there is something remaining in at most one. We check if the list - * that has been exhausted is positioned such that we are in the middle - * of a range in its set or not. (i_a and i_b point to elements 1 beyond - * the ones we care about.) There are four cases: - * 1) Both weren't in their sets, count is 0, and remains 0. There's - * nothing left in the intersection. - * 2) Both were in their sets, count is 2 and perhaps is incremented to - * above 2. What should be output is exactly that which is in the - * non-exhausted set, as everything it has is also in the intersection - * set, and everything it doesn't have can't be in the intersection - * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and - * gets incremented to 2. Like the previous case, the intersection is - * everything that remains in the non-exhausted set. - * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and - * remains 1. And the intersection has nothing more. */ - if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a)) - || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b))) - { - count++; - } - - /* The final length is what we've output so far plus what else is in the - * intersection. At most one of the subexpressions below will be non-zero */ - len_r = i_r; - if (count >= 2) { - len_r += (len_a - i_a) + (len_b - i_b); - } - - /* Set result to final length, which can change the pointer to array_r, so - * re-find it */ - if (len_r != _invlist_len(r)) { - invlist_set_len(r, len_r); - invlist_trim(r); - array_r = invlist_array(r); - } - - /* Finish outputting any remaining */ - if (count >= 2) { /* At most one will have a non-zero copy count */ - IV copy_count; - if ((copy_count = len_a - i_a) > 0) { - Copy(array_a + i_a, array_r + i_r, copy_count, UV); - } - else if ((copy_count = len_b - i_b) > 0) { - Copy(array_b + i_b, array_r + i_r, copy_count, UV); - } - } - - /* We may be removing a reference to one of the inputs */ - if (a == *i || b == *i) { - SvREFCNT_dec(*i); - } - - /* If we've changed b, restore it */ - if (complement_b) { - array_b[0] = 1; - } - - *i = r; - return; -} - -SV* -Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end) -{ - /* Add the range from 'start' to 'end' inclusive to the inversion list's - * set. A pointer to the inversion list is returned. This may actually be - * a new list, in which case the passed in one has been destroyed. The - * passed in inversion list can be NULL, in which case a new one is created - * with just the one range in it */ - - SV* range_invlist; - UV len; - - if (invlist == NULL) { - invlist = _new_invlist(2); - len = 0; - } - else { - len = _invlist_len(invlist); - } - - /* If comes after the final entry, can just append it to the end */ - if (len == 0 - || start >= invlist_array(invlist) - [_invlist_len(invlist) - 1]) - { - _append_range_to_invlist(invlist, start, end); - return invlist; - } - - /* Here, can't just append things, create and return a new inversion list - * which is the union of this range and the existing inversion list */ - range_invlist = _new_invlist(2); - _append_range_to_invlist(range_invlist, start, end); - - _invlist_union(invlist, range_invlist, &invlist); - - /* The temporary can be freed */ - SvREFCNT_dec(range_invlist); - - return invlist; -} - -#endif - -PERL_STATIC_INLINE SV* -S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) { - return _add_range_to_invlist(invlist, cp, cp); -} - -#ifndef PERL_IN_XSUB_RE -void -Perl__invlist_invert(pTHX_ SV* const invlist) -{ - /* Complement the input inversion list. This adds a 0 if the list didn't - * have a zero; removes it otherwise. As described above, the data - * structure is set up so that this is very efficient */ - - UV* len_pos = _get_invlist_len_addr(invlist); - - PERL_ARGS_ASSERT__INVLIST_INVERT; - - /* The inverse of matching nothing is matching everything */ - if (*len_pos == 0) { - _append_range_to_invlist(invlist, 0, UV_MAX); - return; - } - - /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the - * zero element was a 0, so it is being removed, so the length decrements - * by 1; and vice-versa. SvCUR is unaffected */ - if (*get_invlist_zero_addr(invlist) ^= 1) { - (*len_pos)--; - } - else { - (*len_pos)++; - } -} - -void -Perl__invlist_invert_prop(pTHX_ SV* const invlist) -{ - /* Complement the input inversion list (which must be a Unicode property, - * all of which don't match above the Unicode maximum code point.) And - * Perl has chosen to not have the inversion match above that either. This - * adds a 0x110000 if the list didn't end with it, and removes it if it did - */ - - UV len; - UV* array; - - PERL_ARGS_ASSERT__INVLIST_INVERT_PROP; - - _invlist_invert(invlist); - - len = _invlist_len(invlist); - - if (len != 0) { /* If empty do nothing */ - array = invlist_array(invlist); - if (array[len - 1] != PERL_UNICODE_MAX + 1) { - /* Add 0x110000. First, grow if necessary */ - len++; - if (invlist_max(invlist) < len) { - invlist_extend(invlist, len); - array = invlist_array(invlist); - } - invlist_set_len(invlist, len); - array[len - 1] = PERL_UNICODE_MAX + 1; - } - else { /* Remove the 0x110000 */ - invlist_set_len(invlist, len - 1); - } - } - - return; -} -#endif - -PERL_STATIC_INLINE SV* -S_invlist_clone(pTHX_ SV* const invlist) -{ - - /* Return a new inversion list that is a copy of the input one, which is - * unchanged */ - - /* Need to allocate extra space to accommodate Perl's addition of a - * trailing NUL to SvPV's, since it thinks they are always strings */ - SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1); - STRLEN length = SvCUR(invlist); - - PERL_ARGS_ASSERT_INVLIST_CLONE; - - SvCUR_set(new_invlist, length); /* This isn't done automatically */ - Copy(SvPVX(invlist), SvPVX(new_invlist), length, char); - - return new_invlist; -} - -PERL_STATIC_INLINE UV* -S_get_invlist_iter_addr(pTHX_ SV* invlist) -{ - /* Return the address of the UV that contains the current iteration - * position */ - - PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR; - - return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV))); -} - -PERL_STATIC_INLINE UV* -S_get_invlist_version_id_addr(pTHX_ SV* invlist) -{ - /* Return the address of the UV that contains the version id. */ - - PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR; - - return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV))); -} - -PERL_STATIC_INLINE void -S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */ -{ - PERL_ARGS_ASSERT_INVLIST_ITERINIT; - - *get_invlist_iter_addr(invlist) = 0; -} - -STATIC bool -S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end) -{ - /* An C call on must be used to set this up. - * This call sets in <*start> and <*end>, the next range in . - * Returns if successful and the next call will return the next - * range; if was already at the end of the list. If the latter, - * <*start> and <*end> are unchanged, and the next call to this function - * will start over at the beginning of the list */ - - UV* pos = get_invlist_iter_addr(invlist); - UV len = _invlist_len(invlist); - UV *array; - - PERL_ARGS_ASSERT_INVLIST_ITERNEXT; - - if (*pos >= len) { - *pos = UV_MAX; /* Force iternit() to be required next time */ - return FALSE; - } - - array = invlist_array(invlist); - - *start = array[(*pos)++]; - - if (*pos >= len) { - *end = UV_MAX; - } - else { - *end = array[(*pos)++] - 1; - } - - return TRUE; -} - -PERL_STATIC_INLINE UV -S_invlist_highest(pTHX_ SV* const invlist) -{ - /* Returns the highest code point that matches an inversion list. This API - * has an ambiguity, as it returns 0 under either the highest is actually - * 0, or if the list is empty. If this distinction matters to you, check - * for emptiness before calling this function */ - - UV len = _invlist_len(invlist); - UV *array; - - PERL_ARGS_ASSERT_INVLIST_HIGHEST; - - if (len == 0) { - return 0; - } - - array = invlist_array(invlist); - - /* The last element in the array in the inversion list always starts a - * range that goes to infinity. That range may be for code points that are - * matched in the inversion list, or it may be for ones that aren't - * matched. In the latter case, the highest code point in the set is one - * less than the beginning of this range; otherwise it is the final element - * of this range: infinity */ - return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1)) - ? UV_MAX - : array[len - 1] - 1; -} - -#ifndef PERL_IN_XSUB_RE -SV * -Perl__invlist_contents(pTHX_ SV* const invlist) -{ - /* Get the contents of an inversion list into a string SV so that they can - * be printed out. It uses the format traditionally done for debug tracing - */ - - UV start, end; - SV* output = newSVpvs("\n"); - - PERL_ARGS_ASSERT__INVLIST_CONTENTS; - - invlist_iterinit(invlist); - while (invlist_iternext(invlist, &start, &end)) { - if (end == UV_MAX) { - Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start); - } - else if (end != start) { - Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n", - start, end); - } - else { - Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start); - } - } - - return output; -} -#endif - -#ifdef PERL_ARGS_ASSERT__INVLIST_DUMP -void -Perl__invlist_dump(pTHX_ SV* const invlist, const char * const header) -{ - /* Dumps out the ranges in an inversion list. The string 'header' - * if present is output on a line before the first range */ - - UV start, end; - - PERL_ARGS_ASSERT__INVLIST_DUMP; - - if (header && strlen(header)) { - PerlIO_printf(Perl_debug_log, "%s\n", header); - } - invlist_iterinit(invlist); - while (invlist_iternext(invlist, &start, &end)) { - if (end == UV_MAX) { - PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start); - } - else if (end != start) { - PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", - start, end); - } - else { - PerlIO_printf(Perl_debug_log, "0x%04"UVXf"\n", start); - } - } -} -#endif - -#if 0 -bool -S__invlistEQ(pTHX_ SV* const a, SV* const b, bool complement_b) -{ - /* Return a boolean as to if the two passed in inversion lists are - * identical. The final argument, if TRUE, says to take the complement of - * the second inversion list before doing the comparison */ - - UV* array_a = invlist_array(a); - UV* array_b = invlist_array(b); - UV len_a = _invlist_len(a); - UV len_b = _invlist_len(b); - - UV i = 0; /* current index into the arrays */ - bool retval = TRUE; /* Assume are identical until proven otherwise */ - - PERL_ARGS_ASSERT__INVLISTEQ; - - /* If are to compare 'a' with the complement of b, set it - * up so are looking at b's complement. */ - if (complement_b) { - - /* The complement of nothing is everything, so would have to have - * just one element, starting at zero (ending at infinity) */ - if (len_b == 0) { - return (len_a == 1 && array_a[0] == 0); - } - else if (array_b[0] == 0) { - - /* Otherwise, to complement, we invert. Here, the first element is - * 0, just remove it. To do this, we just pretend the array starts - * one later, and clear the flag as we don't have to do anything - * else later */ - - array_b++; - len_b--; - complement_b = FALSE; - } - else { - - /* But if the first element is not zero, we unshift a 0 before the - * array. The data structure reserves a space for that 0 (which - * should be a '1' right now), so physical shifting is unneeded, - * but temporarily change that element to 0. Before exiting the - * routine, we must restore the element to '1' */ - array_b--; - len_b++; - array_b[0] = 0; - } - } - - /* Make sure that the lengths are the same, as well as the final element - * before looping through the remainder. (Thus we test the length, final, - * and first elements right off the bat) */ - if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) { - retval = FALSE; - } - else for (i = 0; i < len_a - 1; i++) { - if (array_a[i] != array_b[i]) { - retval = FALSE; - break; - } - } - - if (complement_b) { - array_b[0] = 1; - } - return retval; -} -#endif - -#undef HEADER_LENGTH -#undef INVLIST_INITIAL_LENGTH -#undef TO_INTERNAL_SIZE -#undef FROM_INTERNAL_SIZE -#undef INVLIST_LEN_OFFSET -#undef INVLIST_ZERO_OFFSET -#undef INVLIST_ITER_OFFSET -#undef INVLIST_VERSION_ID - -/* End of inversion list object */ - -/* - - reg - regular expression, i.e. main body or parenthesized thing - * - * Caller must absorb opening parenthesis. - * - * Combining parenthesis handling with the base level of regular expression - * is a trifle forced, but the need to tie the tails of the branches to what - * follows makes it hard to avoid. - */ -#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1) -#ifdef DEBUGGING -#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1) -#else -#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1) -#endif - -STATIC regnode * -S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth) - /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */ -{ - dVAR; - regnode *ret; /* Will be the head of the group. */ - regnode *br; - regnode *lastbr; - regnode *ender = NULL; - I32 parno = 0; - I32 flags; - U32 oregflags = RExC_flags; - bool have_branch = 0; - bool is_open = 0; - I32 freeze_paren = 0; - I32 after_freeze = 0; - - /* for (?g), (?gc), and (?o) warnings; warning - about (?c) will warn about (?g) -- japhy */ - -#define WASTED_O 0x01 -#define WASTED_G 0x02 -#define WASTED_C 0x04 -#define WASTED_GC (0x02|0x04) - I32 wastedflags = 0x00; - - char * parse_start = RExC_parse; /* MJD */ - char * const oregcomp_parse = RExC_parse; - - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REG; - DEBUG_PARSE("reg "); - - *flagp = 0; /* Tentatively. */ - - - /* Make an OPEN node, if parenthesized. */ - if (paren) { - if ( *RExC_parse == '*') { /* (*VERB:ARG) */ - char *start_verb = RExC_parse; - STRLEN verb_len = 0; - char *start_arg = NULL; - unsigned char op = 0; - int argok = 1; - int internal_argval = 0; /* internal_argval is only useful if !argok */ - while ( *RExC_parse && *RExC_parse != ')' ) { - if ( *RExC_parse == ':' ) { - start_arg = RExC_parse + 1; - break; - } - RExC_parse++; - } - ++start_verb; - verb_len = RExC_parse - start_verb; - if ( start_arg ) { - RExC_parse++; - while ( *RExC_parse && *RExC_parse != ')' ) - RExC_parse++; - if ( *RExC_parse != ')' ) - vFAIL("Unterminated verb pattern argument"); - if ( RExC_parse == start_arg ) - start_arg = NULL; - } else { - if ( *RExC_parse != ')' ) - vFAIL("Unterminated verb pattern"); - } - - switch ( *start_verb ) { - case 'A': /* (*ACCEPT) */ - if ( memEQs(start_verb,verb_len,"ACCEPT") ) { - op = ACCEPT; - internal_argval = RExC_nestroot; - } - break; - case 'C': /* (*COMMIT) */ - if ( memEQs(start_verb,verb_len,"COMMIT") ) - op = COMMIT; - break; - case 'F': /* (*FAIL) */ - if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) { - op = OPFAIL; - argok = 0; - } - break; - case ':': /* (*:NAME) */ - case 'M': /* (*MARK:NAME) */ - if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) { - op = MARKPOINT; - argok = -1; - } - break; - case 'P': /* (*PRUNE) */ - if ( memEQs(start_verb,verb_len,"PRUNE") ) - op = PRUNE; - break; - case 'S': /* (*SKIP) */ - if ( memEQs(start_verb,verb_len,"SKIP") ) - op = SKIP; - break; - case 'T': /* (*THEN) */ - /* [19:06] :: is then */ - if ( memEQs(start_verb,verb_len,"THEN") ) { - op = CUTGROUP; - RExC_seen |= REG_SEEN_CUTGROUP; - } - break; - } - if ( ! op ) { - RExC_parse++; - vFAIL3("Unknown verb pattern '%.*s'", - verb_len, start_verb); - } - if ( argok ) { - if ( start_arg && internal_argval ) { - vFAIL3("Verb pattern '%.*s' may not have an argument", - verb_len, start_verb); - } else if ( argok < 0 && !start_arg ) { - vFAIL3("Verb pattern '%.*s' has a mandatory argument", - verb_len, start_verb); - } else { - ret = reganode(pRExC_state, op, internal_argval); - if ( ! internal_argval && ! SIZE_ONLY ) { - if (start_arg) { - SV *sv = newSVpvn( start_arg, RExC_parse - start_arg); - ARG(ret) = add_data( pRExC_state, 1, "S" ); - RExC_rxi->data->data[ARG(ret)]=(void*)sv; - ret->flags = 0; - } else { - ret->flags = 1; - } - } - } - if (!internal_argval) - RExC_seen |= REG_SEEN_VERBARG; - } else if ( start_arg ) { - vFAIL3("Verb pattern '%.*s' may not have an argument", - verb_len, start_verb); - } else { - ret = reg_node(pRExC_state, op); - } - nextchar(pRExC_state); - return ret; - } else - if (*RExC_parse == '?') { /* (?...) */ - bool is_logical = 0; - const char * const seqstart = RExC_parse; - bool has_use_defaults = FALSE; - - RExC_parse++; - paren = *RExC_parse++; - ret = NULL; /* For look-ahead/behind. */ - switch (paren) { - - case 'P': /* (?P...) variants for those used to PCRE/Python */ - paren = *RExC_parse++; - if ( paren == '<') /* (?P<...>) named capture */ - goto named_capture; - else if (paren == '>') { /* (?P>name) named recursion */ - goto named_recursion; - } - else if (paren == '=') { /* (?P=...) named backref */ - /* this pretty much dupes the code for \k in regatom(), if - you change this make sure you change that */ - char* name_start = RExC_parse; - U32 num = 0; - SV *sv_dat = reg_scan_name(pRExC_state, - SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); - if (RExC_parse == name_start || *RExC_parse != ')') - vFAIL2("Sequence %.3s... not terminated",parse_start); - - if (!SIZE_ONLY) { - num = add_data( pRExC_state, 1, "S" ); - RExC_rxi->data->data[num]=(void*)sv_dat; - SvREFCNT_inc_simple_void(sv_dat); - } - RExC_sawback = 1; - ret = reganode(pRExC_state, - ((! FOLD) - ? NREF - : (ASCII_FOLD_RESTRICTED) - ? NREFFA - : (AT_LEAST_UNI_SEMANTICS) - ? NREFFU - : (LOC) - ? NREFFL - : NREFF), - num); - *flagp |= HASWIDTH; - - Set_Node_Offset(ret, parse_start+1); - Set_Node_Cur_Length(ret); /* MJD */ - - nextchar(pRExC_state); - return ret; - } - RExC_parse++; - vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); - /*NOTREACHED*/ - case '<': /* (?<...) */ - if (*RExC_parse == '!') - paren = ','; - else if (*RExC_parse != '=') - named_capture: - { /* (?<...>) */ - char *name_start; - SV *svname; - paren= '>'; - case '\'': /* (?'...') */ - name_start= RExC_parse; - svname = reg_scan_name(pRExC_state, - SIZE_ONLY ? /* reverse test from the others */ - REG_RSN_RETURN_NAME : - REG_RSN_RETURN_NULL); - if (RExC_parse == name_start) { - RExC_parse++; - vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); - /*NOTREACHED*/ - } - if (*RExC_parse != paren) - vFAIL2("Sequence (?%c... not terminated", - paren=='>' ? '<' : paren); - if (SIZE_ONLY) { - HE *he_str; - SV *sv_dat = NULL; - if (!svname) /* shouldn't happen */ - Perl_croak(aTHX_ - "panic: reg_scan_name returned NULL"); - if (!RExC_paren_names) { - RExC_paren_names= newHV(); - sv_2mortal(MUTABLE_SV(RExC_paren_names)); -#ifdef DEBUGGING - RExC_paren_name_list= newAV(); - sv_2mortal(MUTABLE_SV(RExC_paren_name_list)); -#endif - } - he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 ); - if ( he_str ) - sv_dat = HeVAL(he_str); - if ( ! sv_dat ) { - /* croak baby croak */ - Perl_croak(aTHX_ - "panic: paren_name hash element allocation failed"); - } else if ( SvPOK(sv_dat) ) { - /* (?|...) can mean we have dupes so scan to check - its already been stored. Maybe a flag indicating - we are inside such a construct would be useful, - but the arrays are likely to be quite small, so - for now we punt -- dmq */ - IV count = SvIV(sv_dat); - I32 *pv = (I32*)SvPVX(sv_dat); - IV i; - for ( i = 0 ; i < count ; i++ ) { - if ( pv[i] == RExC_npar ) { - count = 0; - break; - } - } - if ( count ) { - pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1); - SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32)); - pv[count] = RExC_npar; - SvIV_set(sv_dat, SvIVX(sv_dat) + 1); - } - } else { - (void)SvUPGRADE(sv_dat,SVt_PVNV); - sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32)); - SvIOK_on(sv_dat); - SvIV_set(sv_dat, 1); - } -#ifdef DEBUGGING - /* Yes this does cause a memory leak in debugging Perls */ - if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname))) - SvREFCNT_dec(svname); -#endif - - /*sv_dump(sv_dat);*/ - } - nextchar(pRExC_state); - paren = 1; - goto capturing_parens; - } - RExC_seen |= REG_SEEN_LOOKBEHIND; - RExC_in_lookbehind++; - RExC_parse++; - case '=': /* (?=...) */ - RExC_seen_zerolen++; - break; - case '!': /* (?!...) */ - RExC_seen_zerolen++; - if (*RExC_parse == ')') { - ret=reg_node(pRExC_state, OPFAIL); - nextchar(pRExC_state); - return ret; - } - break; - case '|': /* (?|...) */ - /* branch reset, behave like a (?:...) except that - buffers in alternations share the same numbers */ - paren = ':'; - after_freeze = freeze_paren = RExC_npar; - break; - case ':': /* (?:...) */ - case '>': /* (?>...) */ - break; - case '$': /* (?$...) */ - case '@': /* (?@...) */ - vFAIL2("Sequence (?%c...) not implemented", (int)paren); - break; - case '#': /* (?#...) */ - while (*RExC_parse && *RExC_parse != ')') - RExC_parse++; - if (*RExC_parse != ')') - FAIL("Sequence (?#... not terminated"); - nextchar(pRExC_state); - *flagp = TRYAGAIN; - return NULL; - case '0' : /* (?0) */ - case 'R' : /* (?R) */ - if (*RExC_parse != ')') - FAIL("Sequence (?R) not terminated"); - ret = reg_node(pRExC_state, GOSTART); - *flagp |= POSTPONED; - nextchar(pRExC_state); - return ret; - /*notreached*/ - { /* named and numeric backreferences */ - I32 num; - case '&': /* (?&NAME) */ - parse_start = RExC_parse - 1; - named_recursion: - { - SV *sv_dat = reg_scan_name(pRExC_state, - SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); - num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0; - } - goto gen_recurse_regop; - assert(0); /* NOT REACHED */ - case '+': - if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) { - RExC_parse++; - vFAIL("Illegal pattern"); - } - goto parse_recursion; - /* NOT REACHED*/ - case '-': /* (?-1) */ - if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) { - RExC_parse--; /* rewind to let it be handled later */ - goto parse_flags; - } - /*FALLTHROUGH */ - case '1': case '2': case '3': case '4': /* (?1) */ - case '5': case '6': case '7': case '8': case '9': - RExC_parse--; - parse_recursion: - num = atoi(RExC_parse); - parse_start = RExC_parse - 1; /* MJD */ - if (*RExC_parse == '-') - RExC_parse++; - while (isDIGIT(*RExC_parse)) - RExC_parse++; - if (*RExC_parse!=')') - vFAIL("Expecting close bracket"); - - gen_recurse_regop: - if ( paren == '-' ) { - /* - Diagram of capture buffer numbering. - Top line is the normal capture buffer numbers - Bottom line is the negative indexing as from - the X (the (?-2)) - - + 1 2 3 4 5 X 6 7 - /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/ - - 5 4 3 2 1 X x x - - */ - num = RExC_npar + num; - if (num < 1) { - RExC_parse++; - vFAIL("Reference to nonexistent group"); - } - } else if ( paren == '+' ) { - num = RExC_npar + num - 1; - } - - ret = reganode(pRExC_state, GOSUB, num); - if (!SIZE_ONLY) { - if (num > (I32)RExC_rx->nparens) { - RExC_parse++; - vFAIL("Reference to nonexistent group"); - } - ARG2L_SET( ret, RExC_recurse_count++); - RExC_emit++; - DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, - "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret))); - } else { - RExC_size++; - } - RExC_seen |= REG_SEEN_RECURSE; - Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */ - Set_Node_Offset(ret, parse_start); /* MJD */ - - *flagp |= POSTPONED; - nextchar(pRExC_state); - return ret; - } /* named and numeric backreferences */ - assert(0); /* NOT REACHED */ - - case '?': /* (??...) */ - is_logical = 1; - if (*RExC_parse != '{') { - RExC_parse++; - vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); - /*NOTREACHED*/ - } - *flagp |= POSTPONED; - paren = *RExC_parse++; - /* FALL THROUGH */ - case '{': /* (?{...}) */ - { - U32 n = 0; - struct reg_code_block *cb; - - RExC_seen_zerolen++; - - if ( !pRExC_state->num_code_blocks - || pRExC_state->code_index >= pRExC_state->num_code_blocks - || pRExC_state->code_blocks[pRExC_state->code_index].start - != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0)) - - RExC_start) - ) { - if (RExC_pm_flags & PMf_USE_RE_EVAL) - FAIL("panic: Sequence (?{...}): no code block found\n"); - FAIL("Eval-group not allowed at runtime, use re 'eval'"); - } - /* this is a pre-compiled code block (?{...}) */ - cb = &pRExC_state->code_blocks[pRExC_state->code_index]; - RExC_parse = RExC_start + cb->end; - if (!SIZE_ONLY) { - OP *o = cb->block; - if (cb->src_regex) { - n = add_data(pRExC_state, 2, "rl"); - RExC_rxi->data->data[n] = - (void*)SvREFCNT_inc((SV*)cb->src_regex); - RExC_rxi->data->data[n+1] = (void*)o; - } - else { - n = add_data(pRExC_state, 1, - (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l"); - RExC_rxi->data->data[n] = (void*)o; - } - } - pRExC_state->code_index++; - nextchar(pRExC_state); - - if (is_logical) { - regnode *eval; - ret = reg_node(pRExC_state, LOGICAL); - eval = reganode(pRExC_state, EVAL, n); - if (!SIZE_ONLY) { - ret->flags = 2; - /* for later propagation into (??{}) return value */ - eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME); - } - REGTAIL(pRExC_state, ret, eval); - /* deal with the length of this later - MJD */ - return ret; - } - ret = reganode(pRExC_state, EVAL, n); - Set_Node_Length(ret, RExC_parse - parse_start + 1); - Set_Node_Offset(ret, parse_start); - return ret; - } - case '(': /* (?(?{...})...) and (?(?=...)...) */ - { - int is_define= 0; - if (RExC_parse[0] == '?') { /* (?(?...)) */ - if (RExC_parse[1] == '=' || RExC_parse[1] == '!' - || RExC_parse[1] == '<' - || RExC_parse[1] == '{') { /* Lookahead or eval. */ - I32 flag; - - ret = reg_node(pRExC_state, LOGICAL); - if (!SIZE_ONLY) - ret->flags = 1; - REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1)); - goto insert_if; - } - } - else if ( RExC_parse[0] == '<' /* (?()...) */ - || RExC_parse[0] == '\'' ) /* (?('NAME')...) */ - { - char ch = RExC_parse[0] == '<' ? '>' : '\''; - char *name_start= RExC_parse++; - U32 num = 0; - SV *sv_dat=reg_scan_name(pRExC_state, - SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); - if (RExC_parse == name_start || *RExC_parse != ch) - vFAIL2("Sequence (?(%c... not terminated", - (ch == '>' ? '<' : ch)); - RExC_parse++; - if (!SIZE_ONLY) { - num = add_data( pRExC_state, 1, "S" ); - RExC_rxi->data->data[num]=(void*)sv_dat; - SvREFCNT_inc_simple_void(sv_dat); - } - ret = reganode(pRExC_state,NGROUPP,num); - goto insert_if_check_paren; - } - else if (RExC_parse[0] == 'D' && - RExC_parse[1] == 'E' && - RExC_parse[2] == 'F' && - RExC_parse[3] == 'I' && - RExC_parse[4] == 'N' && - RExC_parse[5] == 'E') - { - ret = reganode(pRExC_state,DEFINEP,0); - RExC_parse +=6 ; - is_define = 1; - goto insert_if_check_paren; - } - else if (RExC_parse[0] == 'R') { - RExC_parse++; - parno = 0; - if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) { - parno = atoi(RExC_parse++); - while (isDIGIT(*RExC_parse)) - RExC_parse++; - } else if (RExC_parse[0] == '&') { - SV *sv_dat; - RExC_parse++; - sv_dat = reg_scan_name(pRExC_state, - SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); - parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0; - } - ret = reganode(pRExC_state,INSUBP,parno); - goto insert_if_check_paren; - } - else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) { - /* (?(1)...) */ - char c; - parno = atoi(RExC_parse++); - - while (isDIGIT(*RExC_parse)) - RExC_parse++; - ret = reganode(pRExC_state, GROUPP, parno); - - insert_if_check_paren: - if ((c = *nextchar(pRExC_state)) != ')') - vFAIL("Switch condition not recognized"); - insert_if: - REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0)); - br = regbranch(pRExC_state, &flags, 1,depth+1); - if (br == NULL) - br = reganode(pRExC_state, LONGJMP, 0); - else - REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0)); - c = *nextchar(pRExC_state); - if (flags&HASWIDTH) - *flagp |= HASWIDTH; - if (c == '|') { - if (is_define) - vFAIL("(?(DEFINE)....) does not allow branches"); - lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */ - regbranch(pRExC_state, &flags, 1,depth+1); - REGTAIL(pRExC_state, ret, lastbr); - if (flags&HASWIDTH) - *flagp |= HASWIDTH; - c = *nextchar(pRExC_state); - } - else - lastbr = NULL; - if (c != ')') - vFAIL("Switch (?(condition)... contains too many branches"); - ender = reg_node(pRExC_state, TAIL); - REGTAIL(pRExC_state, br, ender); - if (lastbr) { - REGTAIL(pRExC_state, lastbr, ender); - REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); - } - else - REGTAIL(pRExC_state, ret, ender); - RExC_size++; /* XXX WHY do we need this?!! - For large programs it seems to be required - but I can't figure out why. -- dmq*/ - return ret; - } - else { - vFAIL2("Unknown switch condition (?(%.2s", RExC_parse); - } - } - case 0: - RExC_parse--; /* for vFAIL to print correctly */ - vFAIL("Sequence (? incomplete"); - break; - case DEFAULT_PAT_MOD: /* Use default flags with the exceptions - that follow */ - has_use_defaults = TRUE; - STD_PMMOD_FLAGS_CLEAR(&RExC_flags); - set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics) - ? REGEX_UNICODE_CHARSET - : REGEX_DEPENDS_CHARSET); - goto parse_flags; - default: - --RExC_parse; - parse_flags: /* (?i) */ - { - U32 posflags = 0, negflags = 0; - U32 *flagsp = &posflags; - char has_charset_modifier = '\0'; - regex_charset cs = get_regex_charset(RExC_flags); - if (cs == REGEX_DEPENDS_CHARSET - && (RExC_utf8 || RExC_uni_semantics)) - { - cs = REGEX_UNICODE_CHARSET; - } - - while (*RExC_parse) { - /* && strchr("iogcmsx", *RExC_parse) */ - /* (?g), (?gc) and (?o) are useless here - and must be globally applied -- japhy */ - switch (*RExC_parse) { - CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp); - case LOCALE_PAT_MOD: - if (has_charset_modifier) { - goto excess_modifier; - } - else if (flagsp == &negflags) { - goto neg_modifier; - } - cs = REGEX_LOCALE_CHARSET; - has_charset_modifier = LOCALE_PAT_MOD; - RExC_contains_locale = 1; - break; - case UNICODE_PAT_MOD: - if (has_charset_modifier) { - goto excess_modifier; - } - else if (flagsp == &negflags) { - goto neg_modifier; - } - cs = REGEX_UNICODE_CHARSET; - has_charset_modifier = UNICODE_PAT_MOD; - break; - case ASCII_RESTRICT_PAT_MOD: - if (flagsp == &negflags) { - goto neg_modifier; - } - if (has_charset_modifier) { - if (cs != REGEX_ASCII_RESTRICTED_CHARSET) { - goto excess_modifier; - } - /* Doubled modifier implies more restricted */ - cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET; - } - else { - cs = REGEX_ASCII_RESTRICTED_CHARSET; - } - has_charset_modifier = ASCII_RESTRICT_PAT_MOD; - break; - case DEPENDS_PAT_MOD: - if (has_use_defaults) { - goto fail_modifiers; - } - else if (flagsp == &negflags) { - goto neg_modifier; - } - else if (has_charset_modifier) { - goto excess_modifier; - } - - /* The dual charset means unicode semantics if the - * pattern (or target, not known until runtime) are - * utf8, or something in the pattern indicates unicode - * semantics */ - cs = (RExC_utf8 || RExC_uni_semantics) - ? REGEX_UNICODE_CHARSET - : REGEX_DEPENDS_CHARSET; - has_charset_modifier = DEPENDS_PAT_MOD; - break; - excess_modifier: - RExC_parse++; - if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) { - vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD); - } - else if (has_charset_modifier == *(RExC_parse - 1)) { - vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1)); - } - else { - vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1)); - } - /*NOTREACHED*/ - neg_modifier: - RExC_parse++; - vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1)); - /*NOTREACHED*/ - case ONCE_PAT_MOD: /* 'o' */ - case GLOBAL_PAT_MOD: /* 'g' */ - if (SIZE_ONLY && ckWARN(WARN_REGEXP)) { - const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G; - if (! (wastedflags & wflagbit) ) { - wastedflags |= wflagbit; - vWARN5( - RExC_parse + 1, - "Useless (%s%c) - %suse /%c modifier", - flagsp == &negflags ? "?-" : "?", - *RExC_parse, - flagsp == &negflags ? "don't " : "", - *RExC_parse - ); - } - } - break; - - case CONTINUE_PAT_MOD: /* 'c' */ - if (SIZE_ONLY && ckWARN(WARN_REGEXP)) { - if (! (wastedflags & WASTED_C) ) { - wastedflags |= WASTED_GC; - vWARN3( - RExC_parse + 1, - "Useless (%sc) - %suse /gc modifier", - flagsp == &negflags ? "?-" : "?", - flagsp == &negflags ? "don't " : "" - ); - } - } - break; - case KEEPCOPY_PAT_MOD: /* 'p' */ - if (flagsp == &negflags) { - if (SIZE_ONLY) - ckWARNreg(RExC_parse + 1,"Useless use of (?-p)"); - } else { - *flagsp |= RXf_PMf_KEEPCOPY; - } - break; - case '-': - /* A flag is a default iff it is following a minus, so - * if there is a minus, it means will be trying to - * re-specify a default which is an error */ - if (has_use_defaults || flagsp == &negflags) { - fail_modifiers: - RExC_parse++; - vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); - /*NOTREACHED*/ - } - flagsp = &negflags; - wastedflags = 0; /* reset so (?g-c) warns twice */ - break; - case ':': - paren = ':'; - /*FALLTHROUGH*/ - case ')': - RExC_flags |= posflags; - RExC_flags &= ~negflags; - set_regex_charset(&RExC_flags, cs); - if (paren != ':') { - oregflags |= posflags; - oregflags &= ~negflags; - set_regex_charset(&oregflags, cs); - } - nextchar(pRExC_state); - if (paren != ':') { - *flagp = TRYAGAIN; - return NULL; - } else { - ret = NULL; - goto parse_rest; - } - /*NOTREACHED*/ - default: - RExC_parse++; - vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart); - /*NOTREACHED*/ - } - ++RExC_parse; - } - }} /* one for the default block, one for the switch */ - } - else { /* (...) */ - capturing_parens: - parno = RExC_npar; - RExC_npar++; - - ret = reganode(pRExC_state, OPEN, parno); - if (!SIZE_ONLY ){ - if (!RExC_nestroot) - RExC_nestroot = parno; - if (RExC_seen & REG_SEEN_RECURSE - && !RExC_open_parens[parno-1]) - { - DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, - "Setting open paren #%"IVdf" to %d\n", - (IV)parno, REG_NODE_NUM(ret))); - RExC_open_parens[parno-1]= ret; - } - } - Set_Node_Length(ret, 1); /* MJD */ - Set_Node_Offset(ret, RExC_parse); /* MJD */ - is_open = 1; - } - } - else /* ! paren */ - ret = NULL; - - parse_rest: - /* Pick up the branches, linking them together. */ - parse_start = RExC_parse; /* MJD */ - br = regbranch(pRExC_state, &flags, 1,depth+1); - - /* branch_len = (paren != 0); */ - - if (br == NULL) - return(NULL); - if (*RExC_parse == '|') { - if (!SIZE_ONLY && RExC_extralen) { - reginsert(pRExC_state, BRANCHJ, br, depth+1); - } - else { /* MJD */ - reginsert(pRExC_state, BRANCH, br, depth+1); - Set_Node_Length(br, paren != 0); - Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start); - } - have_branch = 1; - if (SIZE_ONLY) - RExC_extralen += 1; /* For BRANCHJ-BRANCH. */ - } - else if (paren == ':') { - *flagp |= flags&SIMPLE; - } - if (is_open) { /* Starts with OPEN. */ - REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */ - } - else if (paren != '?') /* Not Conditional */ - ret = br; - *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED); - lastbr = br; - while (*RExC_parse == '|') { - if (!SIZE_ONLY && RExC_extralen) { - ender = reganode(pRExC_state, LONGJMP,0); - REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */ - } - if (SIZE_ONLY) - RExC_extralen += 2; /* Account for LONGJMP. */ - nextchar(pRExC_state); - if (freeze_paren) { - if (RExC_npar > after_freeze) - after_freeze = RExC_npar; - RExC_npar = freeze_paren; - } - br = regbranch(pRExC_state, &flags, 0, depth+1); - - if (br == NULL) - return(NULL); - REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */ - lastbr = br; - *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED); - } - - if (have_branch || paren != ':') { - /* Make a closing node, and hook it on the end. */ - switch (paren) { - case ':': - ender = reg_node(pRExC_state, TAIL); - break; - case 1: - ender = reganode(pRExC_state, CLOSE, parno); - if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) { - DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log, - "Setting close paren #%"IVdf" to %d\n", - (IV)parno, REG_NODE_NUM(ender))); - RExC_close_parens[parno-1]= ender; - if (RExC_nestroot == parno) - RExC_nestroot = 0; - } - Set_Node_Offset(ender,RExC_parse+1); /* MJD */ - Set_Node_Length(ender,1); /* MJD */ - break; - case '<': - case ',': - case '=': - case '!': - *flagp &= ~HASWIDTH; - /* FALL THROUGH */ - case '>': - ender = reg_node(pRExC_state, SUCCEED); - break; - case 0: - ender = reg_node(pRExC_state, END); - if (!SIZE_ONLY) { - assert(!RExC_opend); /* there can only be one! */ - RExC_opend = ender; - } - break; - } - DEBUG_PARSE_r(if (!SIZE_ONLY) { - SV * const mysv_val1=sv_newmortal(); - SV * const mysv_val2=sv_newmortal(); - DEBUG_PARSE_MSG("lsbr"); - regprop(RExC_rx, mysv_val1, lastbr); - regprop(RExC_rx, mysv_val2, ender); - PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n", - SvPV_nolen_const(mysv_val1), - (IV)REG_NODE_NUM(lastbr), - SvPV_nolen_const(mysv_val2), - (IV)REG_NODE_NUM(ender), - (IV)(ender - lastbr) - ); - }); - REGTAIL(pRExC_state, lastbr, ender); - - if (have_branch && !SIZE_ONLY) { - char is_nothing= 1; - if (depth==1) - RExC_seen |= REG_TOP_LEVEL_BRANCHES; - - /* Hook the tails of the branches to the closing node. */ - for (br = ret; br; br = regnext(br)) { - const U8 op = PL_regkind[OP(br)]; - if (op == BRANCH) { - REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender); - if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender) - is_nothing= 0; - } - else if (op == BRANCHJ) { - REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender); - /* for now we always disable this optimisation * / - if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender) - */ - is_nothing= 0; - } - } - if (is_nothing) { - br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret; - DEBUG_PARSE_r(if (!SIZE_ONLY) { - SV * const mysv_val1=sv_newmortal(); - SV * const mysv_val2=sv_newmortal(); - DEBUG_PARSE_MSG("NADA"); - regprop(RExC_rx, mysv_val1, ret); - regprop(RExC_rx, mysv_val2, ender); - PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n", - SvPV_nolen_const(mysv_val1), - (IV)REG_NODE_NUM(ret), - SvPV_nolen_const(mysv_val2), - (IV)REG_NODE_NUM(ender), - (IV)(ender - ret) - ); - }); - OP(br)= NOTHING; - if (OP(ender) == TAIL) { - NEXT_OFF(br)= 0; - RExC_emit= br + 1; - } else { - regnode *opt; - for ( opt= br + 1; opt < ender ; opt++ ) - OP(opt)= OPTIMIZED; - NEXT_OFF(br)= ender - br; - } - } - } - } - - { - const char *p; - static const char parens[] = "=!<,>"; - - if (paren && (p = strchr(parens, paren))) { - U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH; - int flag = (p - parens) > 1; - - if (paren == '>') - node = SUSPEND, flag = 0; - reginsert(pRExC_state, node,ret, depth+1); - Set_Node_Cur_Length(ret); - Set_Node_Offset(ret, parse_start + 1); - ret->flags = flag; - REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL)); - } - } - - /* Check for proper termination. */ - if (paren) { - RExC_flags = oregflags; - if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') { - RExC_parse = oregcomp_parse; - vFAIL("Unmatched ("); - } - } - else if (!paren && RExC_parse < RExC_end) { - if (*RExC_parse == ')') { - RExC_parse++; - vFAIL("Unmatched )"); - } - else - FAIL("Junk on end of regexp"); /* "Can't happen". */ - assert(0); /* NOTREACHED */ - } - - if (RExC_in_lookbehind) { - RExC_in_lookbehind--; - } - if (after_freeze > RExC_npar) - RExC_npar = after_freeze; - return(ret); -} - -/* - - regbranch - one alternative of an | operator - * - * Implements the concatenation operator. - */ -STATIC regnode * -S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth) -{ - dVAR; - regnode *ret; - regnode *chain = NULL; - regnode *latest; - I32 flags = 0, c = 0; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGBRANCH; - - DEBUG_PARSE("brnc"); - - if (first) - ret = NULL; - else { - if (!SIZE_ONLY && RExC_extralen) - ret = reganode(pRExC_state, BRANCHJ,0); - else { - ret = reg_node(pRExC_state, BRANCH); - Set_Node_Length(ret, 1); - } - } - - if (!first && SIZE_ONLY) - RExC_extralen += 1; /* BRANCHJ */ - - *flagp = WORST; /* Tentatively. */ - - RExC_parse--; - nextchar(pRExC_state); - while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') { - flags &= ~TRYAGAIN; - latest = regpiece(pRExC_state, &flags,depth+1); - if (latest == NULL) { - if (flags & TRYAGAIN) - continue; - return(NULL); - } - else if (ret == NULL) - ret = latest; - *flagp |= flags&(HASWIDTH|POSTPONED); - if (chain == NULL) /* First piece. */ - *flagp |= flags&SPSTART; - else { - RExC_naughty++; - REGTAIL(pRExC_state, chain, latest); - } - chain = latest; - c++; - } - if (chain == NULL) { /* Loop ran zero times. */ - chain = reg_node(pRExC_state, NOTHING); - if (ret == NULL) - ret = chain; - } - if (c == 1) { - *flagp |= flags&SIMPLE; - } - - return ret; -} - -/* - - regpiece - something followed by possible [*+?] - * - * Note that the branching code sequences used for ? and the general cases - * of * and + are somewhat optimized: they use the same NOTHING node as - * both the endmarker for their branch list and the body of the last branch. - * It might seem that this node could be dispensed with entirely, but the - * endmarker role is not redundant. - */ -STATIC regnode * -S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth) -{ - dVAR; - regnode *ret; - char op; - char *next; - I32 flags; - const char * const origparse = RExC_parse; - I32 min; - I32 max = REG_INFTY; -#ifdef RE_TRACK_PATTERN_OFFSETS - char *parse_start; -#endif - const char *maxpos = NULL; - - /* Save the original in case we change the emitted regop to a FAIL. */ - regnode * const orig_emit = RExC_emit; - - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGPIECE; - - DEBUG_PARSE("piec"); - - ret = regatom(pRExC_state, &flags,depth+1); - if (ret == NULL) { - if (flags & TRYAGAIN) - *flagp |= TRYAGAIN; - return(NULL); - } - - op = *RExC_parse; - - if (op == '{' && regcurly(RExC_parse)) { - maxpos = NULL; -#ifdef RE_TRACK_PATTERN_OFFSETS - parse_start = RExC_parse; /* MJD */ -#endif - next = RExC_parse + 1; - while (isDIGIT(*next) || *next == ',') { - if (*next == ',') { - if (maxpos) - break; - else - maxpos = next; - } - next++; - } - if (*next == '}') { /* got one */ - if (!maxpos) - maxpos = next; - RExC_parse++; - min = atoi(RExC_parse); - if (*maxpos == ',') - maxpos++; - else - maxpos = RExC_parse; - max = atoi(maxpos); - if (!max && *maxpos != '0') - max = REG_INFTY; /* meaning "infinity" */ - else if (max >= REG_INFTY) - vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1); - RExC_parse = next; - nextchar(pRExC_state); - if (max < min) { /* If can't match, warn and optimize to fail - unconditionally */ - if (SIZE_ONLY) { - ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match"); - - /* We can't back off the size because we have to reserve - * enough space for all the things we are about to throw - * away, but we can shrink it by the ammount we are about - * to re-use here */ - RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL]; - } - else { - RExC_emit = orig_emit; - } - ret = reg_node(pRExC_state, OPFAIL); - return ret; - } - - do_curly: - if ((flags&SIMPLE)) { - RExC_naughty += 2 + RExC_naughty / 2; - reginsert(pRExC_state, CURLY, ret, depth+1); - Set_Node_Offset(ret, parse_start+1); /* MJD */ - Set_Node_Cur_Length(ret); - } - else { - regnode * const w = reg_node(pRExC_state, WHILEM); - - w->flags = 0; - REGTAIL(pRExC_state, ret, w); - if (!SIZE_ONLY && RExC_extralen) { - reginsert(pRExC_state, LONGJMP,ret, depth+1); - reginsert(pRExC_state, NOTHING,ret, depth+1); - NEXT_OFF(ret) = 3; /* Go over LONGJMP. */ - } - reginsert(pRExC_state, CURLYX,ret, depth+1); - /* MJD hk */ - Set_Node_Offset(ret, parse_start+1); - Set_Node_Length(ret, - op == '{' ? (RExC_parse - parse_start) : 1); - - if (!SIZE_ONLY && RExC_extralen) - NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */ - REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING)); - if (SIZE_ONLY) - RExC_whilem_seen++, RExC_extralen += 3; - RExC_naughty += 4 + RExC_naughty; /* compound interest */ - } - ret->flags = 0; - - if (min > 0) - *flagp = WORST; - if (max > 0) - *flagp |= HASWIDTH; - if (!SIZE_ONLY) { - ARG1_SET(ret, (U16)min); - ARG2_SET(ret, (U16)max); - } - - goto nest_check; - } - } - - if (!ISMULT1(op)) { - *flagp = flags; - return(ret); - } - -#if 0 /* Now runtime fix should be reliable. */ - - /* if this is reinstated, don't forget to put this back into perldiag: - - =item Regexp *+ operand could be empty at {#} in regex m/%s/ - - (F) The part of the regexp subject to either the * or + quantifier - could match an empty string. The {#} shows in the regular - expression about where the problem was discovered. - - */ - - if (!(flags&HASWIDTH) && op != '?') - vFAIL("Regexp *+ operand could be empty"); -#endif - -#ifdef RE_TRACK_PATTERN_OFFSETS - parse_start = RExC_parse; -#endif - nextchar(pRExC_state); - - *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH); - - if (op == '*' && (flags&SIMPLE)) { - reginsert(pRExC_state, STAR, ret, depth+1); - ret->flags = 0; - RExC_naughty += 4; - } - else if (op == '*') { - min = 0; - goto do_curly; - } - else if (op == '+' && (flags&SIMPLE)) { - reginsert(pRExC_state, PLUS, ret, depth+1); - ret->flags = 0; - RExC_naughty += 3; - } - else if (op == '+') { - min = 1; - goto do_curly; - } - else if (op == '?') { - min = 0; max = 1; - goto do_curly; - } - nest_check: - if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) { - SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */ - ckWARN3reg(RExC_parse, - "%.*s matches null string many times", - (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0), - origparse); - (void)ReREFCNT_inc(RExC_rx_sv); - } - - if (RExC_parse < RExC_end && *RExC_parse == '?') { - nextchar(pRExC_state); - reginsert(pRExC_state, MINMOD, ret, depth+1); - REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE); - } -#ifndef REG_ALLOW_MINMOD_SUSPEND - else -#endif - if (RExC_parse < RExC_end && *RExC_parse == '+') { - regnode *ender; - nextchar(pRExC_state); - ender = reg_node(pRExC_state, SUCCEED); - REGTAIL(pRExC_state, ret, ender); - reginsert(pRExC_state, SUSPEND, ret, depth+1); - ret->flags = 0; - ender = reg_node(pRExC_state, TAIL); - REGTAIL(pRExC_state, ret, ender); - /*ret= ender;*/ - } - - if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) { - RExC_parse++; - vFAIL("Nested quantifiers"); - } - - return(ret); -} - -STATIC bool -S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state, regnode** node_p, UV *valuep, I32 *flagp, U32 depth, bool in_char_class) -{ - - /* This is expected to be called by a parser routine that has recognized '\N' - and needs to handle the rest. RExC_parse is expected to point at the first - char following the N at the time of the call. On successful return, - RExC_parse has been updated to point to just after the sequence identified - by this routine, and <*flagp> has been updated. - - The \N may be inside (indicated by the boolean ) or outside a - character class. - - \N may begin either a named sequence, or if outside a character class, mean - to match a non-newline. For non single-quoted regexes, the tokenizer has - attempted to decide which, and in the case of a named sequence, converted it - into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...}, - where c1... are the characters in the sequence. For single-quoted regexes, - the tokenizer passes the \N sequence through unchanged; this code will not - attempt to determine this nor expand those, instead raising a syntax error. - The net effect is that if the beginning of the passed-in pattern isn't '{U+' - or there is no '}', it signals that this \N occurrence means to match a - non-newline. - - Only the \N{U+...} form should occur in a character class, for the same - reason that '.' inside a character class means to just match a period: it - just doesn't make sense. - - The function raises an error (via vFAIL), and doesn't return for various - syntax errors. Otherwise it returns TRUE and sets or on - success; it returns FALSE otherwise. - - If is non-null, it means the caller can accept an input sequence - consisting of a just a single code point; <*valuep> is set to that value - if the input is such. - - If is non-null it signifies that the caller can accept any other - legal sequence (i.e., one that isn't just a single code point). <*node_p> - is set as follows: - 1) \N means not-a-NL: points to a newly created REG_ANY node; - 2) \N{}: points to a new NOTHING node; - 3) otherwise: points to a new EXACT node containing the resolved - string. - Note that FALSE is returned for single code point sequences if is - null. - */ - - char * endbrace; /* '}' following the name */ - char* p; - char *endchar; /* Points to '.' or '}' ending cur char in the input - stream */ - bool has_multiple_chars; /* true if the input stream contains a sequence of - more than one character */ - - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_GROK_BSLASH_N; - - GET_RE_DEBUG_FLAGS; - - assert(cBOOL(node_p) ^ cBOOL(valuep)); /* Exactly one should be set */ - - /* The [^\n] meaning of \N ignores spaces and comments under the /x - * modifier. The other meaning does not */ - p = (RExC_flags & RXf_PMf_EXTENDED) - ? regwhite( pRExC_state, RExC_parse ) - : RExC_parse; - - /* Disambiguate between \N meaning a named character versus \N meaning - * [^\n]. The former is assumed when it can't be the latter. */ - if (*p != '{' || regcurly(p)) { - RExC_parse = p; - if (! node_p) { - /* no bare \N in a charclass */ - if (in_char_class) { - vFAIL("\\N in a character class must be a named character: \\N{...}"); - } - return FALSE; - } - nextchar(pRExC_state); - *node_p = reg_node(pRExC_state, REG_ANY); - *flagp |= HASWIDTH|SIMPLE; - RExC_naughty++; - RExC_parse--; - Set_Node_Length(*node_p, 1); /* MJD */ - return TRUE; - } - - /* Here, we have decided it should be a named character or sequence */ - - /* The test above made sure that the next real character is a '{', but - * under the /x modifier, it could be separated by space (or a comment and - * \n) and this is not allowed (for consistency with \x{...} and the - * tokenizer handling of \N{NAME}). */ - if (*RExC_parse != '{') { - vFAIL("Missing braces on \\N{}"); - } - - RExC_parse++; /* Skip past the '{' */ - - if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */ - || ! (endbrace == RExC_parse /* nothing between the {} */ - || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */ - && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */ - { - if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */ - vFAIL("\\N{NAME} must be resolved by the lexer"); - } - - if (endbrace == RExC_parse) { /* empty: \N{} */ - bool ret = TRUE; - if (node_p) { - *node_p = reg_node(pRExC_state,NOTHING); - } - else if (in_char_class) { - if (SIZE_ONLY && in_char_class) { - ckWARNreg(RExC_parse, - "Ignoring zero length \\N{} in character class" - ); - } - ret = FALSE; - } - else { - return FALSE; - } - nextchar(pRExC_state); - return ret; - } - - RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */ - RExC_parse += 2; /* Skip past the 'U+' */ - - endchar = RExC_parse + strcspn(RExC_parse, ".}"); - - /* Code points are separated by dots. If none, there is only one code - * point, and is terminated by the brace */ - has_multiple_chars = (endchar < endbrace); - - if (valuep && (! has_multiple_chars || in_char_class)) { - /* We only pay attention to the first char of - multichar strings being returned in char classes. I kinda wonder - if this makes sense as it does change the behaviour - from earlier versions, OTOH that behaviour was broken - as well. XXX Solution is to recharacterize as - [rest-of-class]|multi1|multi2... */ - - STRLEN length_of_hex = (STRLEN)(endchar - RExC_parse); - I32 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES - | PERL_SCAN_DISALLOW_PREFIX - | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0); - - *valuep = grok_hex(RExC_parse, &length_of_hex, &grok_hex_flags, NULL); - - /* The tokenizer should have guaranteed validity, but it's possible to - * bypass it by using single quoting, so check */ - if (length_of_hex == 0 - || length_of_hex != (STRLEN)(endchar - RExC_parse) ) - { - RExC_parse += length_of_hex; /* Includes all the valid */ - RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */ - ? UTF8SKIP(RExC_parse) - : 1; - /* Guard against malformed utf8 */ - if (RExC_parse >= endchar) { - RExC_parse = endchar; - } - vFAIL("Invalid hexadecimal number in \\N{U+...}"); - } - - if (in_char_class && has_multiple_chars) { - ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class"); - } - - RExC_parse = endbrace + 1; - } - else if (! node_p || ! has_multiple_chars) { - - /* Here, the input is legal, but not according to the caller's - * options. We fail without advancing the parse, so that the - * caller can try again */ - RExC_parse = p; - return FALSE; - } - else { - - /* What is done here is to convert this to a sub-pattern of the form - * (?:\x{char1}\x{char2}...) - * and then call reg recursively. That way, it retains its atomicness, - * while not having to worry about special handling that some code - * points may have. toke.c has converted the original Unicode values - * to native, so that we can just pass on the hex values unchanged. We - * do have to set a flag to keep recoding from happening in the - * recursion */ - - SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP); - STRLEN len; - char *orig_end = RExC_end; - I32 flags; - - while (RExC_parse < endbrace) { - - /* Convert to notation the rest of the code understands */ - sv_catpv(substitute_parse, "\\x{"); - sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse); - sv_catpv(substitute_parse, "}"); - - /* Point to the beginning of the next character in the sequence. */ - RExC_parse = endchar + 1; - endchar = RExC_parse + strcspn(RExC_parse, ".}"); - } - sv_catpv(substitute_parse, ")"); - - RExC_parse = SvPV(substitute_parse, len); - - /* Don't allow empty number */ - if (len < 8) { - vFAIL("Invalid hexadecimal number in \\N{U+...}"); - } - RExC_end = RExC_parse + len; - - /* The values are Unicode, and therefore not subject to recoding */ - RExC_override_recoding = 1; - - *node_p = reg(pRExC_state, 1, &flags, depth+1); - *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED); - - RExC_parse = endbrace; - RExC_end = orig_end; - RExC_override_recoding = 0; - - nextchar(pRExC_state); - } - - return TRUE; -} - - -/* - * reg_recode - * - * It returns the code point in utf8 for the value in *encp. - * value: a code value in the source encoding - * encp: a pointer to an Encode object - * - * If the result from Encode is not a single character, - * it returns U+FFFD (Replacement character) and sets *encp to NULL. - */ -STATIC UV -S_reg_recode(pTHX_ const char value, SV **encp) -{ - STRLEN numlen = 1; - SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP); - const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv); - const STRLEN newlen = SvCUR(sv); - UV uv = UNICODE_REPLACEMENT; - - PERL_ARGS_ASSERT_REG_RECODE; - - if (newlen) - uv = SvUTF8(sv) - ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT) - : *(U8*)s; - - if (!newlen || numlen != newlen) { - uv = UNICODE_REPLACEMENT; - *encp = NULL; - } - return uv; -} - -PERL_STATIC_INLINE U8 -S_compute_EXACTish(pTHX_ RExC_state_t *pRExC_state) -{ - U8 op; - - PERL_ARGS_ASSERT_COMPUTE_EXACTISH; - - if (! FOLD) { - return EXACT; - } - - op = get_regex_charset(RExC_flags); - if (op >= REGEX_ASCII_RESTRICTED_CHARSET) { - op--; /* /a is same as /u, and map /aa's offset to what /a's would have - been, so there is no hole */ - } - - return op + EXACTF; -} - -PERL_STATIC_INLINE void -S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state, regnode *node, I32* flagp, STRLEN len, UV code_point) -{ - /* This knows the details about sizing an EXACTish node, setting flags for - * it (by setting <*flagp>, and potentially populating it with a single - * character. - * - * If (the length in bytes) is non-zero, this function assumes that - * the node has already been populated, and just does the sizing. In this - * case should be the final code point that has already been - * placed into the node. This value will be ignored except that under some - * circumstances <*flagp> is set based on it. - * - * If is zero, the function assumes that the node is to contain only - * the single character given by and calculates what - * should be. In pass 1, it sizes the node appropriately. In pass 2, it - * additionally will populate the node's STRING with , if - * is 0. In both cases <*flagp> is appropriately set - * - * It knows that under FOLD, UTF characters and the Latin Sharp S must be - * folded (the latter only when the rules indicate it can match 'ss') */ - - bool len_passed_in = cBOOL(len != 0); - U8 character[UTF8_MAXBYTES_CASE+1]; - - PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT; - - if (! len_passed_in) { - if (UTF) { - if (FOLD) { - to_uni_fold(NATIVE_TO_UNI(code_point), character, &len); - } - else { - uvchr_to_utf8( character, code_point); - len = UTF8SKIP(character); - } - } - else if (! FOLD - || code_point != LATIN_SMALL_LETTER_SHARP_S - || ASCII_FOLD_RESTRICTED - || ! AT_LEAST_UNI_SEMANTICS) - { - *character = (U8) code_point; - len = 1; - } - else { - *character = 's'; - *(character + 1) = 's'; - len = 2; - } - } - - if (SIZE_ONLY) { - RExC_size += STR_SZ(len); - } - else { - RExC_emit += STR_SZ(len); - STR_LEN(node) = len; - if (! len_passed_in) { - Copy((char *) character, STRING(node), len, char); - } - } - - *flagp |= HASWIDTH; - - /* A single character node is SIMPLE, except for the special-cased SHARP S - * under /di. */ - if ((len == 1 || (UTF && len == UNISKIP(code_point))) - && (code_point != LATIN_SMALL_LETTER_SHARP_S - || ! FOLD || ! DEPENDS_SEMANTICS)) - { - *flagp |= SIMPLE; - } -} - -/* - - regatom - the lowest level - - Try to identify anything special at the start of the pattern. If there - is, then handle it as required. This may involve generating a single regop, - such as for an assertion; or it may involve recursing, such as to - handle a () structure. - - If the string doesn't start with something special then we gobble up - as much literal text as we can. - - Once we have been able to handle whatever type of thing started the - sequence, we return. - - Note: we have to be careful with escapes, as they can be both literal - and special, and in the case of \10 and friends, context determines which. - - A summary of the code structure is: - - switch (first_byte) { - cases for each special: - handle this special; - break; - case '\\': - switch (2nd byte) { - cases for each unambiguous special: - handle this special; - break; - cases for each ambigous special/literal: - disambiguate; - if (special) handle here - else goto defchar; - default: // unambiguously literal: - goto defchar; - } - default: // is a literal char - // FALL THROUGH - defchar: - create EXACTish node for literal; - while (more input and node isn't full) { - switch (input_byte) { - cases for each special; - make sure parse pointer is set so that the next call to - regatom will see this special first - goto loopdone; // EXACTish node terminated by prev. char - default: - append char to EXACTISH node; - } - get next input byte; - } - loopdone: - } - return the generated node; - - Specifically there are two separate switches for handling - escape sequences, with the one for handling literal escapes requiring - a dummy entry for all of the special escapes that are actually handled - by the other. -*/ - -STATIC regnode * -S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth) -{ - dVAR; - regnode *ret = NULL; - I32 flags; - char *parse_start = RExC_parse; - U8 op; - GET_RE_DEBUG_FLAGS_DECL; - DEBUG_PARSE("atom"); - *flagp = WORST; /* Tentatively. */ - - PERL_ARGS_ASSERT_REGATOM; - -tryagain: - switch ((U8)*RExC_parse) { - case '^': - RExC_seen_zerolen++; - nextchar(pRExC_state); - if (RExC_flags & RXf_PMf_MULTILINE) - ret = reg_node(pRExC_state, MBOL); - else if (RExC_flags & RXf_PMf_SINGLELINE) - ret = reg_node(pRExC_state, SBOL); - else - ret = reg_node(pRExC_state, BOL); - Set_Node_Length(ret, 1); /* MJD */ - break; - case '$': - nextchar(pRExC_state); - if (*RExC_parse) - RExC_seen_zerolen++; - if (RExC_flags & RXf_PMf_MULTILINE) - ret = reg_node(pRExC_state, MEOL); - else if (RExC_flags & RXf_PMf_SINGLELINE) - ret = reg_node(pRExC_state, SEOL); - else - ret = reg_node(pRExC_state, EOL); - Set_Node_Length(ret, 1); /* MJD */ - break; - case '.': - nextchar(pRExC_state); - if (RExC_flags & RXf_PMf_SINGLELINE) - ret = reg_node(pRExC_state, SANY); - else - ret = reg_node(pRExC_state, REG_ANY); - *flagp |= HASWIDTH|SIMPLE; - RExC_naughty++; - Set_Node_Length(ret, 1); /* MJD */ - break; - case '[': - { - char * const oregcomp_parse = ++RExC_parse; - ret = regclass(pRExC_state, flagp,depth+1); - if (*RExC_parse != ']') { - RExC_parse = oregcomp_parse; - vFAIL("Unmatched ["); - } - nextchar(pRExC_state); - Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */ - break; - } - case '(': - nextchar(pRExC_state); - ret = reg(pRExC_state, 1, &flags,depth+1); - if (ret == NULL) { - if (flags & TRYAGAIN) { - if (RExC_parse == RExC_end) { - /* Make parent create an empty node if needed. */ - *flagp |= TRYAGAIN; - return(NULL); - } - goto tryagain; - } - return(NULL); - } - *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED); - break; - case '|': - case ')': - if (flags & TRYAGAIN) { - *flagp |= TRYAGAIN; - return NULL; - } - vFAIL("Internal urp"); - /* Supposed to be caught earlier. */ - break; - case '?': - case '+': - case '*': - RExC_parse++; - vFAIL("Quantifier follows nothing"); - break; - case '\\': - /* Special Escapes - - This switch handles escape sequences that resolve to some kind - of special regop and not to literal text. Escape sequnces that - resolve to literal text are handled below in the switch marked - "Literal Escapes". - - Every entry in this switch *must* have a corresponding entry - in the literal escape switch. However, the opposite is not - required, as the default for this switch is to jump to the - literal text handling code. - */ - switch ((U8)*++RExC_parse) { - /* Special Escapes */ - case 'A': - RExC_seen_zerolen++; - ret = reg_node(pRExC_state, SBOL); - *flagp |= SIMPLE; - goto finish_meta_pat; - case 'G': - ret = reg_node(pRExC_state, GPOS); - RExC_seen |= REG_SEEN_GPOS; - *flagp |= SIMPLE; - goto finish_meta_pat; - case 'K': - RExC_seen_zerolen++; - ret = reg_node(pRExC_state, KEEPS); - *flagp |= SIMPLE; - /* XXX:dmq : disabling in-place substitution seems to - * be necessary here to avoid cases of memory corruption, as - * with: C<$_="x" x 80; s/x\K/y/> -- rgs - */ - RExC_seen |= REG_SEEN_LOOKBEHIND; - goto finish_meta_pat; - case 'Z': - ret = reg_node(pRExC_state, SEOL); - *flagp |= SIMPLE; - RExC_seen_zerolen++; /* Do not optimize RE away */ - goto finish_meta_pat; - case 'z': - ret = reg_node(pRExC_state, EOS); - *flagp |= SIMPLE; - RExC_seen_zerolen++; /* Do not optimize RE away */ - goto finish_meta_pat; - case 'C': - ret = reg_node(pRExC_state, CANY); - RExC_seen |= REG_SEEN_CANY; - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'X': - ret = reg_node(pRExC_state, CLUMP); - *flagp |= HASWIDTH; - goto finish_meta_pat; - case 'w': - op = ALNUM + get_regex_charset(RExC_flags); - if (op > ALNUMA) { /* /aa is same as /a */ - op = ALNUMA; - } - ret = reg_node(pRExC_state, op); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'W': - op = NALNUM + get_regex_charset(RExC_flags); - if (op > NALNUMA) { /* /aa is same as /a */ - op = NALNUMA; - } - ret = reg_node(pRExC_state, op); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'b': - RExC_seen_zerolen++; - RExC_seen |= REG_SEEN_LOOKBEHIND; - op = BOUND + get_regex_charset(RExC_flags); - if (op > BOUNDA) { /* /aa is same as /a */ - op = BOUNDA; - } - ret = reg_node(pRExC_state, op); - FLAGS(ret) = get_regex_charset(RExC_flags); - *flagp |= SIMPLE; - goto finish_meta_pat; - case 'B': - RExC_seen_zerolen++; - RExC_seen |= REG_SEEN_LOOKBEHIND; - op = NBOUND + get_regex_charset(RExC_flags); - if (op > NBOUNDA) { /* /aa is same as /a */ - op = NBOUNDA; - } - ret = reg_node(pRExC_state, op); - FLAGS(ret) = get_regex_charset(RExC_flags); - *flagp |= SIMPLE; - goto finish_meta_pat; - case 's': - op = SPACE + get_regex_charset(RExC_flags); - if (op > SPACEA) { /* /aa is same as /a */ - op = SPACEA; - } - ret = reg_node(pRExC_state, op); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'S': - op = NSPACE + get_regex_charset(RExC_flags); - if (op > NSPACEA) { /* /aa is same as /a */ - op = NSPACEA; - } - ret = reg_node(pRExC_state, op); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'D': - op = NDIGIT; - goto join_D_and_d; - case 'd': - op = DIGIT; - join_D_and_d: - { - U8 offset = get_regex_charset(RExC_flags); - if (offset == REGEX_UNICODE_CHARSET) { - offset = REGEX_DEPENDS_CHARSET; - } - else if (offset == REGEX_ASCII_MORE_RESTRICTED_CHARSET) { - offset = REGEX_ASCII_RESTRICTED_CHARSET; - } - op += offset; - } - ret = reg_node(pRExC_state, op); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'R': - ret = reg_node(pRExC_state, LNBREAK); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'h': - ret = reg_node(pRExC_state, HORIZWS); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'H': - ret = reg_node(pRExC_state, NHORIZWS); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'v': - ret = reg_node(pRExC_state, VERTWS); - *flagp |= HASWIDTH|SIMPLE; - goto finish_meta_pat; - case 'V': - ret = reg_node(pRExC_state, NVERTWS); - *flagp |= HASWIDTH|SIMPLE; - finish_meta_pat: - nextchar(pRExC_state); - Set_Node_Length(ret, 2); /* MJD */ - break; - case 'p': - case 'P': - { - char* const oldregxend = RExC_end; -#ifdef DEBUGGING - char* parse_start = RExC_parse - 2; -#endif - - if (RExC_parse[1] == '{') { - /* a lovely hack--pretend we saw [\pX] instead */ - RExC_end = strchr(RExC_parse, '}'); - if (!RExC_end) { - const U8 c = (U8)*RExC_parse; - RExC_parse += 2; - RExC_end = oldregxend; - vFAIL2("Missing right brace on \\%c{}", c); - } - RExC_end++; - } - else { - RExC_end = RExC_parse + 2; - if (RExC_end > oldregxend) - RExC_end = oldregxend; - } - RExC_parse--; - - ret = regclass(pRExC_state, flagp,depth+1); - - RExC_end = oldregxend; - RExC_parse--; - - Set_Node_Offset(ret, parse_start + 2); - Set_Node_Cur_Length(ret); - nextchar(pRExC_state); - } - break; - case 'N': - /* Handle \N and \N{NAME} with multiple code points here and not - * below because it can be multicharacter. join_exact() will join - * them up later on. Also this makes sure that things like - * /\N{BLAH}+/ and \N{BLAH} being multi char Just Happen. dmq. - * The options to the grok function call causes it to fail if the - * sequence is just a single code point. We then go treat it as - * just another character in the current EXACT node, and hence it - * gets uniform treatment with all the other characters. The - * special treatment for quantifiers is not needed for such single - * character sequences */ - ++RExC_parse; - if (! grok_bslash_N(pRExC_state, &ret, NULL, flagp, depth, FALSE)) { - RExC_parse--; - goto defchar; - } - break; - case 'k': /* Handle \k and \k'NAME' */ - parse_named_seq: - { - char ch= RExC_parse[1]; - if (ch != '<' && ch != '\'' && ch != '{') { - RExC_parse++; - vFAIL2("Sequence %.2s... not terminated",parse_start); - } else { - /* this pretty much dupes the code for (?P=...) in reg(), if - you change this make sure you change that */ - char* name_start = (RExC_parse += 2); - U32 num = 0; - SV *sv_dat = reg_scan_name(pRExC_state, - SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA); - ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\''; - if (RExC_parse == name_start || *RExC_parse != ch) - vFAIL2("Sequence %.3s... not terminated",parse_start); - - if (!SIZE_ONLY) { - num = add_data( pRExC_state, 1, "S" ); - RExC_rxi->data->data[num]=(void*)sv_dat; - SvREFCNT_inc_simple_void(sv_dat); - } - - RExC_sawback = 1; - ret = reganode(pRExC_state, - ((! FOLD) - ? NREF - : (ASCII_FOLD_RESTRICTED) - ? NREFFA - : (AT_LEAST_UNI_SEMANTICS) - ? NREFFU - : (LOC) - ? NREFFL - : NREFF), - num); - *flagp |= HASWIDTH; - - /* override incorrect value set in reganode MJD */ - Set_Node_Offset(ret, parse_start+1); - Set_Node_Cur_Length(ret); /* MJD */ - nextchar(pRExC_state); - - } - break; - } - case 'g': - case '1': case '2': case '3': case '4': - case '5': case '6': case '7': case '8': case '9': - { - I32 num; - bool isg = *RExC_parse == 'g'; - bool isrel = 0; - bool hasbrace = 0; - if (isg) { - RExC_parse++; - if (*RExC_parse == '{') { - RExC_parse++; - hasbrace = 1; - } - if (*RExC_parse == '-') { - RExC_parse++; - isrel = 1; - } - if (hasbrace && !isDIGIT(*RExC_parse)) { - if (isrel) RExC_parse--; - RExC_parse -= 2; - goto parse_named_seq; - } } - num = atoi(RExC_parse); - if (isg && num == 0) - vFAIL("Reference to invalid group 0"); - if (isrel) { - num = RExC_npar - num; - if (num < 1) - vFAIL("Reference to nonexistent or unclosed group"); - } - if (!isg && num > 9 && num >= RExC_npar) - /* Probably a character specified in octal, e.g. \35 */ - goto defchar; - else { - char * const parse_start = RExC_parse - 1; /* MJD */ - while (isDIGIT(*RExC_parse)) - RExC_parse++; - if (parse_start == RExC_parse - 1) - vFAIL("Unterminated \\g... pattern"); - if (hasbrace) { - if (*RExC_parse != '}') - vFAIL("Unterminated \\g{...} pattern"); - RExC_parse++; - } - if (!SIZE_ONLY) { - if (num > (I32)RExC_rx->nparens) - vFAIL("Reference to nonexistent group"); - } - RExC_sawback = 1; - ret = reganode(pRExC_state, - ((! FOLD) - ? REF - : (ASCII_FOLD_RESTRICTED) - ? REFFA - : (AT_LEAST_UNI_SEMANTICS) - ? REFFU - : (LOC) - ? REFFL - : REFF), - num); - *flagp |= HASWIDTH; - - /* override incorrect value set in reganode MJD */ - Set_Node_Offset(ret, parse_start+1); - Set_Node_Cur_Length(ret); /* MJD */ - RExC_parse--; - nextchar(pRExC_state); - } - } - break; - case '\0': - if (RExC_parse >= RExC_end) - FAIL("Trailing \\"); - /* FALL THROUGH */ - default: - /* Do not generate "unrecognized" warnings here, we fall - back into the quick-grab loop below */ - parse_start--; - goto defchar; - } - break; - - case '#': - if (RExC_flags & RXf_PMf_EXTENDED) { - if ( reg_skipcomment( pRExC_state ) ) - goto tryagain; - } - /* FALL THROUGH */ - - default: - - parse_start = RExC_parse - 1; - - RExC_parse++; - - defchar: { - STRLEN len = 0; - UV ender; - char *p; - char *s; -#define MAX_NODE_STRING_SIZE 127 - char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE]; - char *s0; - U8 upper_parse = MAX_NODE_STRING_SIZE; - STRLEN foldlen; - U8 node_type; - bool next_is_quantifier; - char * oldp = NULL; - - /* If a folding node contains only code points that don't - * participate in folds, it can be changed into an EXACT node, - * which allows the optimizer more things to look for */ - bool maybe_exact; - - ender = 0; - node_type = compute_EXACTish(pRExC_state); - ret = reg_node(pRExC_state, node_type); - - /* In pass1, folded, we use a temporary buffer instead of the - * actual node, as the node doesn't exist yet */ - s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret); - - s0 = s; - - reparse: - - /* We do the EXACTFish to EXACT node only if folding, and not if in - * locale, as whether a character folds or not isn't known until - * runtime */ - maybe_exact = FOLD && ! LOC; - - /* XXX The node can hold up to 255 bytes, yet this only goes to - * 127. I (khw) do not know why. Keeping it somewhat less than - * 255 allows us to not have to worry about overflow due to - * converting to utf8 and fold expansion, but that value is - * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes - * split up by this limit into a single one using the real max of - * 255. Even at 127, this breaks under rare circumstances. If - * folding, we do not want to split a node at a character that is a - * non-final in a multi-char fold, as an input string could just - * happen to want to match across the node boundary. The join - * would solve that problem if the join actually happens. But a - * series of more than two nodes in a row each of 127 would cause - * the first join to succeed to get to 254, but then there wouldn't - * be room for the next one, which could at be one of those split - * multi-char folds. I don't know of any fool-proof solution. One - * could back off to end with only a code point that isn't such a - * non-final, but it is possible for there not to be any in the - * entire node. */ - for (p = RExC_parse - 1; - len < upper_parse && p < RExC_end; - len++) - { - oldp = p; - - if (RExC_flags & RXf_PMf_EXTENDED) - p = regwhite( pRExC_state, p ); - switch ((U8)*p) { - case '^': - case '$': - case '.': - case '[': - case '(': - case ')': - case '|': - goto loopdone; - case '\\': - /* Literal Escapes Switch - - This switch is meant to handle escape sequences that - resolve to a literal character. - - Every escape sequence that represents something - else, like an assertion or a char class, is handled - in the switch marked 'Special Escapes' above in this - routine, but also has an entry here as anything that - isn't explicitly mentioned here will be treated as - an unescaped equivalent literal. - */ - - switch ((U8)*++p) { - /* These are all the special escapes. */ - case 'A': /* Start assertion */ - case 'b': case 'B': /* Word-boundary assertion*/ - case 'C': /* Single char !DANGEROUS! */ - case 'd': case 'D': /* digit class */ - case 'g': case 'G': /* generic-backref, pos assertion */ - case 'h': case 'H': /* HORIZWS */ - case 'k': case 'K': /* named backref, keep marker */ - case 'p': case 'P': /* Unicode property */ - case 'R': /* LNBREAK */ - case 's': case 'S': /* space class */ - case 'v': case 'V': /* VERTWS */ - case 'w': case 'W': /* word class */ - case 'X': /* eXtended Unicode "combining character sequence" */ - case 'z': case 'Z': /* End of line/string assertion */ - --p; - goto loopdone; - - /* Anything after here is an escape that resolves to a - literal. (Except digits, which may or may not) - */ - case 'n': - ender = '\n'; - p++; - break; - case 'N': /* Handle a single-code point named character. */ - /* The options cause it to fail if a multiple code - * point sequence. Handle those in the switch() above - * */ - RExC_parse = p + 1; - if (! grok_bslash_N(pRExC_state, NULL, &ender, - flagp, depth, FALSE)) - { - RExC_parse = p = oldp; - goto loopdone; - } - p = RExC_parse; - if (ender > 0xff) { - REQUIRE_UTF8; - } - break; - case 'r': - ender = '\r'; - p++; - break; - case 't': - ender = '\t'; - p++; - break; - case 'f': - ender = '\f'; - p++; - break; - case 'e': - ender = ASCII_TO_NATIVE('\033'); - p++; - break; - case 'a': - ender = ASCII_TO_NATIVE('\007'); - p++; - break; - case 'o': - { - STRLEN brace_len = len; - UV result; - const char* error_msg; - - bool valid = grok_bslash_o(p, - &result, - &brace_len, - &error_msg, - 1); - p += brace_len; - if (! valid) { - RExC_parse = p; /* going to die anyway; point - to exact spot of failure */ - vFAIL(error_msg); - } - else - { - ender = result; - } - if (PL_encoding && ender < 0x100) { - goto recode_encoding; - } - if (ender > 0xff) { - REQUIRE_UTF8; - } - break; - } - case 'x': - { - STRLEN brace_len = len; - UV result; - const char* error_msg; - - bool valid = grok_bslash_x(p, - &result, - &brace_len, - &error_msg, - 1); - p += brace_len; - if (! valid) { - RExC_parse = p; /* going to die anyway; point - to exact spot of failure */ - vFAIL(error_msg); - } - else { - ender = result; - } - if (PL_encoding && ender < 0x100) { - goto recode_encoding; - } - if (ender > 0xff) { - REQUIRE_UTF8; - } - break; - } - case 'c': - p++; - ender = grok_bslash_c(*p++, UTF, SIZE_ONLY); - break; - case '0': case '1': case '2': case '3':case '4': - case '5': case '6': case '7': - if (*p == '0' || - (isDIGIT(p[1]) && atoi(p) >= RExC_npar)) - { - I32 flags = PERL_SCAN_SILENT_ILLDIGIT; - STRLEN numlen = 3; - ender = grok_oct(p, &numlen, &flags, NULL); - if (ender > 0xff) { - REQUIRE_UTF8; - } - p += numlen; - } - else { - --p; - goto loopdone; - } - if (PL_encoding && ender < 0x100) - goto recode_encoding; - break; - recode_encoding: - if (! RExC_override_recoding) { - SV* enc = PL_encoding; - ender = reg_recode((const char)(U8)ender, &enc); - if (!enc && SIZE_ONLY) - ckWARNreg(p, "Invalid escape in the specified encoding"); - REQUIRE_UTF8; - } - break; - case '\0': - if (p >= RExC_end) - FAIL("Trailing \\"); - /* FALL THROUGH */ - default: - if (!SIZE_ONLY&& isALNUMC(*p)) { - ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p); - } - goto normal_default; - } - break; - case '{': - /* Currently we don't warn when the lbrace is at the start - * of a construct. This catches it in the middle of a - * literal string, or when its the first thing after - * something like "\b" */ - if (! SIZE_ONLY - && (len || (p > RExC_start && isALPHA_A(*(p -1))))) - { - ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through"); - } - /*FALLTHROUGH*/ - default: - normal_default: - if (UTF8_IS_START(*p) && UTF) { - STRLEN numlen; - ender = utf8n_to_uvchr((U8*)p, RExC_end - p, - &numlen, UTF8_ALLOW_DEFAULT); - p += numlen; - } - else - ender = (U8) *p++; - break; - } /* End of switch on the literal */ - - /* Here, have looked at the literal character and - * contains its ordinal,

points to the character after it - */ - - if ( RExC_flags & RXf_PMf_EXTENDED) - p = regwhite( pRExC_state, p ); - - /* If the next thing is a quantifier, it applies to this - * character only, which means that this character has to be in - * its own node and can't just be appended to the string in an - * existing node, so if there are already other characters in - * the node, close the node with just them, and set up to do - * this character again next time through, when it will be the - * only thing in its new node */ - if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len) - { - p = oldp; - goto loopdone; - } - - if (FOLD) { - if (UTF - /* See comments for join_exact() as to why we fold - * this non-UTF at compile time */ - || (node_type == EXACTFU - && ender == LATIN_SMALL_LETTER_SHARP_S)) - { - - - /* Prime the casefolded buffer. Locale rules, which - * apply only to code points < 256, aren't known until - * execution, so for them, just output the original - * character using utf8. If we start to fold non-UTF - * patterns, be sure to update join_exact() */ - if (LOC && ender < 256) { - if (UNI_IS_INVARIANT(ender)) { - *s = (U8) ender; - foldlen = 1; - } else { - *s = UTF8_TWO_BYTE_HI(ender); - *(s + 1) = UTF8_TWO_BYTE_LO(ender); - foldlen = 2; - } - } - else { - UV folded = _to_uni_fold_flags( - ender, - (U8 *) s, - &foldlen, - FOLD_FLAGS_FULL - | ((LOC) ? FOLD_FLAGS_LOCALE - : (ASCII_FOLD_RESTRICTED) - ? FOLD_FLAGS_NOMIX_ASCII - : 0) - ); - - /* If this node only contains non-folding code - * points so far, see if this new one is also - * non-folding */ - if (maybe_exact) { - if (folded != ender) { - maybe_exact = FALSE; - } - else { - /* Here the fold is the original; we have - * to check further to see if anything - * folds to it */ - if (! PL_utf8_foldable) { - SV* swash = swash_init("utf8", - "_Perl_Any_Folds", - &PL_sv_undef, 1, 0); - PL_utf8_foldable = - _get_swash_invlist(swash); - SvREFCNT_dec(swash); - } - if (_invlist_contains_cp(PL_utf8_foldable, - ender)) - { - maybe_exact = FALSE; - } - } - } - ender = folded; - } - s += foldlen; - - /* The loop increments each time, as all but this - * path (and the one just below for UTF) through it add - * a single byte to the EXACTish node. But this one - * has changed len to be the correct final value, so - * subtract one to cancel out the increment that - * follows */ - len += foldlen - 1; - } - else { - *(s++) = ender; - maybe_exact &= ! IS_IN_SOME_FOLD_L1(ender); - } - } - else if (UTF) { - const STRLEN unilen = reguni(pRExC_state, ender, s); - if (unilen > 0) { - s += unilen; - len += unilen; - } - - /* See comment just above for - 1 */ - len--; - } - else { - REGC((char)ender, s++); - } - - if (next_is_quantifier) { - - /* Here, the next input is a quantifier, and to get here, - * the current character is the only one in the node. - * Also, here doesn't include the final byte for this - * character */ - len++; - goto loopdone; - } - - } /* End of loop through literal characters */ - - /* Here we have either exhausted the input or ran out of room in - * the node. (If we encountered a character that can't be in the - * node, transfer is made directly to , and so we - * wouldn't have fallen off the end of the loop.) In the latter - * case, we artificially have to split the node into two, because - * we just don't have enough space to hold everything. This - * creates a problem if the final character participates in a - * multi-character fold in the non-final position, as a match that - * should have occurred won't, due to the way nodes are matched, - * and our artificial boundary. So back off until we find a non- - * problematic character -- one that isn't at the beginning or - * middle of such a fold. (Either it doesn't participate in any - * folds, or appears only in the final position of all the folds it - * does participate in.) A better solution with far fewer false - * positives, and that would fill the nodes more completely, would - * be to actually have available all the multi-character folds to - * test against, and to back-off only far enough to be sure that - * this node isn't ending with a partial one. is set - * further below (if we need to reparse the node) to include just - * up through that final non-problematic character that this code - * identifies, so when it is set to less than the full node, we can - * skip the rest of this */ - if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) { - - const STRLEN full_len = len; - - assert(len >= MAX_NODE_STRING_SIZE); - - /* Here, points to the final byte of the final character. - * Look backwards through the string until find a non- - * problematic character */ - - if (! UTF) { - - /* These two have no multi-char folds to non-UTF characters - */ - if (ASCII_FOLD_RESTRICTED || LOC) { - goto loopdone; - } - - while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { } - len = s - s0 + 1; - } - else { - if (! PL_NonL1NonFinalFold) { - PL_NonL1NonFinalFold = _new_invlist_C_array( - NonL1_Perl_Non_Final_Folds_invlist); - } - - /* Point to the first byte of the final character */ - s = (char *) utf8_hop((U8 *) s, -1); - - while (s >= s0) { /* Search backwards until find - non-problematic char */ - if (UTF8_IS_INVARIANT(*s)) { - - /* There are no ascii characters that participate - * in multi-char folds under /aa. In EBCDIC, the - * non-ascii invariants are all control characters, - * so don't ever participate in any folds. */ - if (ASCII_FOLD_RESTRICTED - || ! IS_NON_FINAL_FOLD(*s)) - { - break; - } - } - else if (UTF8_IS_DOWNGRADEABLE_START(*s)) { - - /* No Latin1 characters participate in multi-char - * folds under /l */ - if (LOC - || ! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_UNI( - *s, *(s+1)))) - { - break; - } - } - else if (! _invlist_contains_cp( - PL_NonL1NonFinalFold, - valid_utf8_to_uvchr((U8 *) s, NULL))) - { - break; - } - - /* Here, the current character is problematic in that - * it does occur in the non-final position of some - * fold, so try the character before it, but have to - * special case the very first byte in the string, so - * we don't read outside the string */ - s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1); - } /* End of loop backwards through the string */ - - /* If there were only problematic characters in the string, - * will point to before s0, in which case the length - * should be 0, otherwise include the length of the - * non-problematic character just found */ - len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s); - } - - /* Here, have found the final character, if any, that is - * non-problematic as far as ending the node without splitting - * it across a potential multi-char fold. contains the - * number of bytes in the node up-to and including that - * character, or is 0 if there is no such character, meaning - * the whole node contains only problematic characters. In - * this case, give up and just take the node as-is. We can't - * do any better */ - if (len == 0) { - len = full_len; - } else { - - /* Here, the node does contain some characters that aren't - * problematic. If one such is the final character in the - * node, we are done */ - if (len == full_len) { - goto loopdone; - } - else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) { - - /* If the final character is problematic, but the - * penultimate is not, back-off that last character to - * later start a new node with it */ - p = oldp; - goto loopdone; - } - - /* Here, the final non-problematic character is earlier - * in the input than the penultimate character. What we do - * is reparse from the beginning, going up only as far as - * this final ok one, thus guaranteeing that the node ends - * in an acceptable character. The reason we reparse is - * that we know how far in the character is, but we don't - * know how to correlate its position with the input parse. - * An alternate implementation would be to build that - * correlation as we go along during the original parse, - * but that would entail extra work for every node, whereas - * this code gets executed only when the string is too - * large for the node, and the final two characters are - * problematic, an infrequent occurrence. Yet another - * possible strategy would be to save the tail of the - * string, and the next time regatom is called, initialize - * with that. The problem with this is that unless you - * back off one more character, you won't be guaranteed - * regatom will get called again, unless regbranch, - * regpiece ... are also changed. If you do back off that - * extra character, so that there is input guaranteed to - * force calling regatom, you can't handle the case where - * just the first character in the node is acceptable. I - * (khw) decided to try this method which doesn't have that - * pitfall; if performance issues are found, we can do a - * combination of the current approach plus that one */ - upper_parse = len; - len = 0; - s = s0; - goto reparse; - } - } /* End of verifying node ends with an appropriate char */ - - loopdone: /* Jumped to when encounters something that shouldn't be in - the node */ - - /* If 'maybe_exact' is still set here, means there are no - * code points in the node that participate in folds */ - if (FOLD && maybe_exact) { - OP(ret) = EXACT; - } - - /* I (khw) don't know if you can get here with zero length, but the - * old code handled this situation by creating a zero-length EXACT - * node. Might as well be NOTHING instead */ - if (len == 0) { - OP(ret) = NOTHING; - } - else{ - alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender); - } - - RExC_parse = p - 1; - Set_Node_Cur_Length(ret); /* MJD */ - nextchar(pRExC_state); - { - /* len is STRLEN which is unsigned, need to copy to signed */ - IV iv = len; - if (iv < 0) - vFAIL("Internal disaster"); - } - - } /* End of label 'defchar:' */ - break; - } /* End of giant switch on input character */ - - return(ret); -} - -STATIC char * -S_regwhite( RExC_state_t *pRExC_state, char *p ) -{ - const char *e = RExC_end; - - PERL_ARGS_ASSERT_REGWHITE; - - while (p < e) { - if (isSPACE(*p)) - ++p; - else if (*p == '#') { - bool ended = 0; - do { - if (*p++ == '\n') { - ended = 1; - break; - } - } while (p < e); - if (!ended) - RExC_seen |= REG_SEEN_RUN_ON_COMMENT; - } - else - break; - } - return p; -} - -/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]]. - Character classes ([:foo:]) can also be negated ([:^foo:]). - Returns a named class id (ANYOF_XXX) if successful, -1 otherwise. - Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed, - but trigger failures because they are currently unimplemented. */ - -#define POSIXCC_DONE(c) ((c) == ':') -#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.') -#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c)) - -PERL_STATIC_INLINE I32 -S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, SV *free_me) -{ - dVAR; - I32 namedclass = OOB_NAMEDCLASS; - - PERL_ARGS_ASSERT_REGPPOSIXCC; - - if (value == '[' && RExC_parse + 1 < RExC_end && - /* I smell either [: or [= or [. -- POSIX has been here, right? */ - POSIXCC(UCHARAT(RExC_parse))) { - const char c = UCHARAT(RExC_parse); - char* const s = RExC_parse++; - - while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c) - RExC_parse++; - if (RExC_parse == RExC_end) - /* Grandfather lone [:, [=, [. */ - RExC_parse = s; - else { - const char* const t = RExC_parse++; /* skip over the c */ - assert(*t == c); - - if (UCHARAT(RExC_parse) == ']') { - const char *posixcc = s + 1; - RExC_parse++; /* skip over the ending ] */ - - if (*s == ':') { - const I32 complement = *posixcc == '^' ? *posixcc++ : 0; - const I32 skip = t - posixcc; - - /* Initially switch on the length of the name. */ - switch (skip) { - case 4: - if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */ - namedclass = ANYOF_WORDCHAR; - break; - case 5: - /* Names all of length 5. */ - /* alnum alpha ascii blank cntrl digit graph lower - print punct space upper */ - /* Offset 4 gives the best switch position. */ - switch (posixcc[4]) { - case 'a': - if (memEQ(posixcc, "alph", 4)) /* alpha */ - namedclass = ANYOF_ALPHA; - break; - case 'e': - if (memEQ(posixcc, "spac", 4)) /* space */ - namedclass = ANYOF_PSXSPC; - break; - case 'h': - if (memEQ(posixcc, "grap", 4)) /* graph */ - namedclass = ANYOF_GRAPH; - break; - case 'i': - if (memEQ(posixcc, "asci", 4)) /* ascii */ - namedclass = ANYOF_ASCII; - break; - case 'k': - if (memEQ(posixcc, "blan", 4)) /* blank */ - namedclass = ANYOF_BLANK; - break; - case 'l': - if (memEQ(posixcc, "cntr", 4)) /* cntrl */ - namedclass = ANYOF_CNTRL; - break; - case 'm': - if (memEQ(posixcc, "alnu", 4)) /* alnum */ - namedclass = ANYOF_ALNUMC; - break; - case 'r': - if (memEQ(posixcc, "lowe", 4)) /* lower */ - namedclass = ANYOF_LOWER; - else if (memEQ(posixcc, "uppe", 4)) /* upper */ - namedclass = ANYOF_UPPER; - break; - case 't': - if (memEQ(posixcc, "digi", 4)) /* digit */ - namedclass = ANYOF_DIGIT; - else if (memEQ(posixcc, "prin", 4)) /* print */ - namedclass = ANYOF_PRINT; - else if (memEQ(posixcc, "punc", 4)) /* punct */ - namedclass = ANYOF_PUNCT; - break; - } - break; - case 6: - if (memEQ(posixcc, "xdigit", 6)) - namedclass = ANYOF_XDIGIT; - break; - } - - if (namedclass == OOB_NAMEDCLASS) - Simple_vFAIL3("POSIX class [:%.*s:] unknown", - t - s - 1, s + 1); - - /* The #defines are structured so each complement is +1 to - * the normal one */ - if (complement) { - namedclass++; - } - assert (posixcc[skip] == ':'); - assert (posixcc[skip+1] == ']'); - } else if (!SIZE_ONLY) { - /* [[=foo=]] and [[.foo.]] are still future. */ - - /* adjust RExC_parse so the warning shows after - the class closes */ - while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']') - RExC_parse++; - SvREFCNT_dec(free_me); - vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c); - } - } else { - /* Maternal grandfather: - * "[:" ending in ":" but not in ":]" */ - RExC_parse = s; - } - } - } - - return namedclass; -} - -/* Generate the code to add a full posix character to the bracketed - * character class given by . ( is needed only under locale rules) - * destlist is the inversion list for non-locale rules that this class is - * to be added to - * sourcelist is the ASCII-range inversion list to add under /a rules - * Xsourcelist is the full Unicode range list to use otherwise. */ -#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \ - if (LOC) { \ - SV* scratch_list = NULL; \ - \ - /* Set this class in the node for runtime matching */ \ - ANYOF_CLASS_SET(node, class); \ - \ - /* For above Latin1 code points, we use the full Unicode range */ \ - _invlist_intersection(PL_AboveLatin1, \ - Xsourcelist, \ - &scratch_list); \ - /* And set the output to it, adding instead if there already is an \ - * output. Checking if is NULL first saves an extra \ - * clone. Its reference count will be decremented at the next \ - * union, etc, or if this is the only instance, at the end of the \ - * routine */ \ - if (! destlist) { \ - destlist = scratch_list; \ - } \ - else { \ - _invlist_union(destlist, scratch_list, &destlist); \ - SvREFCNT_dec(scratch_list); \ - } \ - } \ - else { \ - /* For non-locale, just add it to any existing list */ \ - _invlist_union(destlist, \ - (AT_LEAST_ASCII_RESTRICTED) \ - ? sourcelist \ - : Xsourcelist, \ - &destlist); \ - } - -/* Like DO_POSIX, but matches the complement of and . - */ -#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \ - if (LOC) { \ - SV* scratch_list = NULL; \ - ANYOF_CLASS_SET(node, class); \ - _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \ - if (! destlist) { \ - destlist = scratch_list; \ - } \ - else { \ - _invlist_union(destlist, scratch_list, &destlist); \ - SvREFCNT_dec(scratch_list); \ - } \ - } \ - else { \ - _invlist_union_complement_2nd(destlist, \ - (AT_LEAST_ASCII_RESTRICTED) \ - ? sourcelist \ - : Xsourcelist, \ - &destlist); \ - /* Under /d, everything in the upper half of the Latin1 range \ - * matches this complement */ \ - if (DEPENDS_SEMANTICS) { \ - ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \ - } \ - } - -/* Generate the code to add a posix character to the bracketed - * character class given by . ( is needed only under locale rules) - * destlist is the inversion list for non-locale rules that this class is - * to be added to - * sourcelist is the ASCII-range inversion list to add under /a rules - * l1_sourcelist is the Latin1 range list to use otherwise. - * Xpropertyname is the name to add to of the property to - * specify the code points above Latin1 that will have to be - * determined at run-time - * run_time_list is a SV* that contains text names of properties that are to - * be computed at run time. This concatenates - * to it, appropriately - * This is essentially DO_POSIX, but we know only the Latin1 values at compile - * time */ -#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \ - l1_sourcelist, Xpropertyname, run_time_list) \ - /* First, resolve whether to use the ASCII-only list or the L1 \ - * list */ \ - DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \ - ((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\ - Xpropertyname, run_time_list) - -#define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \ - Xpropertyname, run_time_list) \ - /* If not /a matching, there are going to be code points we will have \ - * to defer to runtime to look-up */ \ - if (! AT_LEAST_ASCII_RESTRICTED) { \ - Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \ - } \ - if (LOC) { \ - ANYOF_CLASS_SET(node, class); \ - } \ - else { \ - _invlist_union(destlist, sourcelist, &destlist); \ - } - -/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of - * this and DO_N_POSIX. Sets only if it can; unchanged - * otherwise */ -#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \ - l1_sourcelist, Xpropertyname, run_time_list, matches_above_unicode) \ - if (AT_LEAST_ASCII_RESTRICTED) { \ - _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \ - } \ - else { \ - Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \ - matches_above_unicode = TRUE; \ - if (LOC) { \ - ANYOF_CLASS_SET(node, namedclass); \ - } \ - else { \ - SV* scratch_list = NULL; \ - _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \ - if (! destlist) { \ - destlist = scratch_list; \ - } \ - else { \ - _invlist_union(destlist, scratch_list, &destlist); \ - SvREFCNT_dec(scratch_list); \ - } \ - if (DEPENDS_SEMANTICS) { \ - ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \ - } \ - } \ - } - -/* The names of properties whose definitions are not known at compile time are - * stored in this SV, after a constant heading. So if the length has been - * changed since initialization, then there is a run-time definition. */ -#define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION (SvCUR(listsv) != initial_listsv_len) - -/* This converts the named class defined in regcomp.h to its equivalent class - * number defined in handy.h. */ -#define namedclass_to_classnum(class) ((class) / 2) - -STATIC regnode * -S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth) -{ - /* parse a bracketed class specification. Most of these will produce an ANYOF node; - * but something like [a] will produce an EXACT node; [aA], an EXACTFish - * node; [[:ascii:]], a POSIXA node; etc. It is more complex under /i with - * multi-character folds: it will be rewritten following the paradigm of - * this example, where the s are characters which fold to - * multiple character sequences: - * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i - * gets effectively rewritten as: - * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i - * reg() gets called (recursively) on the rewritten version, and this - * function will return what it constructs. (Actually the s - * aren't physically removed from the [abcdefghi], it's just that they are - * ignored in the recursion by means of a flag: - * .) - * - * ANYOF nodes contain a bit map for the first 256 characters, with the - * corresponding bit set if that character is in the list. For characters - * above 255, a range list or swash is used. There are extra bits for \w, - * etc. in locale ANYOFs, as what these match is not determinable at - * compile time */ - - dVAR; - UV nextvalue; - UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE; - IV range = 0; - UV value = OOB_UNICODE, save_value = OOB_UNICODE; - regnode *ret; - STRLEN numlen; - IV namedclass = OOB_NAMEDCLASS; - char *rangebegin = NULL; - bool need_class = 0; - SV *listsv = NULL; - STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more - than just initialized. */ - SV* properties = NULL; /* Code points that match \p{} \P{} */ - SV* posixes = NULL; /* Code points that match classes like, [:word:], - extended beyond the Latin1 range */ - UV element_count = 0; /* Number of distinct elements in the class. - Optimizations may be possible if this is tiny */ - AV * multi_char_matches = NULL; /* Code points that fold to more than one - character; used under /i */ - UV n; - - /* Unicode properties are stored in a swash; this holds the current one - * being parsed. If this swash is the only above-latin1 component of the - * character class, an optimization is to pass it directly on to the - * execution engine. Otherwise, it is set to NULL to indicate that there - * are other things in the class that have to be dealt with at execution - * time */ - SV* swash = NULL; /* Code points that match \p{} \P{} */ - - /* Set if a component of this character class is user-defined; just passed - * on to the engine */ - bool has_user_defined_property = FALSE; - - /* inversion list of code points this node matches only when the target - * string is in UTF-8. (Because is under /d) */ - SV* depends_list = NULL; - - /* inversion list of code points this node matches. For much of the - * function, it includes only those that match regardless of the utf8ness - * of the target string */ - SV* cp_list = NULL; - -#ifdef EBCDIC - /* In a range, counts how many 0-2 of the ends of it came from literals, - * not escapes. Thus we can tell if 'A' was input vs \x{C1} */ - UV literal_endpoint = 0; -#endif - bool invert = FALSE; /* Is this class to be complemented */ - - /* Is there any thing like \W or [:^digit:] that matches above the legal - * Unicode range? */ - bool runtime_posix_matches_above_Unicode = FALSE; - - regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in - case we need to change the emitted regop to an EXACT. */ - const char * orig_parse = RExC_parse; - const I32 orig_size = RExC_size; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGCLASS; -#ifndef DEBUGGING - PERL_UNUSED_ARG(depth); -#endif - - DEBUG_PARSE("clas"); - - /* Assume we are going to generate an ANYOF node. */ - ret = reganode(pRExC_state, ANYOF, 0); - - if (!SIZE_ONLY) { - ANYOF_FLAGS(ret) = 0; - } - - if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */ - RExC_parse++; - invert = TRUE; - RExC_naughty++; - } - - if (SIZE_ONLY) { - RExC_size += ANYOF_SKIP; - listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */ - } - else { - RExC_emit += ANYOF_SKIP; - if (LOC) { - ANYOF_FLAGS(ret) |= ANYOF_LOCALE; - } - listsv = newSVpvs("# comment\n"); - initial_listsv_len = SvCUR(listsv); - } - - nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0; - - if (!SIZE_ONLY && POSIXCC(nextvalue)) - { - const char *s = RExC_parse; - const char c = *s++; - - while (isALNUM(*s)) - s++; - if (*s && c == *s && s[1] == ']') { - SAVEFREESV(RExC_rx_sv); - SAVEFREESV(listsv); - ckWARN3reg(s+2, - "POSIX syntax [%c %c] belongs inside character classes", - c, c); - (void)ReREFCNT_inc(RExC_rx_sv); - SvREFCNT_inc_simple_void_NN(listsv); - } - } - - /* allow 1st char to be ] (allowing it to be - is dealt with later) */ - if (UCHARAT(RExC_parse) == ']') - goto charclassloop; - -parseit: - while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') { - - charclassloop: - - namedclass = OOB_NAMEDCLASS; /* initialize as illegal */ - save_value = value; - save_prevvalue = prevvalue; - - if (!range) { - rangebegin = RExC_parse; - element_count++; - } - if (UTF) { - value = utf8n_to_uvchr((U8*)RExC_parse, - RExC_end - RExC_parse, - &numlen, UTF8_ALLOW_DEFAULT); - RExC_parse += numlen; - } - else - value = UCHARAT(RExC_parse++); - - nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0; - if (value == '[' && POSIXCC(nextvalue)) - namedclass = regpposixcc(pRExC_state, value, listsv); - else if (value == '\\') { - if (UTF) { - value = utf8n_to_uvchr((U8*)RExC_parse, - RExC_end - RExC_parse, - &numlen, UTF8_ALLOW_DEFAULT); - RExC_parse += numlen; - } - else - value = UCHARAT(RExC_parse++); - /* Some compilers cannot handle switching on 64-bit integer - * values, therefore value cannot be an UV. Yes, this will - * be a problem later if we want switch on Unicode. - * A similar issue a little bit later when switching on - * namedclass. --jhi */ - switch ((I32)value) { - case 'w': namedclass = ANYOF_WORDCHAR; break; - case 'W': namedclass = ANYOF_NWORDCHAR; break; - case 's': namedclass = ANYOF_SPACE; break; - case 'S': namedclass = ANYOF_NSPACE; break; - case 'd': namedclass = ANYOF_DIGIT; break; - case 'D': namedclass = ANYOF_NDIGIT; break; - case 'v': namedclass = ANYOF_VERTWS; break; - case 'V': namedclass = ANYOF_NVERTWS; break; - case 'h': namedclass = ANYOF_HORIZWS; break; - case 'H': namedclass = ANYOF_NHORIZWS; break; - case 'N': /* Handle \N{NAME} in class */ - { - /* We only pay attention to the first char of - multichar strings being returned. I kinda wonder - if this makes sense as it does change the behaviour - from earlier versions, OTOH that behaviour was broken - as well. */ - if (! grok_bslash_N(pRExC_state, NULL, &value, flagp, depth, - TRUE /* => charclass */)) - { - goto parseit; - } - } - break; - case 'p': - case 'P': - { - char *e; - - /* This routine will handle any undefined properties */ - U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF; - - if (RExC_parse >= RExC_end) - vFAIL2("Empty \\%c{}", (U8)value); - if (*RExC_parse == '{') { - const U8 c = (U8)value; - e = strchr(RExC_parse++, '}'); - if (!e) - vFAIL2("Missing right brace on \\%c{}", c); - while (isSPACE(UCHARAT(RExC_parse))) - RExC_parse++; - if (e == RExC_parse) - vFAIL2("Empty \\%c{}", c); - n = e - RExC_parse; - while (isSPACE(UCHARAT(RExC_parse + n - 1))) - n--; - } - else { - e = RExC_parse; - n = 1; - } - if (!SIZE_ONLY) { - SV* invlist; - char* name; - - if (UCHARAT(RExC_parse) == '^') { - RExC_parse++; - n--; - value = value == 'p' ? 'P' : 'p'; /* toggle */ - while (isSPACE(UCHARAT(RExC_parse))) { - RExC_parse++; - n--; - } - } - /* Try to get the definition of the property into - * . If /i is in effect, the effective property - * will have its name be <__NAME_i>. The design is - * discussed in commit - * 2f833f5208e26b208886e51e09e2c072b5eabb46 */ - Newx(name, n + sizeof("_i__\n"), char); - - sprintf(name, "%s%.*s%s\n", - (FOLD) ? "__" : "", - (int)n, - RExC_parse, - (FOLD) ? "_i" : "" - ); - - /* Look up the property name, and get its swash and - * inversion list, if the property is found */ - if (swash) { - SvREFCNT_dec(swash); - } - swash = _core_swash_init("utf8", name, &PL_sv_undef, - 1, /* binary */ - 0, /* not tr/// */ - NULL, /* No inversion list */ - &swash_init_flags - ); - if (! swash || ! (invlist = _get_swash_invlist(swash))) { - if (swash) { - SvREFCNT_dec(swash); - swash = NULL; - } - - /* Here didn't find it. It could be a user-defined - * property that will be available at run-time. Add it - * to the list to look up then */ - Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n", - (value == 'p' ? '+' : '!'), - name); - has_user_defined_property = TRUE; - - /* We don't know yet, so have to assume that the - * property could match something in the Latin1 range, - * hence something that isn't utf8. Note that this - * would cause things in to match - * inappropriately, except that any \p{}, including - * this one forces Unicode semantics, which means there - * is */ - ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8; - } - else { - - /* Here, did get the swash and its inversion list. If - * the swash is from a user-defined property, then this - * whole character class should be regarded as such */ - has_user_defined_property = - (swash_init_flags - & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY); - - /* Invert if asking for the complement */ - if (value == 'P') { - _invlist_union_complement_2nd(properties, - invlist, - &properties); - - /* The swash can't be used as-is, because we've - * inverted things; delay removing it to here after - * have copied its invlist above */ - SvREFCNT_dec(swash); - swash = NULL; - } - else { - _invlist_union(properties, invlist, &properties); - } - } - Safefree(name); - } - RExC_parse = e + 1; - namedclass = ANYOF_UNIPROP; /* no official name, but it's named */ - - /* \p means they want Unicode semantics */ - RExC_uni_semantics = 1; - } - break; - case 'n': value = '\n'; break; - case 'r': value = '\r'; break; - case 't': value = '\t'; break; - case 'f': value = '\f'; break; - case 'b': value = '\b'; break; - case 'e': value = ASCII_TO_NATIVE('\033');break; - case 'a': value = ASCII_TO_NATIVE('\007');break; - case 'o': - RExC_parse--; /* function expects to be pointed at the 'o' */ - { - const char* error_msg; - bool valid = grok_bslash_o(RExC_parse, - &value, - &numlen, - &error_msg, - SIZE_ONLY); - RExC_parse += numlen; - if (! valid) { - vFAIL(error_msg); - } - } - if (PL_encoding && value < 0x100) { - goto recode_encoding; - } - break; - case 'x': - RExC_parse--; /* function expects to be pointed at the 'x' */ - { - const char* error_msg; - bool valid = grok_bslash_x(RExC_parse, - &value, - &numlen, - &error_msg, - 1); - RExC_parse += numlen; - if (! valid) { - vFAIL(error_msg); - } - } - if (PL_encoding && value < 0x100) - goto recode_encoding; - break; - case 'c': - value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY); - break; - case '0': case '1': case '2': case '3': case '4': - case '5': case '6': case '7': - { - /* Take 1-3 octal digits */ - I32 flags = PERL_SCAN_SILENT_ILLDIGIT; - numlen = 3; - value = grok_oct(--RExC_parse, &numlen, &flags, NULL); - RExC_parse += numlen; - if (PL_encoding && value < 0x100) - goto recode_encoding; - break; - } - recode_encoding: - if (! RExC_override_recoding) { - SV* enc = PL_encoding; - value = reg_recode((const char)(U8)value, &enc); - if (!enc && SIZE_ONLY) - ckWARNreg(RExC_parse, - "Invalid escape in the specified encoding"); - break; - } - default: - /* Allow \_ to not give an error */ - if (!SIZE_ONLY && isALNUM(value) && value != '_') { - SAVEFREESV(RExC_rx_sv); - SAVEFREESV(listsv); - ckWARN2reg(RExC_parse, - "Unrecognized escape \\%c in character class passed through", - (int)value); - (void)ReREFCNT_inc(RExC_rx_sv); - SvREFCNT_inc_simple_void_NN(listsv); - } - break; - } - } /* end of \blah */ -#ifdef EBCDIC - else - literal_endpoint++; -#endif - - /* What matches in a locale is not known until runtime. This - * includes what the Posix classes (like \w, [:space:]) match. - * Room must be reserved (one time per class) to store such - * classes, either if Perl is compiled so that locale nodes always - * should have this space, or if there is such class info to be - * stored. The space will contain a bit for each named class that - * is to be matched against. This isn't needed for \p{} and - * pseudo-classes, as they are not affected by locale, and hence - * are dealt with separately */ - if (LOC - && ! need_class - && (ANYOF_LOCALE == ANYOF_CLASS - || (namedclass > OOB_NAMEDCLASS && namedclass < ANYOF_MAX))) - { - need_class = 1; - if (SIZE_ONLY) { - RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP; - } - else { - RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP; - ANYOF_CLASS_ZERO(ret); - } - ANYOF_FLAGS(ret) |= ANYOF_CLASS; - } - - if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */ - - /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a - * literal, as is the character that began the false range, i.e. - * the 'a' in the examples */ - if (range) { - if (!SIZE_ONLY) { - const int w = - RExC_parse >= rangebegin ? - RExC_parse - rangebegin : 0; - SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */ - SAVEFREESV(listsv); - ckWARN4reg(RExC_parse, - "False [] range \"%*.*s\"", - w, w, rangebegin); - (void)ReREFCNT_inc(RExC_rx_sv); - SvREFCNT_inc_simple_void_NN(listsv); - cp_list = add_cp_to_invlist(cp_list, '-'); - cp_list = add_cp_to_invlist(cp_list, prevvalue); - } - - range = 0; /* this was not a true range */ - element_count += 2; /* So counts for three values */ - } - - if (! SIZE_ONLY) { - switch ((I32)namedclass) { - - case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */ - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv); - break; - case ANYOF_NALNUMC: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_ALPHA: - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv); - break; - case ANYOF_NALPHA: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_ASCII: -#ifdef HAS_ISASCII - if (LOC) { - ANYOF_CLASS_SET(ret, namedclass); - } - else -#endif /* Not isascii(); just use the hard-coded definition for it */ - _invlist_union(posixes, PL_ASCII, &posixes); - break; - case ANYOF_NASCII: -#ifdef HAS_ISASCII - if (LOC) { - ANYOF_CLASS_SET(ret, namedclass); - } - else { -#endif - _invlist_union_complement_2nd(posixes, - PL_ASCII, &posixes); - if (DEPENDS_SEMANTICS) { - ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; - } -#ifdef HAS_ISASCII - } -#endif - break; - case ANYOF_BLANK: - if (hasISBLANK || ! LOC) { - DO_POSIX(ret, namedclass, posixes, - PL_PosixBlank, PL_XPosixBlank); - } - else { /* There is no isblank() and we are in locale: We - use the ASCII range and the above-Latin1 range - code points */ - SV* scratch_list = NULL; - - /* Include all above-Latin1 blanks */ - _invlist_intersection(PL_AboveLatin1, - PL_XPosixBlank, - &scratch_list); - /* Add it to the running total of posix classes */ - if (! posixes) { - posixes = scratch_list; - } - else { - _invlist_union(posixes, scratch_list, &posixes); - SvREFCNT_dec(scratch_list); - } - /* Add the ASCII-range blanks to the running total. */ - _invlist_union(posixes, PL_PosixBlank, &posixes); - } - break; - case ANYOF_NBLANK: - if (hasISBLANK || ! LOC) { - DO_N_POSIX(ret, namedclass, posixes, - PL_PosixBlank, PL_XPosixBlank); - } - else { /* There is no isblank() and we are in locale */ - SV* scratch_list = NULL; - - /* Include all above-Latin1 non-blanks */ - _invlist_subtract(PL_AboveLatin1, PL_XPosixBlank, - &scratch_list); - - /* Add them to the running total of posix classes */ - _invlist_subtract(PL_AboveLatin1, PL_XPosixBlank, - &scratch_list); - if (! posixes) { - posixes = scratch_list; - } - else { - _invlist_union(posixes, scratch_list, &posixes); - SvREFCNT_dec(scratch_list); - } - - /* Get the list of all non-ASCII-blanks in Latin 1, and - * add them to the running total */ - _invlist_subtract(PL_Latin1, PL_PosixBlank, - &scratch_list); - _invlist_union(posixes, scratch_list, &posixes); - SvREFCNT_dec(scratch_list); - } - break; - case ANYOF_CNTRL: - DO_POSIX(ret, namedclass, posixes, - PL_PosixCntrl, PL_XPosixCntrl); - break; - case ANYOF_NCNTRL: - DO_N_POSIX(ret, namedclass, posixes, - PL_PosixCntrl, PL_XPosixCntrl); - break; - case ANYOF_DIGIT: - /* There are no digits in the Latin1 range outside of - * ASCII, so call the macro that doesn't have to resolve - * them */ - DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, posixes, - PL_PosixDigit, "XPosixDigit", listsv); - break; - case ANYOF_NDIGIT: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_GRAPH: - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv); - break; - case ANYOF_NGRAPH: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_HORIZWS: - /* For these, we use the cp_list, as /d doesn't make a - * difference in what these match. There would be problems - * if these characters had folds other than themselves, as - * cp_list is subject to folding. It turns out that \h - * is just a synonym for XPosixBlank */ - _invlist_union(cp_list, PL_XPosixBlank, &cp_list); - break; - case ANYOF_NHORIZWS: - _invlist_union_complement_2nd(cp_list, - PL_XPosixBlank, &cp_list); - break; - case ANYOF_LOWER: - case ANYOF_NLOWER: - { /* These require special handling, as they differ under - folding, matching Cased there (which in the ASCII range - is the same as Alpha */ - - SV* ascii_source; - SV* l1_source; - const char *Xname; - - if (FOLD && ! LOC) { - ascii_source = PL_PosixAlpha; - l1_source = PL_L1Cased; - Xname = "Cased"; - } - else { - ascii_source = PL_PosixLower; - l1_source = PL_L1PosixLower; - Xname = "XPosixLower"; - } - if (namedclass == ANYOF_LOWER) { - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - ascii_source, l1_source, Xname, listsv); - } - else { - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, - posixes, ascii_source, l1_source, Xname, listsv, - runtime_posix_matches_above_Unicode); - } - break; - } - case ANYOF_PRINT: - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv); - break; - case ANYOF_NPRINT: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_PUNCT: - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv); - break; - case ANYOF_NPUNCT: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_PSXSPC: - DO_POSIX(ret, namedclass, posixes, - PL_PosixSpace, PL_XPosixSpace); - break; - case ANYOF_NPSXSPC: - DO_N_POSIX(ret, namedclass, posixes, - PL_PosixSpace, PL_XPosixSpace); - break; - case ANYOF_SPACE: - DO_POSIX(ret, namedclass, posixes, - PL_PerlSpace, PL_XPerlSpace); - break; - case ANYOF_NSPACE: - DO_N_POSIX(ret, namedclass, posixes, - PL_PerlSpace, PL_XPerlSpace); - break; - case ANYOF_UPPER: /* Same as LOWER, above */ - case ANYOF_NUPPER: - { - SV* ascii_source; - SV* l1_source; - const char *Xname; - - if (FOLD && ! LOC) { - ascii_source = PL_PosixAlpha; - l1_source = PL_L1Cased; - Xname = "Cased"; - } - else { - ascii_source = PL_PosixUpper; - l1_source = PL_L1PosixUpper; - Xname = "XPosixUpper"; - } - if (namedclass == ANYOF_UPPER) { - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - ascii_source, l1_source, Xname, listsv); - } - else { - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, - posixes, ascii_source, l1_source, Xname, listsv, - runtime_posix_matches_above_Unicode); - } - break; - } - case ANYOF_WORDCHAR: - DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv); - break; - case ANYOF_NWORDCHAR: - DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, posixes, - PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv, - runtime_posix_matches_above_Unicode); - break; - case ANYOF_VERTWS: - /* For these, we use the cp_list, as /d doesn't make a - * difference in what these match. There would be problems - * if these characters had folds other than themselves, as - * cp_list is subject to folding */ - _invlist_union(cp_list, PL_VertSpace, &cp_list); - break; - case ANYOF_NVERTWS: - _invlist_union_complement_2nd(cp_list, - PL_VertSpace, &cp_list); - break; - case ANYOF_XDIGIT: - DO_POSIX(ret, namedclass, posixes, - PL_PosixXDigit, PL_XPosixXDigit); - break; - case ANYOF_NXDIGIT: - DO_N_POSIX(ret, namedclass, posixes, - PL_PosixXDigit, PL_XPosixXDigit); - break; - case ANYOF_UNIPROP: /* this is to handle \p and \P */ - break; - default: - vFAIL("Invalid [::] class"); - break; - } - - continue; /* Go get next character */ - } - } /* end of namedclass \blah */ - - if (range) { - if (prevvalue > value) /* b-a */ { - const int w = RExC_parse - rangebegin; - Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin); - range = 0; /* not a valid range */ - } - } - else { - prevvalue = value; /* save the beginning of the potential range */ - if (RExC_parse+1 < RExC_end - && *RExC_parse == '-' - && RExC_parse[1] != ']') - { - RExC_parse++; - - /* a bad range like \w-, [:word:]- ? */ - if (namedclass > OOB_NAMEDCLASS) { - if (ckWARN(WARN_REGEXP)) { - const int w = - RExC_parse >= rangebegin ? - RExC_parse - rangebegin : 0; - vWARN4(RExC_parse, - "False [] range \"%*.*s\"", - w, w, rangebegin); - } - if (!SIZE_ONLY) { - cp_list = add_cp_to_invlist(cp_list, '-'); - } - element_count++; - } else - range = 1; /* yeah, it's a range! */ - continue; /* but do it the next time */ - } - } - - /* Here, is the beginning of the range, if any; or - * if not */ - - /* non-Latin1 code point implies unicode semantics. Must be set in - * pass1 so is there for the whole of pass 2 */ - if (value > 255) { - RExC_uni_semantics = 1; - } - - /* Ready to process either the single value, or the completed range. - * For single-valued non-inverted ranges, we consider the possibility - * of multi-char folds. (We made a conscious decision to not do this - * for the other cases because it can often lead to non-intuitive - * results. For example, you have the peculiar case that: - * "s s" =~ /^[^\xDF]+$/i => Y - * "ss" =~ /^[^\xDF]+$/i => N - * - * See [perl #89750] */ - if (FOLD && ! invert && value == prevvalue) { - if (value == LATIN_SMALL_LETTER_SHARP_S - || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold, - value))) - { - /* Here is indeed a multi-char fold. Get what it is */ - - U8 foldbuf[UTF8_MAXBYTES_CASE]; - STRLEN foldlen; - - UV folded = _to_uni_fold_flags( - value, - foldbuf, - &foldlen, - FOLD_FLAGS_FULL - | ((LOC) ? FOLD_FLAGS_LOCALE - : (ASCII_FOLD_RESTRICTED) - ? FOLD_FLAGS_NOMIX_ASCII - : 0) - ); - - /* Here, should be the first character of the - * multi-char fold of , with containing the - * whole thing. But, if this fold is not allowed (because of - * the flags), will be the same as , and should - * be processed like any other character, so skip the special - * handling */ - if (folded != value) { - - /* Skip if we are recursed, currently parsing the class - * again. Otherwise add this character to the list of - * multi-char folds. */ - if (! RExC_in_multi_char_class) { - AV** this_array_ptr; - AV* this_array; - STRLEN cp_count = utf8_length(foldbuf, - foldbuf + foldlen); - SV* multi_fold = sv_2mortal(newSVpvn("", 0)); - - Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value); - - - if (! multi_char_matches) { - multi_char_matches = newAV(); - } - - /* is actually an array of arrays. - * There will be one or two top-level elements: [2], - * and/or [3]. The [2] element is an array, each - * element thereof is a character which folds to two - * characters; likewise for [3]. (Unicode guarantees a - * maximum of 3 characters in any fold.) When we - * rewrite the character class below, we will do so - * such that the longest folds are written first, so - * that it prefers the longest matching strings first. - * This is done even if it turns out that any - * quantifier is non-greedy, out of programmer - * laziness. Tom Christiansen has agreed that this is - * ok. This makes the test for the ligature 'ffi' come - * before the test for 'ff' */ - if (av_exists(multi_char_matches, cp_count)) { - this_array_ptr = (AV**) av_fetch(multi_char_matches, - cp_count, FALSE); - this_array = *this_array_ptr; - } - else { - this_array = newAV(); - av_store(multi_char_matches, cp_count, - (SV*) this_array); - } - av_push(this_array, multi_fold); - } - - /* This element should not be processed further in this - * class */ - element_count--; - value = save_value; - prevvalue = save_prevvalue; - continue; - } - } - } - - /* Deal with this element of the class */ - if (! SIZE_ONLY) { -#ifndef EBCDIC - cp_list = _add_range_to_invlist(cp_list, prevvalue, value); -#else - UV* this_range = _new_invlist(1); - _append_range_to_invlist(this_range, prevvalue, value); - - /* In EBCDIC, the ranges 'A-Z' and 'a-z' are each not contiguous. - * If this range was specified using something like 'i-j', we want - * to include only the 'i' and the 'j', and not anything in - * between, so exclude non-ASCII, non-alphabetics from it. - * However, if the range was specified with something like - * [\x89-\x91] or [\x89-j], all code points within it should be - * included. literal_endpoint==2 means both ends of the range used - * a literal character, not \x{foo} */ - if (literal_endpoint == 2 - && (prevvalue >= 'a' && value <= 'z') - || (prevvalue >= 'A' && value <= 'Z')) - { - _invlist_intersection(this_range, PL_ASCII, &this_range, ); - _invlist_intersection(this_range, PL_Alpha, &this_range, ); - } - _invlist_union(cp_list, this_range, &cp_list); - literal_endpoint = 0; -#endif - } - - range = 0; /* this range (if it was one) is done now */ - } /* End of loop through all the text within the brackets */ - - /* If anything in the class expands to more than one character, we have to - * deal with them by building up a substitute parse string, and recursively - * calling reg() on it, instead of proceeding */ - if (multi_char_matches) { - SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP); - I32 cp_count; - STRLEN len; - char *save_end = RExC_end; - char *save_parse = RExC_parse; - bool first_time = TRUE; /* First multi-char occurrence doesn't get - a "|" */ - I32 reg_flags; - - assert(! invert); -#if 0 /* Have decided not to deal with multi-char folds in inverted classes, - because too confusing */ - if (invert) { - sv_catpv(substitute_parse, "(?:"); - } -#endif - - /* Look at the longest folds first */ - for (cp_count = av_len(multi_char_matches); cp_count > 0; cp_count--) { - - if (av_exists(multi_char_matches, cp_count)) { - AV** this_array_ptr; - SV* this_sequence; - - this_array_ptr = (AV**) av_fetch(multi_char_matches, - cp_count, FALSE); - while ((this_sequence = av_pop(*this_array_ptr)) != - &PL_sv_undef) - { - if (! first_time) { - sv_catpv(substitute_parse, "|"); - } - first_time = FALSE; - - sv_catpv(substitute_parse, SvPVX(this_sequence)); - } - } - } - - /* If the character class contains anything else besides these - * multi-character folds, have to include it in recursive parsing */ - if (element_count) { - sv_catpv(substitute_parse, "|["); - sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse); - sv_catpv(substitute_parse, "]"); - } - - sv_catpv(substitute_parse, ")"); -#if 0 - if (invert) { - /* This is a way to get the parse to skip forward a whole named - * sequence instead of matching the 2nd character when it fails the - * first */ - sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)"); - } -#endif - - RExC_parse = SvPV(substitute_parse, len); - RExC_end = RExC_parse + len; - RExC_in_multi_char_class = 1; - RExC_emit = (regnode *)orig_emit; - - ret = reg(pRExC_state, 1, ®_flags, depth+1); - - *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED); - - RExC_parse = save_parse; - RExC_end = save_end; - RExC_in_multi_char_class = 0; - SvREFCNT_dec(multi_char_matches); - SvREFCNT_dec(listsv); - return ret; - } - - /* If the character class contains only a single element, it may be - * optimizable into another node type which is smaller and runs faster. - * Check if this is the case for this class */ - if (element_count == 1) { - U8 op = END; - U8 arg = 0; - - if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like \w or - [:digit:] or \p{foo} */ - - /* Certain named classes have equivalents that can appear outside a - * character class, e.g. \w, \H. We use these instead of a - * character class. */ - switch ((I32)namedclass) { - U8 offset; - - /* The first group is for node types that depend on the charset - * modifier to the regex. We first calculate the base node - * type, and if it should be inverted */ - - case ANYOF_NWORDCHAR: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_WORDCHAR: - op = ALNUM; - goto join_charset_classes; - - case ANYOF_NSPACE: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_SPACE: - op = SPACE; - goto join_charset_classes; - - case ANYOF_NDIGIT: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_DIGIT: - op = DIGIT; - - join_charset_classes: - - /* Now that we have the base node type, we take advantage - * of the enum ordering of the charset modifiers to get the - * exact node type, For example the base SPACE also has - * SPACEL, SPACEU, and SPACEA */ - - offset = get_regex_charset(RExC_flags); - - /* /aa is the same as /a for these */ - if (offset == REGEX_ASCII_MORE_RESTRICTED_CHARSET) { - offset = REGEX_ASCII_RESTRICTED_CHARSET; - } - else if (op == DIGIT && offset == REGEX_UNICODE_CHARSET) { - offset = REGEX_DEPENDS_CHARSET; /* There is no DIGITU */ - } - - op += offset; - - /* The number of varieties of each of these is the same, - * hence, so is the delta between the normal and - * complemented nodes */ - if (invert) { - op += NALNUM - ALNUM; - } - *flagp |= HASWIDTH|SIMPLE; - break; - - /* The second group doesn't depend of the charset modifiers. - * We just have normal and complemented */ - case ANYOF_NHORIZWS: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_HORIZWS: - is_horizws: - op = (invert) ? NHORIZWS : HORIZWS; - *flagp |= HASWIDTH|SIMPLE; - break; - - case ANYOF_NVERTWS: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_VERTWS: - op = (invert) ? NVERTWS : VERTWS; - *flagp |= HASWIDTH|SIMPLE; - break; - - case ANYOF_UNIPROP: - break; - - case ANYOF_NBLANK: - invert = ! invert; - /* FALLTHROUGH */ - case ANYOF_BLANK: - if (AT_LEAST_UNI_SEMANTICS && ! AT_LEAST_ASCII_RESTRICTED) { - goto is_horizws; - } - /* FALLTHROUGH */ - default: - /* A generic posix class. All the /a ones can be handled - * by the POSIXA opcode. And all are closed under folding - * in the ASCII range, so FOLD doesn't matter */ - if (AT_LEAST_ASCII_RESTRICTED - || (! LOC && namedclass == ANYOF_ASCII)) - { - /* The odd numbered ones are the complements of the - * next-lower even number one */ - if (namedclass % 2 == 1) { - invert = ! invert; - namedclass--; - } - arg = namedclass_to_classnum(namedclass); - op = (invert) ? NPOSIXA : POSIXA; - } - break; - } - } - else if (value == prevvalue) { - - /* Here, the class consists of just a single code point */ - - if (invert) { - if (! LOC && value == '\n') { - op = REG_ANY; /* Optimize [^\n] */ - *flagp |= HASWIDTH|SIMPLE; - RExC_naughty++; - } - } - else if (value < 256 || UTF) { - - /* Optimize a single value into an EXACTish node, but not if it - * would require converting the pattern to UTF-8. */ - op = compute_EXACTish(pRExC_state); - } - } /* Otherwise is a range */ - else if (! LOC) { /* locale could vary these */ - if (prevvalue == '0') { - if (value == '9') { - op = (invert) ? NDIGITA : DIGITA; - *flagp |= HASWIDTH|SIMPLE; - } - } - } - - /* Here, we have changed away from its initial value iff we found - * an optimization */ - if (op != END) { - - /* Throw away this ANYOF regnode, and emit the calculated one, - * which should correspond to the beginning, not current, state of - * the parse */ - const char * cur_parse = RExC_parse; - RExC_parse = (char *)orig_parse; - if ( SIZE_ONLY) { - if (! LOC) { - - /* To get locale nodes to not use the full ANYOF size would - * require moving the code above that writes the portions - * of it that aren't in other nodes to after this point. - * e.g. ANYOF_CLASS_SET */ - RExC_size = orig_size; - } - } - else { - RExC_emit = (regnode *)orig_emit; - } - - ret = reg_node(pRExC_state, op); - - if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) { - if (! SIZE_ONLY) { - FLAGS(ret) = arg; - } - *flagp |= HASWIDTH|SIMPLE; - } - else if (PL_regkind[op] == EXACT) { - alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value); - } - - RExC_parse = (char *) cur_parse; - - SvREFCNT_dec(posixes); - SvREFCNT_dec(listsv); - SvREFCNT_dec(cp_list); - return ret; - } - } - - if (SIZE_ONLY) - return ret; - /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/ - - /* If folding, we calculate all characters that could fold to or from the - * ones already on the list */ - if (FOLD && cp_list) { - UV start, end; /* End points of code point ranges */ - - SV* fold_intersection = NULL; - - /* If the highest code point is within Latin1, we can use the - * compiled-in Alphas list, and not have to go out to disk. This - * yields two false positives, the masculine and feminine ordinal - * indicators, which are weeded out below using the - * IS_IN_SOME_FOLD_L1() macro */ - if (invlist_highest(cp_list) < 256) { - _invlist_intersection(PL_L1PosixAlpha, cp_list, &fold_intersection); - } - else { - - /* Here, there are non-Latin1 code points, so we will have to go - * fetch the list of all the characters that participate in folds - */ - if (! PL_utf8_foldable) { - SV* swash = swash_init("utf8", "_Perl_Any_Folds", - &PL_sv_undef, 1, 0); - PL_utf8_foldable = _get_swash_invlist(swash); - SvREFCNT_dec(swash); - } - - /* This is a hash that for a particular fold gives all characters - * that are involved in it */ - if (! PL_utf8_foldclosures) { - - /* If we were unable to find any folds, then we likely won't be - * able to find the closures. So just create an empty list. - * Folding will effectively be restricted to the non-Unicode - * rules hard-coded into Perl. (This case happens legitimately - * during compilation of Perl itself before the Unicode tables - * are generated) */ - if (_invlist_len(PL_utf8_foldable) == 0) { - PL_utf8_foldclosures = newHV(); - } - else { - /* If the folds haven't been read in, call a fold function - * to force that */ - if (! PL_utf8_tofold) { - U8 dummy[UTF8_MAXBYTES+1]; - - /* This string is just a short named one above \xff */ - to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL); - assert(PL_utf8_tofold); /* Verify that worked */ - } - PL_utf8_foldclosures = - _swash_inversion_hash(PL_utf8_tofold); - } - } - - /* Only the characters in this class that participate in folds need - * be checked. Get the intersection of this class and all the - * possible characters that are foldable. This can quickly narrow - * down a large class */ - _invlist_intersection(PL_utf8_foldable, cp_list, - &fold_intersection); - } - - /* Now look at the foldable characters in this class individually */ - invlist_iterinit(fold_intersection); - while (invlist_iternext(fold_intersection, &start, &end)) { - UV j; - - /* Locale folding for Latin1 characters is deferred until runtime */ - if (LOC && start < 256) { - start = 256; - } - - /* Look at every character in the range */ - for (j = start; j <= end; j++) { - - U8 foldbuf[UTF8_MAXBYTES_CASE+1]; - STRLEN foldlen; - SV** listp; - - if (j < 256) { - - /* We have the latin1 folding rules hard-coded here so that - * an innocent-looking character class, like /[ks]/i won't - * have to go out to disk to find the possible matches. - * XXX It would be better to generate these via regen, in - * case a new version of the Unicode standard adds new - * mappings, though that is not really likely, and may be - * caught by the default: case of the switch below. */ - - if (IS_IN_SOME_FOLD_L1(j)) { - - /* ASCII is always matched; non-ASCII is matched only - * under Unicode rules */ - if (isASCII(j) || AT_LEAST_UNI_SEMANTICS) { - cp_list = - add_cp_to_invlist(cp_list, PL_fold_latin1[j]); - } - else { - depends_list = - add_cp_to_invlist(depends_list, PL_fold_latin1[j]); - } - } - - if (HAS_NONLATIN1_FOLD_CLOSURE(j) - && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED)) - { - /* Certain Latin1 characters have matches outside - * Latin1. To get here, is one of those - * characters. None of these matches is valid for - * ASCII characters under /aa, which is why the 'if' - * just above excludes those. These matches only - * happen when the target string is utf8. The code - * below adds the single fold closures for to the - * inversion list. */ - switch (j) { - case 'k': - case 'K': - cp_list = - add_cp_to_invlist(cp_list, KELVIN_SIGN); - break; - case 's': - case 'S': - cp_list = add_cp_to_invlist(cp_list, - LATIN_SMALL_LETTER_LONG_S); - break; - case MICRO_SIGN: - cp_list = add_cp_to_invlist(cp_list, - GREEK_CAPITAL_LETTER_MU); - cp_list = add_cp_to_invlist(cp_list, - GREEK_SMALL_LETTER_MU); - break; - case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE: - case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE: - cp_list = - add_cp_to_invlist(cp_list, ANGSTROM_SIGN); - break; - case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS: - cp_list = add_cp_to_invlist(cp_list, - LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS); - break; - case LATIN_SMALL_LETTER_SHARP_S: - cp_list = add_cp_to_invlist(cp_list, - LATIN_CAPITAL_LETTER_SHARP_S); - break; - case 'F': case 'f': - case 'I': case 'i': - case 'L': case 'l': - case 'T': case 't': - case 'A': case 'a': - case 'H': case 'h': - case 'J': case 'j': - case 'N': case 'n': - case 'W': case 'w': - case 'Y': case 'y': - /* These all are targets of multi-character - * folds from code points that require UTF8 to - * express, so they can't match unless the - * target string is in UTF-8, so no action here - * is necessary, as regexec.c properly handles - * the general case for UTF-8 matching and - * multi-char folds */ - break; - default: - /* Use deprecated warning to increase the - * chances of this being output */ - ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%"UVXf"; please use the perlbug utility to report;", j); - break; - } - } - continue; - } - - /* Here is an above Latin1 character. We don't have the rules - * hard-coded for it. First, get its fold. This is the simple - * fold, as the multi-character folds have been handled earlier - * and separated out */ - _to_uni_fold_flags(j, foldbuf, &foldlen, - ((LOC) - ? FOLD_FLAGS_LOCALE - : (ASCII_FOLD_RESTRICTED) - ? FOLD_FLAGS_NOMIX_ASCII - : 0)); - - /* Single character fold of above Latin1. Add everything in - * its fold closure to the list that this node should match. - * The fold closures data structure is a hash with the keys - * being the UTF-8 of every character that is folded to, like - * 'k', and the values each an array of all code points that - * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ]. - * Multi-character folds are not included */ - if ((listp = hv_fetch(PL_utf8_foldclosures, - (char *) foldbuf, foldlen, FALSE))) - { - AV* list = (AV*) *listp; - IV k; - for (k = 0; k <= av_len(list); k++) { - SV** c_p = av_fetch(list, k, FALSE); - UV c; - if (c_p == NULL) { - Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure"); - } - c = SvUV(*c_p); - - /* /aa doesn't allow folds between ASCII and non-; /l - * doesn't allow them between above and below 256 */ - if ((ASCII_FOLD_RESTRICTED - && (isASCII(c) != isASCII(j))) - || (LOC && ((c < 256) != (j < 256)))) - { - continue; - } - - /* Folds involving non-ascii Latin1 characters - * under /d are added to a separate list */ - if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS) - { - cp_list = add_cp_to_invlist(cp_list, c); - } - else { - depends_list = add_cp_to_invlist(depends_list, c); - } - } - } - } - } - SvREFCNT_dec(fold_intersection); - } - - /* And combine the result (if any) with any inversion list from posix - * classes. The lists are kept separate up to now because we don't want to - * fold the classes (folding of those is automatically handled by the swash - * fetching code) */ - if (posixes) { - if (! DEPENDS_SEMANTICS) { - if (cp_list) { - _invlist_union(cp_list, posixes, &cp_list); - SvREFCNT_dec(posixes); - } - else { - cp_list = posixes; - } - } - else { - /* Under /d, we put into a separate list the Latin1 things that - * match only when the target string is utf8 */ - SV* nonascii_but_latin1_properties = NULL; - _invlist_intersection(posixes, PL_Latin1, - &nonascii_but_latin1_properties); - _invlist_subtract(nonascii_but_latin1_properties, PL_ASCII, - &nonascii_but_latin1_properties); - _invlist_subtract(posixes, nonascii_but_latin1_properties, - &posixes); - if (cp_list) { - _invlist_union(cp_list, posixes, &cp_list); - SvREFCNT_dec(posixes); - } - else { - cp_list = posixes; - } - - if (depends_list) { - _invlist_union(depends_list, nonascii_but_latin1_properties, - &depends_list); - SvREFCNT_dec(nonascii_but_latin1_properties); - } - else { - depends_list = nonascii_but_latin1_properties; - } - } - } - - /* And combine the result (if any) with any inversion list from properties. - * The lists are kept separate up to now so that we can distinguish the two - * in regards to matching above-Unicode. A run-time warning is generated - * if a Unicode property is matched against a non-Unicode code point. But, - * we allow user-defined properties to match anything, without any warning, - * and we also suppress the warning if there is a portion of the character - * class that isn't a Unicode property, and which matches above Unicode, \W - * or [\x{110000}] for example. - * (Note that in this case, unlike the Posix one above, there is no - * , because having a Unicode property forces Unicode - * semantics */ - if (properties) { - bool warn_super = ! has_user_defined_property; - if (cp_list) { - - /* If it matters to the final outcome, see if a non-property - * component of the class matches above Unicode. If so, the - * warning gets suppressed. This is true even if just a single - * such code point is specified, as though not strictly correct if - * another such code point is matched against, the fact that they - * are using above-Unicode code points indicates they should know - * the issues involved */ - if (warn_super) { - bool non_prop_matches_above_Unicode = - runtime_posix_matches_above_Unicode - | (invlist_highest(cp_list) > PERL_UNICODE_MAX); - if (invert) { - non_prop_matches_above_Unicode = - ! non_prop_matches_above_Unicode; - } - warn_super = ! non_prop_matches_above_Unicode; - } - - _invlist_union(properties, cp_list, &cp_list); - SvREFCNT_dec(properties); - } - else { - cp_list = properties; - } - - if (warn_super) { - ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER; - } - } - - /* Here, we have calculated what code points should be in the character - * class. - * - * Now we can see about various optimizations. Fold calculation (which we - * did above) needs to take place before inversion. Otherwise /[^k]/i - * would invert to include K, which under /i would match k, which it - * shouldn't. Therefore we can't invert folded locale now, as it won't be - * folded until runtime */ - - /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known - * at compile time. Besides not inverting folded locale now, we can't - * invert if there are things such as \w, which aren't known until runtime - * */ - if (invert - && ! (LOC && (FOLD || (ANYOF_FLAGS(ret) & ANYOF_CLASS))) - && ! depends_list - && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) - { - _invlist_invert(cp_list); - - /* Any swash can't be used as-is, because we've inverted things */ - if (swash) { - SvREFCNT_dec(swash); - swash = NULL; - } - - /* Clear the invert flag since have just done it here */ - invert = FALSE; - } - - /* If we didn't do folding, it's because some information isn't available - * until runtime; set the run-time fold flag for these. (We don't have to - * worry about properties folding, as that is taken care of by the swash - * fetching) */ - if (FOLD && LOC) - { - ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD; - } - - /* Some character classes are equivalent to other nodes. Such nodes take - * up less room and generally fewer operations to execute than ANYOF nodes. - * Above, we checked for and optimized into some such equivalents for - * certain common classes that are easy to test. Getting to this point in - * the code means that the class didn't get optimized there. Since this - * code is only executed in Pass 2, it is too late to save space--it has - * been allocated in Pass 1, and currently isn't given back. But turning - * things into an EXACTish node can allow the optimizer to join it to any - * adjacent such nodes. And if the class is equivalent to things like /./, - * expensive run-time swashes can be avoided. Now that we have more - * complete information, we can find things necessarily missed by the - * earlier code. I (khw) am not sure how much to look for here. It would - * be easy, but perhaps too slow, to check any candidates against all the - * node types they could possibly match using _invlistEQ(). */ - - if (cp_list - && ! invert - && ! depends_list - && ! (ANYOF_FLAGS(ret) & ANYOF_CLASS) - && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) - { - UV start, end; - U8 op = END; /* The optimzation node-type */ - const char * cur_parse= RExC_parse; - - invlist_iterinit(cp_list); - if (! invlist_iternext(cp_list, &start, &end)) { - - /* Here, the list is empty. This happens, for example, when a - * Unicode property is the only thing in the character class, and - * it doesn't match anything. (perluniprops.pod notes such - * properties) */ - op = OPFAIL; - *flagp |= HASWIDTH|SIMPLE; - } - else if (start == end) { /* The range is a single code point */ - if (! invlist_iternext(cp_list, &start, &end) - - /* Don't do this optimization if it would require changing - * the pattern to UTF-8 */ - && (start < 256 || UTF)) - { - /* Here, the list contains a single code point. Can optimize - * into an EXACT node */ - - value = start; - - if (! FOLD) { - op = EXACT; - } - else if (LOC) { - - /* A locale node under folding with one code point can be - * an EXACTFL, as its fold won't be calculated until - * runtime */ - op = EXACTFL; - } - else { - - /* Here, we are generally folding, but there is only one - * code point to match. If we have to, we use an EXACT - * node, but it would be better for joining with adjacent - * nodes in the optimization pass if we used the same - * EXACTFish node that any such are likely to be. We can - * do this iff the code point doesn't participate in any - * folds. For example, an EXACTF of a colon is the same as - * an EXACT one, since nothing folds to or from a colon. */ - if (value < 256) { - if (IS_IN_SOME_FOLD_L1(value)) { - op = EXACT; - } - } - else { - if (! PL_utf8_foldable) { - SV* swash = swash_init("utf8", "_Perl_Any_Folds", - &PL_sv_undef, 1, 0); - PL_utf8_foldable = _get_swash_invlist(swash); - SvREFCNT_dec(swash); - } - if (_invlist_contains_cp(PL_utf8_foldable, value)) { - op = EXACT; - } - } - - /* If we haven't found the node type, above, it means we - * can use the prevailing one */ - if (op == END) { - op = compute_EXACTish(pRExC_state); - } - } - } - } - else if (start == 0) { - if (end == UV_MAX) { - op = SANY; - *flagp |= HASWIDTH|SIMPLE; - RExC_naughty++; - } - else if (end == '\n' - 1 - && invlist_iternext(cp_list, &start, &end) - && start == '\n' + 1 && end == UV_MAX) - { - op = REG_ANY; - *flagp |= HASWIDTH|SIMPLE; - RExC_naughty++; - } - } - - if (op != END) { - RExC_parse = (char *)orig_parse; - RExC_emit = (regnode *)orig_emit; - - ret = reg_node(pRExC_state, op); - - RExC_parse = (char *)cur_parse; - - if (PL_regkind[op] == EXACT) { - alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value); - } - - SvREFCNT_dec(cp_list); - SvREFCNT_dec(listsv); - return ret; - } - } - - /* Here, contains all the code points we can determine at - * compile time that match under all conditions. Go through it, and - * for things that belong in the bitmap, put them there, and delete from - * . While we are at it, see if everything above 255 is in the - * list, and if so, set a flag to speed up execution */ - ANYOF_BITMAP_ZERO(ret); - if (cp_list) { - - /* This gets set if we actually need to modify things */ - bool change_invlist = FALSE; - - UV start, end; - - /* Start looking through */ - invlist_iterinit(cp_list); - while (invlist_iternext(cp_list, &start, &end)) { - UV high; - int i; - - if (end == UV_MAX && start <= 256) { - ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; - } - - /* Quit if are above what we should change */ - if (start > 255) { - break; - } - - change_invlist = TRUE; - - /* Set all the bits in the range, up to the max that we are doing */ - high = (end < 255) ? end : 255; - for (i = start; i <= (int) high; i++) { - if (! ANYOF_BITMAP_TEST(ret, i)) { - ANYOF_BITMAP_SET(ret, i); - prevvalue = value; - value = i; - } - } - } - - /* Done with loop; remove any code points that are in the bitmap from - * */ - if (change_invlist) { - _invlist_subtract(cp_list, PL_Latin1, &cp_list); - } - - /* If have completely emptied it, remove it completely */ - if (_invlist_len(cp_list) == 0) { - SvREFCNT_dec(cp_list); - cp_list = NULL; - } - } - - if (invert) { - ANYOF_FLAGS(ret) |= ANYOF_INVERT; - } - - /* Here, the bitmap has been populated with all the Latin1 code points that - * always match. Can now add to the overall list those that match only - * when the target string is UTF-8 (). */ - if (depends_list) { - if (cp_list) { - _invlist_union(cp_list, depends_list, &cp_list); - SvREFCNT_dec(depends_list); - } - else { - cp_list = depends_list; - } - } - - /* If there is a swash and more than one element, we can't use the swash in - * the optimization below. */ - if (swash && element_count > 1) { - SvREFCNT_dec(swash); - swash = NULL; - } - - if (! cp_list - && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) - { - ARG_SET(ret, ANYOF_NONBITMAP_EMPTY); - SvREFCNT_dec(listsv); - } - else { - /* av[0] stores the character class description in its textual form: - * used later (regexec.c:Perl_regclass_swash()) to initialize the - * appropriate swash, and is also useful for dumping the regnode. - * av[1] if NULL, is a placeholder to later contain the swash computed - * from av[0]. But if no further computation need be done, the - * swash is stored there now. - * av[2] stores the cp_list inversion list for use in addition or - * instead of av[0]; used only if av[1] is NULL - * av[3] is set if any component of the class is from a user-defined - * property; used only if av[1] is NULL */ - AV * const av = newAV(); - SV *rv; - - av_store(av, 0, (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION) - ? listsv - : (SvREFCNT_dec(listsv), &PL_sv_undef)); - if (swash) { - av_store(av, 1, swash); - SvREFCNT_dec(cp_list); - } - else { - av_store(av, 1, NULL); - if (cp_list) { - av_store(av, 2, cp_list); - av_store(av, 3, newSVuv(has_user_defined_property)); - } - } - - rv = newRV_noinc(MUTABLE_SV(av)); - n = add_data(pRExC_state, 1, "s"); - RExC_rxi->data->data[n] = (void*)rv; - ARG_SET(ret, n); - } - - *flagp |= HASWIDTH|SIMPLE; - return ret; -} -#undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION - - -/* reg_skipcomment() - - Absorbs an /x style # comments from the input stream. - Returns true if there is more text remaining in the stream. - Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment - terminates the pattern without including a newline. - - Note its the callers responsibility to ensure that we are - actually in /x mode - -*/ - -STATIC bool -S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state) -{ - bool ended = 0; - - PERL_ARGS_ASSERT_REG_SKIPCOMMENT; - - while (RExC_parse < RExC_end) - if (*RExC_parse++ == '\n') { - ended = 1; - break; - } - if (!ended) { - /* we ran off the end of the pattern without ending - the comment, so we have to add an \n when wrapping */ - RExC_seen |= REG_SEEN_RUN_ON_COMMENT; - return 0; - } else - return 1; -} - -/* nextchar() - - Advances the parse position, and optionally absorbs - "whitespace" from the inputstream. - - Without /x "whitespace" means (?#...) style comments only, - with /x this means (?#...) and # comments and whitespace proper. - - Returns the RExC_parse point from BEFORE the scan occurs. - - This is the /x friendly way of saying RExC_parse++. -*/ - -STATIC char* -S_nextchar(pTHX_ RExC_state_t *pRExC_state) -{ - char* const retval = RExC_parse++; - - PERL_ARGS_ASSERT_NEXTCHAR; - - for (;;) { - if (RExC_end - RExC_parse >= 3 - && *RExC_parse == '(' - && RExC_parse[1] == '?' - && RExC_parse[2] == '#') - { - while (*RExC_parse != ')') { - if (RExC_parse == RExC_end) - FAIL("Sequence (?#... not terminated"); - RExC_parse++; - } - RExC_parse++; - continue; - } - if (RExC_flags & RXf_PMf_EXTENDED) { - if (isSPACE(*RExC_parse)) { - RExC_parse++; - continue; - } - else if (*RExC_parse == '#') { - if ( reg_skipcomment( pRExC_state ) ) - continue; - } - } - return retval; - } -} - -/* -- reg_node - emit a node -*/ -STATIC regnode * /* Location. */ -S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op) -{ - dVAR; - regnode *ptr; - regnode * const ret = RExC_emit; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REG_NODE; - - if (SIZE_ONLY) { - SIZE_ALIGN(RExC_size); - RExC_size += 1; - return(ret); - } - if (RExC_emit >= RExC_emit_bound) - Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p", - op, RExC_emit, RExC_emit_bound); - - NODE_ALIGN_FILL(ret); - ptr = ret; - FILL_ADVANCE_NODE(ptr, op); - REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1); -#ifdef RE_TRACK_PATTERN_OFFSETS - if (RExC_offsets) { /* MJD */ - MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n", - "reg_node", __LINE__, - PL_reg_name[op], - (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] - ? "Overwriting end of array!\n" : "OK", - (UV)(RExC_emit - RExC_emit_start), - (UV)(RExC_parse - RExC_start), - (UV)RExC_offsets[0])); - Set_Node_Offset(RExC_emit, RExC_parse + (op == END)); - } -#endif - RExC_emit = ptr; - return(ret); -} - -/* -- reganode - emit a node with an argument -*/ -STATIC regnode * /* Location. */ -S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg) -{ - dVAR; - regnode *ptr; - regnode * const ret = RExC_emit; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGANODE; - - if (SIZE_ONLY) { - SIZE_ALIGN(RExC_size); - RExC_size += 2; - /* - We can't do this: - - assert(2==regarglen[op]+1); - - Anything larger than this has to allocate the extra amount. - If we changed this to be: - - RExC_size += (1 + regarglen[op]); - - then it wouldn't matter. Its not clear what side effect - might come from that so its not done so far. - -- dmq - */ - return(ret); - } - if (RExC_emit >= RExC_emit_bound) - Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p", - op, RExC_emit, RExC_emit_bound); - - NODE_ALIGN_FILL(ret); - ptr = ret; - FILL_ADVANCE_NODE_ARG(ptr, op, arg); - REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2); -#ifdef RE_TRACK_PATTERN_OFFSETS - if (RExC_offsets) { /* MJD */ - MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n", - "reganode", - __LINE__, - PL_reg_name[op], - (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ? - "Overwriting end of array!\n" : "OK", - (UV)(RExC_emit - RExC_emit_start), - (UV)(RExC_parse - RExC_start), - (UV)RExC_offsets[0])); - Set_Cur_Node_Offset; - } -#endif - RExC_emit = ptr; - return(ret); -} - -/* -- reguni - emit (if appropriate) a Unicode character -*/ -STATIC STRLEN -S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s) -{ - dVAR; - - PERL_ARGS_ASSERT_REGUNI; - - return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s); -} - -/* -- reginsert - insert an operator in front of already-emitted operand -* -* Means relocating the operand. -*/ -STATIC void -S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth) -{ - dVAR; - regnode *src; - regnode *dst; - regnode *place; - const int offset = regarglen[(U8)op]; - const int size = NODE_STEP_REGNODE + offset; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGINSERT; - PERL_UNUSED_ARG(depth); -/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */ - DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]); - if (SIZE_ONLY) { - RExC_size += size; - return; - } - - src = RExC_emit; - RExC_emit += size; - dst = RExC_emit; - if (RExC_open_parens) { - int paren; - /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/ - for ( paren=0 ; paren < RExC_npar ; paren++ ) { - if ( RExC_open_parens[paren] >= opnd ) { - /*DEBUG_PARSE_FMT("open"," - %d",size);*/ - RExC_open_parens[paren] += size; - } else { - /*DEBUG_PARSE_FMT("open"," - %s","ok");*/ - } - if ( RExC_close_parens[paren] >= opnd ) { - /*DEBUG_PARSE_FMT("close"," - %d",size);*/ - RExC_close_parens[paren] += size; - } else { - /*DEBUG_PARSE_FMT("close"," - %s","ok");*/ - } - } - } - - while (src > opnd) { - StructCopy(--src, --dst, regnode); -#ifdef RE_TRACK_PATTERN_OFFSETS - if (RExC_offsets) { /* MJD 20010112 */ - MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n", - "reg_insert", - __LINE__, - PL_reg_name[op], - (UV)(dst - RExC_emit_start) > RExC_offsets[0] - ? "Overwriting end of array!\n" : "OK", - (UV)(src - RExC_emit_start), - (UV)(dst - RExC_emit_start), - (UV)RExC_offsets[0])); - Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src)); - Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src)); - } -#endif - } - - - place = opnd; /* Op node, where operand used to be. */ -#ifdef RE_TRACK_PATTERN_OFFSETS - if (RExC_offsets) { /* MJD */ - MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n", - "reginsert", - __LINE__, - PL_reg_name[op], - (UV)(place - RExC_emit_start) > RExC_offsets[0] - ? "Overwriting end of array!\n" : "OK", - (UV)(place - RExC_emit_start), - (UV)(RExC_parse - RExC_start), - (UV)RExC_offsets[0])); - Set_Node_Offset(place, RExC_parse); - Set_Node_Length(place, 1); - } -#endif - src = NEXTOPER(place); - FILL_ADVANCE_NODE(place, op); - REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1); - Zero(src, offset, regnode); -} - -/* -- regtail - set the next-pointer at the end of a node chain of p to val. -- SEE ALSO: regtail_study -*/ -/* TODO: All three parms should be const */ -STATIC void -S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth) -{ - dVAR; - regnode *scan; - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGTAIL; -#ifndef DEBUGGING - PERL_UNUSED_ARG(depth); -#endif - - if (SIZE_ONLY) - return; - - /* Find last node. */ - scan = p; - for (;;) { - regnode * const temp = regnext(scan); - DEBUG_PARSE_r({ - SV * const mysv=sv_newmortal(); - DEBUG_PARSE_MSG((scan==p ? "tail" : "")); - regprop(RExC_rx, mysv, scan); - PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n", - SvPV_nolen_const(mysv), REG_NODE_NUM(scan), - (temp == NULL ? "->" : ""), - (temp == NULL ? PL_reg_name[OP(val)] : "") - ); - }); - if (temp == NULL) - break; - scan = temp; - } - - if (reg_off_by_arg[OP(scan)]) { - ARG_SET(scan, val - scan); - } - else { - NEXT_OFF(scan) = val - scan; - } -} - -#ifdef DEBUGGING -/* -- regtail_study - set the next-pointer at the end of a node chain of p to val. -- Look for optimizable sequences at the same time. -- currently only looks for EXACT chains. - -This is experimental code. The idea is to use this routine to perform -in place optimizations on branches and groups as they are constructed, -with the long term intention of removing optimization from study_chunk so -that it is purely analytical. - -Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used -to control which is which. - -*/ -/* TODO: All four parms should be const */ - -STATIC U8 -S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth) -{ - dVAR; - regnode *scan; - U8 exact = PSEUDO; -#ifdef EXPERIMENTAL_INPLACESCAN - I32 min = 0; -#endif - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGTAIL_STUDY; - - - if (SIZE_ONLY) - return exact; - - /* Find last node. */ - - scan = p; - for (;;) { - regnode * const temp = regnext(scan); -#ifdef EXPERIMENTAL_INPLACESCAN - if (PL_regkind[OP(scan)] == EXACT) { - bool has_exactf_sharp_s; /* Unexamined in this routine */ - if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1)) - return EXACT; - } -#endif - if ( exact ) { - switch (OP(scan)) { - case EXACT: - case EXACTF: - case EXACTFA: - case EXACTFU: - case EXACTFU_SS: - case EXACTFU_TRICKYFOLD: - case EXACTFL: - if( exact == PSEUDO ) - exact= OP(scan); - else if ( exact != OP(scan) ) - exact= 0; - case NOTHING: - break; - default: - exact= 0; - } - } - DEBUG_PARSE_r({ - SV * const mysv=sv_newmortal(); - DEBUG_PARSE_MSG((scan==p ? "tsdy" : "")); - regprop(RExC_rx, mysv, scan); - PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n", - SvPV_nolen_const(mysv), - REG_NODE_NUM(scan), - PL_reg_name[exact]); - }); - if (temp == NULL) - break; - scan = temp; - } - DEBUG_PARSE_r({ - SV * const mysv_val=sv_newmortal(); - DEBUG_PARSE_MSG(""); - regprop(RExC_rx, mysv_val, val); - PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n", - SvPV_nolen_const(mysv_val), - (IV)REG_NODE_NUM(val), - (IV)(val - scan) - ); - }); - if (reg_off_by_arg[OP(scan)]) { - ARG_SET(scan, val - scan); - } - else { - NEXT_OFF(scan) = val - scan; - } - - return exact; -} -#endif - -/* - - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form - */ -#ifdef DEBUGGING -static void -S_regdump_extflags(pTHX_ const char *lead, const U32 flags) -{ - int bit; - int set=0; - regex_charset cs; - - for (bit=0; bit<32; bit++) { - if (flags & (1<program, ri->program + 1, NULL, NULL, sv, 0, 0); - - /* Header fields of interest. */ - if (r->anchored_substr) { - RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr), - RE_SV_DUMPLEN(r->anchored_substr), 30); - PerlIO_printf(Perl_debug_log, - "anchored %s%s at %"IVdf" ", - s, RE_SV_TAIL(r->anchored_substr), - (IV)r->anchored_offset); - } else if (r->anchored_utf8) { - RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8), - RE_SV_DUMPLEN(r->anchored_utf8), 30); - PerlIO_printf(Perl_debug_log, - "anchored utf8 %s%s at %"IVdf" ", - s, RE_SV_TAIL(r->anchored_utf8), - (IV)r->anchored_offset); - } - if (r->float_substr) { - RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr), - RE_SV_DUMPLEN(r->float_substr), 30); - PerlIO_printf(Perl_debug_log, - "floating %s%s at %"IVdf"..%"UVuf" ", - s, RE_SV_TAIL(r->float_substr), - (IV)r->float_min_offset, (UV)r->float_max_offset); - } else if (r->float_utf8) { - RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8), - RE_SV_DUMPLEN(r->float_utf8), 30); - PerlIO_printf(Perl_debug_log, - "floating utf8 %s%s at %"IVdf"..%"UVuf" ", - s, RE_SV_TAIL(r->float_utf8), - (IV)r->float_min_offset, (UV)r->float_max_offset); - } - if (r->check_substr || r->check_utf8) - PerlIO_printf(Perl_debug_log, - (const char *) - (r->check_substr == r->float_substr - && r->check_utf8 == r->float_utf8 - ? "(checking floating" : "(checking anchored")); - if (r->extflags & RXf_NOSCAN) - PerlIO_printf(Perl_debug_log, " noscan"); - if (r->extflags & RXf_CHECK_ALL) - PerlIO_printf(Perl_debug_log, " isall"); - if (r->check_substr || r->check_utf8) - PerlIO_printf(Perl_debug_log, ") "); - - if (ri->regstclass) { - regprop(r, sv, ri->regstclass); - PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv)); - } - if (r->extflags & RXf_ANCH) { - PerlIO_printf(Perl_debug_log, "anchored"); - if (r->extflags & RXf_ANCH_BOL) - PerlIO_printf(Perl_debug_log, "(BOL)"); - if (r->extflags & RXf_ANCH_MBOL) - PerlIO_printf(Perl_debug_log, "(MBOL)"); - if (r->extflags & RXf_ANCH_SBOL) - PerlIO_printf(Perl_debug_log, "(SBOL)"); - if (r->extflags & RXf_ANCH_GPOS) - PerlIO_printf(Perl_debug_log, "(GPOS)"); - PerlIO_putc(Perl_debug_log, ' '); - } - if (r->extflags & RXf_GPOS_SEEN) - PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs); - if (r->intflags & PREGf_SKIP) - PerlIO_printf(Perl_debug_log, "plus "); - if (r->intflags & PREGf_IMPLICIT) - PerlIO_printf(Perl_debug_log, "implicit "); - PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen); - if (r->extflags & RXf_EVAL_SEEN) - PerlIO_printf(Perl_debug_log, "with eval "); - PerlIO_printf(Perl_debug_log, "\n"); - DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags)); -#else - PERL_ARGS_ASSERT_REGDUMP; - PERL_UNUSED_CONTEXT; - PERL_UNUSED_ARG(r); -#endif /* DEBUGGING */ -} - -/* -- regprop - printable representation of opcode -*/ -#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \ -STMT_START { \ - if (do_sep) { \ - Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \ - if (flags & ANYOF_INVERT) \ - /*make sure the invert info is in each */ \ - sv_catpvs(sv, "^"); \ - do_sep = 0; \ - } \ -} STMT_END - -void -Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o) -{ -#ifdef DEBUGGING - dVAR; - int k; - - /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */ - static const char * const anyofs[] = { -#if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \ - || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 || _CC_ALNUMC != 7 \ - || _CC_GRAPH != 8 || _CC_SPACE != 9 || _CC_BLANK != 10 \ - || _CC_XDIGIT != 11 || _CC_PSXSPC != 12 || _CC_CNTRL != 13 \ - || _CC_ASCII != 14 || _CC_VERTSPACE != 15 - #error Need to adjust order of anyofs[] -#endif - "[\\w]", - "[\\W]", - "[\\d]", - "[\\D]", - "[:alpha:]", - "[:^alpha:]", - "[:lower:]", - "[:^lower:]", - "[:upper:]", - "[:^upper:]", - "[:punct:]", - "[:^punct:]", - "[:print:]", - "[:^print:]", - "[:alnum:]", - "[:^alnum:]", - "[:graph:]", - "[:^graph:]", - "[\\s]", - "[\\S]", - "[:blank:]", - "[:^blank:]", - "[:xdigit:]", - "[:^xdigit:]", - "[:space:]", - "[:^space:]", - "[:cntrl:]", - "[:^cntrl:]", - "[:ascii:]", - "[:^ascii:]", - "[\\v]", - "[\\V]" - }; - RXi_GET_DECL(prog,progi); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGPROP; - - sv_setpvs(sv, ""); - - if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */ - /* It would be nice to FAIL() here, but this may be called from - regexec.c, and it would be hard to supply pRExC_state. */ - Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX); - sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */ - - k = PL_regkind[OP(o)]; - - if (k == EXACT) { - sv_catpvs(sv, " "); - /* Using is_utf8_string() (via PERL_PV_UNI_DETECT) - * is a crude hack but it may be the best for now since - * we have no flag "this EXACTish node was UTF-8" - * --jhi */ - pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1], - PERL_PV_ESCAPE_UNI_DETECT | - PERL_PV_ESCAPE_NONASCII | - PERL_PV_PRETTY_ELLIPSES | - PERL_PV_PRETTY_LTGT | - PERL_PV_PRETTY_NOCLEAR - ); - } else if (k == TRIE) { - /* print the details of the trie in dumpuntil instead, as - * progi->data isn't available here */ - const char op = OP(o); - const U32 n = ARG(o); - const reg_ac_data * const ac = IS_TRIE_AC(op) ? - (reg_ac_data *)progi->data->data[n] : - NULL; - const reg_trie_data * const trie - = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie]; - - Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]); - DEBUG_TRIE_COMPILE_r( - Perl_sv_catpvf(aTHX_ sv, - "", - (UV)trie->startstate, - (IV)trie->statecount-1, /* -1 because of the unused 0 element */ - (UV)trie->wordcount, - (UV)trie->minlen, - (UV)trie->maxlen, - (UV)TRIE_CHARCOUNT(trie), - (UV)trie->uniquecharcount - ) - ); - if ( IS_ANYOF_TRIE(op) || trie->bitmap ) { - int i; - int rangestart = -1; - U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie); - sv_catpvs(sv, "["); - for (i = 0; i <= 256; i++) { - if (i < 256 && BITMAP_TEST(bitmap,i)) { - if (rangestart == -1) - rangestart = i; - } else if (rangestart != -1) { - if (i <= rangestart + 3) - for (; rangestart < i; rangestart++) - put_byte(sv, rangestart); - else { - put_byte(sv, rangestart); - sv_catpvs(sv, "-"); - put_byte(sv, i - 1); - } - rangestart = -1; - } - } - sv_catpvs(sv, "]"); - } - - } else if (k == CURLY) { - if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX) - Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */ - Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o)); - } - else if (k == WHILEM && o->flags) /* Ordinal/of */ - Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4); - else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) { - Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */ - if ( RXp_PAREN_NAMES(prog) ) { - if ( k != REF || (OP(o) < NREF)) { - AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]); - SV **name= av_fetch(list, ARG(o), 0 ); - if (name) - Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name)); - } - else { - AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]); - SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]); - I32 *nums=(I32*)SvPVX(sv_dat); - SV **name= av_fetch(list, nums[0], 0 ); - I32 n; - if (name) { - for ( n=0; nflags) - Perl_sv_catpvf(aTHX_ sv, ":%"SVf, - SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ])))); - } else if (k == LOGICAL) - Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */ - else if (k == ANYOF) { - int i, rangestart = -1; - const U8 flags = ANYOF_FLAGS(o); - int do_sep = 0; - - - if (flags & ANYOF_LOCALE) - sv_catpvs(sv, "{loc}"); - if (flags & ANYOF_LOC_FOLD) - sv_catpvs(sv, "{i}"); - Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]); - if (flags & ANYOF_INVERT) - sv_catpvs(sv, "^"); - - /* output what the standard cp 0-255 bitmap matches */ - for (i = 0; i <= 256; i++) { - if (i < 256 && ANYOF_BITMAP_TEST(o,i)) { - if (rangestart == -1) - rangestart = i; - } else if (rangestart != -1) { - if (i <= rangestart + 3) - for (; rangestart < i; rangestart++) - put_byte(sv, rangestart); - else { - put_byte(sv, rangestart); - sv_catpvs(sv, "-"); - put_byte(sv, i - 1); - } - do_sep = 1; - rangestart = -1; - } - } - - EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags); - /* output any special charclass tests (used entirely under use locale) */ - if (ANYOF_CLASS_TEST_ANY_SET(o)) - for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++) - if (ANYOF_CLASS_TEST(o,i)) { - sv_catpv(sv, anyofs[i]); - do_sep = 1; - } - - EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags); - - if (flags & ANYOF_NON_UTF8_LATIN1_ALL) { - sv_catpvs(sv, "{non-utf8-latin1-all}"); - } - - /* output information about the unicode matching */ - if (flags & ANYOF_UNICODE_ALL) - sv_catpvs(sv, "{unicode_all}"); - else if (ANYOF_NONBITMAP(o)) - sv_catpvs(sv, "{unicode}"); - if (flags & ANYOF_NONBITMAP_NON_UTF8) - sv_catpvs(sv, "{outside bitmap}"); - - if (ANYOF_NONBITMAP(o)) { - SV *lv; /* Set if there is something outside the bit map */ - SV * const sw = regclass_swash(prog, o, FALSE, &lv, NULL); - bool byte_output = FALSE; /* If something in the bitmap has been - output */ - - if (lv && lv != &PL_sv_undef) { - if (sw) { - U8 s[UTF8_MAXBYTES_CASE+1]; - - for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */ - uvchr_to_utf8(s, i); - - if (i < 256 - && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate - things already - output as part - of the bitmap */ - && swash_fetch(sw, s, TRUE)) - { - if (rangestart == -1) - rangestart = i; - } else if (rangestart != -1) { - byte_output = TRUE; - if (i <= rangestart + 3) - for (; rangestart < i; rangestart++) { - put_byte(sv, rangestart); - } - else { - put_byte(sv, rangestart); - sv_catpvs(sv, "-"); - put_byte(sv, i-1); - } - rangestart = -1; - } - } - } - - { - char *s = savesvpv(lv); - char * const origs = s; - - while (*s && *s != '\n') - s++; - - if (*s == '\n') { - const char * const t = ++s; - - if (byte_output) { - sv_catpvs(sv, " "); - } - - while (*s) { - if (*s == '\n') { - - /* Truncate very long output */ - if (s - origs > 256) { - Perl_sv_catpvf(aTHX_ sv, - "%.*s...", - (int) (s - origs - 1), - t); - goto out_dump; - } - *s = ' '; - } - else if (*s == '\t') { - *s = '-'; - } - s++; - } - if (s[-1] == ' ') - s[-1] = 0; - - sv_catpv(sv, t); - } - - out_dump: - - Safefree(origs); - } - SvREFCNT_dec(lv); - } - } - - Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]); - } - else if (k == POSIXD || k == NPOSIXD) { - U8 index = FLAGS(o) * 2; - if (index > (sizeof(anyofs) / sizeof(anyofs[0]))) { - Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index); - } - else { - sv_catpv(sv, anyofs[index]); - } - } - else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH)) - Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags)); -#else - PERL_UNUSED_CONTEXT; - PERL_UNUSED_ARG(sv); - PERL_UNUSED_ARG(o); - PERL_UNUSED_ARG(prog); -#endif /* DEBUGGING */ -} - -SV * -Perl_re_intuit_string(pTHX_ REGEXP * const r) -{ /* Assume that RE_INTUIT is set */ - dVAR; - struct regexp *const prog = ReANY(r); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_RE_INTUIT_STRING; - PERL_UNUSED_CONTEXT; - - DEBUG_COMPILE_r( - { - const char * const s = SvPV_nolen_const(prog->check_substr - ? prog->check_substr : prog->check_utf8); - - if (!PL_colorset) reginitcolors(); - PerlIO_printf(Perl_debug_log, - "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n", - PL_colors[4], - prog->check_substr ? "" : "utf8 ", - PL_colors[5],PL_colors[0], - s, - PL_colors[1], - (strlen(s) > 60 ? "..." : "")); - } ); - - return prog->check_substr ? prog->check_substr : prog->check_utf8; -} - -/* - pregfree() - - handles refcounting and freeing the perl core regexp structure. When - it is necessary to actually free the structure the first thing it - does is call the 'free' method of the regexp_engine associated to - the regexp, allowing the handling of the void *pprivate; member - first. (This routine is not overridable by extensions, which is why - the extensions free is called first.) - - See regdupe and regdupe_internal if you change anything here. -*/ -#ifndef PERL_IN_XSUB_RE -void -Perl_pregfree(pTHX_ REGEXP *r) -{ - SvREFCNT_dec(r); -} - -void -Perl_pregfree2(pTHX_ REGEXP *rx) -{ - dVAR; - struct regexp *const r = ReANY(rx); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_PREGFREE2; - - if (r->mother_re) { - ReREFCNT_dec(r->mother_re); - } else { - CALLREGFREE_PVT(rx); /* free the private data */ - SvREFCNT_dec(RXp_PAREN_NAMES(r)); - Safefree(r->xpv_len_u.xpvlenu_pv); - } - if (r->substrs) { - SvREFCNT_dec(r->anchored_substr); - SvREFCNT_dec(r->anchored_utf8); - SvREFCNT_dec(r->float_substr); - SvREFCNT_dec(r->float_utf8); - Safefree(r->substrs); - } - RX_MATCH_COPY_FREE(rx); -#ifdef PERL_ANY_COW - SvREFCNT_dec(r->saved_copy); -#endif - Safefree(r->offs); - SvREFCNT_dec(r->qr_anoncv); - rx->sv_u.svu_rx = 0; -} - -/* reg_temp_copy() - - This is a hacky workaround to the structural issue of match results - being stored in the regexp structure which is in turn stored in - PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern - could be PL_curpm in multiple contexts, and could require multiple - result sets being associated with the pattern simultaneously, such - as when doing a recursive match with (??{$qr}) - - The solution is to make a lightweight copy of the regexp structure - when a qr// is returned from the code executed by (??{$qr}) this - lightweight copy doesn't actually own any of its data except for - the starp/end and the actual regexp structure itself. - -*/ - - -REGEXP * -Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx) -{ - struct regexp *ret; - struct regexp *const r = ReANY(rx); - const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV; - - PERL_ARGS_ASSERT_REG_TEMP_COPY; - - if (!ret_x) - ret_x = (REGEXP*) newSV_type(SVt_REGEXP); - else { - SvOK_off((SV *)ret_x); - if (islv) { - /* For PVLVs, SvANY points to the xpvlv body while sv_u points - to the regexp. (For SVt_REGEXPs, sv_upgrade has already - made both spots point to the same regexp body.) */ - REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP); - assert(!SvPVX(ret_x)); - ret_x->sv_u.svu_rx = temp->sv_any; - temp->sv_any = NULL; - SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL; - SvREFCNT_dec(temp); - /* SvCUR still resides in the xpvlv struct, so the regexp copy- - ing below will not set it. */ - SvCUR_set(ret_x, SvCUR(rx)); - } - } - /* This ensures that SvTHINKFIRST(sv) is true, and hence that - sv_force_normal(sv) is called. */ - SvFAKE_on(ret_x); - ret = ReANY(ret_x); - - SvFLAGS(ret_x) |= SvUTF8(rx); - /* We share the same string buffer as the original regexp, on which we - hold a reference count, incremented when mother_re is set below. - The string pointer is copied here, being part of the regexp struct. - */ - memcpy(&(ret->xpv_cur), &(r->xpv_cur), - sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur)); - if (r->offs) { - const I32 npar = r->nparens+1; - Newx(ret->offs, npar, regexp_paren_pair); - Copy(r->offs, ret->offs, npar, regexp_paren_pair); - } - if (r->substrs) { - Newx(ret->substrs, 1, struct reg_substr_data); - StructCopy(r->substrs, ret->substrs, struct reg_substr_data); - - SvREFCNT_inc_void(ret->anchored_substr); - SvREFCNT_inc_void(ret->anchored_utf8); - SvREFCNT_inc_void(ret->float_substr); - SvREFCNT_inc_void(ret->float_utf8); - - /* check_substr and check_utf8, if non-NULL, point to either their - anchored or float namesakes, and don't hold a second reference. */ - } - RX_MATCH_COPIED_off(ret_x); -#ifdef PERL_ANY_COW - ret->saved_copy = NULL; -#endif - ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx); - SvREFCNT_inc_void(ret->qr_anoncv); - - return ret_x; -} -#endif - -/* regfree_internal() - - Free the private data in a regexp. This is overloadable by - extensions. Perl takes care of the regexp structure in pregfree(), - this covers the *pprivate pointer which technically perl doesn't - know about, however of course we have to handle the - regexp_internal structure when no extension is in use. - - Note this is called before freeing anything in the regexp - structure. - */ - -void -Perl_regfree_internal(pTHX_ REGEXP * const rx) -{ - dVAR; - struct regexp *const r = ReANY(rx); - RXi_GET_DECL(r,ri); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_REGFREE_INTERNAL; - - DEBUG_COMPILE_r({ - if (!PL_colorset) - reginitcolors(); - { - SV *dsv= sv_newmortal(); - RE_PV_QUOTED_DECL(s, RX_UTF8(rx), - dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60); - PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n", - PL_colors[4],PL_colors[5],s); - } - }); -#ifdef RE_TRACK_PATTERN_OFFSETS - if (ri->u.offsets) - Safefree(ri->u.offsets); /* 20010421 MJD */ -#endif - if (ri->code_blocks) { - int n; - for (n = 0; n < ri->num_code_blocks; n++) - SvREFCNT_dec(ri->code_blocks[n].src_regex); - Safefree(ri->code_blocks); - } - - if (ri->data) { - int n = ri->data->count; - - while (--n >= 0) { - /* If you add a ->what type here, update the comment in regcomp.h */ - switch (ri->data->what[n]) { - case 'a': - case 'r': - case 's': - case 'S': - case 'u': - SvREFCNT_dec(MUTABLE_SV(ri->data->data[n])); - break; - case 'f': - Safefree(ri->data->data[n]); - break; - case 'l': - case 'L': - break; - case 'T': - { /* Aho Corasick add-on structure for a trie node. - Used in stclass optimization only */ - U32 refcount; - reg_ac_data *aho=(reg_ac_data*)ri->data->data[n]; - OP_REFCNT_LOCK; - refcount = --aho->refcount; - OP_REFCNT_UNLOCK; - if ( !refcount ) { - PerlMemShared_free(aho->states); - PerlMemShared_free(aho->fail); - /* do this last!!!! */ - PerlMemShared_free(ri->data->data[n]); - PerlMemShared_free(ri->regstclass); - } - } - break; - case 't': - { - /* trie structure. */ - U32 refcount; - reg_trie_data *trie=(reg_trie_data*)ri->data->data[n]; - OP_REFCNT_LOCK; - refcount = --trie->refcount; - OP_REFCNT_UNLOCK; - if ( !refcount ) { - PerlMemShared_free(trie->charmap); - PerlMemShared_free(trie->states); - PerlMemShared_free(trie->trans); - if (trie->bitmap) - PerlMemShared_free(trie->bitmap); - if (trie->jump) - PerlMemShared_free(trie->jump); - PerlMemShared_free(trie->wordinfo); - /* do this last!!!! */ - PerlMemShared_free(ri->data->data[n]); - } - } - break; - default: - Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]); - } - } - Safefree(ri->data->what); - Safefree(ri->data); - } - - Safefree(ri); -} - -#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t)) -#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t)) -#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL) - -/* - re_dup - duplicate a regexp. - - This routine is expected to clone a given regexp structure. It is only - compiled under USE_ITHREADS. - - After all of the core data stored in struct regexp is duplicated - the regexp_engine.dupe method is used to copy any private data - stored in the *pprivate pointer. This allows extensions to handle - any duplication it needs to do. - - See pregfree() and regfree_internal() if you change anything here. -*/ -#if defined(USE_ITHREADS) -#ifndef PERL_IN_XSUB_RE -void -Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param) -{ - dVAR; - I32 npar; - const struct regexp *r = ReANY(sstr); - struct regexp *ret = ReANY(dstr); - - PERL_ARGS_ASSERT_RE_DUP_GUTS; - - npar = r->nparens+1; - Newx(ret->offs, npar, regexp_paren_pair); - Copy(r->offs, ret->offs, npar, regexp_paren_pair); - if(ret->swap) { - /* no need to copy these */ - Newx(ret->swap, npar, regexp_paren_pair); - } - - if (ret->substrs) { - /* Do it this way to avoid reading from *r after the StructCopy(). - That way, if any of the sv_dup_inc()s dislodge *r from the L1 - cache, it doesn't matter. */ - const bool anchored = r->check_substr - ? r->check_substr == r->anchored_substr - : r->check_utf8 == r->anchored_utf8; - Newx(ret->substrs, 1, struct reg_substr_data); - StructCopy(r->substrs, ret->substrs, struct reg_substr_data); - - ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param); - ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param); - ret->float_substr = sv_dup_inc(ret->float_substr, param); - ret->float_utf8 = sv_dup_inc(ret->float_utf8, param); - - /* check_substr and check_utf8, if non-NULL, point to either their - anchored or float namesakes, and don't hold a second reference. */ - - if (ret->check_substr) { - if (anchored) { - assert(r->check_utf8 == r->anchored_utf8); - ret->check_substr = ret->anchored_substr; - ret->check_utf8 = ret->anchored_utf8; - } else { - assert(r->check_substr == r->float_substr); - assert(r->check_utf8 == r->float_utf8); - ret->check_substr = ret->float_substr; - ret->check_utf8 = ret->float_utf8; - } - } else if (ret->check_utf8) { - if (anchored) { - ret->check_utf8 = ret->anchored_utf8; - } else { - ret->check_utf8 = ret->float_utf8; - } - } - } - - RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param); - ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param)); - - if (ret->pprivate) - RXi_SET(ret,CALLREGDUPE_PVT(dstr,param)); - - if (RX_MATCH_COPIED(dstr)) - ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen); - else - ret->subbeg = NULL; -#ifdef PERL_ANY_COW - ret->saved_copy = NULL; -#endif - - /* Whether mother_re be set or no, we need to copy the string. We - cannot refrain from copying it when the storage points directly to - our mother regexp, because that's - 1: a buffer in a different thread - 2: something we no longer hold a reference on - so we need to copy it locally. */ - RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1); - ret->mother_re = NULL; - ret->gofs = 0; -} -#endif /* PERL_IN_XSUB_RE */ - -/* - regdupe_internal() - - This is the internal complement to regdupe() which is used to copy - the structure pointed to by the *pprivate pointer in the regexp. - This is the core version of the extension overridable cloning hook. - The regexp structure being duplicated will be copied by perl prior - to this and will be provided as the regexp *r argument, however - with the /old/ structures pprivate pointer value. Thus this routine - may override any copying normally done by perl. - - It returns a pointer to the new regexp_internal structure. -*/ - -void * -Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param) -{ - dVAR; - struct regexp *const r = ReANY(rx); - regexp_internal *reti; - int len; - RXi_GET_DECL(r,ri); - - PERL_ARGS_ASSERT_REGDUPE_INTERNAL; - - len = ProgLen(ri); - - Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal); - Copy(ri->program, reti->program, len+1, regnode); - - reti->num_code_blocks = ri->num_code_blocks; - if (ri->code_blocks) { - int n; - Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block, - struct reg_code_block); - Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks, - struct reg_code_block); - for (n = 0; n < ri->num_code_blocks; n++) - reti->code_blocks[n].src_regex = (REGEXP*) - sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param); - } - else - reti->code_blocks = NULL; - - reti->regstclass = NULL; - - if (ri->data) { - struct reg_data *d; - const int count = ri->data->count; - int i; - - Newxc(d, sizeof(struct reg_data) + count*sizeof(void *), - char, struct reg_data); - Newx(d->what, count, U8); - - d->count = count; - for (i = 0; i < count; i++) { - d->what[i] = ri->data->what[i]; - switch (d->what[i]) { - /* see also regcomp.h and regfree_internal() */ - case 'a': /* actually an AV, but the dup function is identical. */ - case 'r': - case 's': - case 'S': - case 'u': /* actually an HV, but the dup function is identical. */ - d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param); - break; - case 'f': - /* This is cheating. */ - Newx(d->data[i], 1, struct regnode_charclass_class); - StructCopy(ri->data->data[i], d->data[i], - struct regnode_charclass_class); - reti->regstclass = (regnode*)d->data[i]; - break; - case 'T': - /* Trie stclasses are readonly and can thus be shared - * without duplication. We free the stclass in pregfree - * when the corresponding reg_ac_data struct is freed. - */ - reti->regstclass= ri->regstclass; - /* Fall through */ - case 't': - OP_REFCNT_LOCK; - ((reg_trie_data*)ri->data->data[i])->refcount++; - OP_REFCNT_UNLOCK; - /* Fall through */ - case 'l': - case 'L': - d->data[i] = ri->data->data[i]; - break; - default: - Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]); - } - } - - reti->data = d; - } - else - reti->data = NULL; - - reti->name_list_idx = ri->name_list_idx; - -#ifdef RE_TRACK_PATTERN_OFFSETS - if (ri->u.offsets) { - Newx(reti->u.offsets, 2*len+1, U32); - Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32); - } -#else - SetProgLen(reti,len); -#endif - - return (void*)reti; -} - -#endif /* USE_ITHREADS */ - -#ifndef PERL_IN_XSUB_RE - -/* - - regnext - dig the "next" pointer out of a node - */ -regnode * -Perl_regnext(pTHX_ regnode *p) -{ - dVAR; - I32 offset; - - if (!p) - return(NULL); - - if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */ - Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX); - } - - offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p)); - if (offset == 0) - return(NULL); - - return(p+offset); -} -#endif - -STATIC void -S_re_croak2(pTHX_ const char* pat1,const char* pat2,...) -{ - va_list args; - STRLEN l1 = strlen(pat1); - STRLEN l2 = strlen(pat2); - char buf[512]; - SV *msv; - const char *message; - - PERL_ARGS_ASSERT_RE_CROAK2; - - if (l1 > 510) - l1 = 510; - if (l1 + l2 > 510) - l2 = 510 - l1; - Copy(pat1, buf, l1 , char); - Copy(pat2, buf + l1, l2 , char); - buf[l1 + l2] = '\n'; - buf[l1 + l2 + 1] = '\0'; -#ifdef I_STDARG - /* ANSI variant takes additional second argument */ - va_start(args, pat2); -#else - va_start(args); -#endif - msv = vmess(buf, &args); - va_end(args); - message = SvPV_const(msv,l1); - if (l1 > 512) - l1 = 512; - Copy(message, buf, l1 , char); - buf[l1-1] = '\0'; /* Overwrite \n */ - Perl_croak(aTHX_ "%s", buf); -} - -/* XXX Here's a total kludge. But we need to re-enter for swash routines. */ - -#ifndef PERL_IN_XSUB_RE -void -Perl_save_re_context(pTHX) -{ - dVAR; - - struct re_save_state *state; - - SAVEVPTR(PL_curcop); - SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1); - - state = (struct re_save_state *)(PL_savestack + PL_savestack_ix); - PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE; - SSPUSHUV(SAVEt_RE_STATE); - - Copy(&PL_reg_state, state, 1, struct re_save_state); - - PL_reg_oldsaved = NULL; - PL_reg_oldsavedlen = 0; - PL_reg_oldsavedoffset = 0; - PL_reg_oldsavedcoffset = 0; - PL_reg_maxiter = 0; - PL_reg_leftiter = 0; - PL_reg_poscache = NULL; - PL_reg_poscache_size = 0; -#ifdef PERL_ANY_COW - PL_nrs = NULL; -#endif - - /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */ - if (PL_curpm) { - const REGEXP * const rx = PM_GETRE(PL_curpm); - if (rx) { - U32 i; - for (i = 1; i <= RX_NPARENS(rx); i++) { - char digits[TYPE_CHARS(long)]; - const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i); - GV *const *const gvp - = (GV**)hv_fetch(PL_defstash, digits, len, 0); - - if (gvp) { - GV * const gv = *gvp; - if (SvTYPE(gv) == SVt_PVGV && GvSV(gv)) - save_scalar(gv); - } - } - } - } -} -#endif - -#ifdef DEBUGGING - -STATIC void -S_put_byte(pTHX_ SV *sv, int c) -{ - PERL_ARGS_ASSERT_PUT_BYTE; - - /* Our definition of isPRINT() ignores locales, so only bytes that are - not part of UTF-8 are considered printable. I assume that the same - holds for UTF-EBCDIC. - Also, code point 255 is not printable in either (it's E0 in EBCDIC, - which Wikipedia says: - - EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all - ones (binary 1111 1111, hexadecimal FF). It is similar, but not - identical, to the ASCII delete (DEL) or rubout control character. - ) So the old condition can be simplified to !isPRINT(c) */ - if (!isPRINT(c)) { - if (c < 256) { - Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c); - } - else { - Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c); - } - } - else { - const char string = c; - if (c == '-' || c == ']' || c == '\\' || c == '^') - sv_catpvs(sv, "\\"); - sv_catpvn(sv, &string, 1); - } -} - - -#define CLEAR_OPTSTART \ - if (optstart) STMT_START { \ - DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \ - optstart=NULL; \ - } STMT_END - -#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1); - -STATIC const regnode * -S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node, - const regnode *last, const regnode *plast, - SV* sv, I32 indent, U32 depth) -{ - dVAR; - U8 op = PSEUDO; /* Arbitrary non-END op. */ - const regnode *next; - const regnode *optstart= NULL; - - RXi_GET_DECL(r,ri); - GET_RE_DEBUG_FLAGS_DECL; - - PERL_ARGS_ASSERT_DUMPUNTIL; - -#ifdef DEBUG_DUMPUNTIL - PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start, - last ? last-start : 0,plast ? plast-start : 0); -#endif - - if (plast && plast < last) - last= plast; - - while (PL_regkind[op] != END && (!last || node < last)) { - /* While that wasn't END last time... */ - NODE_ALIGN(node); - op = OP(node); - if (op == CLOSE || op == WHILEM) - indent--; - next = regnext((regnode *)node); - - /* Where, what. */ - if (OP(node) == OPTIMIZED) { - if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE)) - optstart = node; - else - goto after_print; - } else - CLEAR_OPTSTART; - - regprop(r, sv, node); - PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start), - (int)(2*indent + 1), "", SvPVX_const(sv)); - - if (OP(node) != OPTIMIZED) { - if (next == NULL) /* Next ptr. */ - PerlIO_printf(Perl_debug_log, " (0)"); - else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH ) - PerlIO_printf(Perl_debug_log, " (FAIL)"); - else - PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start)); - (void)PerlIO_putc(Perl_debug_log, '\n'); - } - - after_print: - if (PL_regkind[(U8)op] == BRANCHJ) { - assert(next); - { - const regnode *nnode = (OP(next) == LONGJMP - ? regnext((regnode *)next) - : next); - if (last && nnode > last) - nnode = last; - DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode); - } - } - else if (PL_regkind[(U8)op] == BRANCH) { - assert(next); - DUMPUNTIL(NEXTOPER(node), next); - } - else if ( PL_regkind[(U8)op] == TRIE ) { - const regnode *this_trie = node; - const char op = OP(node); - const U32 n = ARG(node); - const reg_ac_data * const ac = op>=AHOCORASICK ? - (reg_ac_data *)ri->data->data[n] : - NULL; - const reg_trie_data * const trie = - (reg_trie_data*)ri->data->data[optrie]; -#ifdef DEBUGGING - AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]); -#endif - const regnode *nextbranch= NULL; - I32 word_idx; - sv_setpvs(sv, ""); - for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) { - SV ** const elem_ptr = av_fetch(trie_words,word_idx,0); - - PerlIO_printf(Perl_debug_log, "%*s%s ", - (int)(2*(indent+3)), "", - elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60, - PL_colors[0], PL_colors[1], - (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) | - PERL_PV_PRETTY_ELLIPSES | - PERL_PV_PRETTY_LTGT - ) - : "???" - ); - if (trie->jump) { - U16 dist= trie->jump[word_idx+1]; - PerlIO_printf(Perl_debug_log, "(%"UVuf")\n", - (UV)((dist ? this_trie + dist : next) - start)); - if (dist) { - if (!nextbranch) - nextbranch= this_trie + trie->jump[0]; - DUMPUNTIL(this_trie + dist, nextbranch); - } - if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH) - nextbranch= regnext((regnode *)nextbranch); - } else { - PerlIO_printf(Perl_debug_log, "\n"); - } - } - if (last && next > last) - node= last; - else - node= next; - } - else if ( op == CURLY ) { /* "next" might be very big: optimizer */ - DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, - NEXTOPER(node) + EXTRA_STEP_2ARGS + 1); - } - else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) { - assert(next); - DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next); - } - else if ( op == PLUS || op == STAR) { - DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1); - } - else if (PL_regkind[(U8)op] == ANYOF) { - /* arglen 1 + class block */ - node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS) - ? ANYOF_CLASS_SKIP : ANYOF_SKIP); - node = NEXTOPER(node); - } - else if (PL_regkind[(U8)op] == EXACT) { - /* Literal string, where present. */ - node += NODE_SZ_STR(node) - 1; - node = NEXTOPER(node); - } - else { - node = NEXTOPER(node); - node += regarglen[(U8)op]; - } - if (op == CURLYX || op == OPEN) - indent++; - } - CLEAR_OPTSTART; -#ifdef DEBUG_DUMPUNTIL - PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent); -#endif - return node; -} - -#endif /* DEBUGGING */ - -/* - * Local variables: - * c-indentation-style: bsd - * c-basic-offset: 4 - * indent-tabs-mode: nil - * End: - * - * ex: set ts=8 sts=4 sw=4 et: - */