src/5015009/dquote_static.c
src/5015009/regcomp.c
src/5015009/regexec.c
+src/5016000/dquote_static.c
+src/5016000/regcomp.c
+src/5016000/regexec.c
+src/5017000/dquote_static.c
+src/5017000/regcomp.c
+src/5017000/regexec.c
src/update.pl
t/00-load.t
t/05-keys.t
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "proto.h"
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(pTHX_ register const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+ if (*s != '}')
+ return FALSE;
+ return TRUE;
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool utf8, const bool output_warning)
+{
+
+ U8 result;
+
+ if (utf8) {
+ /* Trying to deprecate non-ASCII usages. This construct has never
+ * worked for a utf8 variant. So, even though are accepting non-ASCII
+ * Latin1 in 5.14, no need to make them work under utf8 */
+ if (! isASCII(source)) {
+ Perl_croak(aTHX_ "Character following \"\\c\" must be ASCII");
+ }
+ }
+
+ result = toCTRL(source);
+ if (! isASCII(source)) {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "Character following \"\\c\" must be ASCII");
+ }
+ else if (! isCNTRL(result) && output_warning) {
+ if (source == '{') {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "\"\\c{\" is deprecated and is more clearly written as \";\"");
+ }
+ else {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isALNUM(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ const char *s,
+ UV *uv,
+ STRLEN *len,
+ const char** error_msg,
+ const bool output_warning)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; , otherwise TRUE. In either case the caller should look at *len
+ * On input:
+ * s points to a string that begins with 'o', and the previous character
+ * was a backslash.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * len on success will point to the next character in the string past the
+ * end of this construct.
+ * on failure, it will point to the failure
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ */
+ const char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(*s == 'o');
+ s++;
+
+ if (*s != '{') {
+ *len = 1; /* Move past the o */
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(s, '}');
+ if (!e) {
+ *len = 2; /* Move past the o{ */
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ /* Return past the '}' no matter what is inside the braces */
+ *len = e - s + 2; /* 2 = 1 for the o + 1 for the '}' */
+
+ s++; /* Point to first digit */
+
+ numbers_len = e - s;
+ if (numbers_len == 0) {
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ *uv = NATIVE_TO_UNI(grok_oct(s, &numbers_len, &flags, NULL));
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (output_warning && numbers_len != (STRLEN) (e - s)) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(s + numbers_len),
+ (int) numbers_len,
+ s);
+ }
+
+ return TRUE;
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "proto.h"
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(pTHX_ register const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+ if (*s != '}')
+ return FALSE;
+ return TRUE;
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool utf8, const bool output_warning)
+{
+
+ U8 result;
+
+ if (utf8) {
+ /* Trying to deprecate non-ASCII usages. This construct has never
+ * worked for a utf8 variant. So, even though are accepting non-ASCII
+ * Latin1 in 5.14, no need to make them work under utf8 */
+ if (! isASCII(source)) {
+ Perl_croak(aTHX_ "Character following \"\\c\" must be ASCII");
+ }
+ }
+
+ result = toCTRL(source);
+ if (! isASCII(source)) {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "Character following \"\\c\" must be ASCII");
+ }
+ else if (! isCNTRL(result) && output_warning) {
+ if (source == '{') {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "\"\\c{\" is deprecated and is more clearly written as \";\"");
+ }
+ else {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isALNUM(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ const char *s,
+ UV *uv,
+ STRLEN *len,
+ const char** error_msg,
+ const bool output_warning)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; , otherwise TRUE. In either case the caller should look at *len
+ * On input:
+ * s points to a string that begins with 'o', and the previous character
+ * was a backslash.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * len on success will point to the next character in the string past the
+ * end of this construct.
+ * on failure, it will point to the failure
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ */
+ const char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(*s == 'o');
+ s++;
+
+ if (*s != '{') {
+ *len = 1; /* Move past the o */
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(s, '}');
+ if (!e) {
+ *len = 2; /* Move past the o{ */
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ /* Return past the '}' no matter what is inside the braces */
+ *len = e - s + 2; /* 2 = 1 for the o + 1 for the '}' */
+
+ s++; /* Point to first digit */
+
+ numbers_len = e - s;
+ if (numbers_len == 0) {
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ *uv = NATIVE_TO_UNI(grok_oct(s, &numbers_len, &flags, NULL));
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (output_warning && numbers_len != (STRLEN) (e - s)) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(s + numbers_len),
+ (int) numbers_len,
+ s);
+ }
+
+ return TRUE;
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+# include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#ifndef PERL_IN_XSUB_RE
+# include "charclass_invlists.h"
+#endif
+
+#ifdef op
+#undef op
+#endif /* op */
+
+#ifdef MSDOS
+# if defined(BUGGY_MSC6)
+ /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
+# pragma optimize("a",off)
+ /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
+# pragma optimize("w",on )
+# endif /* BUGGY_MSC6 */
+#endif /* MSDOS */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+typedef struct RExC_state_t {
+ U32 flags; /* are we folding, multilining? */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ I32 whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the allocated space */
+ regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ I32 size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN). */
+ I32 cpar; /* Capture buffer count, (CLOSE). */
+ I32 nestroot; /* root parens we are in - used by accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ I32 seen_evals;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 override_recoding;
+#if ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#endif
+} RExC_state_t;
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_naughty (pRExC_state->naughty)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_seen_evals (pRExC_state->seen_evals)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+#ifdef SPSTART
+#undef SPSTART /* dratted cpp namespace... */
+#endif
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
+ * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or +. */
+#define TRYAGAIN 0x08 /* Weeded out a declaration. */
+#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+/* If not already in utf8, do a longjmp back to the beginning */
+#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
+#define REQUIRE_UTF8 STMT_START { \
+ if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
+ } STMT_END
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to I32 max it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum length of the pattern that the string
+ was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ I32 pos_min;
+ I32 pos_delta;
+ SV *last_found;
+ I32 last_end; /* min value, <0 unless valid. */
+ I32 last_start_min;
+ I32 last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ I32 offset_fixed; /* offset where it starts */
+ I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ I32 offset_float_min; /* earliest point in string it can appear */
+ I32 offset_float_max; /* latest point in string it can appear */
+ I32 *minlen_float; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_float; /* is the position of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ I32 *last_closep;
+ struct regnode_charclass_class *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#ifdef NO_UNARY_PLUS
+# define SF_FIX_SHIFT_EOL (0+2)
+# define SF_FL_SHIFT_EOL (0+4)
+#else
+# define SF_FIX_SHIFT_EOL (+2)
+# define SF_FL_SHIFT_EOL (+4)
+#endif
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
+#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+#define OOB_UNICODE 12345678
+#define OOB_NAMEDCLASS -1
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
+ msg, (int)len, RExC_precomp, ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
+ arg, (int)len, RExC_precomp, ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2regdep(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+
+/* Allow for side effects in s */
+#define REGC(c,s) STMT_START { \
+ if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
+#define Set_Node_Cur_Length(node) \
+ Set_Node_Length(node, RExC_parse - parse_start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags), \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+static void clear_re(pTHX_ void *r);
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : data->pos_min + data->pos_delta);
+ if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
+ data->offset_float_max = I32_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_ANYTHING;
+
+ ANYOF_BITMAP_SETALL(cl);
+ cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
+ |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
+
+ /* If any portion of the regex is to operate under locale rules,
+ * initialization includes it. The reason this isn't done for all regexes
+ * is that the optimizer was written under the assumption that locale was
+ * all-or-nothing. Given the complexity and lack of documentation in the
+ * optimizer, and that there are inadequate test cases for locale, so many
+ * parts of it may not work properly, it is safest to avoid locale unless
+ * necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_CLASS_SETALL(cl); /* /l uses class */
+ cl->flags |= ANYOF_LOCALE;
+ }
+ else {
+ ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
+ }
+}
+
+/* Can match anything (initialization) */
+STATIC int
+S_cl_is_anything(const struct regnode_charclass_class *cl)
+{
+ int value;
+
+ PERL_ARGS_ASSERT_CL_IS_ANYTHING;
+
+ for (value = 0; value <= ANYOF_MAX; value += 2)
+ if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
+ return 1;
+ if (!(cl->flags & ANYOF_UNICODE_ALL))
+ return 0;
+ if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
+ return 0;
+ return 1;
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_INIT;
+
+ Zero(cl, 1, struct regnode_charclass_class);
+ cl->type = ANYOF;
+ cl_anything(pRExC_state, cl);
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+}
+
+/* These two functions currently do the exact same thing */
+#define cl_init_zero S_cl_init
+
+/* 'AND' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
+ * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_and(struct regnode_charclass_class *cl,
+ const struct regnode_charclass_class *and_with)
+{
+ PERL_ARGS_ASSERT_CL_AND;
+
+ assert(and_with->type == ANYOF);
+
+ /* I (khw) am not sure all these restrictions are necessary XXX */
+ if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
+ && !(ANYOF_CLASS_TEST_ANY_SET(cl))
+ && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
+ int i;
+
+ if (and_with->flags & ANYOF_INVERT)
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= ~and_with->bitmap[i];
+ else
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= and_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
+
+ if (and_with->flags & ANYOF_INVERT) {
+
+ /* Here, the and'ed node is inverted. Get the AND of the flags that
+ * aren't affected by the inversion. Those that are affected are
+ * handled individually below */
+ U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
+ cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
+ cl->flags |= affected_flags;
+
+ /* We currently don't know how to deal with things that aren't in the
+ * bitmap, but we know that the intersection is no greater than what
+ * is already in cl, so let there be false positives that get sorted
+ * out after the synthetic start class succeeds, and the node is
+ * matched for real. */
+
+ /* The inversion of these two flags indicate that the resulting
+ * intersection doesn't have them */
+ if (and_with->flags & ANYOF_UNICODE_ALL) {
+ cl->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ else { /* and'd node is not inverted */
+ U8 outside_bitmap_but_not_utf8; /* Temp variable */
+
+ if (! ANYOF_NONBITMAP(and_with)) {
+
+ /* Here 'and_with' doesn't match anything outside the bitmap
+ * (except possibly ANYOF_UNICODE_ALL), which means the
+ * intersection can't either, except for ANYOF_UNICODE_ALL, in
+ * which case we don't know what the intersection is, but it's no
+ * greater than what cl already has, so can just leave it alone,
+ * with possible false positives */
+ if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+ cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else if (! ANYOF_NONBITMAP(cl)) {
+
+ /* Here, 'and_with' does match something outside the bitmap, and cl
+ * doesn't have a list of things to match outside the bitmap. If
+ * cl can match all code points above 255, the intersection will
+ * be those above-255 code points that 'and_with' matches. If cl
+ * can't match all Unicode code points, it means that it can't
+ * match anything outside the bitmap (since the 'if' that got us
+ * into this block tested for that), so we leave the bitmap empty.
+ */
+ if (cl->flags & ANYOF_UNICODE_ALL) {
+ ARG_SET(cl, ARG(and_with));
+
+ /* and_with's ARG may match things that don't require UTF8.
+ * And now cl's will too, in spite of this being an 'and'. See
+ * the comments below about the kludge */
+ cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else {
+ /* Here, both 'and_with' and cl match something outside the
+ * bitmap. Currently we do not do the intersection, so just match
+ * whatever cl had at the beginning. */
+ }
+
+
+ /* Take the intersection of the two sets of flags. However, the
+ * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
+ * kludge around the fact that this flag is not treated like the others
+ * which are initialized in cl_anything(). The way the optimizer works
+ * is that the synthetic start class (SSC) is initialized to match
+ * anything, and then the first time a real node is encountered, its
+ * values are AND'd with the SSC's with the result being the values of
+ * the real node. However, there are paths through the optimizer where
+ * the AND never gets called, so those initialized bits are set
+ * inappropriately, which is not usually a big deal, as they just cause
+ * false positives in the SSC, which will just mean a probably
+ * imperceptible slow down in execution. However this bit has a
+ * higher false positive consequence in that it can cause utf8.pm,
+ * utf8_heavy.pl ... to be loaded when not necessary, which is a much
+ * bigger slowdown and also causes significant extra memory to be used.
+ * In order to prevent this, the code now takes a different tack. The
+ * bit isn't set unless some part of the regular expression needs it,
+ * but once set it won't get cleared. This means that these extra
+ * modules won't get loaded unless there was some path through the
+ * pattern that would have required them anyway, and so any false
+ * positives that occur by not ANDing them out when they could be
+ * aren't as severe as they would be if we treated this bit like all
+ * the others */
+ outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
+ & ANYOF_NONBITMAP_NON_UTF8;
+ cl->flags &= and_with->flags;
+ cl->flags |= outside_bitmap_but_not_utf8;
+ }
+}
+
+/* 'OR' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
+ * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
+{
+ PERL_ARGS_ASSERT_CL_OR;
+
+ if (or_with->flags & ANYOF_INVERT) {
+
+ /* Here, the or'd node is to be inverted. This means we take the
+ * complement of everything not in the bitmap, but currently we don't
+ * know what that is, so give up and match anything */
+ if (ANYOF_NONBITMAP(or_with)) {
+ cl_anything(pRExC_state, cl);
+ }
+ /* We do not use
+ * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
+ * <= (B1 | !B2) | (CL1 | !CL2)
+ * which is wasteful if CL2 is small, but we ignore CL2:
+ * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
+ * XXXX Can we handle case-fold? Unclear:
+ * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
+ * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
+ */
+ else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
+ int i;
+
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= ~or_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise */
+ else {
+ cl_anything(pRExC_state, cl);
+ }
+
+ /* And, we can just take the union of the flags that aren't affected
+ * by the inversion */
+ cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
+
+ /* For the remaining flags:
+ ANYOF_UNICODE_ALL and inverted means to not match anything above
+ 255, which means that the union with cl should just be
+ what cl has in it, so can ignore this flag
+ ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
+ is 127-255 to match them, but then invert that, so the
+ union with cl should just be what cl has in it, so can
+ ignore this flag
+ */
+ } else { /* 'or_with' is not inverted */
+ /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
+ if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
+ int i;
+
+ /* OR char bitmap and class bitmap separately */
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= or_with->bitmap[i];
+ if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
+ for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
+ cl->classflags[i] |= or_with->classflags[i];
+ cl->flags |= ANYOF_CLASS;
+ }
+ }
+ else { /* XXXX: logic is complicated, leave it along for a moment. */
+ cl_anything(pRExC_state, cl);
+ }
+
+ if (ANYOF_NONBITMAP(or_with)) {
+
+ /* Use the added node's outside-the-bit-map match if there isn't a
+ * conflict. If there is a conflict (both nodes match something
+ * outside the bitmap, but what they match outside is not the same
+ * pointer, and hence not easily compared until XXX we extend
+ * inversion lists this far), give up and allow the start class to
+ * match everything outside the bitmap. If that stuff is all above
+ * 255, can just set UNICODE_ALL, otherwise caould be anything. */
+ if (! ANYOF_NONBITMAP(cl)) {
+ ARG_SET(cl, ARG(or_with));
+ }
+ else if (ARG(cl) != ARG(or_with)) {
+
+ if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
+ cl_anything(pRExC_state, cl);
+ }
+ else {
+ cl->flags |= ANYOF_UNICODE_ALL;
+ }
+ }
+ }
+
+ /* Take the union */
+ cl->flags |= or_with->flags;
+ }
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occured in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvuni_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need folding */ \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* if we use this folder we have to obey unicode rules on latin-1 data */ \
+ if ( foldlen > 0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ scan += len; \
+ len = 0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP(uvc); \
+ foldlen -= skiplen; \
+ scan = foldbuf + skiplen; \
+ } \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
+{
+ dVAR;
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, 2, "tu" );
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ case EXACTFL: folder = PL_fold_locale; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail),
+ (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use the
+ native representation of the character value as the key and IV's for the
+ coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ STRLEN foldlen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+ const U8 *scan = (U8*)NULL;
+ U32 wordlen = 0; /* required init */
+ STRLEN chars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ trie->minlen= 0;
+ continue;
+ }
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie,0xDF);
+ }
+ }
+ for ( ; uc < e ; uc += len ) {
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+ chars++;
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UNI_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ }
+ if( cur == first ) {
+ trie->minlen = chars;
+ trie->maxlen = chars;
+ } else if (chars < trie->minlen) {
+ trie->minlen = chars;
+ } else if (chars > trie->maxlen) {
+ trie->maxlen = chars;
+ }
+ if (OP( noper ) == EXACTFU_SS) {
+ /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
+ if (trie->minlen > 1)
+ trie->minlen= 1;
+ }
+ if (OP( noper ) == EXACTFU_TRICKYFOLD) {
+ /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
+ * - We assume that any such sequence might match a 2 byte string */
+ if (trie->minlen > 2 )
+ trie->minlen= 2;
+ }
+
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
+ if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
+ We know that we will need Charcount+1 trans at most to store the data
+ (one row per char at worst case) So we preallocate both structures
+ assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily to
+ make compression both faster and easier by keeping track of how many non
+ zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is a
+ number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
+ TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
+ are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we also
+ have to deal with the states array which is indexed by nodenum we have to
+ use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ STRLEN skiplen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
+ trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC void
+S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest proper
+ suffix of the current state's 'word' that is also a proper prefix of another word in our
+ trie. State 1 represents the word '' and is thus the default fail state. This allows
+ the DFA not to have to restart after its tried and failed a word at a given point, it
+ simply continues as though it had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter 'g' which would
+ fail, which would bring us to the state representing 'd' in the second word where we would
+ try 'g' and succeed, proceeding to match 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, 1, "T" );
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_SEEN_TRIEDFA;*/
+}
+
+
+/*
+ * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
+ * These need to be revisited when a newer toolchain becomes available.
+ */
+#if defined(__sparc64__) && defined(__GNUC__)
+# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
+# undef SPARC64_GCC_WORKAROUND
+# define SPARC64_GCC_WORKAROUND 1
+# endif
+#endif
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ SV * const mysv=sv_newmortal(); \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, mysv, scan); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ }});
+
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one, and looks for problematic sequences of characters whose folds vs.
+ * non-folds have sufficiently different lengths, that the optimizer would be
+ * fooled into rejecting legitimate matches of them, and the trie construction
+ * code can't cope with them. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING kind nodes, and
+ * these get optimized out
+ *
+ * If there are problematic code sequences, *min_subtract is set to the delta
+ * that the minimum size of the node can be less than its actual size. And,
+ * the node type of the result is changed to reflect that it contains these
+ * sequences.
+ *
+ * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
+ * and contains LATIN SMALL LETTER SHARP S
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * problematic sequences. It's been wrong in Perl for a very long time. There
+ * are three code points in Unicode whose folded lengths differ so much from
+ * the un-folded lengths that it causes problems for the optimizer and trie
+ * construction. Why only these are problematic, and not others where lengths
+ * also differ is something I (khw) do not understand. New versions of Unicode
+ * might add more such code points. Hopefully the logic in fold_grind.t that
+ * figures out what to test (in part by verifying that each size-combination
+ * gets tested) will catch any that do come along, so they can be added to the
+ * special handling below. The chances of new ones are actually rather small,
+ * as most, if not all, of the world's scripts that have casefolding have
+ * already been encoded by Unicode. Also, a number of Unicode's decisions were
+ * made to allow compatibility with pre-existing standards, and almost all of
+ * those have already been dealt with. These would otherwise be the most
+ * likely candidates for generating further tricky sequences. In other words,
+ * Unicode by itself is unlikely to add new ones unless it is for compatibility
+ * with pre-existing standards, and there aren't many of those left.
+ *
+ * The previous designs for dealing with these involved assigning a special
+ * node for them. This approach doesn't work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both these fold to "sss", but if the pattern is parsed to create a node of
+ * that would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss".
+ *
+ * There are a number of components to the approach (a lot of work for just
+ * three code points!):
+ * 1) This routine examines each EXACTFish node that could contain the
+ * problematic sequences. It returns in *min_subtract how much to
+ * subtract from the the actual length of the string to get a real minimum
+ * for one that could match it. This number is usually 0 except for the
+ * problematic sequences. This delta is used by the caller to adjust the
+ * min length of the match, and the delta between min and max, so that the
+ * optimizer doesn't reject these possibilities based on size constraints.
+ * 2) These sequences are not currently correctly handled by the trie code
+ * either, so it changes the joined node type to ops that are not handled
+ * by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
+ * 3) This is sufficient for the two Greek sequences (described below), but
+ * the one involving the Sharp s (\xDF) needs more. The node type
+ * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
+ * sequence in it. For non-UTF-8 patterns and strings, this is the only
+ * case where there is a possible fold length change. That means that a
+ * regular EXACTFU node without UTF-8 involvement doesn't have to concern
+ * itself with length changes, and so can be processed faster. regexec.c
+ * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
+ * is pre-folded by regcomp.c. This saves effort in regex matching.
+ * However, probably mostly for historical reasons, the pre-folding isn't
+ * done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
+ * nodes, as what they fold to isn't known until runtime.) The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string
+ * are members of a fold-pair, and arrays are set up for all of them
+ * that quickly find the other member of the pair. It might actually
+ * be faster to pre-fold these, but it isn't currently done, except for
+ * the sharp s. Code elsewhere in this file makes sure that it gets
+ * folded to 'ss', even if the pattern isn't UTF-8. This avoids the
+ * issues described in the next item.
+ * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
+ * 'ss' or not is not knowable at compile time. It will match iff the
+ * target string is in UTF-8, unlike the EXACTFU nodes, where it always
+ * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
+ * it can't be folded to "ss" at compile time, unlike EXACTFU does as
+ * described in item 3). An assumption that the optimizer part of
+ * regexec.c (probably unwittingly) makes is that a character in the
+ * pattern corresponds to at most a single character in the target string.
+ * (And I do mean character, and not byte here, unlike other parts of the
+ * documentation that have never been updated to account for multibyte
+ * Unicode.) This assumption is wrong only in this case, as all other
+ * cases are either 1-1 folds when no UTF-8 is involved; or is true by
+ * virtue of having this file pre-fold UTF-8 patterns. I'm
+ * reluctant to try to change this assumption, so instead the code punts.
+ * This routine examines EXACTF nodes for the sharp s, and returns a
+ * boolean indicating whether or not the node is an EXACTF node that
+ * contains a sharp s. When it is true, the caller sets a flag that later
+ * causes the optimizer in this file to not set values for the floating
+ * and fixed string lengths, and thus avoids the optimizer code in
+ * regexec.c that makes the invalid assumption. Thus, there is no
+ * optimization based on string lengths for EXACTF nodes that contain the
+ * sharp s. This only happens for /id rules (which means the pattern
+ * isn't in UTF-8).
+ */
+
+#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *has_exactf_sharp_s = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT) {
+ U8 *s;
+ U8 * s0 = (U8*) STRING(scan);
+ U8 * const s_end = s0 + STR_LEN(scan);
+
+ /* The below is perhaps overboard, but this allows us to save a test
+ * each time through the loop at the expense of a mask. This is
+ * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
+ * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
+ * This uses an exclusive 'or' to find that bit and then inverts it to
+ * form a mask, with just a single 0, in the bit position where 'S' and
+ * 's' differ. */
+ const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
+ const U8 s_masked = 's' & S_or_s_mask;
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. to avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+
+ /* There are two problematic Greek code points in Unicode
+ * casefolding
+ *
+ * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
+ * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
+ *
+ * which casefold to
+ *
+ * Unicode UTF-8
+ *
+ * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
+ * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
+ *
+ * This means that in case-insensitive matching (or "loose
+ * matching", as Unicode calls it), an EXACTF of length six (the
+ * UTF-8 encoded byte length of the above casefolded versions) can
+ * match a target string of length two (the byte length of UTF-8
+ * encoded U+0390 or U+03B0). This would rather mess up the
+ * minimum length computation. (there are other code points that
+ * also fold to these two sequences, but the delta is smaller)
+ *
+ * If these sequences are found, the minimum length is decreased by
+ * four (six minus two).
+ *
+ * Similarly, 'ss' may match the single char and byte LATIN SMALL
+ * LETTER SHARP S. We decrease the min length by 1 for each
+ * occurrence of 'ss' found */
+
+#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
+# define U390_first_byte 0xb4
+ const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
+# define U3B0_first_byte 0xb5
+ const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
+#else
+# define U390_first_byte 0xce
+ const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
+# define U3B0_first_byte 0xcf
+ const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
+#endif
+ const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
+ yields a net of 0 */
+ /* Examine the string for one of the problematic sequences */
+ for (s = s0;
+ s < s_end - 1; /* Can stop 1 before the end, as minimum length
+ * sequence we are looking for is 2 */
+ s += UTF8SKIP(s))
+ {
+
+ /* Look for the first byte in each problematic sequence */
+ switch (*s) {
+ /* We don't have to worry about other things that fold to
+ * 's' (such as the long s, U+017F), as all above-latin1
+ * code points have been pre-folded */
+ case 's':
+ case 'S':
+
+ /* Current character is an 's' or 'S'. If next one is
+ * as well, we have the dreaded sequence */
+ if (((*(s+1) & S_or_s_mask) == s_masked)
+ /* These two node types don't have special handling
+ * for 'ss' */
+ && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
+ {
+ *min_subtract += 1;
+ OP(scan) = EXACTFU_SS;
+ s++; /* No need to look at this character again */
+ }
+ break;
+
+ case U390_first_byte:
+ if (s_end - s >= len
+
+ /* The 1's are because are skipping comparing the
+ * first byte */
+ && memEQ(s + 1, U390_tail, len - 1))
+ {
+ goto greek_sequence;
+ }
+ break;
+
+ case U3B0_first_byte:
+ if (! (s_end - s >= len
+ && memEQ(s + 1, U3B0_tail, len - 1)))
+ {
+ break;
+ }
+ greek_sequence:
+ *min_subtract += 4;
+
+ /* This can't currently be handled by trie's, so change
+ * the node type to indicate this. If EXACTFA and
+ * EXACTFL were ever to be handled by trie's, this
+ * would have to be changed. If this node has already
+ * been changed to EXACTFU_SS in this loop, leave it as
+ * is. (I (khw) think it doesn't matter in regexec.c
+ * for UTF patterns, but no need to change it */
+ if (OP(scan) == EXACTFU) {
+ OP(scan) = EXACTFU_TRICKYFOLD;
+ }
+ s += 6; /* We already know what this sequence is. Skip
+ the rest of it */
+ break;
+ }
+ }
+ }
+ else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
+
+ /* Here, the pattern is not UTF-8. We need to look only for the
+ * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
+ * in the final position. Otherwise we can stop looking 1 byte
+ * earlier because have to find both the first and second 's' */
+ const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
+
+ for (s = s0; s < upper; s++) {
+ switch (*s) {
+ case 'S':
+ case 's':
+ if (s_end - s > 1
+ && ((*(s+1) & S_or_s_mask) == s_masked))
+ {
+ *min_subtract += 1;
+
+ /* EXACTF nodes need to know that the minimum
+ * length changed so that a sharp s in the string
+ * can match this ss in the pattern, but they
+ * remain EXACTF nodes, as they are not trie'able,
+ * so don't have to invent a new node type to
+ * exclude them from the trie code */
+ if (OP(scan) != EXACTF) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s++;
+ }
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ if (OP(scan) == EXACTF) {
+ *has_exactf_sharp_s = TRUE;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1,struct regnode_charclass_class); \
+ SAVEFREEPV(and_withp)
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last; /* last node to process in this frame */
+ regnode *next; /* next node to process when last is reached */
+ struct scan_frame *prev; /*previous frame*/
+ I32 stop; /* what stopparen do we use */
+} scan_frame;
+
+
+#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
+
+#define CASE_SYNST_FNC(nAmE) \
+case nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break; \
+case N ## nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break
+
+
+
+STATIC I32
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ I32 *minlenp, I32 *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U8* recursed,
+ struct regnode_charclass_class *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ dVAR;
+ I32 min = 0, pars = 0, code;
+ regnode *scan = *scanp, *next;
+ I32 delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ I32 stopmin = I32_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+#ifdef DEBUGGING
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+#endif
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How much to subtract from the minimum node
+ length to get a real minimum (because the
+ folded version may be shorter) */
+ bool has_exactf_sharp_s = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data,depth);
+ DEBUG_PEEP("Peep",scan,depth);
+
+ /* Its not clear to khw or hv why this is done here, and not in the
+ * clauses that deal with EXACT nodes. khw's guess is that it's
+ * because of a previous design */
+ JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
+ || OP(scan) == IFTHEN) {
+ next = regnext(scan);
+ code = OP(scan);
+ /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
+
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for handling
+ TRIE nodes on a re-study. If you change stuff here check there
+ too. */
+ I32 max1 = 0, min1 = I32_MAX, num = 0;
+ struct regnode_charclass_class accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR)
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ I32 deltanext, minnext, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ num++;
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ if (code != BRANCH)
+ scan = NEXTOPER(scan);
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ next, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ if (min1 > minnext)
+ min1 = minnext;
+ if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan' now
+ points at the item that follows the branch sequence, whatever
+ it is. We now start at the beginning of the sequence and look
+ for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+#ifdef DEBUGGING
+ SV * const mysv = sv_newmortal(); /* for dumping */
+#endif
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, tail );
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this /FOO[xyz]|BAR[pqr]/
+ via a "jump trie" but we also support building with NOJUMPTRIE,
+ which restricts the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is a possible optimization
+ target. If we are building under NOJUMPTRIE then we require that noper_next
+ is the same as scan (our current position in the regex program).
+
+ Once we have two or more consecutive such branches we can create a
+ trie of the EXACT's contents and stitch it in place into the program.
+
+ If the sequence represents all of the branches in the alternation we
+ replace the entire thing with a single TRIE node.
+
+ Otherwise when it is a subsequence we need to stitch it in place and
+ replace only the relevant branches. This means the first branch has
+ to remain as it is used by the alternation logic, and its next pointer,
+ and needs to be repointed at the item on the branch chain following
+ the last branch we have optimized away.
+
+ This could be either a BRANCH, in which case the subsequence is internal,
+ or it could be the item following the branch sequence in which case the
+ subsequence is at the end (which does not necessarily mean the first node
+ is the start of the alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFU_TRICKYFOLD | EXACTFU
+ EXACTFA | 0
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
+ ( EXACT == (X) ) ? EXACT : \
+ ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
+ 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+#endif
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, mysv, noper);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, mysv, noper_next );
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
+ });
+
+ /* Is noper a trieable nodetype that can be merged with the
+ * current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ /* XXX: Currently we cannot allow a NOTHING node to be the first element
+ * of a TRIEABLE sequence, Otherwise we will overwrite the regop following
+ * the NOTHING with the TRIE regop later on. This is because a NOTHING node
+ * is only one regnode wide, and a TRIE is two regnodes. An example of a
+ * problematic pattern is: "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/
+ * At a later point of time we can somewhat workaround this by handling
+ * NOTHING -> EXACT sequences as generated by /(?:)A|(?:)B/ type patterns,
+ * as we can effectively ignore the NOTHING regop in that case.
+ * This clause, which allows NOTHING to start a sequence is left commented
+ * out as a reference.
+ * - Yves
+
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ */
+ ( noper_trietype == NOTHING && trietype )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node
+ * Either we are the first node in a new trieable sequence,
+ * in which case we do some bookkeeping, otherwise we update
+ * the end pointer. */
+ count++;
+ if ( !first ) {
+ first = cur;
+ trietype = noper_trietype;
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can not be tried
+ * together with the current trie, or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not NOTHING then we have found
+ * at least two triable branch sequences in a row of a similar
+ * trietype so we can turn them into a trie. If/when we
+ * allow NOTHING to start a trie sequence this condition will be
+ * required, and it isn't expensive so we leave it in for now. */
+ if ( trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail, count,
+ trietype, depth+1 );
+ last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype != NOTHING ) {
+ /* the last branch of the sequence was part of a trie,
+ * so we have to construct it here outside of the loop
+ */
+ made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
+ }
+ }
+#endif
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ scan_frame *newframe = NULL;
+ I32 paren;
+ regnode *start;
+ regnode *end;
+
+ if (OP(scan) != SUSPEND) {
+ /* set the pointer */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ paren = 0;
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ if (!recursed) {
+ Newxz(recursed, (((RExC_npar)>>3) +1), U8);
+ SAVEFREEPV(recursed);
+ }
+ if (!PAREN_TEST(recursed,paren+1)) {
+ PAREN_SET(recursed,paren+1);
+ Newx(newframe,1,scan_frame);
+ } else {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ } else {
+ Newx(newframe,1,scan_frame);
+ paren = stopparen;
+ start = scan+2;
+ end = regnext(scan);
+ }
+ if (newframe) {
+ assert(start);
+ assert(end);
+ SAVEFREEPV(newframe);
+ newframe->next = regnext(scan);
+ newframe->last = last;
+ newframe->stop = stopparen;
+ newframe->prev = frame;
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT) {
+ I32 l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? I32_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+
+
+ /* If compatible, we or it in below. It is compatible if is
+ * in the bitmp and either 1) its bit or its fold is set, or 2)
+ * it's for a locale. Even if there isn't unicode semantics
+ * here, at runtime there may be because of matching against a
+ * utf8 string, so accept a possible false positive for
+ * latin1-range folds */
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ )
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else if (uc >= 0x100) {
+ int i;
+
+ /* Some Unicode code points fold to the Latin1 range; as
+ * XXX temporary code, instead of figuring out if this is
+ * one, just assume it is and set all the start class bits
+ * that could be some such above 255 code point's fold
+ * which will generate fals positives. As the code
+ * elsewhere that does compute the fold settles down, it
+ * can be extracted out and re-used here */
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ if (uc < 0x100)
+ data->start_class->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ /* false positive possible if the class is case-folded */
+ if (uc < 0x100)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else
+ data->start_class->flags |= ANYOF_UNICODE_ALL;
+ data->start_class->flags &= ~ANYOF_EOS;
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
+ I32 l = STR_LEN(scan);
+ UV uc = *((U8*)STRING(scan));
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ SCAN_COMMIT(pRExC_state, data, minlenp);
+ }
+ if (UTF) {
+ const U8 * const s = (U8 *)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ }
+ else if (has_exactf_sharp_s) {
+ RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
+ }
+ min += l - min_subtract;
+ if (min < 0) {
+ min = 0;
+ }
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ data->start_class->flags &= ~ANYOF_EOS;
+ data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
+ if (OP(scan) == EXACTFL) {
+ /* XXX This set is probably no longer necessary, and
+ * probably wrong as LOCALE now is on in the initial
+ * state */
+ data->start_class->flags |= ANYOF_LOCALE;
+ }
+ else {
+
+ /* Also set the other member of the fold pair. In case
+ * that unicode semantics is called for at runtime, use
+ * the full latin1 fold. (Can't do this for locale,
+ * because not known until runtime) */
+ ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
+
+ /* All other (EXACTFL handled above) folds except under
+ * /iaa that include s, S, and sharp_s also may include
+ * the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ else if (uc >= 0x100) {
+ int i;
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
+ /* false positive possible if the class is case-folded.
+ Assume that the locale settings are the same... */
+ if (uc < 0x100) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ if (OP(scan) != EXACTFL) {
+
+ /* And set the other member of the fold pair, but
+ * can't do that in locale because not known until
+ * run-time */
+ ANYOF_BITMAP_SET(data->start_class,
+ PL_fold_latin1[uc]);
+
+ /* All folds except under /iaa that include s, S,
+ * and sharp_s also may include the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ }
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ I32 mincount, maxcount, minnext, deltanext, fl = 0;
+ I32 f = flags, pos_before = 0;
+ regnode * const oscan = scan;
+ struct regnode_charclass_class this_class;
+ struct regnode_charclass_class *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* Fall through. */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ cl_and(data->start_class, and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class, &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if ( /* ? quantifier ok, except for (?{ ... }) */
+ (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big count */
+ {
+ ckWARNreg(RExC_parse,
+ "Quantifier unexpected on zero-length expression");
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= ((maxcount == REG_INFTY
+ && (minnext + deltanext) > 0)
+ || deltanext == I32_MAX);
+ is_inf |= is_inf_internal;
+ delta += (minnext + deltanext) * maxcount - minnext * mincount;
+
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
+#if defined(SPARC64_GCC_WORKAROUND)
+ I32 b = 0;
+ STRLEN l = 0;
+ const char *s = NULL;
+ I32 old = 0;
+
+ if (pos_before >= data->last_start_min)
+ b = pos_before;
+ else
+ b = data->last_start_min;
+
+ l = 0;
+ s = SvPV_const(data->last_found, l);
+ old = b - data->last_start_min;
+
+#else
+ I32 b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ I32 old = b - data->last_start_min;
+#endif
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l, mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += CHR_SVLEN(last_str) - l;
+ }
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max += is_inf ? I32_MAX
+ : (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min =
+ data->pos_min - CHR_SVLEN(last_str);
+ data->last_start_max = is_inf
+ ? I32_MAX
+ : data->pos_min + data->pos_delta
+ - CHR_SVLEN(last_str);
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+ default: /* REF, ANYOFV, and CLUMP only? */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ int value = 0;
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+ if (flags & SCF_DO_STCLASS_AND) {
+ for (value = 0; value < 256; value++)
+ if (!is_VERTWS_cp(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ for (value = 0; value < 256; value++)
+ if (is_VERTWS_cp(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min += 1;
+ delta += 1;
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+ int value = 0;
+
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (PL_regkind[OP(scan)]) {
+ case SANY:
+ default:
+ do_default:
+ /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ break;
+ case REG_ANY:
+ if (OP(scan) == SANY)
+ goto do_default;
+ if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
+ value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
+ || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
+ cl_anything(pRExC_state, data->start_class);
+ }
+ if (flags & SCF_DO_STCLASS_AND || !value)
+ ANYOF_BITMAP_CLEAR(data->start_class,'\n');
+ break;
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class,
+ (struct regnode_charclass_class*)scan);
+ else
+ cl_or(pRExC_state, data->start_class,
+ (struct regnode_charclass_class*)scan);
+ break;
+ case ALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (!isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
+
+ /* Even if under locale, set the bits for non-locale
+ * in case it isn't a true locale-node. This will
+ * create false positives if it truly is locale */
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
+
+ /* Even if under locale, set the bits for non-locale in
+ * case it isn't a true locale-node. This will create
+ * false positives if it truly is locale */
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (! isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (! isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case SPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE) {
+ ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
+ }
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NSPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case DIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ case NDIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE))
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ CASE_SYNST_FNC(VERTWS);
+ CASE_SYNST_FNC(HORIZWS);
+
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ I32 deltanext, minnext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ cl_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue */
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ I32 deltanext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ I32 *minnextp;
+ Newx( minnextp, 1, I32 );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
+ SvREFCNT_dec(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+
+
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->extflags |= RXf_ANCH_GPOS;
+ if (RExC_rx->gofs < (U32)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->extflags |= RXf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ I32 max1 = 0, min1 = I32_MAX;
+ struct regnode_charclass_class accum;
+
+ if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
+ SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ I32 deltanext=0, minnext=0, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused branches
+ even though they arent otherwise used.
+ */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (I32)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (max1 < (I32)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ if (frame) {
+ last = frame->last;
+ scan = frame->next;
+ stopparen = frame->stop;
+ frame = frame->prev;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? I32_MAX : delta;
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = I32_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ return min < stopmin ? min : stopmin;
+}
+
+STATIC U32
+S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ dVAR;
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) goto reStudy
+#else
+#define CHECK_RESTUDY_GOTO
+#endif
+
+/*
+ - pregcomp - compile a regular expression into internal code
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+
+
+#ifndef PERL_IN_XSUB_RE
+#define RE_ENGINE_PTR &PL_core_reg_engine
+#else
+extern const struct regexp_engine my_reg_engine;
+#define RE_ENGINE_PTR &my_reg_engine
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ dVAR;
+ HV * const table = GvHV(PL_hintgv);
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct
+ regexp engine. */
+ if (table) {
+ SV **ptr= hv_fetchs(table, "regcomp", FALSE);
+ GET_RE_DEBUG_FLAGS_DECL;
+ if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
+ const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ SvIV(*ptr));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+ }
+ }
+ return Perl_re_compile(aTHX_ pattern, flags);
+}
+#endif
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
+{
+ dVAR;
+ REGEXP *rx;
+ struct regexp *r;
+ register regexp_internal *ri;
+ STRLEN plen;
+ char* VOL exp;
+ char* xend;
+ regnode *scan;
+ I32 flags;
+ I32 minlen = 0;
+ U32 pm_flags;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ bool used_setjump = FALSE;
+ regex_charset initial_charset = get_regex_charset(orig_pm_flags);
+
+ U8 jump_ret = 0;
+ dJMPENV;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+#ifndef PERL_IN_XSUB_RE
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_ASCII = _new_invlist_C_array(ASCII_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
+ PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
+
+ PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
+ PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
+
+ PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
+
+ PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
+ PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
+
+ PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
+
+ PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
+ PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
+ PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
+
+ PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
+ PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
+
+ PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
+ PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
+
+ PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
+ PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
+
+ PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
+ PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
+
+ PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
+ PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
+
+ PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
+
+ PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
+ PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
+
+ PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
+ PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
+ }
+#endif
+
+ exp = SvPV(pattern, plen);
+
+ if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = 0;
+ }
+ else {
+ RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
+ }
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+
+ /****************** LONG JUMP TARGET HERE***********************/
+ /* Longjmp back to here if have to switch in midstream to utf8 */
+ if (! RExC_orig_utf8) {
+ JMPENV_PUSH(jump_ret);
+ used_setjump = TRUE;
+ }
+
+ if (jump_ret == 0) { /* First time through */
+ xend = exp + plen;
+
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8,
+ dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+ }
+ else { /* longjumped back */
+ STRLEN len = plen;
+
+ /* If the cause for the longjmp was other than changing to utf8, pop
+ * our own setjmp, and longjmp to the correct handler */
+ if (jump_ret != UTF8_LONGJMP) {
+ JMPENV_POP;
+ JMPENV_JUMP(jump_ret);
+ }
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+ exp = (char*)Perl_bytes_to_utf8(aTHX_
+ (U8*)SvPV_nomg(pattern, plen),
+ &len);
+ xend = exp + len;
+ RExC_orig_utf8 = RExC_utf8 = 1;
+ SAVEFREEPV(exp);
+ }
+
+#ifdef TRIE_STUDY_OPT
+ restudied = 0;
+#endif
+
+ pm_flags = orig_pm_flags;
+
+ if (initial_charset == REGEX_LOCALE_CHARSET) {
+ RExC_contains_locale = 1;
+ }
+ else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = pm_flags;
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_seen_evals = 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = &PL_regdummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_recurse_count = 0;
+
+#if 0 /* REGC() is (currently) a NOP at the first pass.
+ * Clever compilers notice this and complain. --jhi */
+ REGC((U8)REG_MAGIC, (char*)RExC_emit);
+#endif
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ RExC_precomp = NULL;
+ return(NULL);
+ }
+
+ /* Here, finished first pass. Get rid of any added setjmp */
+ if (used_setjump) {
+ JMPENV_POP;
+ }
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = (struct regexp*)SvANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= RE_ENGINE_PTR;
+ r->extflags = pm_flags;
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msix"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
+ SvPOK_on(rx);
+ SvFLAGS(rx) |= SvUTF8(pattern);
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - SvPVX_const(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ if (RExC_seen & REG_SEEN_RECURSE) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+
+ /* Second pass: emit code. */
+ RExC_flags = pm_flags; /* don't let top level (?i) bleed */
+ RExC_parse = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+
+ /* Store the count of eval-groups for security checks: */
+ RExC_rx->seen_evals = RExC_seen_evals;
+ REGC((U8)REG_MAGIC, (char*) RExC_emit++);
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ return(NULL);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
+ Zero(r->substrs, 1, struct reg_substr_data);
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
+ if (data.last_found) {
+ SvREFCNT_dec(data.longest_fixed);
+ SvREFCNT_dec(data.longest_float);
+ SvREFCNT_dec(data.last_found);
+ }
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= 10) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
+ I32 fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ struct regnode_charclass_class ch_class; /* pointed to by data */
+ int stclass_flag;
+ I32 last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else
+ first += regarglen[OP(first)];
+
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ regnode *trie_op;
+ /* this can happen only on restudy */
+ if ( OP(first) == TRIE ) {
+ struct regnode_1 *trieop = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(first,trieop,struct regnode_1);
+ trie_op=(regnode *)trieop;
+ } else {
+ struct regnode_charclass *trieop = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(first,trieop,struct regnode_charclass);
+ trie_op=(regnode *)trieop;
+ }
+ OP(trie_op)+=2;
+ make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
+ ri->regstclass = trie_op;
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->extflags |= (OP(first) == MBOL
+ ? RXf_ANCH_MBOL
+ : (OP(first) == SBOL
+ ? RXf_ANCH_SBOL
+ : RXf_ANCH_BOL));
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->extflags |= RXf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? RXf_ANCH_MBOL
+ : RXf_ANCH_SBOL;
+ r->extflags |= type;
+ r->intflags |= PREGf_IMPLICIT;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
+ && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ first = scan;
+ if (!ri->regstclass) {
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
+ &data, -1, NULL, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
+
+
+ CHECK_RESTUDY_GOTO;
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_SEEN_VERBARG)
+ && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
+ r->extflags |= RXf_CHECK_ALL;
+ scan_commit(pRExC_state, &data,&minlen,0);
+ SvREFCNT_dec(data.last_found);
+
+ /* Note that code very similar to this but for anchored string
+ follows immediately below, changes may need to be made to both.
+ Be careful.
+ */
+ longest_float_length = CHR_SVLEN(data.longest_float);
+ if (longest_float_length
+ || (data.flags & SF_FL_BEFORE_EOL
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE))))
+ {
+ I32 t,ml;
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ || (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ goto remove_float; /* As in (a)+. */
+
+ /* copy the information about the longest float from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(data.longest_float)) {
+ r->float_utf8 = data.longest_float;
+ r->float_substr = NULL;
+ } else {
+ r->float_substr = data.longest_float;
+ r->float_utf8 = NULL;
+ }
+ /* float_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_float ? *(data.minlen_float)
+ : (I32)longest_float_length;
+ r->float_end_shift = ml - data.offset_float_min
+ - longest_float_length + (SvTAIL(data.longest_float) != 0)
+ + data.lookbehind_float;
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+
+ t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ remove_float:
+ r->float_substr = r->float_utf8 = NULL;
+ SvREFCNT_dec(data.longest_float);
+ longest_float_length = 0;
+ }
+
+ /* Note that code very similar to this but for floating string
+ is immediately above, changes may need to be made to both.
+ Be careful.
+ */
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ && (longest_fixed_length
+ || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)))) )
+ {
+ I32 t,ml;
+
+ /* copy the information about the longest fixed
+ from the reg_scan_data over to the program. */
+ if (SvUTF8(data.longest_fixed)) {
+ r->anchored_utf8 = data.longest_fixed;
+ r->anchored_substr = NULL;
+ } else {
+ r->anchored_substr = data.longest_fixed;
+ r->anchored_utf8 = NULL;
+ }
+ /* fixed_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_fixed ? *(data.minlen_fixed)
+ : (I32)longest_fixed_length;
+ r->anchored_end_shift = ml - data.offset_fixed
+ - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
+ + data.lookbehind_fixed;
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+
+ t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ SvREFCNT_dec(data.longest_fixed);
+ longest_fixed_length = 0;
+ }
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && !(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->extflags & RXf_ANCH_SINGLE)
+ r->extflags |= RXf_NOSCAN;
+ }
+ else {
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
+ This should be changed ASAP! */
+ if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ I32 fake;
+ struct regnode_charclass_class ch_class;
+ I32 last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+
+ minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
+ &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
+
+ CHECK_RESTUDY_GOTO;
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (!(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_SEEN_GPOS)
+ r->extflags |= RXf_GPOS_SEEN;
+ if (RExC_seen & REG_SEEN_LOOKBEHIND)
+ r->extflags |= RXf_LOOKBEHIND_SEEN;
+ if (RExC_seen & REG_SEEN_EVAL)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_SEEN_CANY)
+ r->extflags |= RXf_CANY_SEEN;
+ if (RExC_seen & REG_SEEN_VERBARG)
+ r->intflags |= PREGf_VERBARG_SEEN;
+ if (RExC_seen & REG_SEEN_CUTGROUP)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+#ifdef STUPID_PATTERN_CHECKS
+ if (RX_PRELEN(rx) == 0)
+ r->extflags |= RXf_NULL;
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
+ r->extflags |= RXf_WHITE;
+ else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
+ r->extflags |= RXf_START_ONLY;
+#else
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else {
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+
+ if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_NULL;
+ else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
+ && OP(regnext(first)) == END)
+ r->extflags |= RXf_WHITE;
+ }
+#endif
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, 1, "a" );
+ ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+
+ DEBUG_DUMP_r({
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const U32 len = ri->u.offsets[0];
+ U32 i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+ return rx;
+}
+
+#undef RE_ENGINE_PTR
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify(aTHX);
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ I32 length;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_len(av);
+ SvREFCNT_dec(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ char *s = NULL;
+ I32 i = 0;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (!rx->subbeg) {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ else
+ if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
+ /* $` */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
+ /* $' */
+ s = rx->subbeg + rx->offs[0].end;
+ i = rx->sublen - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= paren && paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ /* $& $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1;
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ assert(rx->sublen >= (s - rx->subbeg) + i );
+ if (i >= 0) {
+ const int oldtainted = PL_tainted;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ PL_tainted = oldtainted;
+ if ( (rx->extflags & RXf_CANY_SEEN)
+ ? (RXp_MATCH_UTF8(rx)
+ && (!i || is_utf8_string((U8*)s, i)))
+ : (RXp_MATCH_UTF8(rx)) )
+ {
+ SvUTF8_on(sv);
+ }
+ else
+ SvUTF8_off(sv);
+ if (PL_tainting) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ PL_tainted = 1;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ PL_tainted = 1;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify(aTHX);
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ /* $` / ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $' / ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $& / ${^MATCH}, $1, $2, ... */
+ default:
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isALNUM_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isALNUM(*RExC_parse));
+ }
+
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ /* NOT REACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int rem=(int)(RExC_end - RExC_parse); \
+ int cut; \
+ int num; \
+ int iscut=0; \
+ if (rem>10) { \
+ rem=10; \
+ iscut=1; \
+ } \
+ cut=10-rem; \
+ if (RExC_lastparse!=RExC_parse) \
+ PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
+ rem, RExC_parse, \
+ cut + 4, \
+ iscut ? "..." : "<" \
+ ); \
+ else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * with some added info that is placed as UVs at the beginning in a header
+ * portion. An inversion list for Unicode is an array of code points, sorted
+ * by ordinal number. The zeroth element is the first code point in the list.
+ * The 1th element is the first element beyond that not in the list. In other
+ * words, the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion list
+ * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
+ * beginning of the list is either that element if 0, or the next one if 1.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+#define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
+#define INVLIST_ITER_OFFSET 1 /* Current iteration position */
+
+/* This is a combination of a version and data structure type, so that one
+ * being passed in can be validated to be an inversion list of the correct
+ * vintage. When the structure of the header is changed, a new random number
+ * in the range 2**31-1 should be generated and the new() method changed to
+ * insert that at this location. Then, if an auxiliary program doesn't change
+ * correspondingly, it will be discovered immediately */
+#define INVLIST_VERSION_ID_OFFSET 2
+#define INVLIST_VERSION_ID 1064334010
+
+/* For safety, when adding new elements, remember to #undef them at the end of
+ * the inversion list code section */
+
+#define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
+/* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
+ * contains the code point U+00000, and begins here. If 1, the inversion list
+ * doesn't contain U+0000, and it begins at the next UV in the array.
+ * Inverting an inversion list consists of adding or removing the 0 at the
+ * beginning of it. By reserving a space for that 0, inversion can be made
+ * very fast */
+
+#define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
+
+/* Internally things are UVs */
+#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
+
+#define INVLIST_INITIAL_LEN 10
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000
+ * in it or not. The other parameter tells it whether the code that
+ * follows this call is about to put a 0 in the inversion list or not.
+ * The first element is either the element with 0, if 0, or the next one,
+ * if 1 */
+
+ UV* zero = get_invlist_zero_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! *get_invlist_len_addr(invlist));
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *zero = 1 ^ will_have_0;
+ return zero + *zero;
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(pTHX_ SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(*get_invlist_len_addr(invlist));
+ assert(*get_invlist_zero_addr(invlist) == 0
+ || *get_invlist_zero_addr(invlist) == 1);
+
+ /* The array begins either at the element reserved for zero if the
+ * list contains 0 (that element will be set to 0), or otherwise the next
+ * element (in which case the reserved element will be set to 1). */
+ return (UV *) (get_invlist_zero_addr(invlist)
+ + *get_invlist_zero_addr(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_len_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current number
+ * of used elements in the inversion list */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_len(pTHX_ SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT_INVLIST_LEN;
+
+ return *get_invlist_len_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
+{
+ /* Sets the current number of elements stored in the inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ *get_invlist_len_addr(invlist) = len;
+
+ assert(len <= SvLEN(invlist));
+
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
+ /* If the list contains U+0000, that element is part of the header,
+ * and should not be counted as part of the array. It will contain
+ * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
+ * subtract:
+ * SvCUR_set(invlist,
+ * TO_INTERNAL_SIZE(len
+ * - (*get_invlist_zero_addr(inv_list) ^ 1)));
+ * But, this is only valid if len is not 0. The consequences of not doing
+ * this is that the memory allocation code may think that 1 more UV is
+ * being used than actually is, and so might do an unnecessary grow. That
+ * seems worth not bothering to make this the precise amount.
+ *
+ * Note that when inverting, SvCUR shouldn't change */
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_max(pTHX_ SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ return FROM_INTERNAL_SIZE(SvLEN(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_zero_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that is reserved to hold 0 if the inversion
+ * list contains 0. This has to be the last element of the heading, as the
+ * list proper starts with either it if 0, or the next element if not.
+ * (But we force it to contain either 0 or 1) */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = INVLIST_INITIAL_LEN;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV(TO_INTERNAL_SIZE(initial_size));
+ invlist_set_len(new_list, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = UV_MAX;
+
+ /* This should force a segfault if a method doesn't initialize this
+ * properly */
+ *get_invlist_zero_addr(new_list) = UV_MAX;
+
+ *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
+#if HEADER_LENGTH != 4
+# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
+#endif
+
+ return new_list;
+}
+#endif
+
+STATIC SV*
+S__new_invlist_C_array(pTHX_ UV* list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands */
+
+ SV* invlist = newSV_type(SVt_PV);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ SvPV_set(invlist, (char *) list);
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
+
+ if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ return invlist;
+}
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(pTHX_ SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = invlist_len(invlist);
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ array = _invlist_array_init(invlist, start == 0);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If overflows the existing space, extend, which may cause the array to be
+ * moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+ invlist_set_len(invlist, len); /* Have to set len here to avoid assert
+ failure in invlist_array() */
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+STATIC IV
+S_invlist_search(pTHX_ SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV high = invlist_len(invlist);
+ const UV * const array = invlist_array(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_SEARCH;
+
+ /* If list is empty or the code point is before the first element, return
+ * failure. */
+ if (high == 0 || cp < array[0]) {
+ return -1;
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. */
+ while (low < high) {
+ IV mid = (low + high) / 2;
+ if (array[mid] <= cp) {
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ return high - 1;
+}
+
+void
+Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ return;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented. The first list,
+ * <a>, may be NULL, in which case a copy of the second list is returned.
+ * If <complement_b> is TRUE, the union is taken of the complement
+ * (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
+ if (*output == a) {
+ if (a != NULL) {
+ SvREFCNT_dec(a);
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+ return;
+ }
+ else if ((len_b = invlist_len(b)) == 0) {
+ if (*output == b) {
+ SvREFCNT_dec(b);
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ SvREFCNT_dec(a);
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != invlist_len(u)) {
+ invlist_set_len(u, len_u);
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *output || b == *output) {
+ SvREFCNT_dec(*output);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *output = u;
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented.
+ * If <complement_b> is TRUE, the result will be the intersection of <a>
+ * and the complement (or inversion) of <b> instead of <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = invlist_len(a);
+ if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ *i = invlist_clone(a);
+
+ if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ }
+ /* else *i is already 'a' */
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ SvREFCNT_dec(a);
+ }
+ else if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ *i = _new_invlist(0);
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != invlist_len(r)) {
+ invlist_set_len(r, len_r);
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *i || b == *i) {
+ SvREFCNT_dec(*i);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *i = r;
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = invlist_len(invlist);
+ }
+
+ /* If comes after the final entry, can just append it to the end */
+ if (len == 0
+ || start >= invlist_array(invlist)
+ [invlist_len(invlist) - 1])
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec(range_invlist);
+
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ UV* len_pos = get_invlist_len_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ /* The inverse of matching nothing is matching everything */
+ if (*len_pos == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
+ * zero element was a 0, so it is being removed, so the length decrements
+ * by 1; and vice-versa. SvCUR is unaffected */
+ if (*get_invlist_zero_addr(invlist) ^= 1) {
+ (*len_pos)--;
+ }
+ else {
+ (*len_pos)++;
+ }
+}
+
+void
+Perl__invlist_invert_prop(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list (which must be a Unicode property,
+ * all of which don't match above the Unicode maximum code point.) And
+ * Perl has chosen to not have the inversion match above that either. This
+ * adds a 0x110000 if the list didn't end with it, and removes it if it did
+ */
+
+ UV len;
+ UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
+
+ _invlist_invert(invlist);
+
+ len = invlist_len(invlist);
+
+ if (len != 0) { /* If empty do nothing */
+ array = invlist_array(invlist);
+ if (array[len - 1] != PERL_UNICODE_MAX + 1) {
+ /* Add 0x110000. First, grow if necessary */
+ len++;
+ if (invlist_max(invlist) < len) {
+ invlist_extend(invlist, len);
+ array = invlist_array(invlist);
+ }
+ invlist_set_len(invlist, len);
+ array[len - 1] = PERL_UNICODE_MAX + 1;
+ }
+ else { /* Remove the 0x110000 */
+ invlist_set_len(invlist, len - 1);
+ }
+ }
+
+ return;
+}
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
+ STRLEN length = SvCUR(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ SvCUR_set(new_invlist, length); /* This isn't done automatically */
+ Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_iter_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_version_id_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the version id. */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+STATIC bool
+S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ UV* pos = get_invlist_iter_addr(invlist);
+ UV len = invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = UV_MAX; /* Force iternit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#if 0
+void
+S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
+{
+ /* Dumps out the ranges in an inversion list. The string 'header'
+ * if present is output on a line before the first range */
+
+ UV start, end;
+
+ if (header && strlen(header)) {
+ PerlIO_printf(Perl_debug_log, "%s\n", header);
+ }
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
+ }
+ else {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
+ }
+ }
+}
+#endif
+
+#undef HEADER_LENGTH
+#undef INVLIST_INITIAL_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_LEN_OFFSET
+#undef INVLIST_ZERO_OFFSET
+#undef INVLIST_ITER_OFFSET
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
+{
+ dVAR;
+ register regnode *ret; /* Will be the head of the group. */
+ register regnode *br;
+ register regnode *lastbr;
+ register regnode *ender = NULL;
+ register I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (0x02|0x04)
+ I32 wastedflags = 0x00;
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if !argok */
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_SEEN_CUTGROUP;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse++;
+ vFAIL3("Unknown verb pattern '%.*s'",
+ verb_len, start_verb);
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_SEEN_VERBARG;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ } else
+ if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ bool has_use_defaults = FALSE;
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in regatom(), if
+ you change this make sure you change that */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? /* reverse test from the others */
+ REG_RSN_RETURN_NAME :
+ REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start) {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ if (*RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls */
+ if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '#': /* (?#...) */
+ while (*RExC_parse && *RExC_parse != ')')
+ RExC_parse++;
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?#... not terminated");
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ { /* named and numeric backreferences */
+ I32 num;
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ goto gen_recurse_regop;
+ /* NOT REACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOT REACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /*FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ num = atoi(RExC_parse);
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-')
+ RExC_parse++;
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reganode(pRExC_state, GOSUB, num);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ ARG2L_SET( ret, RExC_recurse_count++);
+ RExC_emit++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
+ } else {
+ RExC_size++;
+ }
+ RExC_seen |= REG_SEEN_RECURSE;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ } /* named and numeric backreferences */
+ /* NOT REACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALL THROUGH */
+ case '{': /* (?{...}) */
+ {
+ I32 count = 1;
+ U32 n = 0;
+ char c;
+ char *s = RExC_parse;
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_EVAL;
+ while (count && (c = *RExC_parse)) {
+ if (c == '\\') {
+ if (RExC_parse[1])
+ RExC_parse++;
+ }
+ else if (c == '{')
+ count++;
+ else if (c == '}')
+ count--;
+ RExC_parse++;
+ }
+ if (*RExC_parse != ')') {
+ RExC_parse = s;
+ vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
+ }
+ if (!SIZE_ONLY) {
+ PAD *pad;
+ OP_4tree *sop, *rop;
+ SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
+
+ ENTER;
+ Perl_save_re_context(aTHX);
+ rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
+ sop->op_private |= OPpREFCOUNTED;
+ /* re_dup will OpREFCNT_inc */
+ OpREFCNT_set(sop, 1);
+ LEAVE;
+
+ n = add_data(pRExC_state, 3, "nop");
+ RExC_rxi->data->data[n] = (void*)rop;
+ RExC_rxi->data->data[n+1] = (void*)sop;
+ RExC_rxi->data->data[n+2] = (void*)pad;
+ SvREFCNT_dec(sv);
+ }
+ else { /* First pass */
+ if (PL_reginterp_cnt < ++RExC_seen_evals
+ && IN_PERL_RUNTIME)
+ /* No compiled RE interpolated, has runtime
+ components ===> unsafe. */
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ if (PL_tainting && PL_tainted)
+ FAIL("Eval-group in insecure regular expression");
+#if PERL_VERSION > 8
+ if (IN_PERL_COMPILETIME)
+ PL_cv_has_eval = 1;
+#endif
+ }
+
+ nextchar(pRExC_state);
+ if (is_logical) {
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 2;
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reganode(pRExC_state, EVAL, n);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+ REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
+ goto insert_if;
+ }
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'D' &&
+ RExC_parse[1] == 'E' &&
+ RExC_parse[2] == 'F' &&
+ RExC_parse[3] == 'I' &&
+ RExC_parse[4] == 'N' &&
+ RExC_parse[5] == 'E')
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse +=6 ;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ parno = atoi(RExC_parse++);
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ parno = atoi(RExC_parse++);
+
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if ((c = *nextchar(pRExC_state)) != ')')
+ vFAIL("Switch condition not recognized");
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL)
+ br = reganode(pRExC_state, LONGJMP, 0);
+ else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+ lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
+ regbranch(pRExC_state, &flags, 1,depth+1);
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')')
+ vFAIL("Switch (?(condition)... contains too many branches");
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ else {
+ vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
+ }
+ }
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
+ that follow */
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ goto parse_flags;
+ default:
+ --RExC_parse;
+ parse_flags: /* (?i) */
+ {
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ RExC_contains_locale = 1;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
+ /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (SIZE_ONLY)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ fail_modifiers:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ paren = ':';
+ /*FALLTHROUGH*/
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (paren != ':') {
+ oregflags |= posflags;
+ oregflags &= ~negflags;
+ set_regex_charset(&oregflags, cs);
+ }
+ nextchar(pRExC_state);
+ if (paren != ':') {
+ *flagp = TRYAGAIN;
+ return NULL;
+ } else {
+ ret = NULL;
+ goto parse_rest;
+ }
+ /*NOTREACHED*/
+ default:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ ++RExC_parse;
+ }
+ }} /* one for the default block, one for the switch */
+ }
+ else { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_SEEN_RECURSE
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting open paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL)
+ return(NULL);
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL)
+ return(NULL);
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting close paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALL THROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ RExC_flags = oregflags;
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register regnode *chain = NULL;
+ register regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ return(NULL);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ RExC_naughty++;
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register char op;
+ register char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN)
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ min = atoi(RExC_parse);
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ max = atoi(maxpos);
+ if (!max && *maxpos != '0')
+ max = REG_INFTY; /* meaning "infinity" */
+ else if (max >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ RExC_parse = next;
+ nextchar(pRExC_state);
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ RExC_naughty += 2 + RExC_naughty / 2;
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ RExC_naughty += 4 + RExC_naughty; /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (max < min)
+ vFAIL("Can't do {n,m} with n > m");
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 4;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 3;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ ckWARN3reg(RExC_parse,
+ "%.*s matches null string many times",
+ (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
+ origparse);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+#ifndef REG_ALLOW_MINMOD_SUSPEND
+ else
+#endif
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ /*ret= ender;*/
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+
+/* reg_namedseq(pRExC_state,UVp, UV depth)
+
+ This is expected to be called by a parser routine that has
+ recognized '\N' and needs to handle the rest. RExC_parse is
+ expected to point at the first char following the N at the time
+ of the call.
+
+ The \N may be inside (indicated by valuep not being NULL) or outside a
+ character class.
+
+ \N may begin either a named sequence, or if outside a character class, mean
+ to match a non-newline. For non single-quoted regexes, the tokenizer has
+ attempted to decide which, and in the case of a named sequence converted it
+ into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
+ where c1... are the characters in the sequence. For single-quoted regexes,
+ the tokenizer passes the \N sequence through unchanged; this code will not
+ attempt to determine this nor expand those. The net effect is that if the
+ beginning of the passed-in pattern isn't '{U+' or there is no '}', it
+ signals that this \N occurrence means to match a non-newline.
+
+ Only the \N{U+...} form should occur in a character class, for the same
+ reason that '.' inside a character class means to just match a period: it
+ just doesn't make sense.
+
+ If valuep is non-null then it is assumed that we are parsing inside
+ of a charclass definition and the first codepoint in the resolved
+ string is returned via *valuep and the routine will return NULL.
+ In this mode if a multichar string is returned from the charnames
+ handler, a warning will be issued, and only the first char in the
+ sequence will be examined. If the string returned is zero length
+ then the value of *valuep is undefined and NON-NULL will
+ be returned to indicate failure. (This will NOT be a valid pointer
+ to a regnode.)
+
+ If valuep is null then it is assumed that we are parsing normal text and a
+ new EXACT node is inserted into the program containing the resolved string,
+ and a pointer to the new node is returned. But if the string is zero length
+ a NOTHING node is emitted instead.
+
+ On success RExC_parse is set to the char following the endbrace.
+ Parsing failures will generate a fatal error via vFAIL(...)
+ */
+STATIC regnode *
+S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
+{
+ char * endbrace; /* '}' following the name */
+ regnode *ret = NULL;
+ char* p;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMEDSEQ;
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meaning does not */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regwhite( pRExC_state, RExC_parse )
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The former is assumed when it can't be the latter. */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (valuep) {
+ /* no bare \N in a charclass */
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ nextchar(pRExC_state);
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ RExC_parse--;
+ Set_Node_Length(ret, 1); /* MJD */
+ return ret;
+ }
+
+ /* Here, we have decided it should be a named sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
+ && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (! valuep) {
+ RExC_parse = endbrace + 1;
+ return reg_node(pRExC_state,NOTHING);
+ }
+
+ if (SIZE_ONLY) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class"
+ );
+ RExC_parse = endbrace + 1;
+ }
+ *valuep = 0;
+ return (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+
+ REQUIRE_UTF8; /* named sequences imply Unicode semantics */
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ if (valuep) { /* In a bracketed char class */
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. XXX Solution is to recharacterize as
+ [rest-of-class]|multi1|multi2... */
+
+ STRLEN length_of_hex;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
+
+ char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ if (endchar < endbrace) {
+ ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
+ }
+
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) RExC_parse = endchar;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ if (endchar == endbrace) return NULL;
+
+ ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+ else { /* Not a char class */
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * (?:\x{char1}\x{char2}...)
+ * and then call reg recursively. That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. toke.c has converted the original Unicode values
+ * to native, so that we can just pass on the hex values unchanged. We
+ * do have to set a flag to keep recoding from happening in the
+ * recursion */
+
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
+ STRLEN len;
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char *orig_end = RExC_end;
+
+ while (RExC_parse < endbrace) {
+
+ /* Code points are separated by dots. If none, there is only one
+ * code point, and is terminated by the brace */
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < 8) {
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding */
+ RExC_override_recoding = 1;
+
+ ret = reg(pRExC_state, 1, flagp, depth+1);
+
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+
+ nextchar(pRExC_state);
+ }
+
+ return ret;
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends can either, depending
+ on context. Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret = NULL;
+ I32 flags;
+ char *parse_start = RExC_parse;
+ U8 op;
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_PARSE("atom");
+ *flagp = WORST; /* Tentatively. */
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SBOL);
+ else
+ ret = reg_node(pRExC_state, BOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SEOL);
+ else
+ ret = reg_node(pRExC_state, EOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state,depth+1);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 1, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ return(NULL);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '{':
+ if (!regcurly(RExC_parse)) {
+ RExC_parse++;
+ goto defchar;
+ }
+ /* FALL THROUGH */
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_SEEN_GPOS;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ ret = reg_node(pRExC_state, CANY);
+ RExC_seen |= REG_SEEN_CANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+ case 'w':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = ALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = ALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = ALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = ALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'W':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'b':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = BOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = BOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = BOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = BOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
+ ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
+ }
+ goto finish_meta_pat;
+ case 'B':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NBOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NBOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NBOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NBOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
+ ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
+ }
+ goto finish_meta_pat;
+ case 's':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = SPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = SPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = SPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = SPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'S':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NSPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NSPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NSPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NSPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'd':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = DIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = DIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = DIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'D':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NDIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NDIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = NDIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'h':
+ ret = reg_node(pRExC_state, HORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'H':
+ ret = reg_node(pRExC_state, NHORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'v':
+ ret = reg_node(pRExC_state, VERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'V':
+ ret = reg_node(pRExC_state, NVERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+ char* const oldregxend = RExC_end;
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ if (RExC_parse[1] == '{') {
+ /* a lovely hack--pretend we saw [\pX] instead */
+ RExC_end = strchr(RExC_parse, '}');
+ if (!RExC_end) {
+ const U8 c = (U8)*RExC_parse;
+ RExC_parse += 2;
+ RExC_end = oldregxend;
+ vFAIL2("Missing right brace on \\%c{}", c);
+ }
+ RExC_end++;
+ }
+ else {
+ RExC_end = RExC_parse + 2;
+ if (RExC_end > oldregxend)
+ RExC_end = oldregxend;
+ }
+ RExC_parse--;
+
+ ret = regclass(pRExC_state,depth+1);
+
+ RExC_end = oldregxend;
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret);
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ break;
+ case 'N':
+ /* Handle \N and \N{NAME} here and not below because it can be
+ multicharacter. join_exact() will join them up later on.
+ Also this makes sure that things like /\N{BLAH}+/ and
+ \N{BLAH} being multi char Just Happen. dmq*/
+ ++RExC_parse;
+ ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
+ break;
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool isg = *RExC_parse == 'g';
+ bool isrel = 0;
+ bool hasbrace = 0;
+ if (isg) {
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ } }
+ num = atoi(RExC_parse);
+ if (isg && num == 0)
+ vFAIL("Reference to invalid group 0");
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ if (!isg && num > 9 && num >= RExC_npar)
+ goto defchar;
+ else {
+ char * const parse_start = RExC_parse - 1; /* MJD */
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (parse_start == RExC_parse - 1)
+ vFAIL("Unterminated \\g... pattern");
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (MORE_ASCII_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if ( reg_skipcomment( pRExC_state ) )
+ goto tryagain;
+ }
+ /* FALL THROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ register STRLEN len;
+ register UV ender;
+ register char *p;
+ char *s;
+ STRLEN foldlen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
+ U8 node_type;
+
+ /* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
+ * it is folded to 'ss' even if not utf8 */
+ bool is_exactfu_sharp_s;
+
+ ender = 0;
+ node_type = ((! FOLD) ? EXACT
+ : (LOC)
+ ? EXACTFL
+ : (MORE_ASCII_RESTRICTED)
+ ? EXACTFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? EXACTFU
+ : EXACTF);
+ ret = reg_node(pRExC_state, node_type);
+ s = STRING(ret);
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (len = 0, p = RExC_parse - 1;
+ len < 127 && p < RExC_end;
+ len++)
+ {
+ char * const oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'N': /* named char sequence */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ASCII_TO_NATIVE('\033');
+ p++;
+ break;
+ case 'a':
+ ender = ASCII_TO_NATIVE('\007');
+ p++;
+ break;
+ case 'o':
+ {
+ STRLEN brace_len = len;
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(p,
+ &result,
+ &brace_len,
+ &error_msg,
+ 1);
+ p += brace_len;
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ else
+ {
+ ender = result;
+ }
+ if (PL_encoding && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ if (*++p == '{') {
+ char* const e = strchr(p, '}');
+
+ if (!e) {
+ RExC_parse = p + 1;
+ vFAIL("Missing right brace on \\x{}");
+ }
+ else {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = e - p - 1;
+ ender = grok_hex(p + 1, &numlen, &flags, NULL);
+ if (ender > 0xff)
+ REQUIRE_UTF8;
+ p = e + 1;
+ }
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = 2;
+ ender = grok_hex(p, &numlen, &flags, NULL);
+ p += numlen;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7': case '8':case '9':
+ if (*p == '0' ||
+ (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ }
+ else {
+ --p;
+ goto loopdone;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHA(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (*(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ }
+ break;
+ default:
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ is_exactfu_sharp_s = (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S);
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ if ((UTF && FOLD) || is_exactfu_sharp_s) {
+ /* Prime the casefolded buffer. Locale rules, which apply
+ * only to code points < 256, aren't known until execution,
+ * so for them, just output the original character using
+ * utf8. If we start to fold non-UTF patterns, be sure to
+ * update join_exact() */
+ if (LOC && ender < 256) {
+ if (UNI_IS_INVARIANT(ender)) {
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ } else {
+ *tmpbuf = UTF8_TWO_BYTE_HI(ender);
+ *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
+ foldlen = 2;
+ }
+ }
+ else if (isASCII(ender)) { /* Note: Here can't also be LOC
+ */
+ ender = toLOWER(ender);
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ }
+ else if (! MORE_ASCII_RESTRICTED && ! LOC) {
+
+ /* Locale and /aa require more selectivity about the
+ * fold, so are handled below. Otherwise, here, just
+ * use the fold */
+ ender = toFOLD_uni(ender, tmpbuf, &foldlen);
+ }
+ else {
+ /* Under locale rules or /aa we are not to mix,
+ * respectively, ords < 256 or ASCII with non-. So
+ * reject folds that mix them, using only the
+ * non-folded code point. So do the fold to a
+ * temporary, and inspect each character in it. */
+ U8 trialbuf[UTF8_MAXBYTES_CASE+1];
+ U8* s = trialbuf;
+ UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
+ U8* e = s + foldlen;
+ bool fold_ok = TRUE;
+
+ while (s < e) {
+ if (isASCII(*s)
+ || (LOC && (UTF8_IS_INVARIANT(*s)
+ || UTF8_IS_DOWNGRADEABLE_START(*s))))
+ {
+ fold_ok = FALSE;
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ if (fold_ok) {
+ Copy(trialbuf, tmpbuf, foldlen, U8);
+ ender = tmpender;
+ }
+ else {
+ uvuni_to_utf8(tmpbuf, ender);
+ foldlen = UNISKIP(ender);
+ }
+ }
+ }
+ if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
+ if (len)
+ p = oldp;
+ else if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+
+ /* tmpbuf has been constructed by us, so we
+ * know it is valid utf8 */
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ s += unilen;
+ len += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break; /* "Can't happen." */
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ }
+ else {
+ len++;
+ REGC((char)ender, s++);
+ }
+ break;
+ }
+ if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ len += unilen;
+ s += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break;
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ len--;
+ }
+ else {
+ REGC((char)ender, s++);
+ }
+ }
+ loopdone: /* Jumped to when encounters something that shouldn't be in
+ the node */
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+ if (len > 0)
+ *flagp |= HASWIDTH;
+ if (len == 1 && UNI_IS_INVARIANT(ender))
+ *flagp |= SIMPLE;
+
+ if (SIZE_ONLY)
+ RExC_size += STR_SZ(len);
+ else {
+ STR_LEN(ret) = len;
+ RExC_emit += STR_SZ(len);
+ }
+ }
+ break;
+ }
+
+ return(ret);
+
+/* Jumped to when an unrecognized character set is encountered */
+bad_charset:
+ Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
+ return(NULL);
+}
+
+STATIC char *
+S_regwhite( RExC_state_t *pRExC_state, char *p )
+{
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGWHITE;
+
+ while (p < e) {
+ if (isSPACE(*p))
+ ++p;
+ else if (*p == '#') {
+ bool ended = 0;
+ do {
+ if (*p++ == '\n') {
+ ended = 1;
+ break;
+ }
+ } while (p < e);
+ if (!ended)
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+STATIC I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
+{
+ dVAR;
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse))) {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end)
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
+ namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ Simple_vFAIL3("POSIX class [:%.*s:] unknown",
+ t - s - 1, s + 1);
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC void
+S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_CHECKPOSIXCC;
+
+ if (POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ while (isALNUM(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+
+ /* [[=foo=]] and [[.foo.]] are still future. */
+ if (POSIXCC_NOTYET(c)) {
+ /* adjust RExC_parse so the error shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
+ NOOP;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ }
+ }
+}
+
+/* Generate the code to add a full posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * Xsourcelist is the full Unicode range list to use otherwise. */
+#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ \
+ /* Set this class in the node for runtime matching */ \
+ ANYOF_CLASS_SET(node, class); \
+ \
+ /* For above Latin1 code points, we use the full Unicode range */ \
+ _invlist_intersection(PL_AboveLatin1, \
+ Xsourcelist, \
+ &scratch_list); \
+ /* And set the output to it, adding instead if there already is an \
+ * output. Checking if <destlist> is NULL first saves an extra \
+ * clone. Its reference count will be decremented at the next \
+ * union, etc, or if this is the only instance, at the end of the \
+ * routine */ \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ /* For non-locale, just add it to any existing list */ \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
+ */
+#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ ANYOF_CLASS_SET(node, class); \
+ _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ _invlist_union_complement_2nd(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ /* Under /d, everything in the upper half of the Latin1 range \
+ * matches this complement */ \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ }
+
+/* Generate the code to add a posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * l1_sourcelist is the Latin1 range list to use otherwise.
+ * Xpropertyname is the name to add to <run_time_list> of the property to
+ * specify the code points above Latin1 that will have to be
+ * determined at run-time
+ * run_time_list is a SV* that contains text names of properties that are to
+ * be computed at run time. This concatenates <Xpropertyname>
+ * to it, apppropriately
+ * This is essentially DO_POSIX, but we know only the Latin1 values at compile
+ * time */
+#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ /* If not /a matching, there are going to be code points we will have \
+ * to defer to runtime to look-up */ \
+ if (! AT_LEAST_ASCII_RESTRICTED) { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
+ } \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, class); \
+ } \
+ else { \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : l1_sourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
+ * this and DO_N_POSIX */
+#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ if (AT_LEAST_ASCII_RESTRICTED) { \
+ _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
+ } \
+ else { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, namedclass); \
+ } \
+ else { \
+ SV* scratch_list = NULL; \
+ _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ } \
+ }
+
+STATIC U8
+S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+
+ /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
+ * Locale folding is done at run-time, so this function should not be
+ * called for nodes that are for locales.
+ *
+ * This function sets the bit corresponding to the fold of the input
+ * 'value', if not already set. The fold of 'f' is 'F', and the fold of
+ * 'F' is 'f'.
+ *
+ * It also knows about the characters that are in the bitmap that have
+ * folds that are matchable only outside it, and sets the appropriate lists
+ * and flags.
+ *
+ * It returns the number of bits that actually changed from 0 to 1 */
+
+ U8 stored = 0;
+ U8 fold;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
+
+ fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
+ : PL_fold[value];
+
+ /* It assumes the bit for 'value' has already been set */
+ if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
+ ANYOF_BITMAP_SET(node, fold);
+ stored++;
+ }
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
+ /* Certain Latin1 characters have matches outside the bitmap. To get
+ * here, 'value' is one of those characters. None of these matches is
+ * valid for ASCII characters under /aa, which have been excluded by
+ * the 'if' above. The matches fall into three categories:
+ * 1) They are singly folded-to or -from an above 255 character, as
+ * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
+ * WITH DIAERESIS;
+ * 2) They are part of a multi-char fold with another character in the
+ * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
+ * 3) They are part of a multi-char fold with a character not in the
+ * bitmap, such as various ligatures.
+ * We aren't dealing fully with multi-char folds, except we do deal
+ * with the pattern containing a character that has a multi-char fold
+ * (not so much the inverse).
+ * For types 1) and 3), the matches only happen when the target string
+ * is utf8; that's not true for 2), and we set a flag for it.
+ *
+ * The code below adds to the passed in inversion list the single fold
+ * closures for 'value'. The values are hard-coded here so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out
+ * to disk to find the possible matches. XXX It would be better to
+ * generate these via regen, in case a new version of the Unicode
+ * standard adds new mappings, though that is not really likely. */
+ switch (value) {
+ case 'k':
+ case 'K':
+ /* KELVIN SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
+ break;
+ case 's':
+ case 'S':
+ /* LATIN SMALL LETTER LONG S */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
+ break;
+ case MICRO_SIGN:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_SMALL_LETTER_MU);
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_CAPITAL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ /* ANGSTROM SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
+ if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ PL_fold_latin1[value]);
+ }
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_SHARP_S);
+
+ /* Under /a, /d, and /u, this can match the two chars "ss" */
+ if (! MORE_ASCII_RESTRICTED) {
+ add_alternate(alternate_ptr, (U8 *) "ss", 2);
+
+ /* And under /u or /a, it can match even if the target is
+ * not utf8 */
+ if (AT_LEAST_UNI_SEMANTICS) {
+ ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ break;
+ case 'F': case 'f':
+ case 'I': case 'i':
+ case 'L': case 'l':
+ case 'T': case 't':
+ case 'A': case 'a':
+ case 'H': case 'h':
+ case 'J': case 'j':
+ case 'N': case 'n':
+ case 'W': case 'w':
+ case 'Y': case 'y':
+ /* These all are targets of multi-character folds from code
+ * points that require UTF8 to express, so they can't match
+ * unless the target string is in UTF-8, so no action here is
+ * necessary, as regexec.c properly handles the general case
+ * for UTF-8 matching */
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this
+ * being output */
+ ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
+ break;
+ }
+ }
+ else if (DEPENDS_SEMANTICS
+ && ! isASCII(value)
+ && PL_fold_latin1[value] != value)
+ {
+ /* Under DEPENDS rules, non-ASCII Latin1 characters match their
+ * folds only when the target string is in UTF-8. We add the fold
+ * here to the list of things to match outside the bitmap, which
+ * won't be looked at unless it is UTF8 (or else if something else
+ * says to look even if not utf8, but those things better not happen
+ * under DEPENDS semantics. */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
+ }
+
+ return stored;
+}
+
+
+PERL_STATIC_INLINE U8
+S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+ /* This inline function sets a bit in the bitmap if not already set, and if
+ * appropriate, its fold, returning the number of bits that actually
+ * changed from 0 to 1 */
+
+ U8 stored;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
+
+ if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
+ return 0;
+ }
+
+ ANYOF_BITMAP_SET(node, value);
+ stored = 1;
+
+ if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
+ stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
+ }
+
+ return stored;
+}
+
+STATIC void
+S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
+{
+ /* Adds input 'string' with length 'len' to the ANYOF node's unicode
+ * alternate list, pointed to by 'alternate_ptr'. This is an array of
+ * the multi-character folds of characters in the node */
+ SV *sv;
+
+ PERL_ARGS_ASSERT_ADD_ALTERNATE;
+
+ if (! *alternate_ptr) {
+ *alternate_ptr = newAV();
+ }
+ sv = newSVpvn_utf8((char*)string, len, TRUE);
+ av_push(*alternate_ptr, sv);
+ return;
+}
+
+/*
+ parse a class specification and produce either an ANYOF node that
+ matches the pattern or perhaps will be optimized into an EXACTish node
+ instead. The node contains a bit map for the first 256 characters, with the
+ corresponding bit set if that character is in the list. For characters
+ above 255, a range list is used */
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
+{
+ dVAR;
+ register UV nextvalue;
+ register IV prevvalue = OOB_UNICODE;
+ register IV range = 0;
+ UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
+ register regnode *ret;
+ STRLEN numlen;
+ IV namedclass;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ UV n;
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ UV has_user_defined_property = 0;
+
+ /* code points this node matches that can't be stored in the bitmap */
+ SV* nonbitmap = NULL;
+
+ /* The items that are to match that aren't stored in the bitmap, but are a
+ * result of things that are stored there. This is the fold closure of
+ * such a character, either because it has DEPENDS semantics and shouldn't
+ * be matched unless the target string is utf8, or is a code point that is
+ * too large for the bit map, as for example, the fold of the MICRO SIGN is
+ * above 255. This all is solely for performance reasons. By having this
+ * code know the outside-the-bitmap folds that the bitmapped characters are
+ * involved with, we don't have to go out to disk to find the list of
+ * matches, unless the character class includes code points that aren't
+ * storable in the bit map. That means that a character class with an 's'
+ * in it, for example, doesn't need to go out to disk to find everything
+ * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
+ * empty unless there is something whose fold we don't know about, and will
+ * have to go out to the disk to find. */
+ SV* l1_fold_invlist = NULL;
+
+ /* List of multi-character folds that are matched by this node */
+ AV* unicode_alternate = NULL;
+#ifdef EBCDIC
+ UV literal_endpoint = 0;
+#endif
+ UV stored = 0; /* how many chars stored in the bitmap */
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state, ANYOF, 0);
+
+
+ if (!SIZE_ONLY) {
+ ANYOF_FLAGS(ret) = 0;
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_naughty++;
+ RExC_parse++;
+ if (!SIZE_ONLY)
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+
+ /* We have decided to not allow multi-char folds in inverted character
+ * classes, due to the confusion that can happen, especially with
+ * classes that are designed for a non-Unicode world: You have the
+ * peculiar case that:
+ "s s" =~ /^[^\xDF]+$/i => Y
+ "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ allow_full_fold = FALSE;
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ RExC_emit += ANYOF_SKIP;
+ if (LOC) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
+ }
+ ANYOF_BITMAP_ZERO(ret);
+ listsv = newSVpvs("# comment\n");
+ initial_listsv_len = SvCUR(listsv);
+ }
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+
+ if (!SIZE_ONLY && POSIXCC(nextvalue))
+ checkposixcc(pRExC_state);
+
+ /* allow 1st char to be ] (allowing it to be - is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+parseit:
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+ if (value == '[' && POSIXCC(nextvalue))
+ namedclass = regpposixcc(pRExC_state, value);
+ else if (value == '\\') {
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+ switch ((I32)value) {
+ case 'w': namedclass = ANYOF_ALNUM; break;
+ case 'W': namedclass = ANYOF_NALNUM; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. */
+ UV v; /* value is register so we cant & it /grrr */
+ if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
+ goto parseit;
+ }
+ value= v;
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(UCHARAT(RExC_parse)))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(UCHARAT(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV** invlistsvp;
+ SV* invlist;
+ char* name;
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ value = value == 'p' ? 'P' : 'p'; /* toggle */
+ while (isSPACE(UCHARAT(RExC_parse))) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ Newx(name, n + sizeof("_i__\n"), char);
+
+ sprintf(name, "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ );
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ TRUE, /* this routine will handle
+ undefined properties */
+ NULL, FALSE /* No inversion list */
+ );
+ if ( ! swash
+ || ! SvROK(swash)
+ || ! SvTYPE(SvRV(swash)) == SVt_PVHV
+ || ! (invlistsvp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "INVLIST", FALSE))
+ || ! (invlist = *invlistsvp))
+ {
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. Add it
+ * to the list to look up then */
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
+ (value == 'p' ? '+' : '!'),
+ name);
+ has_user_defined_property = 1;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8 */
+ ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ SV** user_defined_svp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "USER_DEFINED", FALSE);
+ if (user_defined_svp) {
+ has_user_defined_property
+ |= SvUV(*user_defined_svp);
+ }
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties, invlist, &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_MAX; /* no official name, but it's named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ASCII_TO_NATIVE('\033');break;
+ case 'a': value = ASCII_TO_NATIVE('\007');break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(RExC_parse,
+ &value,
+ &numlen,
+ &error_msg,
+ SIZE_ONLY);
+ RExC_parse += numlen;
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ if (PL_encoding && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ if (*RExC_parse == '{') {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ char * const e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL("Missing right brace on \\x{}");
+
+ numlen = e - RExC_parse;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse = e + 1;
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ numlen = 2;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ }
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isALNUM(value) && value != '_') {
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ }
+ break;
+ }
+ } /* end of \blah */
+#ifdef EBCDIC
+ else
+ literal_endpoint++;
+#endif
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+
+ /* What matches in a locale is not known until runtime, so need to
+ * (one time per class) allocate extra space to pass to regexec.
+ * The space will contain a bit for each named class that is to be
+ * matched against. This isn't needed for \p{} and pseudo-classes,
+ * as they are not affected by locale, and hence are dealt with
+ * separately */
+ if (LOC && namedclass < ANYOF_MAX && ! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ ANYOF_CLASS_ZERO(ret);
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_CLASS;
+ }
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ ckWARN4reg(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ if (prevvalue < 256) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
+ }
+ else {
+ nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ }
+
+ if (!SIZE_ONLY) {
+
+ /* Possible truncation here but in some 64-bit environments
+ * the compiler gets heartburn about switch on 64-bit values.
+ * A similar issue a little earlier when switching on value.
+ * --jhi */
+ switch ((I32)namedclass) {
+
+ case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_NALNUMC:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_ALPHA:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_NALPHA:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_ASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union(properties, PL_ASCII, &properties);
+ }
+ break;
+ case ANYOF_NASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union_complement_2nd(properties,
+ PL_ASCII, &properties);
+ if (DEPENDS_SEMANTICS) {
+ ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ break;
+ case ANYOF_BLANK:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_NBLANK:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_CNTRL:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_NCNTRL:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_DIGIT:
+ /* Ignore the compiler warning for this macro, planned to
+ * be eliminated later */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_NDIGIT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_GRAPH:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_NGRAPH:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_HORIZWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding. It turns out that \h
+ * is just a synonym for XPosixBlank */
+ _invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_NHORIZWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ { /* These require special handling, as they differ under
+ folding, matching Cased there (which in the ASCII range
+ is the same as Alpha */
+
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixLower;
+ l1_source = PL_L1PosixLower;
+ Xname = "XPosixLower";
+ }
+ if (namedclass == ANYOF_LOWER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_PRINT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_NPRINT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_PUNCT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_NPUNCT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_PSXSPC:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_NPSXSPC:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_SPACE:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_NSPACE:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_UPPER: /* Same as LOWER, above */
+ case ANYOF_NUPPER:
+ {
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixUpper;
+ l1_source = PL_L1PosixUpper;
+ Xname = "XPosixUpper";
+ }
+ if (namedclass == ANYOF_UPPER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_ALNUM: /* Really is 'Word' */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_NALNUM:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_VERTWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding */
+ _invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_NVERTWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_XDIGIT:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_NXDIGIT:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_MAX:
+ /* this is to handle \p and \P */
+ break;
+ default:
+ vFAIL("Invalid [::] class");
+ break;
+ }
+
+ continue;
+ }
+ } /* end of namedclass \blah */
+
+ if (range) {
+ if (prevvalue > (IV)value) /* b-a */ {
+ const int w = RExC_parse - rangebegin;
+ Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
+ range = 0; /* not a valid range */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the range */
+ if (RExC_parse+1 < RExC_end
+ && *RExC_parse == '-'
+ && RExC_parse[1] != ']')
+ {
+ RExC_parse++;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (ckWARN(WARN_REGEXP)) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ if (!SIZE_ONLY)
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* now is the next time */
+ if (!SIZE_ONLY) {
+ if (prevvalue < 256) {
+ const IV ceilvalue = value < 256 ? value : 255;
+ IV i;
+#ifdef EBCDIC
+ /* In EBCDIC [\x89-\x91] should include
+ * the \x8e but [i-j] should not. */
+ if (literal_endpoint == 2 &&
+ ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
+ (isUPPER(prevvalue) && isUPPER(ceilvalue))))
+ {
+ if (isLOWER(prevvalue)) {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ } else {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ }
+ else
+#endif
+ for (i = prevvalue; i <= ceilvalue; i++) {
+ stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ if (value > 255) {
+ const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
+ const UV natvalue = NATIVE_TO_UNI(value);
+ nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
+ }
+#ifdef EBCDIC
+ literal_endpoint = 0;
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ }
+
+
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY AFTER HERE *********/
+
+ /* If folding and there are code points above 255, we calculate all
+ * characters that could fold to or from the ones already on the list */
+ if (FOLD && nonbitmap) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+
+ /* This is a list of all the characters that participate in folds
+ * (except marks, etc in multi-char folds */
+ if (! PL_utf8_foldable) {
+ SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
+ PL_utf8_foldable = _swash_to_invlist(swash);
+ SvREFCNT_dec(swash);
+ }
+
+ /* This is a hash that for a particular fold gives all characters
+ * that are involved in it */
+ if (! PL_utf8_foldclosures) {
+
+ /* If we were unable to find any folds, then we likely won't be
+ * able to find the closures. So just create an empty list.
+ * Folding will effectively be restricted to the non-Unicode rules
+ * hard-coded into Perl. (This case happens legitimately during
+ * compilation of Perl itself before the Unicode tables are
+ * generated) */
+ if (invlist_len(PL_utf8_foldable) == 0) {
+ PL_utf8_foldclosures = newHV();
+ } else {
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES+1];
+ STRLEN dummy_len;
+
+ /* This particular string is above \xff in both UTF-8 and
+ * UTFEBCDIC */
+ to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+ }
+ }
+
+ /* Only the characters in this class that participate in folds need be
+ * checked. Get the intersection of this class and all the possible
+ * characters that are foldable. This can quickly narrow down a large
+ * class */
+ _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+
+ /* Get its fold */
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ const UV f =
+ _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
+
+ if (foldlen > (STRLEN)UNISKIP(f)) {
+
+ /* Any multicharacter foldings (disallowed in lookbehind
+ * patterns) require the following transform: [ABCDEF] ->
+ * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
+ * folds into "rst", all other characters fold to single
+ * characters. We save away these multicharacter foldings,
+ * to be later saved as part of the additional "s" data. */
+ if (! RExC_in_lookbehind) {
+ U8* loc = foldbuf;
+ U8* e = foldbuf + foldlen;
+
+ /* If any of the folded characters of this are in the
+ * Latin1 range, tell the regex engine that this can
+ * match a non-utf8 target string. The only multi-byte
+ * fold whose source is in the Latin1 range (U+00DF)
+ * applies only when the target string is utf8, or
+ * under unicode rules */
+ if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
+ while (loc < e) {
+
+ /* Can't mix ascii with non- under /aa */
+ if (MORE_ASCII_RESTRICTED
+ && (isASCII(*loc) != isASCII(j)))
+ {
+ goto end_multi_fold;
+ }
+ if (UTF8_IS_INVARIANT(*loc)
+ || UTF8_IS_DOWNGRADEABLE_START(*loc))
+ {
+ /* Can't mix above and below 256 under LOC
+ */
+ if (LOC) {
+ goto end_multi_fold;
+ }
+ ANYOF_FLAGS(ret)
+ |= ANYOF_NONBITMAP_NON_UTF8;
+ break;
+ }
+ loc += UTF8SKIP(loc);
+ }
+ }
+
+ add_alternate(&unicode_alternate, foldbuf, foldlen);
+ end_multi_fold: ;
+ }
+
+ /* This is special-cased, as it is the only letter which
+ * has both a multi-fold and single-fold in Latin1. All
+ * the other chars that have single and multi-folds are
+ * always in utf8, and the utf8 folding algorithm catches
+ * them */
+ if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ LATIN_SMALL_LETTER_SHARP_S,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ else {
+ /* Single character fold. Add everything in its fold
+ * closure to the list that this node should match */
+ SV** listp;
+
+ /* The fold closures data structure is a hash with the keys
+ * being every character that is folded to, like 'k', and
+ * the values each an array of everything that folds to its
+ * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_len(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non-;
+ * /l doesn't allow them between above and below
+ * 256 */
+ if ((MORE_ASCII_RESTRICTED
+ && (isASCII(c) != isASCII(j)))
+ || (LOC && ((c < 256) != (j < 256))))
+ {
+ continue;
+ }
+
+ if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ (U8) c,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ /* It may be that the code point is already in
+ * this range or already in the bitmap, in
+ * which case we need do nothing */
+ else if ((c < start || c > end)
+ && (c > 255
+ || ! ANYOF_BITMAP_TEST(ret, c)))
+ {
+ nonbitmap = add_cp_to_invlist(nonbitmap, c);
+ }
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec(fold_intersection);
+ }
+
+ /* Combine the two lists into one. */
+ if (l1_fold_invlist) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
+ SvREFCNT_dec(l1_fold_invlist);
+ }
+ else {
+ nonbitmap = l1_fold_invlist;
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now because we don't want to fold the
+ * properties */
+ if (properties) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, properties, &nonbitmap);
+ SvREFCNT_dec(properties);
+ }
+ else {
+ nonbitmap = properties;
+ }
+ }
+
+ /* Here, <nonbitmap> contains all the code points we can determine at
+ * compile time that we haven't put into the bitmap. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <nonbitmap> */
+ if (nonbitmap) {
+
+ /* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
+ * possibly only should match when the target string is UTF-8 */
+ UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through <nonbitmap> */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ UV high;
+ int i;
+
+ /* Quit if are above what we should change */
+ if (start > max_cp_to_set) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < max_cp_to_set) ? end : max_cp_to_set;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_SET(ret, i);
+ stored++;
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * <nonbitmap> */
+ if (change_invlist) {
+ _invlist_subtract(nonbitmap,
+ (DEPENDS_SEMANTICS)
+ ? PL_ASCII
+ : PL_Latin1,
+ &nonbitmap);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (invlist_len(nonbitmap) == 0) {
+ SvREFCNT_dec(nonbitmap);
+ nonbitmap = NULL;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class. <nonbitmap> does not overlap the bitmap except possibly in the
+ * case of DEPENDS rules.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. */
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
+ * set the FOLD flag yet, so this does optimize those. It doesn't
+ * optimize locale. Doing so perhaps could be done as long as there is
+ * nothing like \w in it; some thought also would have to be given to the
+ * interaction with above 0x100 chars */
+ if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
+ && ! LOC
+ && ! unicode_alternate
+ /* In case of /d, there are some things that should match only when in
+ * not in the bitmap, i.e., they require UTF8 to match. These are
+ * listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
+ * case, they don't require UTF8, so can invert here */
+ && (! nonbitmap
+ || ! DEPENDS_SEMANTICS
+ || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ && SvCUR(listsv) == initial_listsv_len)
+ {
+ int i;
+ if (! nonbitmap) {
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ /* The inversion means that everything above 255 is matched */
+ ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
+ }
+ else {
+ /* Here, also has things outside the bitmap that may overlap with
+ * the bitmap. We have to sync them up, so that they get inverted
+ * in both places. Earlier, we removed all overlaps except in the
+ * case of /d rules, so no syncing is needed except for this case
+ */
+ SV *remove_list = NULL;
+
+ if (DEPENDS_SEMANTICS) {
+ UV start, end;
+
+ /* Set the bits that correspond to the ones that aren't in the
+ * bitmap. Otherwise, when we invert, we'll miss these.
+ * Earlier, we removed from the nonbitmap all code points
+ * < 128, so there is no extra work here */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ if (start > 255) { /* The bit map goes to 255 */
+ break;
+ }
+ if (end > 255) {
+ end = 255;
+ }
+ for (i = start; i <= (int) end; ++i) {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Now invert both the bitmap and the nonbitmap. Anything in the
+ * bitmap has to also be removed from the non-bitmap, but again,
+ * there should not be overlap unless is /d rules. */
+ _invlist_invert(nonbitmap);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ if (DEPENDS_SEMANTICS) {
+ if (! remove_list) {
+ remove_list = _new_invlist(2);
+ }
+ remove_list = add_cp_to_invlist(remove_list, i);
+ }
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+
+ /* And do the removal */
+ if (DEPENDS_SEMANTICS) {
+ if (remove_list) {
+ _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
+ SvREFCNT_dec(remove_list);
+ }
+ }
+ else {
+ /* There is no overlap for non-/d, so just delete anything
+ * below 256 */
+ _invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
+ }
+ }
+
+ stored = 256 - stored;
+
+ /* Clear the invert flag since have just done it here */
+ ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
+ }
+
+ /* Folding in the bitmap is taken care of above, but not for locale (for
+ * which we have to wait to see what folding is in effect at runtime), and
+ * for some things not in the bitmap (only the upper latin folds in this
+ * case, as all other single-char folding has been set above). Set
+ * run-time fold flag for these */
+ if (FOLD && (LOC
+ || (DEPENDS_SEMANTICS
+ && nonbitmap
+ && ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ || unicode_alternate))
+ {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
+ }
+
+ /* A single character class can be "optimized" into an EXACTish node.
+ * Note that since we don't currently count how many characters there are
+ * outside the bitmap, we are XXX missing optimization possibilities for
+ * them. This optimization can't happen unless this is a truly single
+ * character class, which means that it can't be an inversion into a
+ * many-character class, and there must be no possibility of there being
+ * things outside the bitmap. 'stored' (only) for locales doesn't include
+ * \w, etc, so have to make a special test that they aren't present
+ *
+ * Similarly A 2-character class of the very special form like [bB] can be
+ * optimized into an EXACTFish node, but only for non-locales, and for
+ * characters which only have the two folds; so things like 'fF' and 'Ii'
+ * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
+ * FI'. */
+ if (! nonbitmap
+ && ! unicode_alternate
+ && SvCUR(listsv) == initial_listsv_len
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
+ && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
+ || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
+ /* If the latest code point has a fold whose
+ * bit is set, it must be the only other one */
+ && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
+ && ANYOF_BITMAP_TEST(ret, prevvalue)))))
+ {
+ /* Note that the information needed to decide to do this optimization
+ * is not currently available until the 2nd pass, and that the actually
+ * used EXACTish node takes less space than the calculated ANYOF node,
+ * and hence the amount of space calculated in the first pass is larger
+ * than actually used, so this optimization doesn't gain us any space.
+ * But an EXACT node is faster than an ANYOF node, and can be combined
+ * with any adjacent EXACT nodes later by the optimizer for further
+ * gains. The speed of executing an EXACTF is similar to an ANYOF
+ * node, so the optimization advantage comes from the ability to join
+ * it to adjacent EXACT nodes */
+
+ const char * cur_parse= RExC_parse;
+ U8 op;
+ RExC_emit = (regnode *)orig_emit;
+ RExC_parse = (char *)orig_parse;
+
+ if (stored == 1) {
+
+ /* A locale node with one point can be folded; all the other cases
+ * with folding will have two points, since we calculate them above
+ */
+ if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
+ op = EXACTFL;
+ }
+ else {
+ op = EXACT;
+ }
+ }
+ else { /* else 2 chars in the bit map: the folds of each other */
+
+ /* Use the folded value, which for the cases where we get here,
+ * is just the lower case of the current one (which may resolve to
+ * itself, or to the other one */
+ value = toLOWER_LATIN1(value);
+
+ /* To join adjacent nodes, they must be the exact EXACTish type.
+ * Try to use the most likely type, by using EXACTFA if possible,
+ * then EXACTFU if the regex calls for it, or is required because
+ * the character is non-ASCII. (If <value> is ASCII, its fold is
+ * also ASCII for the cases where we get here.) */
+ if (MORE_ASCII_RESTRICTED && isASCII(value)) {
+ op = EXACTFA;
+ }
+ else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
+ op = EXACTFU;
+ }
+ else { /* Otherwise, more likely to be EXACTF type */
+ op = EXACTF;
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+ RExC_parse = (char *)cur_parse;
+ if (UTF && ! NATIVE_IS_INVARIANT(value)) {
+ *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
+ *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
+ STR_LEN(ret)= 2;
+ RExC_emit += STR_SZ(2);
+ }
+ else {
+ *STRING(ret)= (char)value;
+ STR_LEN(ret)= 1;
+ RExC_emit += STR_SZ(1);
+ }
+ SvREFCNT_dec(listsv);
+ return ret;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ if (! nonbitmap
+ && SvCUR(listsv) == initial_listsv_len
+ && ! unicode_alternate)
+ {
+ ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
+ SvREFCNT_dec(listsv);
+ SvREFCNT_dec(unicode_alternate);
+ }
+ else {
+ /* av[0] stores the character class description in its textual form:
+ * used later (regexec.c:Perl_regclass_swash()) to initialize the
+ * appropriate swash, and is also useful for dumping the regnode.
+ * av[1] if NULL, is a placeholder to later contain the swash computed
+ * from av[0]. But if no further computation need be done, the
+ * swash is stored there now.
+ * av[2] stores the multicharacter foldings, used later in
+ * regexec.c:S_reginclass().
+ * av[3] stores the nonbitmap inversion list for use in addition or
+ * instead of av[0]; not used if av[1] isn't NULL
+ * av[4] is set if any component of the class is from a user-defined
+ * property; not used if av[1] isn't NULL */
+ AV * const av = newAV();
+ SV *rv;
+
+ av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
+ ? &PL_sv_undef
+ : listsv);
+ if (swash) {
+ av_store(av, 1, swash);
+ SvREFCNT_dec(nonbitmap);
+ }
+ else {
+ av_store(av, 1, NULL);
+ if (nonbitmap) {
+ av_store(av, 3, nonbitmap);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ /* Store any computed multi-char folds only if we are allowing
+ * them */
+ if (allow_full_fold) {
+ av_store(av, 2, MUTABLE_SV(unicode_alternate));
+ if (unicode_alternate) { /* This node is variable length */
+ OP(ret) = ANYOFV;
+ }
+ }
+ else {
+ av_store(av, 2, NULL);
+ }
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, 1, "s");
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(ret, n);
+ }
+ return ret;
+}
+
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comments from the input stream.
+ Returns true if there is more text remaining in the stream.
+ Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
+ terminates the pattern without including a newline.
+
+ Note its the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+STATIC bool
+S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
+{
+ bool ended = 0;
+
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ while (RExC_parse < RExC_end)
+ if (*RExC_parse++ == '\n') {
+ ended = 1;
+ break;
+ }
+ if (!ended) {
+ /* we ran off the end of the pattern without ending
+ the comment, so we have to add an \n when wrapping */
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ return 0;
+ } else
+ return 1;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ continue;
+ }
+ else if (*RExC_parse == '#') {
+ if ( reg_skipcomment( pRExC_state ) )
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ "reg_node", __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 2;
+ /*
+ We can't do this:
+
+ assert(2==regarglen[op]+1);
+
+ Anything larger than this has to allocate the extra amount.
+ If we changed this to be:
+
+ RExC_size += (1 + regarglen[op]);
+
+ then it wouldn't matter. Its not clear what side effect
+ might come from that so its not done so far.
+ -- dmq
+ */
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reganode",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
+ "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Cur_Node_Offset;
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reguni - emit (if appropriate) a Unicode character
+*/
+STATIC STRLEN
+S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGUNI;
+
+ return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ dVAR;
+ register regnode *src;
+ register regnode *dst;
+ register regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool has_exactf_sharp_s; /* Unexamined in this routine */
+ if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTF:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv_val=sv_newmortal();
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, mysv_val, val);
+ PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(mysv_val),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ for (bit=0; bit<32; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ dVAR;
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->extflags & RXf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->extflags & RXf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->extflags & RXf_ANCH_BOL)
+ PerlIO_printf(Perl_debug_log, "(BOL)");
+ if (r->extflags & RXf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->extflags & RXf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->extflags & RXf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->extflags & RXf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode
+*/
+#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
+STMT_START { \
+ if (do_sep) { \
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
+ if (flags & ANYOF_INVERT) \
+ /*make sure the invert info is in each */ \
+ sv_catpvs(sv, "^"); \
+ do_sep = 0; \
+ } \
+} STMT_END
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
+{
+#ifdef DEBUGGING
+ dVAR;
+ register int k;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvs(sv, "");
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ )
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ int i;
+ int rangestart = -1;
+ U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
+ sv_catpvs(sv, "[");
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && BITMAP_TEST(bitmap,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ rangestart = -1;
+ }
+ }
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ if ( k != REF || (OP(o) < NREF)) {
+ AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ SV **name= av_fetch(list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ } else if (k == GOSUB)
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
+ else if (k == ANYOF) {
+ int i, rangestart = -1;
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+ "\\w",
+ "\\W",
+ "\\s",
+ "\\S",
+ "\\d",
+ "\\D",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:space:]",
+ "[:^space:]",
+ "[:blank:]",
+ "[:^blank:]"
+ };
+
+ if (flags & ANYOF_LOCALE)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_NONBITMAP_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-255 bitmap matches */
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ do_sep = 1;
+ rangestart = -1;
+ }
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+ /* output any special charclass tests (used entirely under use locale) */
+ if (ANYOF_CLASS_TEST_ANY_SET(o))
+ for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
+ if (ANYOF_CLASS_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+
+ if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ /* output information about the unicode matching */
+ if (flags & ANYOF_UNICODE_ALL)
+ sv_catpvs(sv, "{unicode_all}");
+ else if (ANYOF_NONBITMAP(o))
+ sv_catpvs(sv, "{unicode}");
+ if (flags & ANYOF_NONBITMAP_NON_UTF8)
+ sv_catpvs(sv, "{outside bitmap}");
+
+ if (ANYOF_NONBITMAP(o)) {
+ SV *lv; /* Set if there is something outside the bit map */
+ SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
+ bool byte_output = FALSE; /* If something in the bitmap has been
+ output */
+
+ if (lv && lv != &PL_sv_undef) {
+ if (sw) {
+ U8 s[UTF8_MAXBYTES_CASE+1];
+
+ for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
+ uvchr_to_utf8(s, i);
+
+ if (i < 256
+ && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
+ things already
+ output as part
+ of the bitmap */
+ && swash_fetch(sw, s, TRUE))
+ {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ byte_output = TRUE;
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++) {
+ put_byte(sv, rangestart);
+ }
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i-1);
+ }
+ rangestart = -1;
+ }
+ }
+ }
+
+ {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ }
+ SvREFCNT_dec(lv);
+ }
+ }
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+#endif /* DEBUGGING */
+}
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(prog->check_substr
+ ? prog->check_substr : prog->check_utf8);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ prog->check_substr ? "" : "utf8 ",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ return prog->check_substr ? prog->check_substr : prog->check_utf8;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ register const I32 npar = r->nparens+1;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ ret = (struct regexp *)SvANY(ret_x);
+
+ (void)ReREFCNT_inc(rx);
+ /* We can take advantage of the existing "copied buffer" mechanism in SVs
+ by pointing directly at the buffer, but flagging that the allocated
+ space in the copy is zero. As we've just done a struct copy, it's now
+ a case of zero-ing that, rather than copying the current length. */
+ SvPV_set(ret_x, RX_WRAPPED(rx));
+ SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ SvLEN_set(ret_x, 0);
+ SvSTASH_set(ret_x, NULL);
+ SvMAGIC_set(ret_x, NULL);
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = rx;
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->data) {
+ int n = ri->data->count;
+ PAD* new_comppad = NULL;
+ PAD* old_comppad;
+ PADOFFSET refcnt;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'p':
+ new_comppad = MUTABLE_AV(ri->data->data[n]);
+ break;
+ case 'o':
+ if (new_comppad == NULL)
+ Perl_croak(aTHX_ "panic: pregfree comppad");
+ PAD_SAVE_LOCAL(old_comppad,
+ /* Watch out for global destruction's random ordering. */
+ (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
+ );
+ OP_REFCNT_LOCK;
+ refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
+ OP_REFCNT_UNLOCK;
+ if (!refcnt)
+ op_free((OP_4tree*)ri->data->data[n]);
+
+ PAD_RESTORE_LOCAL(old_comppad);
+ SvREFCNT_dec(MUTABLE_SV(new_comppad));
+ new_comppad = NULL;
+ break;
+ case 'n':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ PerlMemShared_free(ri->regstclass);
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = (const struct regexp *)SvANY(sstr);
+ struct regexp *ret = (struct regexp *)SvANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if(ret->swap) {
+ /* no need to copy these */
+ Newx(ret->swap, npar, regexp_paren_pair);
+ }
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+
+ if (ret->mother_re) {
+ if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
+ /* Our storage points directly to our mother regexp, but that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ /* Note we need to use SvCUR(), rather than
+ SvLEN(), on our mother_re, because it, in
+ turn, may well be pointing to its own mother_re. */
+ SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
+ SvCUR(ret->mother_re)+1));
+ SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
+ }
+ ret->mother_re = NULL;
+ }
+ ret->gofs = 0;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* legal options are one of: sSfpontTua
+ see also regcomp.h and pregfree() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 's':
+ case 'S':
+ case 'p': /* actually an AV, but the dup function is identical. */
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, struct regnode_charclass_class);
+ StructCopy(ri->data->data[i], d->data[i],
+ struct regnode_charclass_class);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'o':
+ /* Compiled op trees are readonly and in shared memory,
+ and can thus be shared without duplication. */
+ OP_REFCNT_LOCK;
+ d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
+ OP_REFCNT_UNLOCK;
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* Fall through */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* Fall through */
+ case 'n':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ register regnode *p)
+{
+ dVAR;
+ register I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+#ifdef I_STDARG
+ /* ANSI variant takes additional second argument */
+ va_start(args, pat2);
+#else
+ va_start(args);
+#endif
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ buf[l1-1] = '\0'; /* Overwrite \n */
+ Perl_croak(aTHX_ "%s", buf);
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ dVAR;
+
+ struct re_save_state *state;
+
+ SAVEVPTR(PL_curcop);
+ SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
+
+ state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
+ PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
+ SSPUSHUV(SAVEt_RE_STATE);
+
+ Copy(&PL_reg_state, state, 1, struct re_save_state);
+
+ PL_reg_start_tmp = 0;
+ PL_reg_start_tmpl = 0;
+ PL_reg_oldsaved = NULL;
+ PL_reg_oldsavedlen = 0;
+ PL_reg_maxiter = 0;
+ PL_reg_leftiter = 0;
+ PL_reg_poscache = NULL;
+ PL_reg_poscache_size = 0;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = NULL;
+#endif
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx) {
+ U32 i;
+ for (i = 1; i <= RX_NPARENS(rx); i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+ }
+ }
+}
+#endif
+
+static void
+clear_re(pTHX_ void *r)
+{
+ dVAR;
+ ReREFCNT_dec((REGEXP *)r);
+}
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_byte(pTHX_ SV *sv, int c)
+{
+ PERL_ARGS_ASSERT_PUT_BYTE;
+
+ /* Our definition of isPRINT() ignores locales, so only bytes that are
+ not part of UTF-8 are considered printable. I assume that the same
+ holds for UTF-EBCDIC.
+ Also, code point 255 is not printable in either (it's E0 in EBCDIC,
+ which Wikipedia says:
+
+ EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
+ ones (binary 1111 1111, hexadecimal FF). It is similar, but not
+ identical, to the ASCII delete (DEL) or rubout control character.
+ ) So the old condition can be simplified to !isPRINT(c) */
+ if (!isPRINT(c)) {
+ if (c < 256) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
+ }
+ }
+ else {
+ const char string = c;
+ if (c == '-' || c == ']' || c == '\\' || c == '^')
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+}
+
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ dVAR;
+ register U8 op = PSEUDO; /* Arbitrary non-END op. */
+ register const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ register const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
+ ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#define RF_tainted 1 /* tainted information used? e.g. locale */
+#define RF_warned 2 /* warned about big count? */
+
+#define RF_utf8 8 /* Pattern contains multibyte chars? */
+
+#define UTF_PATTERN ((PL_reg_flags & RF_utf8) != 0)
+
+#define RS_init 1 /* eval environment created */
+#define RS_set 2 /* replsv value is set */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid for non-utf8 strings, non-ANYOFV nodes only: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,0,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (PL_reg_match_utf8 ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(PL_reg_match_utf8 \
+ ? reghop3((U8*)pos, off, (U8*)(off >= 0 ? PL_regeol : PL_bostr)) \
+ : (U8*)(pos + off))
+#define HOPBACKc(pos, off) \
+ (char*)(PL_reg_match_utf8\
+ ? reghopmaybe3((U8*)pos, -off, (U8*)PL_bostr) \
+ : (pos - off >= PL_bostr) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (PL_reg_match_utf8 ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* these are unrolled below in the CCC_TRY_XXX defined */
+#ifdef EBCDIC
+ /* Often 'str' is a hard-coded utf8 string instead of utfebcdic. so just
+ * skip the check on EBCDIC platforms */
+# define LOAD_UTF8_CHARCLASS(class,str) LOAD_UTF8_CHARCLASS_NO_CHECK(class)
+#else
+# define LOAD_UTF8_CHARCLASS(class,str) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool ok; \
+ ENTER; save_re_context(); \
+ ok=CAT2(is_utf8_,class)((const U8*)str); \
+ assert(ok); assert(CAT2(PL_utf8_,class)); LEAVE; } } STMT_END
+#endif
+
+/* Doesn't do an assert to verify that is correct */
+#define LOAD_UTF8_CHARCLASS_NO_CHECK(class) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool throw_away PERL_UNUSED_DECL; \
+ ENTER; save_re_context(); \
+ throw_away = CAT2(is_utf8_,class)((const U8*)" "); \
+ LEAVE; } } STMT_END
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS(alnum,"a")
+#define LOAD_UTF8_CHARCLASS_DIGIT() LOAD_UTF8_CHARCLASS(digit,"0")
+#define LOAD_UTF8_CHARCLASS_SPACE() LOAD_UTF8_CHARCLASS(space," ")
+
+#define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \
+ LOAD_UTF8_CHARCLASS(X_begin, " "); \
+ LOAD_UTF8_CHARCLASS(X_non_hangul, "A"); \
+ /* These are utf8 constants, and not utf-ebcdic constants, so the \
+ * assert should likely and hopefully fail on an EBCDIC machine */ \
+ LOAD_UTF8_CHARCLASS(X_extend, "\xcc\x80"); /* U+0300 */ \
+ \
+ /* No asserts are done for these, in case called on an early \
+ * Unicode version in which they map to nothing */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_prepend);/* U+0E40 "\xe0\xb9\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_L); /* U+1100 "\xe1\x84\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV); /* U+AC00 "\xea\xb0\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LVT); /* U+AC01 "\xea\xb0\x81" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV_LVT_V);/* U+AC01 "\xea\xb0\x81" */\
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_T); /* U+11A8 "\xe1\x86\xa8" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_V) /* U+1160 "\xe1\x85\xa0" */
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+
+/* The actual code for CCC_TRY, which uses several variables from the routine
+ * it's callable from. It is designed to be the bulk of a case statement.
+ * FUNC is the macro or function to call on non-utf8 targets that indicate if
+ * nextchr matches the class.
+ * UTF8_TEST is the whole test string to use for utf8 targets
+ * LOAD is what to use to test, and if not present to load in the swash for the
+ * class
+ * POS_OR_NEG is either empty or ! to complement the results of FUNC or
+ * UTF8_TEST test.
+ * The logic is: Fail if we're at the end-of-string; otherwise if the target is
+ * utf8 and a variant, load the swash if necessary and test using the utf8
+ * test. Advance to the next character if test is ok, otherwise fail; If not
+ * utf8 or an invariant under utf8, use the non-utf8 test, and fail if it
+ * fails, or advance to the next character */
+
+#define _CCC_TRY_CODE(POS_OR_NEG, FUNC, UTF8_TEST, CLASS, STR) \
+ if (locinput >= PL_regeol) { \
+ sayNO; \
+ } \
+ if (utf8_target && UTF8_IS_CONTINUED(nextchr)) { \
+ LOAD_UTF8_CHARCLASS(CLASS, STR); \
+ if (POS_OR_NEG (UTF8_TEST)) { \
+ sayNO; \
+ } \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ break; \
+ } \
+ if (POS_OR_NEG (FUNC(nextchr))) { \
+ sayNO; \
+ } \
+ nextchr = UCHARAT(++locinput); \
+ break;
+
+/* Handle the non-locale cases for a character class and its complement. It
+ * calls _CCC_TRY_CODE with a ! to complement the test for the character class.
+ * This is because that code fails when the test succeeds, so we want to have
+ * the test fail so that the code succeeds. The swash is stored in a
+ * predictable PL_ place */
+#define _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, \
+ CLASS, STR) \
+ case NAME: \
+ _CCC_TRY_CODE( !, FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+ case NNAME: \
+ _CCC_TRY_CODE( PLACEHOLDER , FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+
+/* Generate the case statements for both locale and non-locale character
+ * classes in regmatch for classes that don't have special unicode semantics.
+ * Locales don't use an immediate swash, but an intermediary special locale
+ * function that is called on the pointer to the current place in the input
+ * string. That function will resolve to needing the same swash. One might
+ * think that because we don't know what the locale will match, we shouldn't
+ * check with the swash loading function that it loaded properly; ie, that we
+ * should use LOAD_UTF8_CHARCLASS_NO_CHECK for those, but what is passed to the
+ * regular LOAD_UTF8_CHARCLASS is in non-locale terms, and so locale is
+ * irrelevant here */
+#define CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ case NAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( !, LCFUNC, LCFUNC_utf8((U8*)locinput), CLASS, STR) \
+ case NNAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( PLACEHOLDER, LCFUNC, LCFUNC_utf8((U8*)locinput), \
+ CLASS, STR) \
+ case NAMEA: \
+ if (locinput >= PL_regeol || ! FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ /* Matched a utf8-invariant, so don't have to worry about utf8 */ \
+ nextchr = UCHARAT(++locinput); \
+ break; \
+ case NNAMEA: \
+ if (locinput >= PL_regeol || FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ if (utf8_target) { \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ } \
+ else { \
+ nextchr = UCHARAT(++locinput); \
+ } \
+ break; \
+ /* Generate the non-locale cases */ \
+ _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, CLASS, STR)
+
+/* This is like CCC_TRY, but has an extra set of parameters for generating case
+ * statements to handle separate Unicode semantics nodes */
+#define CCC_TRY_U(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEU, NNAMEU, FUNCU, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ _CCC_TRY_NONLOCALE(NAMEU, NNAMEU, FUNCU, CLASS, STR)
+
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn)==EXACTFA || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn) == EXACTFA)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+
+static void restore_pos(pTHX_ void *arg);
+
+#define REGCP_PAREN_ELEMS 4
+#define REGCP_OTHER_ELEMS 5
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ I32 parenfloor)
+{
+ dVAR;
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push = (PL_regsize - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ int p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0",
+ paren_elems_to_push);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems, (unsigned long)PL_regsize, (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ for (p = PL_regsize; p > parenfloor; p--) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHINT(PL_regoffs[p].end);
+ SSPUSHINT(PL_regoffs[p].start);
+ SSPUSHPTR(PL_reg_start_tmp[p]);
+ SSPUSHINT(p);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " saving \\%"UVuf" %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p, (IV)PL_regoffs[p].start,
+ (IV)(PL_reg_start_tmp[p] - PL_bostr),
+ (IV)PL_regoffs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHPTR(PL_regoffs);
+ SSPUSHINT(PL_regsize);
+ SSPUSHINT(*PL_reglastparen);
+ SSPUSHINT(*PL_reglastcloseparen);
+ SSPUSHPTR(PL_reginput);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+STATIC char *
+S_regcppop(pTHX_ const regexp *rex)
+{
+ dVAR;
+ UV i;
+ char *input;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ input = (char *) SSPOPPTR;
+ *PL_reglastcloseparen = SSPOPINT;
+ *PL_reglastparen = SSPOPINT;
+ PL_regsize = SSPOPINT;
+ PL_regoffs=(regexp_paren_pair *) SSPOPPTR;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ I32 tmps;
+ U32 paren = (U32)SSPOPINT;
+ PL_reg_start_tmp[paren] = (char *) SSPOPPTR;
+ PL_regoffs[paren].start = SSPOPINT;
+ tmps = SSPOPINT;
+ if (paren <= *PL_reglastparen)
+ PL_regoffs[paren].end = tmps;
+ DEBUG_BUFFERS_r(
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"UVuf" to %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren, (IV)PL_regoffs[paren].start,
+ (IV)(PL_reg_start_tmp[paren] - PL_bostr),
+ (IV)PL_regoffs[paren].end,
+ (paren > *PL_reglastparen ? "(no)" : ""));
+ );
+ }
+ DEBUG_BUFFERS_r(
+ if (*PL_reglastparen + 1 <= rex->nparens) {
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"IVdf"..\\%"IVdf" to undef\n",
+ (IV)(*PL_reglastparen + 1), (IV)rex->nparens);
+ }
+ );
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = *PL_reglastparen + 1; i <= rex->nparens; i++) {
+ if (i > PL_regsize)
+ PL_regoffs[i].start = -1;
+ PL_regoffs[i].end = -1;
+ }
+#endif
+ return input;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *screamer, U32 nosave)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+/*
+ * Need to implement the following flags for reg_anch:
+ *
+ * USE_INTUIT_NOML - Useful to call re_intuit_start() first
+ * USE_INTUIT_ML
+ * INTUIT_AUTORITATIVE_NOML - Can trust a positive answer
+ * INTUIT_AUTORITATIVE_ML
+ * INTUIT_ONCE_NOML - Intuit can match in one location only.
+ * INTUIT_ONCE_ML
+ *
+ * Another flag for this function: SECOND_TIME (so that float substrs
+ * with giant delta may be not rechecked).
+ */
+
+/* Assumptions: if ANCH_GPOS, then strpos is anchored. XXXX Check GPOS logic */
+
+/* If SCREAM, then SvPVX_const(sv) should be compatible with strpos and strend.
+ Otherwise, only SvCUR(sv) is used to get strbeg. */
+
+/* XXXX We assume that strpos is strbeg unless sv. */
+
+/* XXXX Some places assume that there is a fixed substring.
+ An update may be needed if optimizer marks as "INTUITable"
+ RExen without fixed substrings. Similarly, it is assumed that
+ lengths of all the strings are no more than minlen, thus they
+ cannot come from lookahead.
+ (Or minlen should take into account lookahead.)
+ NOTE: Some of this comment is not correct. minlen does now take account
+ of lookahead/behind. Further research is required. -- demerphq
+
+*/
+
+/* A failure to find a constant substring means that there is no need to make
+ an expensive call to REx engine, thus we celebrate a failure. Similarly,
+ finding a substring too deep into the string means that less calls to
+ regtry() should be needed.
+
+ REx compiler's optimizer found 4 possible hints:
+ a) Anchored substring;
+ b) Fixed substring;
+ c) Whether we are anchored (beginning-of-line or \G);
+ d) First node (of those at offset 0) which may distinguish positions;
+ We use a)b)d) and multiline-part of c), and try to find a position in the
+ string which does not contradict any of them.
+ */
+
+/* Most of decisions we do here should have been done at compile time.
+ The nodes of the REx which we used for the search should have been
+ deleted from the finite automaton. */
+
+char *
+Perl_re_intuit_start(pTHX_ REGEXP * const rx, SV *sv, char *strpos,
+ char *strend, const U32 flags, re_scream_pos_data *data)
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ register I32 start_shift = 0;
+ /* Should be nonnegative! */
+ register I32 end_shift = 0;
+ register char *s;
+ register SV *check;
+ char *strbeg;
+ char *t;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ I32 ml_anch;
+ register char *other_last = NULL; /* other substr checked before this */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+#ifdef DEBUGGING
+ const char * const i_strpos = strpos;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+
+ if (RX_UTF8(rx)) {
+ PL_reg_flags |= RF_utf8;
+ }
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, strpos, strend,
+ sv ? "Guessing start of match in sv for"
+ : "Guessing start of match in string for");
+ );
+
+ /* CHR_DIST() would be more correct here but it makes things slow. */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short... [re_intuit_start]\n"));
+ goto fail;
+ }
+
+ strbeg = (sv && SvPOK(sv)) ? strend - SvCUR(sv) : strpos;
+ PL_regeol = strend;
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8)
+ to_byte_substr(prog);
+ check = prog->check_substr;
+ }
+ if (check == &PL_sv_undef) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Non-utf8 string cannot match utf8 check string\n"));
+ goto fail;
+ }
+ if (prog->extflags & RXf_ANCH) { /* Match at beg-of-str or after \n */
+ ml_anch = !( (prog->extflags & RXf_ANCH_SINGLE)
+ || ( (prog->extflags & RXf_ANCH_BOL)
+ && !multiline ) ); /* Check after \n? */
+
+ if (!ml_anch) {
+ if ( !(prog->extflags & RXf_ANCH_GPOS) /* Checked by the caller */
+ && !(prog->intflags & PREGf_IMPLICIT) /* not a real BOL */
+ /* SvCUR is not set on references: SvRV and SvPVX_const overlap */
+ && sv && !SvROK(sv)
+ && (strpos != strbeg)) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not at start...\n"));
+ goto fail;
+ }
+ if (prog->check_offset_min == prog->check_offset_max &&
+ !(prog->extflags & RXf_CANY_SEEN)) {
+ /* Substring at constant offset from beg-of-str... */
+ I32 slen;
+
+ s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ if (SvTAIL(check)) {
+ slen = SvCUR(check); /* >= 1 */
+
+ if ( strend - s > slen || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1
+ && memNE(SvPVX_const(check), s, slen)))) {
+ report_neq:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String not equal...\n"));
+ goto fail_finish;
+ }
+ }
+ else if (*SvPVX_const(check) != *s
+ || ((slen = SvCUR(check)) > 1
+ && memNE(SvPVX_const(check), s, slen)))
+ goto report_neq;
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ /* Match is anchored, but substr is not anchored wrt beg-of-str. */
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ if (!ml_anch) {
+ const I32 end = prog->check_offset_max + CHR_SVLEN(check)
+ - (SvTAIL(check) != 0);
+ const I32 eshift = CHR_DIST((U8*)strend, (U8*)s) - end;
+
+ if (end_shift < eshift)
+ end_shift = eshift;
+ }
+ }
+ else { /* Can match at random position */
+ ml_anch = 0;
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ /* end shift should be non negative here */
+ }
+
+#ifdef QDEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+ /* Find a possible match in the region s..strend by looking for
+ the "check" substring in the region corrected by start/end_shift. */
+
+ {
+ I32 srch_start_shift = start_shift;
+ I32 srch_end_shift = end_shift;
+ if (srch_start_shift < 0 && strbeg - s > srch_start_shift) {
+ srch_end_shift -= ((strbeg - s) - srch_start_shift);
+ srch_start_shift = strbeg - s;
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "Check offset min: %"IVdf" Start shift: %"IVdf" End shift %"IVdf" Real End Shift: %"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)srch_start_shift,
+ (IV)srch_end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ I32 p = -1; /* Internal iterator of scream. */
+ I32 * const pp = data ? data->scream_pos : &p;
+ const MAGIC *mg;
+ bool found = FALSE;
+
+ assert(SvMAGICAL(sv));
+ mg = mg_find(sv, PERL_MAGIC_study);
+ assert(mg);
+
+ if (mg->mg_private == 1) {
+ found = ((U8 *)mg->mg_ptr)[BmRARE(check)] != (U8)~0;
+ } else if (mg->mg_private == 2) {
+ found = ((U16 *)mg->mg_ptr)[BmRARE(check)] != (U16)~0;
+ } else {
+ assert (mg->mg_private == 4);
+ found = ((U32 *)mg->mg_ptr)[BmRARE(check)] != (U32)~0;
+ }
+
+ if (found
+ || ( BmRARE(check) == '\n'
+ && (BmPREVIOUS(check) == SvCUR(check) - 1)
+ && SvTAIL(check) ))
+ s = screaminstr(sv, check,
+ srch_start_shift + (s - strbeg), srch_end_shift, pp, 0);
+ else
+ goto fail_finish;
+ /* we may be pointing at the wrong string */
+ if (s && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ if (data)
+ *data->scream_olds = s;
+ }
+ else {
+ U8* start_point;
+ U8* end_point;
+ if (prog->extflags & RXf_CANY_SEEN) {
+ start_point= (U8*)(s + srch_start_shift);
+ end_point= (U8*)(strend - srch_end_shift);
+ } else {
+ start_point= HOP3(s, srch_start_shift, srch_start_shift < 0 ? strbeg : strend);
+ end_point= HOP3(strend, -srch_end_shift, strbeg);
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "fbm_instr len=%d str=<%.*s>\n",
+ (int)(end_point - start_point),
+ (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point),
+ start_point);
+ });
+
+ s = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+ }
+ }
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, "%s %s substr %s%s%s",
+ (s ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (s ? " at offset " : "...\n") );
+ });
+
+ if (!s)
+ goto fail_finish;
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(s - i_strpos)) );
+
+ /* XXX dmq: first branch is for positive lookbehind...
+ Our check string is offset from the beginning of the pattern.
+ So we need to do any stclass tests offset forward from that
+ point. I think. :-(
+ */
+
+
+
+ check_at=s;
+
+
+ /* Got a candidate. Check MBOL anchoring, and the *other* substr.
+ Start with the other substr.
+ XXXX no SCREAM optimization yet - and a very coarse implementation
+ XXXX /ttx+/ results in anchored="ttx", floating="x". floating will
+ *always* match. Probably should be marked during compile...
+ Probably it is right to do no SCREAM here...
+ */
+
+ if (utf8_target ? (prog->float_utf8 && prog->anchored_utf8)
+ : (prog->float_substr && prog->anchored_substr))
+ {
+ /* Take into account the "other" substring. */
+ /* XXXX May be hopelessly wrong for UTF... */
+ if (!other_last)
+ other_last = strpos;
+ if (check == (utf8_target ? prog->float_utf8 : prog->float_substr)) {
+ do_other_anchored:
+ {
+ char * const last = HOP3c(s, -start_shift, strbeg);
+ char *last1, *last2;
+ char * const saved_s = s;
+ SV* must;
+
+ t = s - prog->check_offset_max;
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -(prog->check_offset_max), (U8*)strpos))
+ && t > strpos)))
+ NOOP;
+ else
+ t = strpos;
+ t = HOP3c(t, prog->anchored_offset, strend);
+ if (t < other_last) /* These positions already checked */
+ t = other_last;
+ last2 = last1 = HOP3c(strend, -prog->minlen, strbeg);
+ if (last < last1)
+ last1 = last;
+ /* XXXX It is not documented what units *_offsets are in.
+ We assume bytes, but this is clearly wrong.
+ Meaning this code needs to be carefully reviewed for errors.
+ dmq.
+ */
+
+ /* On end-of-str: see comment below. */
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->anchored_utf8); /* for debug */
+ }
+ else
+ s = fbm_instr(
+ (unsigned char*)t,
+ HOP3(HOP3(last1, prog->anchored_offset, strend)
+ + SvCUR(must), -(SvTAIL(must)!=0), strbeg),
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s anchored substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ if (last1 >= last2) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying floating at offset %ld...\n",
+ (long)(HOP3c(saved_s, 1, strend) - i_strpos)));
+ other_last = HOP3c(last1, prog->anchored_offset+1, strend);
+ s = HOP3c(last, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ t = HOP3c(s, -prog->anchored_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+ else { /* Take into account the floating substring. */
+ char *last, *last1;
+ char * const saved_s = s;
+ SV* must;
+
+ t = HOP3c(s, -start_shift, strbeg);
+ last1 = last =
+ HOP3c(strend, -prog->minlen + prog->float_min_offset, strbeg);
+ if (CHR_DIST((U8*)last, (U8*)t) > prog->float_max_offset)
+ last = HOP3c(t, prog->float_max_offset, strend);
+ s = HOP3c(t, prog->float_min_offset, strend);
+ if (s < other_last)
+ s = other_last;
+ /* XXXX It is not documented what units *_offsets are in. Assume bytes. */
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ /* fbm_instr() takes into account exact value of end-of-str
+ if the check is SvTAIL(ed). Since false positives are OK,
+ and end-of-str is not later than strend we are OK. */
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->float_utf8); /* for debug message */
+ }
+ else
+ s = fbm_instr((unsigned char*)s,
+ (unsigned char*)last + SvCUR(must)
+ - (SvTAIL(must)!=0),
+ must, multiline ? FBMrf_MULTILINE : 0);
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s floating substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+ if (!s) {
+ if (last1 == last) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying anchored starting at offset %ld...\n",
+ (long)(saved_s + 1 - i_strpos)));
+ other_last = last;
+ s = HOP3c(t, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ other_last = s; /* Fix this later. --Hugo */
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+
+
+ t= (char*)HOP3( s, -prog->check_offset_max, (prog->check_offset_max<0) ? strend : strpos);
+
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "Check offset min:%"IVdf" max:%"IVdf" S:%"IVdf" t:%"IVdf" D:%"IVdf" end:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(s-strpos),
+ (IV)(t-strpos),
+ (IV)(t-s),
+ (IV)(strend-strpos)
+ )
+ );
+
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -prog->check_offset_max, (U8*) ((prog->check_offset_max<0) ? strend : strpos)))
+ && t > strpos)))
+ {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+ try_at_offset:
+ if (ml_anch && t[-1] != '\n') {
+ /* Eventually fbm_*() should handle this, but often
+ anchored_offset is not 0, so this check will not be wasted. */
+ /* XXXX In the code below we prefer to look for "^" even in
+ presence of anchored substrings. And we search even
+ beyond the found float position. These pessimizations
+ are historical artefacts only. */
+ find_anchor:
+ while (t < strend - prog->minlen) {
+ if (*t == '\n') {
+ if (t < check_at - prog->check_offset_min) {
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* Since we moved from the found position,
+ we definitely contradict the found anchored
+ substr. Due to the above check we do not
+ contradict "check" substr.
+ Thus we can arrive here only if check substr
+ is float. Redo checking for "other"=="fixed".
+ */
+ strpos = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(strpos - i_strpos), (long)(strpos - i_strpos + prog->anchored_offset)));
+ goto do_other_anchored;
+ }
+ /* We don't contradict the found floating substring. */
+ /* XXXX Why not check for STCLASS? */
+ s = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(s - i_strpos)));
+ goto set_useful;
+ }
+ /* Position contradicts check-string */
+ /* XXXX probably better to look for check-string
+ than for "\n", so one should lower the limit for t? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t + 1 - i_strpos)));
+ other_last = strpos = s = t + 1;
+ goto restart;
+ }
+ t++;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Starting position does not contradict /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ }
+ s = t;
+ set_useful:
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found string does not prohibit matching at strpos,
+ - no optimization of calling REx engine can be performed,
+ unless it was an MBOL and we are not after MBOL,
+ or a future STCLASS check will fail this. */
+ try_at_start:
+ /* Even in this situation we may use MBOL flag if strpos is offset
+ wrt the start of the string. */
+ if (ml_anch && sv && !SvROK(sv) /* See prev comment on SvROK */
+ && (strpos != strbeg) && strpos[-1] != '\n'
+ /* May be due to an implicit anchor of m{.*foo} */
+ && !(prog->intflags & PREGf_IMPLICIT))
+ {
+ t = strpos;
+ goto find_anchor;
+ }
+ DEBUG_EXECUTE_r( if (ml_anch)
+ PerlIO_printf(Perl_debug_log, "Position at offset %ld does not contradict /%s^%s/m...\n",
+ (long)(strpos - i_strpos), PL_colors[0], PL_colors[1]);
+ );
+ success_at_start:
+ if (!(prog->intflags & PREGf_NAUGHTY) /* XXXX If strpos moved? */
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ s = strpos;
+ /* XXXX If the check string was an implicit check MBOL, then we need to unset the relevant flag
+ see http://bugs.activestate.com/show_bug.cgi?id=87173 */
+ if (prog->intflags & PREGf_IMPLICIT)
+ prog->extflags &= ~RXf_ANCH_MBOL;
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ /* XXXX What other flags might need to be cleared in this branch? */
+ }
+ else
+ s = strpos;
+ }
+
+ /* Last resort... */
+ /* XXXX BmUSEFUL already changed, maybe multiple change is meaningful... */
+ /* trie stclasses are too expensive to use here, we are better off to
+ leave it to regmatch itself */
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ /* minlen == 0 is possible if regstclass is \b or \B,
+ and the fixed substr is ''$.
+ Since minlen is already taken into account, s+1 is before strend;
+ accidentally, minlen >= 1 guaranties no false positives at s + 1
+ even for \b or \B. But (minlen? 1 : 0) below assumes that
+ regstclass does not come from lookahead... */
+ /* If regstclass takes bytelength more than 1: If charlength==1, OK.
+ This leaves EXACTF-ish only, which are dealt with in find_byclass(). */
+ const U8* const str = (U8*)STRING(progi->regstclass);
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? CHR_DIST(str+STR_LEN(progi->regstclass), str)
+ : 1);
+ char * endpos;
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(s, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8)
+ endpos= HOP3c(HOP3c(check_at, -start_shift, strbeg), cl_l, strend);
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "start_shift: %"IVdf" check_at: %"IVdf" s: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg), (IV)(s - strbeg), (IV)(endpos - strbeg)));
+
+ t = s;
+ s = find_byclass(prog, progi->regstclass, s, endpos, NULL);
+ if (!s) {
+#ifdef DEBUGGING
+ const char *what = NULL;
+#endif
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "This position contradicts STCLASS...\n") );
+ if ((prog->extflags & RXf_ANCH) && !ml_anch)
+ goto fail;
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if ((utf8_target ? prog->anchored_utf8 : prog->anchored_substr) == check) {
+ DEBUG_EXECUTE_r( what = "anchored" );
+ hop_and_restart:
+ s = HOP3c(t, 1, strend);
+ if (s + start_shift + end_shift > strend) {
+ /* XXXX Should be taken into account earlier? */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for %s substr starting at offset %ld...\n",
+ what, (long)(s + start_shift - i_strpos)) );
+ goto restart;
+ }
+ /* Have both, check_string is floating */
+ if (t + start_shift >= check_at) /* Contradicts floating=check */
+ goto retry_floating_check;
+ /* Recheck anchored substring, but not floating... */
+ s = check_at;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for anchored substr starting at offset %ld...\n",
+ (long)(other_last - i_strpos)) );
+ goto do_other_anchored;
+ }
+ /* Another way we could have checked stclass at the
+ current position only: */
+ if (ml_anch) {
+ s = t = t + 1;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for /%s^%s/m starting at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t - i_strpos)) );
+ goto try_at_offset;
+ }
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) /* Could have been deleted */
+ goto fail;
+ /* Check is floating substring. */
+ retry_floating_check:
+ t = check_at - start_shift;
+ DEBUG_EXECUTE_r( what = "floating" );
+ goto hop_and_restart;
+ }
+ if (t != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "By STCLASS: moving %ld --> %ld\n",
+ (long)(t - i_strpos), (long)(s - i_strpos))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Does not contradict STCLASS...\n");
+ );
+ }
+ }
+ giveup:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s%s:%s match at offset %ld\n",
+ PL_colors[4], (check ? "Guessed" : "Giving up"),
+ PL_colors[5], (long)(s - i_strpos)) );
+ return s;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (utf8_target ? trie_utf8_fold : trie_latin_utf8_fold))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, \
+uvc, charid, foldlen, foldbuf, uniflags) STMT_START { \
+ STRLEN skiplen; \
+ switch (trie_type) { \
+ case trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = to_utf8_fold( (const U8*) uc, foldbuf, &foldlen ); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8: \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define REXEC_FBC_EXACTISH_SCAN(CoNd) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (CoNd) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (!reginfo || regtry(reginfo, &s)) ) \
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CoDe) \
+STMT_START { \
+ while (s + (uskip = UTF8SKIP(s)) <= strend) { \
+ CoDe \
+ s += uskip; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CoDe) \
+STMT_START { \
+ while (s < strend) { \
+ CoDe \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \
+REXEC_FBC_UTF8_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(CoNd) \
+REXEC_FBC_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_TRYIT \
+if ((!reginfo || regtry(reginfo, &s))) \
+ goto got_it
+
+#define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_PRELOAD(UtFpReLoAd,CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ UtFpReLoAd; \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_TAINT(CoNdUtF8,CoNd) \
+ PL_reg_flags |= RF_tainted; \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(PL_regeol),(PL_bostr),(PL_reg_starttry),doutf8)
+
+
+#define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+#define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \
+ if (s == PL_bostr) { \
+ tmp = '\n'; \
+ } \
+ else { \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)PL_bostr); \
+ tmp = utf8n_to_uvchr(r, UTF8SKIP(r), 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TeSt1_UtF8; \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! (TeSt2_UtF8)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it in either the if or else clause,
+ * with the other one being empty */
+#define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+
+/* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to
+ * be passed in completely with the variable name being tested, which isn't
+ * such a clean interface, but this is easier to read than it was before. We
+ * are looking for the boundary (or non-boundary between a word and non-word
+ * character. The utf8 and non-utf8 cases have the same logic, but the details
+ * must be different. Find the "wordness" of the character just prior to this
+ * one, and compare it with the wordness of this one. If they differ, we have
+ * a boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ if ((!prog->minlen && tmp) && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it;
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo is NULL, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ register STRLEN uskip;
+ U8 c1;
+ U8 c2;
+ char *e;
+ register I32 tmp = 1; /* Scratch variable? */
+ register const bool utf8_target = PL_reg_match_utf8;
+ UV utf8_fold_flags = 0;
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(c) == ANYOFV) {
+ STRLEN inclasslen = strend - s;
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, &inclasslen, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+ case CANY:
+ REXEC_FBC_SCAN(
+ if (tmp && (!reginfo || regtry(reginfo, &s)))
+ goto got_it;
+ else
+ tmp = doevery;
+ );
+ break;
+
+ case EXACTFA:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:
+ if (utf8_target) {
+
+ /* regcomp.c already folded this if pattern is in UTF-8 */
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (UTF_PATTERN) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALL THROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((I32)ln), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+
+ /* If one of the operands is in utf8, we can't use the simpler
+ * folding above, due to the fact that many different characters
+ * can have the same fold, or portion of a fold, or different-
+ * length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = (UTF_PATTERN) /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((I32)lnc), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, cBOOL(UTF_PATTERN), utf8_fold_flags)
+ && (!reginfo || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+ case BOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_BOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_NBOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case BOUND:
+ FBC_BOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case BOUNDA:
+ FBC_BOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case NBOUND:
+ FBC_NBOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDA:
+ FBC_NBOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case BOUNDU:
+ FBC_BOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDU:
+ FBC_NBOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case ALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ isALNUM_LC_utf8((U8*)s),
+ isALNUM_LC(*s)
+ );
+ break;
+ case ALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case ALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR((U8) *s)
+ );
+ break;
+ case ALNUMA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isWORDCHAR_A(*s));
+ break;
+ case NALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ ! isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case NALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target),
+ ! isALNUM(*s)
+ );
+ break;
+ case NALNUMA:
+ REXEC_FBC_CSCAN(
+ !isWORDCHAR_A(*s),
+ !isWORDCHAR_A(*s)
+ );
+ break;
+ case NALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ !isALNUM_LC_utf8((U8*)s),
+ !isALNUM_LC(*s)
+ );
+ break;
+ case SPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE_L1((U8) *s)
+ );
+ break;
+ case SPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE((U8) *s)
+ );
+ break;
+ case SPACEA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isSPACE_A(*s));
+ break;
+ case SPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ isSPACE_LC_utf8((U8*)s),
+ isSPACE_LC(*s)
+ );
+ break;
+ case NSPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !( *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE_L1((U8) *s)
+ );
+ break;
+ case NSPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !(*s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE((U8) *s)
+ );
+ break;
+ case NSPACEA:
+ REXEC_FBC_CSCAN(
+ !isSPACE_A(*s),
+ !isSPACE_A(*s)
+ );
+ break;
+ case NSPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isSPACE_LC_utf8((U8*)s),
+ !isSPACE_LC(*s)
+ );
+ break;
+ case DIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ isDIGIT(*s)
+ );
+ break;
+ case DIGITA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isDIGIT_A(*s));
+ break;
+ case DIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ isDIGIT_LC_utf8((U8*)s),
+ isDIGIT_LC(*s)
+ );
+ break;
+ case NDIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ !swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ !isDIGIT(*s)
+ );
+ break;
+ case NDIGITA:
+ REXEC_FBC_CSCAN(
+ !isDIGIT_A(*s),
+ !isDIGIT_A(*s)
+ );
+ break;
+ case NDIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isDIGIT_LC_utf8((U8*)s),
+ !isDIGIT_LC(*s)
+ );
+ break;
+ case LNBREAK:
+ REXEC_FBC_CSCAN(
+ is_LNBREAK_utf8(s),
+ is_LNBREAK_latin1(s)
+ );
+ break;
+ case VERTWS:
+ REXEC_FBC_CSCAN(
+ is_VERTWS_utf8(s),
+ is_VERTWS_latin1(s)
+ );
+ break;
+ case NVERTWS:
+ REXEC_FBC_CSCAN(
+ !is_VERTWS_utf8(s),
+ !is_VERTWS_latin1(s)
+ );
+ break;
+ case HORIZWS:
+ REXEC_FBC_CSCAN(
+ is_HORIZWS_utf8(s),
+ is_HORIZWS_latin1(s)
+ );
+ break;
+ case NHORIZWS:
+ REXEC_FBC_CSCAN(
+ !is_HORIZWS_utf8(s),
+ !is_HORIZWS_latin1(s)
+ );
+ break;
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho
+ = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie
+ = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char"
+ sequences. The basic idea being that we use AC as long
+ as we are dealing with a possible matching char, when
+ we encounter an unknown char (and we have not encountered
+ an accepting state) we scan forward until we find a legal
+ starting char.
+ AC matching is basically that of trie matching, except
+ that when we encounter a failing transition, we fall back
+ to the current states "fail state", and try the current char
+ again, a process we repeat until we reach the root state,
+ state 1, or a legal transition. If we fail on the root state
+ then we can either terminate if we have reached an accepting
+ state previously, or restart the entire process from the beginning
+ if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (!reginfo || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ break;
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *sv, void *data, U32 flags)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* data: May be used for some additional optimizations.
+ Currently its only used, with a U32 cast, for transmitting
+ the ganch offset when doing a /g match. This will change */
+/* nosave: For optimizations. */
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ /*register*/ char *s;
+ register regnode *c;
+ /*register*/ char *startpos = stringarg;
+ I32 minlen; /* must match at least this many chars */
+ I32 dontbother = 0; /* how many characters not to try at end */
+ I32 end_shift = 0; /* Same for the end. */ /* CC */
+ I32 scream_pos = -1; /* Internal iterator of scream. */
+ char *scream_olds = NULL;
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo; /* create some info to pass to regtry etc */
+ regexp_paren_pair *swap = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL || startpos == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ return 0;
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+ reginfo.prog = rx; /* Yes, sorry that this is confusing. */
+
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, startpos, strend,
+ "Matching");
+ );
+
+ minlen = prog->minlen;
+
+ if (strend - startpos < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ PL_reg_flags = 0;
+ PL_reg_eval_set = 0;
+ PL_reg_maxiter = 0;
+
+ if (RX_UTF8(rx))
+ PL_reg_flags |= RF_utf8;
+
+ /* Mark beginning of line for ^ and lookbehind. */
+ reginfo.bol = startpos; /* XXX not used ??? */
+ PL_bostr = strbeg;
+ reginfo.sv = sv;
+
+ /* Mark end of line for $ (and such) */
+ PL_regeol = strend;
+
+ /* see how far we have to get to not match where we matched before */
+ reginfo.till = startpos+minend;
+
+ /* If there is a "must appear" string, look for it. */
+ s = startpos;
+
+ if (prog->extflags & RXf_GPOS_SEEN) { /* Need to set reginfo->ganch */
+ MAGIC *mg;
+ if (flags & REXEC_IGNOREPOS){ /* Means: check only at start */
+ reginfo.ganch = startpos + prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS IGNOREPOS: reginfo.ganch = startpos + %"UVxf"\n",(UV)prog->gofs));
+ } else if (sv && SvTYPE(sv) >= SVt_PVMG
+ && SvMAGIC(sv)
+ && (mg = mg_find(sv, PERL_MAGIC_regex_global))
+ && mg->mg_len >= 0) {
+ reginfo.ganch = strbeg + mg->mg_len; /* Defined pos() */
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS MAGIC: reginfo.ganch = strbeg + %"IVdf"\n",(IV)mg->mg_len));
+
+ if (prog->extflags & RXf_ANCH_GPOS) {
+ if (s > reginfo.ganch)
+ goto phooey;
+ s = reginfo.ganch - prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ANCH_GPOS: s = ganch - %"UVxf"\n",(UV)prog->gofs));
+ if (s < strbeg)
+ goto phooey;
+ }
+ }
+ else if (data) {
+ reginfo.ganch = strbeg + PTR2UV(data);
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS DATA: reginfo.ganch= strbeg + %"UVxf"\n",PTR2UV(data)));
+
+ } else { /* pos() not defined */
+ reginfo.ganch = strbeg;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS: reginfo.ganch = strbeg\n"));
+ }
+ }
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail
+ we switch it back, otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ }
+ if (!(flags & REXEC_CHECKED) && (prog->check_substr != NULL || prog->check_utf8 != NULL)) {
+ re_scream_pos_data d;
+
+ d.scream_olds = &scream_olds;
+ d.scream_pos = &scream_pos;
+ s = re_intuit_start(rx, sv, s, strend, flags, &d);
+ if (!s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not present...\n"));
+ goto phooey; /* not present */
+ }
+ }
+
+
+
+ /* Simplest case: anchored match need be tried only once. */
+ /* [unless only anchor is BOL and multiline is set] */
+ if (prog->extflags & (RXf_ANCH & ~RXf_ANCH_GPOS)) {
+ if (s == startpos && regtry(®info, &startpos))
+ goto got_it;
+ else if (multiline || (prog->intflags & PREGf_IMPLICIT)
+ || (prog->extflags & RXf_ANCH_MBOL)) /* XXXX SBOL? */
+ {
+ char *end;
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+ /* for multiline we only have to try after newlines */
+ if (prog->check_substr || prog->check_utf8) {
+ /* because of the goto we can not easily reuse the macros for bifurcating the
+ unicode/non-unicode match modes here like we do elsewhere - demerphq */
+ if (utf8_target) {
+ if (s == startpos)
+ goto after_try_utf8;
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_utf8:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + UTF8SKIP(s), strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ }
+ } /* end search for check string in unicode */
+ else {
+ if (s == startpos) {
+ goto after_try_latin;
+ }
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_latin:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + 1, strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s++;
+ }
+ }
+ } /* end search for check string in latin*/
+ } /* end search for check string */
+ else { /* search for newline */
+ if (s > startpos) {
+ /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/
+ s--;
+ }
+ /* We can use a more efficient search as newlines are the same in unicode as they are in latin */
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ if (*s++ == '\n') { /* don't need PL_utf8skip here */
+ if (regtry(®info, &s))
+ goto got_it;
+ }
+ }
+ } /* end search for newline */
+ } /* end anchored/multiline check string search */
+ goto phooey;
+ } else if (RXf_GPOS_CHECK == (prog->extflags & RXf_GPOS_CHECK))
+ {
+ /* the warning about reginfo.ganch being used without initialization
+ is bogus -- we set it above, when prog->extflags & RXf_GPOS_SEEN
+ and we only enter this block when the same bit is set. */
+ char *tmp_s = reginfo.ganch - prog->gofs;
+
+ if (tmp_s >= strbeg && regtry(®info, &tmp_s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except UTF_PATTERN?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ ch = SvPVX_const(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)[0];
+
+ if (utf8_target) {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+ }
+ else {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ I32 back_max;
+ I32 back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+
+ if (must == &PL_sv_undef)
+ /* could not downgrade utf8 check substring, so must fail */
+ goto phooey;
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(I32)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > PL_bostr)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ scream_pos = -1;
+ dontbother = end_shift;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ ((flags & REXEC_SCREAM) && SvSCREAM(sv)
+ ? (s = screaminstr(sv, must, HOP3c(s, back_min, (back_min<0 ? strbeg : strend)) - strbeg,
+ end_shift, &scream_pos, 0))
+ : (s = fbm_instr((unsigned char*)HOP3(s, back_min, (back_min<0 ? strbeg : strend)),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0))) ) {
+ /* we may be pointing at the wrong string */
+ if ((flags & REXEC_SCREAM) && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= PL_bostr) ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, ®info))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ float_real = utf8_target ? prog->float_utf8 : prog->float_substr;
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ last = screaminstr(sv, float_real, s - strbeg,
+ end_shift, &scream_pos, 1); /* last one */
+ if (!last)
+ last = scream_olds; /* Only one occurrence. */
+ /* we may be pointing at the wrong string */
+ else if (RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ }
+ else {
+ STRLEN len;
+ const char * const little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on the end
+ * due to the presence of something like this: /foo$/
+ * where we can match both "foo" and "foo\n" at the end of the string.
+ * So we have to compare the end of the string first against the float_real
+ * without the \n and then against the full float_real with the string.
+ * We have to watch out for cases where the string might be smaller
+ * than the float_real or the float_real without the \n.
+ */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was probably
+ * incorrect, which said that this was a "should not happen" case.
+ * Even if it was true when it was written I am pretty sure it is
+ * not anymore, so I have removed the comment and replaced it with
+ * this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "String does not contain required substring, cannot match.\n"
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(®info, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(®info, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+got_it:
+ Safefree(swap);
+ RX_MATCH_TAINTED_set(rx, PL_reg_flags & RF_tainted);
+
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) ) {
+ RX_MATCH_COPY_FREE(rx);
+ if (flags & REXEC_COPY_STR) {
+ const I32 i = PL_regeol - startpos + (stringarg - strbeg);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if ((SvIsCOW(sv)
+ || (SvFLAGS(sv) & CAN_COW_MASK) == CAN_COW_FLAGS)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ } else
+#endif
+ {
+ RX_MATCH_COPIED_on(rx);
+ s = savepvn(strbeg, i);
+ prog->subbeg = s;
+ }
+ prog->sublen = i;
+ }
+ else {
+ prog->subbeg = strbeg;
+ prog->sublen = PL_regeol - strbeg; /* strend may have been modified */
+ }
+ }
+
+ return 1;
+
+phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (swap) {
+ /* we failed :-( roll it back */
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+
+ return 0;
+}
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startpos)
+{
+ dVAR;
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ if ((prog->extflags & RXf_EVAL_SEEN) && !PL_reg_eval_set) {
+ MAGIC *mg;
+
+ PL_reg_eval_set = RS_init;
+ DEBUG_EXECUTE_r(DEBUG_s(
+ PerlIO_printf(Perl_debug_log, " setting stack tmpbase at %"IVdf"\n",
+ (IV)(PL_stack_sp - PL_stack_base));
+ ));
+ SAVESTACK_CXPOS();
+ cxstack[cxstack_ix].blk_oldsp = PL_stack_sp - PL_stack_base;
+ /* Otherwise OP_NEXTSTATE will free whatever on stack now. */
+ SAVETMPS;
+ /* Apparently this is not needed, judging by wantarray. */
+ /* SAVEI8(cxstack[cxstack_ix].blk_gimme);
+ cxstack[cxstack_ix].blk_gimme = G_SCALAR; */
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(SvTYPE(reginfo->sv) >= SVt_PVMG && SvMAGIC(reginfo->sv)
+ && (mg = mg_find(reginfo->sv, PERL_MAGIC_regex_global)))) {
+ /* prepare for quick setting of pos */
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if (SvIsCOW(reginfo->sv))
+ sv_force_normal_flags(reginfo->sv, 0);
+#endif
+ mg = sv_magicext(reginfo->sv, NULL, PERL_MAGIC_regex_global,
+ &PL_vtbl_mglob, NULL, 0);
+ mg->mg_len = -1;
+ }
+ PL_reg_magic = mg;
+ PL_reg_oldpos = mg->mg_len;
+ SAVEDESTRUCTOR_X(restore_pos, prog);
+ }
+ if (!PL_reg_curpm) {
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_len(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+#ifdef USE_ITHREADS
+ /* It seems that non-ithreads works both with and without this code.
+ So for efficiency reasons it seems best not to have the code
+ compiled when it is not needed. */
+ /* This is safe against NULLs: */
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm));
+ /* PM_reg_curpm owns a reference to this regexp. */
+ (void)ReREFCNT_inc(rx);
+#endif
+ PM_SETRE(PL_reg_curpm, rx);
+ PL_reg_oldcurpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(prog)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ PL_reg_oldsaved = prog->subbeg;
+ PL_reg_oldsavedlen = prog->sublen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = prog->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(prog);
+ }
+ else
+ PL_reg_oldsaved = NULL;
+ prog->subbeg = PL_bostr;
+ prog->sublen = PL_regeol - PL_bostr; /* strend may have been modified */
+ }
+ DEBUG_EXECUTE_r(PL_reg_starttry = *startpos);
+ prog->offs[0].start = *startpos - PL_bostr;
+ PL_reginput = *startpos;
+ PL_reglastparen = &prog->lastparen;
+ PL_reglastcloseparen = &prog->lastcloseparen;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+ PL_regsize = 0;
+ PL_regoffs = prog->offs;
+ if (PL_reg_start_tmpl <= prog->nparens) {
+ PL_reg_start_tmpl = prog->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, PL_reglastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * PL_reglastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = PL_regoffs;
+ register I32 i;
+ for (i = prog->nparens; i > (I32)*PL_reglastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ if (regmatch(reginfo, progi->program + 1)) {
+ PL_regoffs[0].end = PL_reginput - PL_bostr;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startpos= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ PL_reg_poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node);
+ PUSH_YES_STATE_GOTO(resume_state, node);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(pTHX_ const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)*PL_reglastparen >= nums[n] &&
+ PL_regoffs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+/* free all slabs above current one - called during LEAVE_SCOPE */
+
+STATIC void
+S_clear_backtrack_stack(pTHX_ void *p)
+{
+ regmatch_slab *s = PL_regmatch_slab->next;
+ PERL_UNUSED_ARG(p);
+
+ if (!s)
+ return;
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+}
+
+
+#define SETREX(Re1,Re2) \
+ if (PL_reg_eval_set) PM_SETRE((PL_reg_curpm), (Re2)); \
+ Re1 = (Re2)
+
+STATIC I32 /* 0 failure, 1 success */
+S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ register const bool utf8_target = PL_reg_match_utf8;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = (struct regexp *)SvANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ I32 oldsave;
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ register regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ register regnode *scan;
+ register regnode *next;
+ register U32 n = 0; /* general value; init to avoid compiler warning */
+ register I32 ln = 0; /* len or last; init to avoid compiler warning */
+ register char *locinput = PL_reginput;
+ register I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = PL_reginput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSV(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+ /* on first ever call to regmatch, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ oldsave = PL_savestack_ix;
+ SAVEDESTRUCTOR_X(S_clear_backtrack_stack, NULL);
+ SAVEVPTR(PL_regmatch_slab);
+ SAVEVPTR(PL_regmatch_state);
+
+ /* grab next free state slot */
+ st = ++PL_regmatch_state;
+ if (st > SLAB_LAST(PL_regmatch_slab))
+ st = PL_regmatch_state = S_push_slab(aTHX);
+
+ /* Note that nextchr is a byte even in UTF */
+ nextchr = UCHARAT(locinput);
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ reenter_switch:
+
+ assert(PL_reglastparen == &rex->lastparen);
+ assert(PL_reglastcloseparen == &rex->lastcloseparen);
+ assert(PL_regoffs == rex->offs);
+
+ switch (state_num) {
+ case BOL:
+ if (locinput == PL_bostr)
+ {
+ /* reginfo->till = reginfo->bol; */
+ break;
+ }
+ sayNO;
+ case MBOL:
+ if (locinput == PL_bostr ||
+ ((nextchr || locinput < PL_regeol) && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+ case SBOL:
+ if (locinput == PL_bostr)
+ break;
+ sayNO;
+ case GPOS:
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS:
+ /* update the startpoint */
+ st->u.keeper.val = PL_regoffs[0].start;
+ PL_reginput = locinput;
+ PL_regoffs[0].start = locinput - PL_bostr;
+ PUSH_STATE_GOTO(KEEPS_next, next);
+ /*NOT-REACHED*/
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ PL_regoffs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /*NOT-REACHED*/
+ case EOL:
+ goto seol;
+ case MEOL:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ break;
+ case SEOL:
+ seol:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ if (PL_regeol - locinput > 1)
+ sayNO;
+ break;
+ case EOS:
+ if (PL_regeol != locinput)
+ sayNO;
+ break;
+ case SANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+ case CANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ case REG_ANY:
+ if ((!nextchr && locinput >= PL_regeol) || nextchr == '\n')
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC:
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!ANYOF_BITMAP_TEST(scan, *locinput)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ }
+ /* FALL THROUGH */
+ case TRIE:
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 1 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (trie->bitmap && !TRIE_BITMAP_TEST(trie,*locinput) ) {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.B = next;
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)PL_regeol ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base ) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ register U16 min = 0;
+ register U16 word;
+ register U16 const nextword = ST.nextword;
+ register reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = *PL_reglastparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ U8 *uc = ST.firstpos;
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ PL_reginput = (char *)uc;
+ }
+
+ scan = (ST.jump && ST.jump[ST.nextword])
+ ? ST.me + ST.jump[ST.nextword]
+ : ST.B;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan);
+ /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = av_fetch( trie_words,
+ ST.nextword-1, 0 );
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+#undef ST
+
+ case EXACT: {
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != UTF_PATTERN) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*(U8*)s) !=
+ utf8n_to_uvuni((U8*)l, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ l += ulen;
+ s ++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*((U8*)l)) !=
+ utf8n_to_uvuni((U8*)s, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ s += ulen;
+ l ++;
+ }
+ }
+ locinput = l;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr)
+ sayNO;
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && memNE(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case EXACTFL: {
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = (UTF_PATTERN) ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target || UTF_PATTERN || state_num == EXACTFU_SS) {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = PL_regeol;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, cBOOL(UTF_PATTERN),
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr &&
+ UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* XXX Could improve efficiency by separating these all out using a
+ * macro or in-line function. At that point regcomp.c would no longer
+ * have to set the FLAGS fields of these */
+ case BOUNDL:
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ /* FALL THROUGH */
+ case BOUND:
+ case BOUNDU:
+ case BOUNDA:
+ case NBOUND:
+ case NBOUNDU:
+ case NBOUNDA:
+ /* was last char in word? */
+ if (utf8_target
+ && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET
+ && FLAGS(scan) != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+ {
+ if (locinput == PL_bostr)
+ ln = '\n';
+ else {
+ const U8 * const r = reghop3((U8*)locinput, -1, (U8*)PL_bostr);
+
+ ln = utf8n_to_uvchr(r, UTF8SKIP(r), 0, uniflags);
+ }
+ if (FLAGS(scan) != REGEX_LOCALE_CHARSET) {
+ ln = isALNUM_uni(ln);
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ n = swash_fetch(PL_utf8_alnum, (U8*)locinput, utf8_target);
+ }
+ else {
+ ln = isALNUM_LC_uvchr(UNI_TO_NATIVE(ln));
+ n = isALNUM_LC_utf8((U8*)locinput);
+ }
+ }
+ else {
+
+ /* Here the string isn't utf8, or is utf8 and only ascii
+ * characters are to match \w. In the latter case looking at
+ * the byte just prior to the current one may be just the final
+ * byte of a multi-byte character. This is ok. There are two
+ * cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final
+ * byte is never mistakable for ASCII, and so the test
+ * will say it is not a word character, which is the
+ * correct answer. */
+ ln = (locinput != PL_bostr) ?
+ UCHARAT(locinput - 1) : '\n';
+ switch (FLAGS(scan)) {
+ case REGEX_UNICODE_CHARSET:
+ ln = isWORDCHAR_L1(ln);
+ n = isWORDCHAR_L1(nextchr);
+ break;
+ case REGEX_LOCALE_CHARSET:
+ ln = isALNUM_LC(ln);
+ n = isALNUM_LC(nextchr);
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ ln = isALNUM(ln);
+ n = isALNUM(nextchr);
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ ln = isWORDCHAR_A(ln);
+ n = isWORDCHAR_A(nextchr);
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan));
+ break;
+ }
+ }
+ /* Note requires that all BOUNDs be lower than all NBOUNDs in
+ * regcomp.sym */
+ if (((!ln) == (!n)) == (OP(scan) < NBOUND))
+ sayNO;
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || state_num == ANYOFV) {
+ STRLEN inclasslen = PL_regeol - locinput;
+ if (locinput >= PL_regeol)
+ sayNO;
+
+ if (!reginclass(rex, scan, (U8*)locinput, &inclasslen, utf8_target))
+ sayNO;
+ locinput += inclasslen;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ else {
+ if (nextchr < 0)
+ nextchr = UCHARAT(locinput);
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ }
+ break;
+ /* Special char classes - The defines start on line 129 or so */
+ CCC_TRY_U(ALNUM, NALNUM, isWORDCHAR,
+ ALNUML, NALNUML, isALNUM_LC, isALNUM_LC_utf8,
+ ALNUMU, NALNUMU, isWORDCHAR_L1,
+ ALNUMA, NALNUMA, isWORDCHAR_A,
+ alnum, "a");
+
+ CCC_TRY_U(SPACE, NSPACE, isSPACE,
+ SPACEL, NSPACEL, isSPACE_LC, isSPACE_LC_utf8,
+ SPACEU, NSPACEU, isSPACE_L1,
+ SPACEA, NSPACEA, isSPACE_A,
+ space, " ");
+
+ CCC_TRY(DIGIT, NDIGIT, isDIGIT,
+ DIGITL, NDIGITL, isDIGIT_LC, isDIGIT_LC_utf8,
+ DIGITA, NDIGITA, isDIGIT_A,
+ digit, "0");
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ /* From http://www.unicode.org/reports/tr29 (5.2 version). An
+ extended Grapheme Cluster is:
+
+ CR LF
+ | Prepend* Begin Extend*
+ | .
+
+ Begin is (Hangul-syllable | ! Control)
+ Extend is (Grapheme_Extend | Spacing_Mark)
+ Control is [ GCB_Control CR LF ]
+
+ The discussion below shows how the code for CLUMP is derived
+ from this regex. Note that most of these concepts are from
+ property values of the Grapheme Cluster Boundary (GCB) property.
+ No code point can have multiple property values for a given
+ property. Thus a code point in Prepend can't be in Control, but
+ it must be in !Control. This is why Control above includes
+ GCB_Control plus CR plus LF. The latter two are used in the GCB
+ property separately, and so can't be in GCB_Control, even though
+ they logically are controls. Control is not the same as gc=cc,
+ but includes format and other characters as well.
+
+ The Unicode definition of Hangul-syllable is:
+ L+
+ | (L* ( ( V | LV ) V* | LVT ) T*)
+ | T+
+ )
+ Each of these is a value for the GCB property, and hence must be
+ disjoint, so the order they are tested is immaterial, so the
+ above can safely be changed to
+ T+
+ | L+
+ | (L* ( LVT | ( V | LV ) V*) T*)
+
+ The last two terms can be combined like this:
+ L* ( L
+ | (( LVT | ( V | LV ) V*) T*))
+
+ And refactored into this:
+ L* (L | LVT T* | V V* T* | LV V* T*)
+
+ That means that if we have seen any L's at all we can quit
+ there, but if the next character is an LVT, a V, or an LV we
+ should keep going.
+
+ There is a subtlety with Prepend* which showed up in testing.
+ Note that the Begin, and only the Begin is required in:
+ | Prepend* Begin Extend*
+ Also, Begin contains '! Control'. A Prepend must be a
+ '! Control', which means it must also be a Begin. What it
+ comes down to is that if we match Prepend* and then find no
+ suitable Begin afterwards, that if we backtrack the last
+ Prepend, that one will be a suitable Begin.
+ */
+
+ if (locinput >= PL_regeol)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < PL_regeol
+ && UCHARAT(locinput) == '\n') locinput++;
+ }
+ else {
+
+ /* Utf8: See if is ( CR LF ); already know that locinput <
+ * PL_regeol, so locinput+1 is in bounds */
+ if (nextchr == '\r' && UCHARAT(locinput + 1) == '\n') {
+ locinput += 2;
+ }
+ else {
+ /* In case have to backtrack to beginning, then match '.' */
+ char *starting = locinput;
+
+ /* In case have to backtrack the last prepend */
+ char *previous_prepend = 0;
+
+ LOAD_UTF8_CHARCLASS_GCB();
+
+ /* Match (prepend)* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_prepend,
+ (U8*)locinput, utf8_target))
+ {
+ previous_prepend = locinput;
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* As noted above, if we matched a prepend character, but
+ * the next thing won't match, back off the last prepend we
+ * matched, as it is guaranteed to match the begin */
+ if (previous_prepend
+ && (locinput >= PL_regeol
+ || ! swash_fetch(PL_utf8_X_begin,
+ (U8*)locinput, utf8_target)))
+ {
+ locinput = previous_prepend;
+ }
+
+ /* Note that here we know PL_regeol > locinput, as we
+ * tested that upon input to this switch case, and if we
+ * moved locinput forward, we tested the result just above
+ * and it either passed, or we backed off so that it will
+ * now pass */
+ if (! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target)) {
+
+ /* Here did not match the required 'Begin' in the
+ * second term. So just match the very first
+ * character, the '.' of the final term of the regex */
+ locinput = starting + UTF8SKIP(starting);
+ } else {
+
+ /* Here is the beginning of a character that can have
+ * an extender. It is either a hangul syllable, or a
+ * non-control */
+ if (swash_fetch(PL_utf8_X_non_hangul,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Here not a Hangul syllable, must be a
+ * ('! * Control') */
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Here is a Hangul syllable. It can be composed
+ * of several individual characters. One
+ * possibility is T+ */
+ if (swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ } else {
+
+ /* Here, not T+, but is a Hangul. That means
+ * it is one of the others: L, LV, LVT or V,
+ * and matches:
+ * L* (L | LVT T* | V V* T* | LV V* T*) */
+
+ /* Match L* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_L,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* Here, have exhausted L*. If the next
+ * character is not an LV, LVT nor V, it means
+ * we had to have at least one L, so matches L+
+ * in the original equation, we have a complete
+ * hangul syllable. Are done. */
+
+ if (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_LV_LVT_V,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Otherwise keep going. Must be LV, LVT
+ * or V. See if LVT */
+ if (swash_fetch(PL_utf8_X_LVT,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Must be V or LV. Take it, then
+ * match V* */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_V,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+
+ /* And any of LV, LVT, or V can be followed
+ * by T* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput,
+ utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ }
+
+ /* Match any extender */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_extend,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ if (locinput > PL_regeol) sayNO;
+ }
+ nextchr = UCHARAT(locinput);
+ break;
+
+ case NREFFL:
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_nref;
+
+ case NREFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF:
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL:
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_ref;
+
+ case REFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF:
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = PL_regoffs[n].start;
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (*PL_reglastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == PL_regoffs[n].end)
+ break;
+
+ s = PL_bostr + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU))
+ { /* XXX handle REFFL better */
+ char * limit = PL_regeol;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by PL_regeol, and returns in
+ * limit upon success, how much of the current input was
+ * matched */
+ if (! foldEQ_utf8_flags(s, NULL, PL_regoffs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = PL_regoffs[n].end - ln;
+ if (locinput + ln > PL_regeol)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case NOTHING:
+ case TAIL:
+ break;
+ case BACK:
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART:
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ (void)ReREFCNT_inc(rex_sv);
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+ dSP;
+ SV ** const before = SP;
+ OP_4tree * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ PAD *old_comppad;
+ char *saved_regeol = PL_regeol;
+ struct re_save_state saved_state;
+
+ /* To not corrupt the existing regex state while executing the
+ * eval we would normally put it on the save stack, like with
+ * save_re_context. However, re-evals have a weird scoping so we
+ * can't just add ENTER/LEAVE here. With that, things like
+ *
+ * (?{$a=2})(a(?{local$a=$a+1}))*aak*c(?{$b=$a})
+ *
+ * would break, as they expect the localisation to be unwound
+ * only when the re-engine backtracks through the bit that
+ * localised it.
+ *
+ * What we do instead is just saving the state in a local c
+ * variable.
+ */
+ Copy(&PL_reg_state, &saved_state, 1, struct re_save_state);
+
+ n = ARG(scan);
+ PL_op = (OP_4tree*)rexi->data->data[n];
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re_eval 0x%"UVxf"\n", PTR2UV(PL_op)) );
+ /* wrap the call in two SAVECOMPPADs. This ensures that
+ * when the save stack is eventually unwound, all the
+ * accumulated SAVEt_CLEARSV's will be processed with
+ * interspersed SAVEt_COMPPAD's to ensure that lexicals
+ * are cleared in the right pad */
+ SAVECOMPPAD();
+ PAD_SAVE_LOCAL(old_comppad, (PAD*)rexi->data->data[n + 2]);
+ PL_regoffs[0].end = PL_reg_magic->mg_len = locinput - PL_bostr;
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if (SP == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ Copy(&saved_state, &PL_reg_state, 1, struct re_save_state);
+
+ PL_op = oop;
+ SAVECOMPPAD();
+ PAD_RESTORE_LOCAL(old_comppad);
+ PL_curcop = ocurcop;
+ PL_regeol = saved_regeol;
+ if (!logical) {
+ /* /(?{...})/ */
+ sv_setsv(save_scalar(PL_replgv), ret);
+ break;
+ }
+ }
+ if (logical == 2) { /* Postponed subexpression: /(??{...})/ */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+ MAGIC *mg = NULL;
+ REGEXP *rx = NULL;
+
+ if (SvROK(ret)) {
+ SV *const sv = SvRV(ret);
+
+ if (SvTYPE(sv) == SVt_REGEXP) {
+ rx = (REGEXP*) sv;
+ } else if (SvSMAGICAL(sv)) {
+ mg = mg_find(sv, PERL_MAGIC_qr);
+ assert(mg);
+ }
+ } else if (SvTYPE(ret) == SVt_REGEXP) {
+ rx = (REGEXP*) ret;
+ } else if (SvSMAGICAL(ret)) {
+ if (SvGMAGICAL(ret)) {
+ /* I don't believe that there is ever qr magic
+ here. */
+ assert(!mg_find(ret, PERL_MAGIC_qr));
+ sv_unmagic(ret, PERL_MAGIC_qr);
+ }
+ else {
+ mg = mg_find(ret, PERL_MAGIC_qr);
+ /* testing suggests mg only ends up non-NULL for
+ scalars who were upgraded and compiled in the
+ else block below. In turn, this is only
+ triggered in the "postponed utf8 string" tests
+ in t/op/pat.t */
+ }
+ }
+
+ if (mg) {
+ rx = (REGEXP *) mg->mg_obj; /*XXX:dmq*/
+ assert(rx);
+ }
+ if (rx) {
+ rx = reg_temp_copy(NULL, rx);
+ }
+ else {
+ U32 pm_flags = 0;
+ const I32 osize = PL_regsize;
+
+ if (DO_UTF8(ret)) {
+ assert (SvUTF8(ret));
+ } else if (SvUTF8(ret)) {
+ /* Not doing UTF-8, despite what the SV says. Is
+ this only if we're trapped in use 'bytes'? */
+ /* Make a copy of the octet sequence, but without
+ the flag on, as the compiler now honours the
+ SvUTF8 flag on ret. */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ rx = CALLREGCOMP(ret, pm_flags);
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_PADTMP | SVf_READONLY
+ | SVs_GMG))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(rx), PERL_MAGIC_qr, 0, 0);
+ }
+ PL_regsize = osize;
+ }
+ re_sv = rx;
+ re = (struct regexp *)SvANY(rx);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput, PL_regeol,
+ "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* borrowed from regtry */
+ if (PL_reg_start_tmpl <= re->nparens) {
+ PL_reg_start_tmpl = re->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ eval_recurse_doit: /* Share code with GOSUB below this line */
+ /* run the pattern returned from (??{...}) */
+ ST.cp = regcppush(0); /* Save *all* the positions. */
+ REGCP_SET(ST.lastcp);
+
+ PL_regoffs = re->offs; /* essentially NOOP on GOSUB */
+
+ /* see regtry, specifically PL_reglast(?:close)?paren is a pointer! (i dont know why) :dmq */
+ PL_reglastparen = &re->lastparen;
+ PL_reglastcloseparen = &re->lastcloseparen;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+
+ PL_reginput = locinput;
+ PL_regsize = 0;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+
+ ST.toggle_reg_flags = PL_reg_flags;
+ if (RX_UTF8(re_sv))
+ PL_reg_flags |= RF_utf8;
+ else
+ PL_reg_flags &= ~RF_utf8;
+ ST.toggle_reg_flags ^= PL_reg_flags; /* diff of old and new */
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ SETREX(rex_sv,re_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint);
+ /* NOTREACHED */
+ }
+ /* logical is 1, /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ break;
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ regcpblow(ST.cp);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+ /* also update PL_regoffs */
+ PL_regoffs = rex->offs;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ PL_reginput = locinput;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN:
+ n = ARG(scan); /* which paren pair */
+ PL_reg_start_tmp[n] = locinput;
+ if (n > PL_regsize)
+ PL_regsize = n;
+ lastopen = n;
+ break;
+ case CLOSE:
+ n = ARG(scan); /* which paren pair */
+ PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+ case ACCEPT:
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ PL_regoffs[n].start
+ = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /*NOTREACHED*/
+ case GROUPP:
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(*PL_reglastparen >= n && PL_regoffs[n].end != -1);
+ break;
+ case NGROUPP:
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+ case INSUBP:
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+ case DEFINEP:
+ sw = 0;
+ break;
+ case IFTHEN:
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+ case LOGICAL:
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > PL_regsize... */
+ if (parenfloor > (I32)*PL_reglastparen)
+ parenfloor = *PL_reglastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next));
+ /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min = ARG1(cur_curlyx->u.curlyx.me);
+ int max = ARG2(cur_curlyx->u.curlyx.me);
+ regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+ PL_reginput = locinput;
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A);
+ /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing */
+
+ if (scan->flags) {
+
+ if (!PL_reg_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ PL_reg_maxiter = (PL_regeol - PL_bostr + 1) * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (PL_reg_maxiter < 0)
+ PL_reg_maxiter = I32_MAX;
+ PL_reg_leftiter = PL_reg_maxiter;
+ }
+
+ if (PL_reg_leftiter-- == 0) {
+ /* initialise cache */
+ const I32 size = (PL_reg_maxiter + 7)/8;
+ if (PL_reg_poscache) {
+ if ((I32)PL_reg_poscache_size < size) {
+ Renew(PL_reg_poscache, size, char);
+ PL_reg_poscache_size = size;
+ }
+ Zero(PL_reg_poscache, size, char);
+ }
+ else {
+ PL_reg_poscache_size = size;
+ Newxz(PL_reg_poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (PL_reg_leftiter < 0) {
+ /* have we already failed at this position? */
+ I32 offset, mask;
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - PL_bostr) * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (PL_reg_poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(ST.save_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A);
+ /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALL THROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex); /* Restore some previous $<digit>s? */
+ PL_reginput = locinput;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ PL_reginput = locinput;
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS);
+ /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALL THROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = *PL_reglastparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+ PL_reginput = locinput;
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan);
+ }
+ /* NOTREACHED */
+ case CUTGROUP:
+ PL_reginput = locinput;
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next,next);
+ /* NOTREACHED */
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ /*dmq: *PL_reglastcloseparen = n; */
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD:
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > PL_regsize)
+ PL_regsize = paren;
+ if (paren > *PL_reglastparen)
+ *PL_reglastparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A); /* match A */
+ /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ locinput = st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (PL_reg_match_utf8) {
+ char *s = locinput;
+ while (s < PL_reginput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = PL_reginput - locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ locinput = PL_reginput;
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ PL_reginput = locinput;
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT)
+ {
+
+ ST.c1 = (U8)*STRING(text_node);
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (ST.c1 != CHRTEST_VOID
+ && UCHARAT(PL_reginput) != ST.c1
+ && UCHARAT(PL_reginput) != ST.c2)
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail c1=%"IVdf" c2=%"IVdf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (IV)ST.c1,(IV)ST.c2
+ ));
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+
+ if (ST.me->flags) {
+ /* mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ PL_regoffs[paren].start
+ = HOPc(PL_reginput, -ST.alen) - PL_bostr;
+ PL_regoffs[paren].end = PL_reginput - PL_bostr;
+ /*dmq: *PL_reglastcloseparen = paren; */
+ }
+ else
+ PL_regoffs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B); /* match B */
+ /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ locinput = HOPc(locinput, -ST.alen);
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ PL_regoffs[paren].start = HOPc(locinput, -1) - PL_bostr; \
+ PL_regoffs[paren].end = locinput - PL_bostr; \
+ *PL_reglastcloseparen = paren; \
+ } \
+ else \
+ PL_regoffs[paren].end = -1; \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case PLUS: /* /A+B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 */
+ ST.paren = scan->flags; /* Which paren to set */
+ if (ST.paren > PL_regsize)
+ PL_regsize = ST.paren;
+ if (ST.paren > *PL_reglastparen)
+ *PL_reglastparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+ case CURLY: /* /A{m,n}B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ if (ST.min > ST.max) /* XXX make this a compile-time check? */
+ sayNO;
+ if (HAS_TEXT(next) || JUMPABLE(next)) {
+ U8 *s;
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ goto assume_ok_easy;
+ }
+ else
+ s = (U8*)STRING(text_node);
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (!UTF_PATTERN) {
+ ST.c1 = *s;
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1; break;
+ }
+ }
+ else { /* UTF_PATTERN */
+ if (IS_TEXTFU(text_node) || IS_TEXTF(text_node)) {
+ STRLEN ulen1, ulen2;
+ U8 tmpbuf1[UTF8_MAXBYTES_CASE+1];
+ U8 tmpbuf2[UTF8_MAXBYTES_CASE+1];
+
+ to_utf8_lower((U8*)s, tmpbuf1, &ulen1);
+ to_utf8_upper((U8*)s, tmpbuf2, &ulen2);
+#ifdef EBCDIC
+ ST.c1 = utf8n_to_uvchr(tmpbuf1, UTF8_MAXLEN, 0,
+ ckWARN(WARN_UTF8) ?
+ 0 : UTF8_ALLOW_ANY);
+ ST.c2 = utf8n_to_uvchr(tmpbuf2, UTF8_MAXLEN, 0,
+ ckWARN(WARN_UTF8) ?
+ 0 : UTF8_ALLOW_ANY);
+#else
+ ST.c1 = utf8n_to_uvuni(tmpbuf1, UTF8_MAXBYTES, 0,
+ uniflags);
+ ST.c2 = utf8n_to_uvuni(tmpbuf2, UTF8_MAXBYTES, 0,
+ uniflags);
+#endif
+ }
+ else {
+ ST.c2 = ST.c1 = utf8n_to_uvchr(s, UTF8_MAXBYTES, 0,
+ uniflags);
+ }
+ }
+ }
+ }
+ else
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assume_ok_easy:
+
+ ST.A = scan;
+ ST.B = next;
+ PL_reginput = locinput;
+ if (minmod) {
+ minmod = 0;
+ if (ST.min && regrepeat(rex, ST.A, ST.min, depth) < ST.min)
+ sayNO;
+ ST.count = ST.min;
+ locinput = PL_reginput;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = PL_regeol - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos + UTF8SKIP(ST.maxpos) <= PL_regeol; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= PL_regeol)
+ ST.maxpos = PL_regeol - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ ST.count = regrepeat(rex, ST.A, ST.max, depth);
+ locinput = PL_reginput;
+ if (ST.count < ST.min)
+ sayNO;
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(PL_reginput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ PL_reginput = locinput; /* Could be reset... */
+ REGCP_UNWIND(ST.cp);
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ STRLEN len;
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos &&
+ utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags) != (UV)ST.c1) {
+ locinput += len;
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos) {
+ STRLEN len;
+ const UV c = utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags);
+ if (c == (UV)ST.c1 || c == (UV)ST.c2)
+ break;
+ locinput += len;
+ n++;
+ }
+ }
+ }
+ else {
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ /* PL_reginput == oldloc now */
+ if (n) {
+ ST.count += n;
+ if (regrepeat(rex, ST.A, n, depth) < n)
+ sayNO;
+ }
+ PL_reginput = locinput;
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B);
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* failed -- move forward one */
+ PL_reginput = locinput;
+ if (regrepeat(rex, ST.A, 1, depth)) {
+ ST.count++;
+ locinput = PL_reginput;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ UV c = 0;
+ if (ST.c1 != CHRTEST_VOID)
+ c = utf8_target ? utf8n_to_uvchr((U8*)PL_reginput,
+ UTF8_MAXBYTES, 0, uniflags)
+ : (UV) UCHARAT(PL_reginput);
+ /* If it could work, try it. */
+ if (ST.c1 == CHRTEST_VOID || c == (UV)ST.c1 || c == (UV)ST.c2) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B);
+ /* NOTREACHED */
+ }
+ }
+ /* FALL THROUGH */
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ PL_reginput = locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END:
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+ I32 tmpix;
+ st->u.eval.toggle_reg_flags
+ = cur_eval->u.eval.toggle_reg_flags;
+ PL_reg_flags ^= st->u.eval.toggle_reg_flags;
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+ SETREX(rex_sv,cur_eval->u.eval.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+ (void)ReREFCNT_inc(rex_sv);
+ st->u.eval.cp = regcppush(0); /* Save *all* the positions. */
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ REGCP_SET(st->u.eval.lastcp);
+ PL_reginput = locinput;
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ tmpix = PL_savestack_ix;
+ PL_savestack_ix = cur_eval->u.eval.lastcp;
+ regcppop(rex);
+ PL_savestack_ix = tmpix;
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB,
+ st->u.eval.prev_eval->u.eval.B); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - PL_reg_starttry),
+ (long)(reginfo->till - PL_reg_starttry),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ PL_reginput = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ PL_reginput = s;
+ }
+ else
+ PL_reginput = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)));
+ /* NOTREACHED */
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALL THROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) == SUSPEND)
+ locinput = PL_reginput;
+ else {
+ locinput = PL_reginput = st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP:
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ case COMMIT:
+ reginfo->cutpoint = PL_regeol;
+ /* FALLTHROUGH */
+ case PRUNE:
+ PL_reginput = locinput;
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next,next);
+ /* NOTREACHED */
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+ case OPFAIL:
+ sayNO;
+ /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT:
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next,next);
+ /* NOTREACHED */
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ case SKIP:
+ PL_reginput = locinput;
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next );
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+#undef ST
+ case LNBREAK:
+ if ((n=is_LNBREAK(locinput,utf8_target))) {
+ locinput += n;
+ nextchr = UCHARAT(locinput);
+ } else
+ sayNO;
+ break;
+
+#define CASE_CLASS(nAmE) \
+ case nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ locinput += n; \
+ nextchr = UCHARAT(locinput); \
+ } else \
+ sayNO; \
+ break; \
+ case N##nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ sayNO; \
+ } else { \
+ locinput += UTF8SKIP(locinput); \
+ nextchr = UCHARAT(locinput); \
+ } \
+ break
+
+ CASE_CLASS(VERTWS);
+ CASE_CLASS(HORIZWS);
+#undef CASE_CLASS
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALL THROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /*NOTREACHED*/
+ sayNO;
+
+yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final) {
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (PL_reg_eval_set) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* clean up; in particular, free all slabs above current one */
+ LEAVE_SCOPE(oldsave);
+
+ return result;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ */
+/*
+ * [This routine now assumes that it will only match on things of length 1.
+ * That was true before, but now we assume scan - reginput is the count,
+ * rather than incrementing count on every character. [Er, except utf8.]]
+ */
+STATIC I32
+S_regrepeat(pTHX_ const regexp *prog, const regnode *p, I32 max, int depth)
+{
+ dVAR;
+ register char *scan;
+ register I32 c;
+ register char *loceol = PL_regeol;
+ register I32 hardcount = 0;
+ register bool utf8_target = PL_reg_match_utf8;
+ UV utf8_flags;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = PL_reginput;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (max < loceol - scan)
+ loceol = scan + max;
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case CANY:
+ scan = loceol;
+ break;
+ case EXACT:
+ /* To get here, EXACTish nodes must have *byte* length == 1. That
+ * means they match only characters in the string that can be expressed
+ * as a single byte. For non-utf8 strings, that means a simple match.
+ * For utf8 strings, the character matched must be an invariant, or
+ * downgradable to a single byte. The pattern's utf8ness is
+ * irrelevant, as since it's a single byte, it either isn't utf8, or if
+ * it is, it's an invariant */
+
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (! utf8_target || UNI_IS_INVARIANT(c)) {
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else {
+
+ /* Here, the string is utf8, and the pattern char is different
+ * in utf8 than not, so can't compare them directly. Outside the
+ * loop, find the two utf8 bytes that represent c, and then
+ * look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+ loceol = PL_regeol;
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ PL_reg_flags |= RF_tainted;
+ utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTF:
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ utf8_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ /* The comments for the EXACT case above apply as well to these fold
+ * ones */
+
+ do_exactf:
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (utf8_target || OP(p) == EXACTFU_SS) { /* Use full Unicode fold matching */
+ char *tmpeol = loceol;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, 1, cBOOL(UTF_PATTERN), utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = loceol;
+ hardcount++;
+ }
+
+ /* XXX Note that the above handles properly the German sharp s in
+ * the pattern matching ss in the string. But it doesn't handle
+ * properly cases where the string contains say 'LIGATURE ff' and
+ * the pattern is 'f+'. This would require, say, a new function or
+ * revised interface to foldEQ_utf8(), in which the maximum number
+ * of characters to match could be passed and it would return how
+ * many actually did. This is just one of many cases where
+ * multi-char folds don't work properly, and so the fix is being
+ * deferred */
+ }
+ else {
+ U8 folded;
+
+ /* Here, the string isn't utf8 and c is a single byte; and either
+ * the pattern isn't utf8 or c is an invariant, so its utf8ness
+ * doesn't affect c. Can just do simple comparisons for exact or
+ * fold matching. */
+ switch (OP(p)) {
+ case EXACTF: folded = PL_fold[c]; break;
+ case EXACTFA:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folded = PL_fold_latin1[c]; break;
+ case EXACTFL: folded = PL_fold_locale[c]; break;
+ default: Perl_croak(aTHX_ "panic: Unexpected op %u", OP(p));
+ }
+ while (scan < loceol &&
+ (UCHARAT(scan) == c || UCHARAT(scan) == folded))
+ {
+ scan++;
+ }
+ }
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(p) == ANYOFV) {
+ STRLEN inclasslen;
+ loceol = PL_regeol;
+ inclasslen = loceol - scan;
+ while (hardcount < max
+ && ((inclasslen = loceol - scan) > 0)
+ && reginclass(prog, p, (U8*)scan, &inclasslen, utf8_target))
+ {
+ scan += inclasslen;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+ case ALNUMU:
+ if (utf8_target) {
+ utf8_wordchar:
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case ALNUM:
+ if (utf8_target)
+ goto utf8_wordchar;
+ while (scan < loceol && isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUMA:
+ while (scan < loceol && isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case NALNUMU:
+ if (utf8_target) {
+
+ utf8_Nwordchar:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ ! swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && ! isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUM:
+ if (utf8_target)
+ goto utf8_Nwordchar;
+ while (scan < loceol && ! isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NALNUMA:
+ if (utf8_target) {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case SPACEU:
+ if (utf8_target) {
+
+ utf8_space:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ break;
+ }
+ case SPACE:
+ if (utf8_target)
+ goto utf8_space;
+
+ while (scan < loceol && isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEA:
+ while (scan < loceol && isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case NSPACEU:
+ if (utf8_target) {
+
+ utf8_Nspace:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ ! (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && ! isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACE:
+ if (utf8_target)
+ goto utf8_Nspace;
+
+ while (scan < loceol && ! isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NSPACEA:
+ if (utf8_target) {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case DIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case DIGITA:
+ while (scan < loceol && isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case DIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case NDIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ !swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case NDIGITA:
+ if (utf8_target) {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NDIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case LNBREAK:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_LNBREAK_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /*
+ LNBREAK can match two latin chars, which is ok,
+ because we have a null terminated string, but we
+ have to use hardcount in this situation
+ */
+ while (scan < loceol && (c=is_LNBREAK_latin1(scan))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+ case HORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_HORIZWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_HORIZWS_latin1(scan))
+ scan++;
+ }
+ break;
+ case NHORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_HORIZWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_HORIZWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case VERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_VERTWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case NVERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_VERTWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+
+ default: /* Called on something of 0 width. */
+ break; /* So match right here or not at all. */
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - PL_reginput;
+ PL_reginput = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+ return newSVsv(core_regclass_swash(prog, node, doinit, listsvp, altsvp));
+}
+#endif
+
+STATIC SV *
+S_core_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ /* Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is true, will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the swash initialization string in
+ * it.
+ * If <altsvp> is non-null, will return the alternates to the regular swash
+ * in it
+ * Tied intimately to how regcomp.c sets up the data structure */
+
+ dVAR;
+ SV *sw = NULL;
+ SV *si = NULL;
+ SV *alt = NULL;
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT_CORE_REGCLASS_SWASH;
+
+ assert(ANYOF_NONBITMAP(node));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ bool invlist_has_user_defined_property;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_len(av) >= 3) {
+ invlist = ary[3];
+ invlist_has_user_defined_property = cBOOL(SvUV(ary[4]));
+ }
+ else {
+ invlist = NULL;
+ invlist_has_user_defined_property = FALSE;
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (si && doinit) {
+
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ FALSE, /* is error if can't find
+ property */
+ invlist,
+ invlist_has_user_defined_property);
+ (void)av_store(av, 1, sw);
+ }
+
+ /* Element [2] is for any multi-char folds. Note that is a
+ * fundamentally flawed design, because can't backtrack and try
+ * again. See [perl #89774] */
+ if (SvTYPE(ary[2]) == SVt_PVAV) {
+ alt = ary[2];
+ }
+ }
+ }
+
+ if (listsvp) {
+ SV* matches_string = newSVpvn("", 0);
+ SV** invlistsvp;
+
+ /* Use the swash, if any, which has to have incorporated into it all
+ * possibilities */
+ if ( sw
+ && SvROK(sw)
+ && SvTYPE(SvRV(sw)) == SVt_PVHV
+ && (invlistsvp = hv_fetchs(MUTABLE_HV(SvRV(sw)), "INVLIST", FALSE)))
+ {
+ invlist = *invlistsvp;
+ }
+ else if (si && si != &PL_sv_undef) {
+
+ /* If no swash, use the input nitialization string, if available */
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ *listsvp = matches_string;
+ }
+
+ if (altsvp)
+ *altsvp = alt;
+
+ return sw;
+}
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF regnode
+ p is the target string
+ lenp is pointer to the maximum number of bytes of how far to go in p
+ (This is assumed wthout checking to always be at least the current
+ character's size)
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise. If lenp is not NULL, on return
+ from a successful match, the value it points to will be updated to how many
+ bytes in p were matched. If there was no match, the value is undefined,
+ possibly changed from the input.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ const regexp * const prog, register const regnode * const n, register const U8* const p, STRLEN* lenp, register const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+ STRLEN c_len = 0;
+ STRLEN maxlen;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it */
+ if (utf8_target && !UTF8_IS_INVARIANT(c)) {
+ c = utf8n_to_uvchr(p, UTF8_MAXBYTES, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ }
+ else {
+ c_len = 1;
+ }
+
+ /* Use passed in max length, or one character if none passed in or less
+ * than one character. And assume will match just one character. This is
+ * overwritten later if matched more. */
+ if (lenp) {
+ maxlen = (*lenp > c_len) ? *lenp : c_len;
+ *lenp = c_len;
+
+ }
+ else {
+ maxlen = c_len;
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < 256) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if (flags & ANYOF_NON_UTF8_LATIN1_ALL
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+
+ else if (flags & ANYOF_LOCALE) {
+ PL_reg_flags |= RF_tainted;
+
+ if ((flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_CLASS_TEST_ANY_SET(n) &&
+ ((ANYOF_CLASS_TEST(n, ANYOF_ALNUM) && isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUM) && !isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_SPACE) && isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NSPACE) && !isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_DIGIT) && isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NDIGIT) && !isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALNUMC) && isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUMC) && !isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALPHA) && isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALPHA) && !isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ASCII) && isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NASCII) && !isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_CNTRL) && isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NCNTRL) && !isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_GRAPH) && isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NGRAPH) && !isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_LOWER) && isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NLOWER) && !isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PRINT) && isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPRINT) && !isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PUNCT) && isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPUNCT) && !isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_UPPER) && isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NUPPER) && !isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_XDIGIT) && isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NXDIGIT) && !isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PSXSPC) && isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPSXSPC) && !isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_BLANK) && isBLANK_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NBLANK) && !isBLANK_LC(c))
+ ) /* How's that for a conditional? */
+ ) {
+ match = TRUE;
+ }
+ }
+ }
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. Locale nodes specifiy completely the
+ * behavior of code points in the bit map (otherwise, a utf8 target would
+ * cause them to be treated as Unicode and not locale), except in
+ * the very unlikely event when this node is a synthetic start class, which
+ * could be a combination of locale and non-locale nodes. So allow locale
+ * to match for the synthetic start class, which will give a false
+ * positive that will be resolved when the match is done again as not part
+ * of the synthetic start class */
+ if (!match) {
+ if (utf8_target && (flags & ANYOF_UNICODE_ALL) && c >= 256) {
+ match = TRUE; /* Everything above 255 matches */
+ }
+ else if (ANYOF_NONBITMAP(n)
+ && ((flags & ANYOF_NONBITMAP_NON_UTF8)
+ || (utf8_target
+ && (c >=256
+ || (! (flags & ANYOF_LOCALE))
+ || (flags & ANYOF_IS_SYNTHETIC)))))
+ {
+ AV *av;
+ SV * const sw = core_regclass_swash(prog, n, TRUE, 0, (SV**)&av);
+
+ if (sw) {
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else {
+
+ /* Not utf8. Convert as much of the string as available up
+ * to the limit of how far the (single) character in the
+ * pattern can possibly match (no need to go further). If
+ * the node is a straight ANYOF or not folding, it can't
+ * match more than one. Otherwise, It can match up to how
+ * far a single char can fold to. Since not utf8, each
+ * character is a single byte, so the max it can be in
+ * bytes is the same as the max it can be in characters */
+ STRLEN len = (OP(n) == ANYOF
+ || ! (flags & ANYOF_LOC_NONBITMAP_FOLD))
+ ? 1
+ : (maxlen < UTF8_MAX_FOLD_CHAR_EXPAND)
+ ? maxlen
+ : UTF8_MAX_FOLD_CHAR_EXPAND;
+ utf8_p = bytes_to_utf8(p, &len);
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE))
+ match = TRUE;
+ else if (flags & ANYOF_LOC_NONBITMAP_FOLD) {
+
+ /* Here, we need to test if the fold of the target string
+ * matches. The non-multi char folds have all been moved to
+ * the compilation phase, and the multi-char folds have
+ * been stored by regcomp into 'av'; we linearly check to
+ * see if any match the target string (folded). We know
+ * that the originals were each one character, but we don't
+ * currently know how many characters/bytes each folded to,
+ * except we do know that there are small limits imposed by
+ * Unicode. XXX A performance enhancement would be to have
+ * regcomp.c store the max number of chars/bytes that are
+ * in an av entry, as, say the 0th element. Even better
+ * would be to have a hash of the few characters that can
+ * start a multi-char fold to the max number of chars of
+ * those folds.
+ *
+ * If there is a match, we will need to advance (if lenp is
+ * specified) the match pointer in the target string. But
+ * what we are comparing here isn't that string directly,
+ * but its fold, whose length may differ from the original.
+ * As we go along in constructing the fold, therefore, we
+ * create a map so that we know how many bytes in the
+ * source to advance given that we have matched a certain
+ * number of bytes in the fold. This map is stored in
+ * 'map_fold_len_back'. Let n mean the number of bytes in
+ * the fold of the first character that we are folding.
+ * Then map_fold_len_back[n] is set to the number of bytes
+ * in that first character. Similarly let m be the
+ * corresponding number for the second character to be
+ * folded. Then map_fold_len_back[n+m] is set to the
+ * number of bytes occupied by the first two source
+ * characters. ... */
+ U8 map_fold_len_back[UTF8_MAXBYTES_CASE+1] = { 0 };
+ U8 folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen = 0; /* num bytes in fold of 1st char */
+ STRLEN total_foldlen = 0; /* num bytes in fold of all
+ chars */
+
+ if (OP(n) == ANYOF || maxlen == 1 || ! lenp || ! av) {
+
+ /* Here, only need to fold the first char of the target
+ * string. It the source wasn't utf8, is 1 byte long */
+ to_utf8_fold(utf8_p, folded, &foldlen);
+ total_foldlen = foldlen;
+ map_fold_len_back[foldlen] = (utf8_target)
+ ? UTF8SKIP(utf8_p)
+ : 1;
+ }
+ else {
+
+ /* Here, need to fold more than the first char. Do so
+ * up to the limits */
+ U8* source_ptr = utf8_p; /* The source for the fold
+ is the regex target
+ string */
+ U8* folded_ptr = folded;
+ U8* e = utf8_p + maxlen; /* Can't go beyond last
+ available byte in the
+ target string */
+ U8 i;
+ for (i = 0;
+ i < UTF8_MAX_FOLD_CHAR_EXPAND && source_ptr < e;
+ i++)
+ {
+
+ /* Fold the next character */
+ U8 this_char_folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN this_char_foldlen;
+ to_utf8_fold(source_ptr,
+ this_char_folded,
+ &this_char_foldlen);
+
+ /* Bail if it would exceed the byte limit for
+ * folding a single char. */
+ if (this_char_foldlen + folded_ptr - folded >
+ UTF8_MAXBYTES_CASE)
+ {
+ break;
+ }
+
+ /* Add the fold of this character */
+ Copy(this_char_folded,
+ folded_ptr,
+ this_char_foldlen,
+ U8);
+ source_ptr += UTF8SKIP(source_ptr);
+ folded_ptr += this_char_foldlen;
+ total_foldlen = folded_ptr - folded;
+
+ /* Create map from the number of bytes in the fold
+ * back to the number of bytes in the source. If
+ * the source isn't utf8, the byte count is just
+ * the number of characters so far */
+ map_fold_len_back[total_foldlen]
+ = (utf8_target)
+ ? source_ptr - utf8_p
+ : i + 1;
+ }
+ *folded_ptr = '\0';
+ }
+
+
+ /* Do the linear search to see if the fold is in the list
+ * of multi-char folds. */
+ if (av) {
+ I32 i;
+ for (i = 0; i <= av_len(av); i++) {
+ SV* const sv = *av_fetch(av, i, FALSE);
+ STRLEN len;
+ const char * const s = SvPV_const(sv, len);
+
+ if (len <= total_foldlen
+ && memEQ(s, (char*)folded, len)
+
+ /* If 0, means matched a partial char. See
+ * [perl #90536] */
+ && map_fold_len_back[len])
+ {
+
+ /* Advance the target string ptr to account for
+ * this fold, but have to translate from the
+ * folded length to the corresponding source
+ * length. */
+ if (lenp) {
+ *lenp = map_fold_len_back[len];
+ }
+ match = TRUE;
+ break;
+ }
+ }
+ }
+ }
+
+ /* If we allocated a string above, free it */
+ if (! utf8_target) Safefree(utf8_p);
+ }
+ }
+ }
+
+ return (flags & ANYOF_INVERT) ? !match : match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, I32 off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+#ifdef XXX_dmq
+/* there are a bunch of places where we use two reghop3's that should
+ be replaced with this routine. but since thats not done yet
+ we ifdef it out - dmq
+*/
+STATIC U8 *
+S_reghop4(U8 *s, I32 off, const U8* llim, const U8* rlim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+#endif
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, I32 off, const U8* lim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+static void
+restore_pos(pTHX_ void *arg)
+{
+ dVAR;
+ regexp * const rex = (regexp *)arg;
+ if (PL_reg_eval_set) {
+ if (PL_reg_oldsaved) {
+ rex->subbeg = PL_reg_oldsaved;
+ rex->sublen = PL_reg_oldsavedlen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ rex->saved_copy = PL_nrs;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ PL_reg_magic->mg_len = PL_reg_oldpos;
+ PL_reg_eval_set = 0;
+ PL_curpm = PL_reg_oldcurpm;
+ }
+}
+
+STATIC void
+S_to_utf8_substr(pTHX_ register regexp *prog)
+{
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC void
+S_to_byte_substr(pTHX_ register regexp *prog)
+{
+ dVAR;
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (sv_utf8_downgrade(sv, TRUE)) {
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ } else {
+ SvREFCNT_dec(sv);
+ sv = &PL_sv_undef;
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#ifndef PERL_IN_XSUB_RE
+# include "charclass_invlists.h"
+#endif
+
+#ifdef op
+#undef op
+#endif /* op */
+
+#ifdef MSDOS
+# if defined(BUGGY_MSC6)
+ /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
+# pragma optimize("a",off)
+ /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
+# pragma optimize("w",on )
+# endif /* BUGGY_MSC6 */
+#endif /* MSDOS */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+typedef struct RExC_state_t {
+ U32 flags; /* are we folding, multilining? */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ I32 whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the allocated space */
+ regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ I32 size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN). */
+ I32 cpar; /* Capture buffer count, (CLOSE). */
+ I32 nestroot; /* root parens we are in - used by accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ I32 seen_evals;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 override_recoding;
+#if ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#endif
+} RExC_state_t;
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_naughty (pRExC_state->naughty)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_seen_evals (pRExC_state->seen_evals)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+#ifdef SPSTART
+#undef SPSTART /* dratted cpp namespace... */
+#endif
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
+ * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or +. */
+#define TRYAGAIN 0x08 /* Weeded out a declaration. */
+#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+/* If not already in utf8, do a longjmp back to the beginning */
+#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
+#define REQUIRE_UTF8 STMT_START { \
+ if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
+ } STMT_END
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to I32 max it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum length of the pattern that the string
+ was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ I32 pos_min;
+ I32 pos_delta;
+ SV *last_found;
+ I32 last_end; /* min value, <0 unless valid. */
+ I32 last_start_min;
+ I32 last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ I32 offset_fixed; /* offset where it starts */
+ I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ I32 offset_float_min; /* earliest point in string it can appear */
+ I32 offset_float_max; /* latest point in string it can appear */
+ I32 *minlen_float; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_float; /* is the position of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ I32 *last_closep;
+ struct regnode_charclass_class *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#ifdef NO_UNARY_PLUS
+# define SF_FIX_SHIFT_EOL (0+2)
+# define SF_FL_SHIFT_EOL (0+4)
+#else
+# define SF_FIX_SHIFT_EOL (+2)
+# define SF_FL_SHIFT_EOL (+4)
+#endif
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
+#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+#define OOB_UNICODE 12345678
+#define OOB_NAMEDCLASS -1
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
+ msg, (int)len, RExC_precomp, ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
+ arg, (int)len, RExC_precomp, ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2regdep(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+
+/* Allow for side effects in s */
+#define REGC(c,s) STMT_START { \
+ if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
+#define Set_Node_Cur_Length(node) \
+ Set_Node_Length(node, RExC_parse - parse_start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags), \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+static void clear_re(pTHX_ void *r);
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : data->pos_min + data->pos_delta);
+ if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
+ data->offset_float_max = I32_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_ANYTHING;
+
+ ANYOF_BITMAP_SETALL(cl);
+ cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
+ |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
+
+ /* If any portion of the regex is to operate under locale rules,
+ * initialization includes it. The reason this isn't done for all regexes
+ * is that the optimizer was written under the assumption that locale was
+ * all-or-nothing. Given the complexity and lack of documentation in the
+ * optimizer, and that there are inadequate test cases for locale, so many
+ * parts of it may not work properly, it is safest to avoid locale unless
+ * necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_CLASS_SETALL(cl); /* /l uses class */
+ cl->flags |= ANYOF_LOCALE;
+ }
+ else {
+ ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
+ }
+}
+
+/* Can match anything (initialization) */
+STATIC int
+S_cl_is_anything(const struct regnode_charclass_class *cl)
+{
+ int value;
+
+ PERL_ARGS_ASSERT_CL_IS_ANYTHING;
+
+ for (value = 0; value <= ANYOF_MAX; value += 2)
+ if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
+ return 1;
+ if (!(cl->flags & ANYOF_UNICODE_ALL))
+ return 0;
+ if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
+ return 0;
+ return 1;
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_INIT;
+
+ Zero(cl, 1, struct regnode_charclass_class);
+ cl->type = ANYOF;
+ cl_anything(pRExC_state, cl);
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+}
+
+/* These two functions currently do the exact same thing */
+#define cl_init_zero S_cl_init
+
+/* 'AND' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
+ * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_and(struct regnode_charclass_class *cl,
+ const struct regnode_charclass_class *and_with)
+{
+ PERL_ARGS_ASSERT_CL_AND;
+
+ assert(and_with->type == ANYOF);
+
+ /* I (khw) am not sure all these restrictions are necessary XXX */
+ if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
+ && !(ANYOF_CLASS_TEST_ANY_SET(cl))
+ && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
+ int i;
+
+ if (and_with->flags & ANYOF_INVERT)
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= ~and_with->bitmap[i];
+ else
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= and_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
+
+ if (and_with->flags & ANYOF_INVERT) {
+
+ /* Here, the and'ed node is inverted. Get the AND of the flags that
+ * aren't affected by the inversion. Those that are affected are
+ * handled individually below */
+ U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
+ cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
+ cl->flags |= affected_flags;
+
+ /* We currently don't know how to deal with things that aren't in the
+ * bitmap, but we know that the intersection is no greater than what
+ * is already in cl, so let there be false positives that get sorted
+ * out after the synthetic start class succeeds, and the node is
+ * matched for real. */
+
+ /* The inversion of these two flags indicate that the resulting
+ * intersection doesn't have them */
+ if (and_with->flags & ANYOF_UNICODE_ALL) {
+ cl->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ else { /* and'd node is not inverted */
+ U8 outside_bitmap_but_not_utf8; /* Temp variable */
+
+ if (! ANYOF_NONBITMAP(and_with)) {
+
+ /* Here 'and_with' doesn't match anything outside the bitmap
+ * (except possibly ANYOF_UNICODE_ALL), which means the
+ * intersection can't either, except for ANYOF_UNICODE_ALL, in
+ * which case we don't know what the intersection is, but it's no
+ * greater than what cl already has, so can just leave it alone,
+ * with possible false positives */
+ if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+ cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else if (! ANYOF_NONBITMAP(cl)) {
+
+ /* Here, 'and_with' does match something outside the bitmap, and cl
+ * doesn't have a list of things to match outside the bitmap. If
+ * cl can match all code points above 255, the intersection will
+ * be those above-255 code points that 'and_with' matches. If cl
+ * can't match all Unicode code points, it means that it can't
+ * match anything outside the bitmap (since the 'if' that got us
+ * into this block tested for that), so we leave the bitmap empty.
+ */
+ if (cl->flags & ANYOF_UNICODE_ALL) {
+ ARG_SET(cl, ARG(and_with));
+
+ /* and_with's ARG may match things that don't require UTF8.
+ * And now cl's will too, in spite of this being an 'and'. See
+ * the comments below about the kludge */
+ cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else {
+ /* Here, both 'and_with' and cl match something outside the
+ * bitmap. Currently we do not do the intersection, so just match
+ * whatever cl had at the beginning. */
+ }
+
+
+ /* Take the intersection of the two sets of flags. However, the
+ * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
+ * kludge around the fact that this flag is not treated like the others
+ * which are initialized in cl_anything(). The way the optimizer works
+ * is that the synthetic start class (SSC) is initialized to match
+ * anything, and then the first time a real node is encountered, its
+ * values are AND'd with the SSC's with the result being the values of
+ * the real node. However, there are paths through the optimizer where
+ * the AND never gets called, so those initialized bits are set
+ * inappropriately, which is not usually a big deal, as they just cause
+ * false positives in the SSC, which will just mean a probably
+ * imperceptible slow down in execution. However this bit has a
+ * higher false positive consequence in that it can cause utf8.pm,
+ * utf8_heavy.pl ... to be loaded when not necessary, which is a much
+ * bigger slowdown and also causes significant extra memory to be used.
+ * In order to prevent this, the code now takes a different tack. The
+ * bit isn't set unless some part of the regular expression needs it,
+ * but once set it won't get cleared. This means that these extra
+ * modules won't get loaded unless there was some path through the
+ * pattern that would have required them anyway, and so any false
+ * positives that occur by not ANDing them out when they could be
+ * aren't as severe as they would be if we treated this bit like all
+ * the others */
+ outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
+ & ANYOF_NONBITMAP_NON_UTF8;
+ cl->flags &= and_with->flags;
+ cl->flags |= outside_bitmap_but_not_utf8;
+ }
+}
+
+/* 'OR' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
+ * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
+{
+ PERL_ARGS_ASSERT_CL_OR;
+
+ if (or_with->flags & ANYOF_INVERT) {
+
+ /* Here, the or'd node is to be inverted. This means we take the
+ * complement of everything not in the bitmap, but currently we don't
+ * know what that is, so give up and match anything */
+ if (ANYOF_NONBITMAP(or_with)) {
+ cl_anything(pRExC_state, cl);
+ }
+ /* We do not use
+ * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
+ * <= (B1 | !B2) | (CL1 | !CL2)
+ * which is wasteful if CL2 is small, but we ignore CL2:
+ * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
+ * XXXX Can we handle case-fold? Unclear:
+ * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
+ * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
+ */
+ else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
+ int i;
+
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= ~or_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise */
+ else {
+ cl_anything(pRExC_state, cl);
+ }
+
+ /* And, we can just take the union of the flags that aren't affected
+ * by the inversion */
+ cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
+
+ /* For the remaining flags:
+ ANYOF_UNICODE_ALL and inverted means to not match anything above
+ 255, which means that the union with cl should just be
+ what cl has in it, so can ignore this flag
+ ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
+ is 127-255 to match them, but then invert that, so the
+ union with cl should just be what cl has in it, so can
+ ignore this flag
+ */
+ } else { /* 'or_with' is not inverted */
+ /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
+ if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
+ int i;
+
+ /* OR char bitmap and class bitmap separately */
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= or_with->bitmap[i];
+ if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
+ for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
+ cl->classflags[i] |= or_with->classflags[i];
+ cl->flags |= ANYOF_CLASS;
+ }
+ }
+ else { /* XXXX: logic is complicated, leave it along for a moment. */
+ cl_anything(pRExC_state, cl);
+ }
+
+ if (ANYOF_NONBITMAP(or_with)) {
+
+ /* Use the added node's outside-the-bit-map match if there isn't a
+ * conflict. If there is a conflict (both nodes match something
+ * outside the bitmap, but what they match outside is not the same
+ * pointer, and hence not easily compared until XXX we extend
+ * inversion lists this far), give up and allow the start class to
+ * match everything outside the bitmap. If that stuff is all above
+ * 255, can just set UNICODE_ALL, otherwise caould be anything. */
+ if (! ANYOF_NONBITMAP(cl)) {
+ ARG_SET(cl, ARG(or_with));
+ }
+ else if (ARG(cl) != ARG(or_with)) {
+
+ if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
+ cl_anything(pRExC_state, cl);
+ }
+ else {
+ cl->flags |= ANYOF_UNICODE_ALL;
+ }
+ }
+ }
+
+ /* Take the union */
+ cl->flags |= or_with->flags;
+ }
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occured in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvuni_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need folding */ \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* if we use this folder we have to obey unicode rules on latin-1 data */ \
+ if ( foldlen > 0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ scan += len; \
+ len = 0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP(uvc); \
+ foldlen -= skiplen; \
+ scan = foldbuf + skiplen; \
+ } \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
+{
+ dVAR;
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, 2, "tu" );
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ case EXACTFL: folder = PL_fold_locale; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail),
+ (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use the
+ native representation of the character value as the key and IV's for the
+ coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ STRLEN foldlen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+ const U8 *scan = (U8*)NULL;
+ U32 wordlen = 0; /* required init */
+ STRLEN chars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ trie->minlen= 0;
+ continue;
+ }
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie,0xDF);
+ }
+ }
+ for ( ; uc < e ; uc += len ) {
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+ chars++;
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UNI_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ }
+ if( cur == first ) {
+ trie->minlen = chars;
+ trie->maxlen = chars;
+ } else if (chars < trie->minlen) {
+ trie->minlen = chars;
+ } else if (chars > trie->maxlen) {
+ trie->maxlen = chars;
+ }
+ if (OP( noper ) == EXACTFU_SS) {
+ /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
+ if (trie->minlen > 1)
+ trie->minlen= 1;
+ }
+ if (OP( noper ) == EXACTFU_TRICKYFOLD) {
+ /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
+ * - We assume that any such sequence might match a 2 byte string */
+ if (trie->minlen > 2 )
+ trie->minlen= 2;
+ }
+
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
+ if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
+ We know that we will need Charcount+1 trans at most to store the data
+ (one row per char at worst case) So we preallocate both structures
+ assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily to
+ make compression both faster and easier by keeping track of how many non
+ zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is a
+ number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
+ TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
+ are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we also
+ have to deal with the states array which is indexed by nodenum we have to
+ use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ STRLEN skiplen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
+ trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC void
+S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest proper
+ suffix of the current state's 'word' that is also a proper prefix of another word in our
+ trie. State 1 represents the word '' and is thus the default fail state. This allows
+ the DFA not to have to restart after its tried and failed a word at a given point, it
+ simply continues as though it had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter 'g' which would
+ fail, which would bring us to the state representing 'd' in the second word where we would
+ try 'g' and succeed, proceeding to match 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, 1, "T" );
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_SEEN_TRIEDFA;*/
+}
+
+
+/*
+ * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
+ * These need to be revisited when a newer toolchain becomes available.
+ */
+#if defined(__sparc64__) && defined(__GNUC__)
+# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
+# undef SPARC64_GCC_WORKAROUND
+# define SPARC64_GCC_WORKAROUND 1
+# endif
+#endif
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ SV * const mysv=sv_newmortal(); \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, mysv, scan); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ }});
+
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one, and looks for problematic sequences of characters whose folds vs.
+ * non-folds have sufficiently different lengths, that the optimizer would be
+ * fooled into rejecting legitimate matches of them, and the trie construction
+ * code can't cope with them. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING kind nodes, and
+ * these get optimized out
+ *
+ * If there are problematic code sequences, *min_subtract is set to the delta
+ * that the minimum size of the node can be less than its actual size. And,
+ * the node type of the result is changed to reflect that it contains these
+ * sequences.
+ *
+ * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
+ * and contains LATIN SMALL LETTER SHARP S
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * problematic sequences. It's been wrong in Perl for a very long time. There
+ * are three code points in Unicode whose folded lengths differ so much from
+ * the un-folded lengths that it causes problems for the optimizer and trie
+ * construction. Why only these are problematic, and not others where lengths
+ * also differ is something I (khw) do not understand. New versions of Unicode
+ * might add more such code points. Hopefully the logic in fold_grind.t that
+ * figures out what to test (in part by verifying that each size-combination
+ * gets tested) will catch any that do come along, so they can be added to the
+ * special handling below. The chances of new ones are actually rather small,
+ * as most, if not all, of the world's scripts that have casefolding have
+ * already been encoded by Unicode. Also, a number of Unicode's decisions were
+ * made to allow compatibility with pre-existing standards, and almost all of
+ * those have already been dealt with. These would otherwise be the most
+ * likely candidates for generating further tricky sequences. In other words,
+ * Unicode by itself is unlikely to add new ones unless it is for compatibility
+ * with pre-existing standards, and there aren't many of those left.
+ *
+ * The previous designs for dealing with these involved assigning a special
+ * node for them. This approach doesn't work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both these fold to "sss", but if the pattern is parsed to create a node of
+ * that would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss".
+ *
+ * There are a number of components to the approach (a lot of work for just
+ * three code points!):
+ * 1) This routine examines each EXACTFish node that could contain the
+ * problematic sequences. It returns in *min_subtract how much to
+ * subtract from the the actual length of the string to get a real minimum
+ * for one that could match it. This number is usually 0 except for the
+ * problematic sequences. This delta is used by the caller to adjust the
+ * min length of the match, and the delta between min and max, so that the
+ * optimizer doesn't reject these possibilities based on size constraints.
+ * 2) These sequences are not currently correctly handled by the trie code
+ * either, so it changes the joined node type to ops that are not handled
+ * by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
+ * 3) This is sufficient for the two Greek sequences (described below), but
+ * the one involving the Sharp s (\xDF) needs more. The node type
+ * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
+ * sequence in it. For non-UTF-8 patterns and strings, this is the only
+ * case where there is a possible fold length change. That means that a
+ * regular EXACTFU node without UTF-8 involvement doesn't have to concern
+ * itself with length changes, and so can be processed faster. regexec.c
+ * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
+ * is pre-folded by regcomp.c. This saves effort in regex matching.
+ * However, probably mostly for historical reasons, the pre-folding isn't
+ * done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
+ * nodes, as what they fold to isn't known until runtime.) The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string
+ * are members of a fold-pair, and arrays are set up for all of them
+ * that quickly find the other member of the pair. It might actually
+ * be faster to pre-fold these, but it isn't currently done, except for
+ * the sharp s. Code elsewhere in this file makes sure that it gets
+ * folded to 'ss', even if the pattern isn't UTF-8. This avoids the
+ * issues described in the next item.
+ * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
+ * 'ss' or not is not knowable at compile time. It will match iff the
+ * target string is in UTF-8, unlike the EXACTFU nodes, where it always
+ * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
+ * it can't be folded to "ss" at compile time, unlike EXACTFU does as
+ * described in item 3). An assumption that the optimizer part of
+ * regexec.c (probably unwittingly) makes is that a character in the
+ * pattern corresponds to at most a single character in the target string.
+ * (And I do mean character, and not byte here, unlike other parts of the
+ * documentation that have never been updated to account for multibyte
+ * Unicode.) This assumption is wrong only in this case, as all other
+ * cases are either 1-1 folds when no UTF-8 is involved; or is true by
+ * virtue of having this file pre-fold UTF-8 patterns. I'm
+ * reluctant to try to change this assumption, so instead the code punts.
+ * This routine examines EXACTF nodes for the sharp s, and returns a
+ * boolean indicating whether or not the node is an EXACTF node that
+ * contains a sharp s. When it is true, the caller sets a flag that later
+ * causes the optimizer in this file to not set values for the floating
+ * and fixed string lengths, and thus avoids the optimizer code in
+ * regexec.c that makes the invalid assumption. Thus, there is no
+ * optimization based on string lengths for EXACTF nodes that contain the
+ * sharp s. This only happens for /id rules (which means the pattern
+ * isn't in UTF-8).
+ */
+
+#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *has_exactf_sharp_s = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT) {
+ U8 *s;
+ U8 * s0 = (U8*) STRING(scan);
+ U8 * const s_end = s0 + STR_LEN(scan);
+
+ /* The below is perhaps overboard, but this allows us to save a test
+ * each time through the loop at the expense of a mask. This is
+ * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
+ * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
+ * This uses an exclusive 'or' to find that bit and then inverts it to
+ * form a mask, with just a single 0, in the bit position where 'S' and
+ * 's' differ. */
+ const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
+ const U8 s_masked = 's' & S_or_s_mask;
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. to avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+
+ /* There are two problematic Greek code points in Unicode
+ * casefolding
+ *
+ * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
+ * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
+ *
+ * which casefold to
+ *
+ * Unicode UTF-8
+ *
+ * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
+ * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
+ *
+ * This means that in case-insensitive matching (or "loose
+ * matching", as Unicode calls it), an EXACTF of length six (the
+ * UTF-8 encoded byte length of the above casefolded versions) can
+ * match a target string of length two (the byte length of UTF-8
+ * encoded U+0390 or U+03B0). This would rather mess up the
+ * minimum length computation. (there are other code points that
+ * also fold to these two sequences, but the delta is smaller)
+ *
+ * If these sequences are found, the minimum length is decreased by
+ * four (six minus two).
+ *
+ * Similarly, 'ss' may match the single char and byte LATIN SMALL
+ * LETTER SHARP S. We decrease the min length by 1 for each
+ * occurrence of 'ss' found */
+
+#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
+# define U390_first_byte 0xb4
+ const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
+# define U3B0_first_byte 0xb5
+ const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
+#else
+# define U390_first_byte 0xce
+ const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
+# define U3B0_first_byte 0xcf
+ const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
+#endif
+ const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
+ yields a net of 0 */
+ /* Examine the string for one of the problematic sequences */
+ for (s = s0;
+ s < s_end - 1; /* Can stop 1 before the end, as minimum length
+ * sequence we are looking for is 2 */
+ s += UTF8SKIP(s))
+ {
+
+ /* Look for the first byte in each problematic sequence */
+ switch (*s) {
+ /* We don't have to worry about other things that fold to
+ * 's' (such as the long s, U+017F), as all above-latin1
+ * code points have been pre-folded */
+ case 's':
+ case 'S':
+
+ /* Current character is an 's' or 'S'. If next one is
+ * as well, we have the dreaded sequence */
+ if (((*(s+1) & S_or_s_mask) == s_masked)
+ /* These two node types don't have special handling
+ * for 'ss' */
+ && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
+ {
+ *min_subtract += 1;
+ OP(scan) = EXACTFU_SS;
+ s++; /* No need to look at this character again */
+ }
+ break;
+
+ case U390_first_byte:
+ if (s_end - s >= len
+
+ /* The 1's are because are skipping comparing the
+ * first byte */
+ && memEQ(s + 1, U390_tail, len - 1))
+ {
+ goto greek_sequence;
+ }
+ break;
+
+ case U3B0_first_byte:
+ if (! (s_end - s >= len
+ && memEQ(s + 1, U3B0_tail, len - 1)))
+ {
+ break;
+ }
+ greek_sequence:
+ *min_subtract += 4;
+
+ /* This can't currently be handled by trie's, so change
+ * the node type to indicate this. If EXACTFA and
+ * EXACTFL were ever to be handled by trie's, this
+ * would have to be changed. If this node has already
+ * been changed to EXACTFU_SS in this loop, leave it as
+ * is. (I (khw) think it doesn't matter in regexec.c
+ * for UTF patterns, but no need to change it */
+ if (OP(scan) == EXACTFU) {
+ OP(scan) = EXACTFU_TRICKYFOLD;
+ }
+ s += 6; /* We already know what this sequence is. Skip
+ the rest of it */
+ break;
+ }
+ }
+ }
+ else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
+
+ /* Here, the pattern is not UTF-8. We need to look only for the
+ * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
+ * in the final position. Otherwise we can stop looking 1 byte
+ * earlier because have to find both the first and second 's' */
+ const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
+
+ for (s = s0; s < upper; s++) {
+ switch (*s) {
+ case 'S':
+ case 's':
+ if (s_end - s > 1
+ && ((*(s+1) & S_or_s_mask) == s_masked))
+ {
+ *min_subtract += 1;
+
+ /* EXACTF nodes need to know that the minimum
+ * length changed so that a sharp s in the string
+ * can match this ss in the pattern, but they
+ * remain EXACTF nodes, as they are not trie'able,
+ * so don't have to invent a new node type to
+ * exclude them from the trie code */
+ if (OP(scan) != EXACTF) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s++;
+ }
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ if (OP(scan) == EXACTF) {
+ *has_exactf_sharp_s = TRUE;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1,struct regnode_charclass_class); \
+ SAVEFREEPV(and_withp)
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last; /* last node to process in this frame */
+ regnode *next; /* next node to process when last is reached */
+ struct scan_frame *prev; /*previous frame*/
+ I32 stop; /* what stopparen do we use */
+} scan_frame;
+
+
+#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
+
+#define CASE_SYNST_FNC(nAmE) \
+case nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break; \
+case N ## nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break
+
+
+
+STATIC I32
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ I32 *minlenp, I32 *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U8* recursed,
+ struct regnode_charclass_class *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ dVAR;
+ I32 min = 0, pars = 0, code;
+ regnode *scan = *scanp, *next;
+ I32 delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ I32 stopmin = I32_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+#ifdef DEBUGGING
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+#endif
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How much to subtract from the minimum node
+ length to get a real minimum (because the
+ folded version may be shorter) */
+ bool has_exactf_sharp_s = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data,depth);
+ DEBUG_PEEP("Peep",scan,depth);
+
+ /* Its not clear to khw or hv why this is done here, and not in the
+ * clauses that deal with EXACT nodes. khw's guess is that it's
+ * because of a previous design */
+ JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
+ || OP(scan) == IFTHEN) {
+ next = regnext(scan);
+ code = OP(scan);
+ /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
+
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for handling
+ TRIE nodes on a re-study. If you change stuff here check there
+ too. */
+ I32 max1 = 0, min1 = I32_MAX, num = 0;
+ struct regnode_charclass_class accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR)
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ I32 deltanext, minnext, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ num++;
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ if (code != BRANCH)
+ scan = NEXTOPER(scan);
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ next, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ if (min1 > minnext)
+ min1 = minnext;
+ if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan' now
+ points at the item that follows the branch sequence, whatever
+ it is. We now start at the beginning of the sequence and look
+ for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+#ifdef DEBUGGING
+ SV * const mysv = sv_newmortal(); /* for dumping */
+#endif
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, tail );
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this /FOO[xyz]|BAR[pqr]/
+ via a "jump trie" but we also support building with NOJUMPTRIE,
+ which restricts the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is a possible optimization
+ target. If we are building under NOJUMPTRIE then we require that noper_next
+ is the same as scan (our current position in the regex program).
+
+ Once we have two or more consecutive such branches we can create a
+ trie of the EXACT's contents and stitch it in place into the program.
+
+ If the sequence represents all of the branches in the alternation we
+ replace the entire thing with a single TRIE node.
+
+ Otherwise when it is a subsequence we need to stitch it in place and
+ replace only the relevant branches. This means the first branch has
+ to remain as it is used by the alternation logic, and its next pointer,
+ and needs to be repointed at the item on the branch chain following
+ the last branch we have optimized away.
+
+ This could be either a BRANCH, in which case the subsequence is internal,
+ or it could be the item following the branch sequence in which case the
+ subsequence is at the end (which does not necessarily mean the first node
+ is the start of the alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFU_TRICKYFOLD | EXACTFU
+ EXACTFA | 0
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
+ ( EXACT == (X) ) ? EXACT : \
+ ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
+ 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+#endif
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, mysv, noper);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, mysv, noper_next );
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
+ });
+
+ /* Is noper a trieable nodetype that can be merged with the
+ * current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ /* XXX: Currently we cannot allow a NOTHING node to be the first element
+ * of a TRIEABLE sequence, Otherwise we will overwrite the regop following
+ * the NOTHING with the TRIE regop later on. This is because a NOTHING node
+ * is only one regnode wide, and a TRIE is two regnodes. An example of a
+ * problematic pattern is: "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/
+ * At a later point of time we can somewhat workaround this by handling
+ * NOTHING -> EXACT sequences as generated by /(?:)A|(?:)B/ type patterns,
+ * as we can effectively ignore the NOTHING regop in that case.
+ * This clause, which allows NOTHING to start a sequence is left commented
+ * out as a reference.
+ * - Yves
+
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ */
+ ( noper_trietype == NOTHING && trietype )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node
+ * Either we are the first node in a new trieable sequence,
+ * in which case we do some bookkeeping, otherwise we update
+ * the end pointer. */
+ count++;
+ if ( !first ) {
+ first = cur;
+ trietype = noper_trietype;
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can not be tried
+ * together with the current trie, or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not NOTHING then we have found
+ * at least two triable branch sequences in a row of a similar
+ * trietype so we can turn them into a trie. If/when we
+ * allow NOTHING to start a trie sequence this condition will be
+ * required, and it isn't expensive so we leave it in for now. */
+ if ( trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail, count,
+ trietype, depth+1 );
+ last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype != NOTHING ) {
+ /* the last branch of the sequence was part of a trie,
+ * so we have to construct it here outside of the loop
+ */
+ made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
+ }
+ }
+#endif
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ scan_frame *newframe = NULL;
+ I32 paren;
+ regnode *start;
+ regnode *end;
+
+ if (OP(scan) != SUSPEND) {
+ /* set the pointer */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ paren = 0;
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ if (!recursed) {
+ Newxz(recursed, (((RExC_npar)>>3) +1), U8);
+ SAVEFREEPV(recursed);
+ }
+ if (!PAREN_TEST(recursed,paren+1)) {
+ PAREN_SET(recursed,paren+1);
+ Newx(newframe,1,scan_frame);
+ } else {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ } else {
+ Newx(newframe,1,scan_frame);
+ paren = stopparen;
+ start = scan+2;
+ end = regnext(scan);
+ }
+ if (newframe) {
+ assert(start);
+ assert(end);
+ SAVEFREEPV(newframe);
+ newframe->next = regnext(scan);
+ newframe->last = last;
+ newframe->stop = stopparen;
+ newframe->prev = frame;
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT) {
+ I32 l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? I32_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+
+
+ /* If compatible, we or it in below. It is compatible if is
+ * in the bitmp and either 1) its bit or its fold is set, or 2)
+ * it's for a locale. Even if there isn't unicode semantics
+ * here, at runtime there may be because of matching against a
+ * utf8 string, so accept a possible false positive for
+ * latin1-range folds */
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ )
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else if (uc >= 0x100) {
+ int i;
+
+ /* Some Unicode code points fold to the Latin1 range; as
+ * XXX temporary code, instead of figuring out if this is
+ * one, just assume it is and set all the start class bits
+ * that could be some such above 255 code point's fold
+ * which will generate fals positives. As the code
+ * elsewhere that does compute the fold settles down, it
+ * can be extracted out and re-used here */
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ if (uc < 0x100)
+ data->start_class->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ /* false positive possible if the class is case-folded */
+ if (uc < 0x100)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else
+ data->start_class->flags |= ANYOF_UNICODE_ALL;
+ data->start_class->flags &= ~ANYOF_EOS;
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
+ I32 l = STR_LEN(scan);
+ UV uc = *((U8*)STRING(scan));
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ SCAN_COMMIT(pRExC_state, data, minlenp);
+ }
+ if (UTF) {
+ const U8 * const s = (U8 *)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ }
+ else if (has_exactf_sharp_s) {
+ RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
+ }
+ min += l - min_subtract;
+ if (min < 0) {
+ min = 0;
+ }
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ data->start_class->flags &= ~ANYOF_EOS;
+ data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
+ if (OP(scan) == EXACTFL) {
+ /* XXX This set is probably no longer necessary, and
+ * probably wrong as LOCALE now is on in the initial
+ * state */
+ data->start_class->flags |= ANYOF_LOCALE;
+ }
+ else {
+
+ /* Also set the other member of the fold pair. In case
+ * that unicode semantics is called for at runtime, use
+ * the full latin1 fold. (Can't do this for locale,
+ * because not known until runtime) */
+ ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
+
+ /* All other (EXACTFL handled above) folds except under
+ * /iaa that include s, S, and sharp_s also may include
+ * the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ else if (uc >= 0x100) {
+ int i;
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
+ /* false positive possible if the class is case-folded.
+ Assume that the locale settings are the same... */
+ if (uc < 0x100) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ if (OP(scan) != EXACTFL) {
+
+ /* And set the other member of the fold pair, but
+ * can't do that in locale because not known until
+ * run-time */
+ ANYOF_BITMAP_SET(data->start_class,
+ PL_fold_latin1[uc]);
+
+ /* All folds except under /iaa that include s, S,
+ * and sharp_s also may include the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ }
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ I32 mincount, maxcount, minnext, deltanext, fl = 0;
+ I32 f = flags, pos_before = 0;
+ regnode * const oscan = scan;
+ struct regnode_charclass_class this_class;
+ struct regnode_charclass_class *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* Fall through. */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ cl_and(data->start_class, and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class, &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if ( /* ? quantifier ok, except for (?{ ... }) */
+ (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big count */
+ {
+ ckWARNreg(RExC_parse,
+ "Quantifier unexpected on zero-length expression");
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= ((maxcount == REG_INFTY
+ && (minnext + deltanext) > 0)
+ || deltanext == I32_MAX);
+ is_inf |= is_inf_internal;
+ delta += (minnext + deltanext) * maxcount - minnext * mincount;
+
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
+#if defined(SPARC64_GCC_WORKAROUND)
+ I32 b = 0;
+ STRLEN l = 0;
+ const char *s = NULL;
+ I32 old = 0;
+
+ if (pos_before >= data->last_start_min)
+ b = pos_before;
+ else
+ b = data->last_start_min;
+
+ l = 0;
+ s = SvPV_const(data->last_found, l);
+ old = b - data->last_start_min;
+
+#else
+ I32 b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ I32 old = b - data->last_start_min;
+#endif
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l, mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += CHR_SVLEN(last_str) - l;
+ }
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max += is_inf ? I32_MAX
+ : (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min =
+ data->pos_min - CHR_SVLEN(last_str);
+ data->last_start_max = is_inf
+ ? I32_MAX
+ : data->pos_min + data->pos_delta
+ - CHR_SVLEN(last_str);
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+ default: /* REF, ANYOFV, and CLUMP only? */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ int value = 0;
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+ if (flags & SCF_DO_STCLASS_AND) {
+ for (value = 0; value < 256; value++)
+ if (!is_VERTWS_cp(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ for (value = 0; value < 256; value++)
+ if (is_VERTWS_cp(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min += 1;
+ delta += 1;
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+ int value = 0;
+
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (PL_regkind[OP(scan)]) {
+ case SANY:
+ default:
+ do_default:
+ /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ break;
+ case REG_ANY:
+ if (OP(scan) == SANY)
+ goto do_default;
+ if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
+ value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
+ || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
+ cl_anything(pRExC_state, data->start_class);
+ }
+ if (flags & SCF_DO_STCLASS_AND || !value)
+ ANYOF_BITMAP_CLEAR(data->start_class,'\n');
+ break;
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class,
+ (struct regnode_charclass_class*)scan);
+ else
+ cl_or(pRExC_state, data->start_class,
+ (struct regnode_charclass_class*)scan);
+ break;
+ case ALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (!isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
+
+ /* Even if under locale, set the bits for non-locale
+ * in case it isn't a true locale-node. This will
+ * create false positives if it truly is locale */
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
+
+ /* Even if under locale, set the bits for non-locale in
+ * case it isn't a true locale-node. This will create
+ * false positives if it truly is locale */
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (! isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (! isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case SPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE) {
+ ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
+ }
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NSPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case DIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ case NDIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE))
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ CASE_SYNST_FNC(VERTWS);
+ CASE_SYNST_FNC(HORIZWS);
+
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ I32 deltanext, minnext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ cl_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue */
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ I32 deltanext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ I32 *minnextp;
+ Newx( minnextp, 1, I32 );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
+ SvREFCNT_dec(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+
+
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->extflags |= RXf_ANCH_GPOS;
+ if (RExC_rx->gofs < (U32)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->extflags |= RXf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ I32 max1 = 0, min1 = I32_MAX;
+ struct regnode_charclass_class accum;
+
+ if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
+ SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ I32 deltanext=0, minnext=0, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused branches
+ even though they arent otherwise used.
+ */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (I32)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (max1 < (I32)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ if (frame) {
+ last = frame->last;
+ scan = frame->next;
+ stopparen = frame->stop;
+ frame = frame->prev;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? I32_MAX : delta;
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = I32_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ return min < stopmin ? min : stopmin;
+}
+
+STATIC U32
+S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ dVAR;
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) goto reStudy
+#else
+#define CHECK_RESTUDY_GOTO
+#endif
+
+/*
+ - pregcomp - compile a regular expression into internal code
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+
+
+#ifndef PERL_IN_XSUB_RE
+#define RE_ENGINE_PTR &PL_core_reg_engine
+#else
+extern const struct regexp_engine my_reg_engine;
+#define RE_ENGINE_PTR &my_reg_engine
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ dVAR;
+ HV * const table = GvHV(PL_hintgv);
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct
+ regexp engine. */
+ if (table) {
+ SV **ptr= hv_fetchs(table, "regcomp", FALSE);
+ GET_RE_DEBUG_FLAGS_DECL;
+ if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
+ const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ SvIV(*ptr));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+ }
+ }
+ return Perl_re_compile(aTHX_ pattern, flags);
+}
+#endif
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
+{
+ dVAR;
+ REGEXP *rx;
+ struct regexp *r;
+ register regexp_internal *ri;
+ STRLEN plen;
+ char* VOL exp;
+ char* xend;
+ regnode *scan;
+ I32 flags;
+ I32 minlen = 0;
+ U32 pm_flags;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ bool used_setjump = FALSE;
+ regex_charset initial_charset = get_regex_charset(orig_pm_flags);
+
+ U8 jump_ret = 0;
+ dJMPENV;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+#ifndef PERL_IN_XSUB_RE
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_ASCII = _new_invlist_C_array(ASCII_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
+ PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
+
+ PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
+ PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
+
+ PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
+
+ PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
+ PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
+
+ PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
+
+ PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
+ PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
+ PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
+
+ PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
+ PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
+
+ PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
+ PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
+
+ PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
+ PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
+
+ PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
+ PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
+
+ PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
+ PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
+
+ PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
+
+ PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
+ PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
+
+ PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
+ PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
+ }
+#endif
+
+ exp = SvPV(pattern, plen);
+
+ if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = 0;
+ }
+ else {
+ RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
+ }
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+
+ /****************** LONG JUMP TARGET HERE***********************/
+ /* Longjmp back to here if have to switch in midstream to utf8 */
+ if (! RExC_orig_utf8) {
+ JMPENV_PUSH(jump_ret);
+ used_setjump = TRUE;
+ }
+
+ if (jump_ret == 0) { /* First time through */
+ xend = exp + plen;
+
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8,
+ dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+ }
+ else { /* longjumped back */
+ STRLEN len = plen;
+
+ /* If the cause for the longjmp was other than changing to utf8, pop
+ * our own setjmp, and longjmp to the correct handler */
+ if (jump_ret != UTF8_LONGJMP) {
+ JMPENV_POP;
+ JMPENV_JUMP(jump_ret);
+ }
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+ exp = (char*)Perl_bytes_to_utf8(aTHX_
+ (U8*)SvPV_nomg(pattern, plen),
+ &len);
+ xend = exp + len;
+ RExC_orig_utf8 = RExC_utf8 = 1;
+ SAVEFREEPV(exp);
+ }
+
+#ifdef TRIE_STUDY_OPT
+ restudied = 0;
+#endif
+
+ pm_flags = orig_pm_flags;
+
+ if (initial_charset == REGEX_LOCALE_CHARSET) {
+ RExC_contains_locale = 1;
+ }
+ else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = pm_flags;
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_seen_evals = 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = &PL_regdummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_recurse_count = 0;
+
+#if 0 /* REGC() is (currently) a NOP at the first pass.
+ * Clever compilers notice this and complain. --jhi */
+ REGC((U8)REG_MAGIC, (char*)RExC_emit);
+#endif
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ RExC_precomp = NULL;
+ return(NULL);
+ }
+
+ /* Here, finished first pass. Get rid of any added setjmp */
+ if (used_setjump) {
+ JMPENV_POP;
+ }
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = (struct regexp*)SvANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= RE_ENGINE_PTR;
+ r->extflags = pm_flags;
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msix"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
+ SvPOK_on(rx);
+ SvFLAGS(rx) |= SvUTF8(pattern);
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - SvPVX_const(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ if (RExC_seen & REG_SEEN_RECURSE) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = pm_flags; /* don't let top level (?i) bleed */
+ RExC_parse = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+
+ /* Store the count of eval-groups for security checks: */
+ RExC_rx->seen_evals = RExC_seen_evals;
+ REGC((U8)REG_MAGIC, (char*) RExC_emit++);
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ return(NULL);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
+ Zero(r->substrs, 1, struct reg_substr_data);
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
+ if (data.last_found) {
+ SvREFCNT_dec(data.longest_fixed);
+ SvREFCNT_dec(data.longest_float);
+ SvREFCNT_dec(data.last_found);
+ }
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= 10) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
+ I32 fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ struct regnode_charclass_class ch_class; /* pointed to by data */
+ int stclass_flag;
+ I32 last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else
+ first += regarglen[OP(first)];
+
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ regnode *trie_op;
+ /* this can happen only on restudy */
+ if ( OP(first) == TRIE ) {
+ struct regnode_1 *trieop = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(first,trieop,struct regnode_1);
+ trie_op=(regnode *)trieop;
+ } else {
+ struct regnode_charclass *trieop = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(first,trieop,struct regnode_charclass);
+ trie_op=(regnode *)trieop;
+ }
+ OP(trie_op)+=2;
+ make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
+ ri->regstclass = trie_op;
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->extflags |= (OP(first) == MBOL
+ ? RXf_ANCH_MBOL
+ : (OP(first) == SBOL
+ ? RXf_ANCH_SBOL
+ : RXf_ANCH_BOL));
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->extflags |= RXf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? RXf_ANCH_MBOL
+ : RXf_ANCH_SBOL;
+ r->extflags |= type;
+ r->intflags |= PREGf_IMPLICIT;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
+ && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ first = scan;
+ if (!ri->regstclass) {
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
+ &data, -1, NULL, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
+
+
+ CHECK_RESTUDY_GOTO;
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_SEEN_VERBARG)
+ && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
+ r->extflags |= RXf_CHECK_ALL;
+ scan_commit(pRExC_state, &data,&minlen,0);
+ SvREFCNT_dec(data.last_found);
+
+ /* Note that code very similar to this but for anchored string
+ follows immediately below, changes may need to be made to both.
+ Be careful.
+ */
+ longest_float_length = CHR_SVLEN(data.longest_float);
+ if (longest_float_length
+ || (data.flags & SF_FL_BEFORE_EOL
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE))))
+ {
+ I32 t,ml;
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ || (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ goto remove_float; /* As in (a)+. */
+
+ /* copy the information about the longest float from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(data.longest_float)) {
+ r->float_utf8 = data.longest_float;
+ r->float_substr = NULL;
+ } else {
+ r->float_substr = data.longest_float;
+ r->float_utf8 = NULL;
+ }
+ /* float_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_float ? *(data.minlen_float)
+ : (I32)longest_float_length;
+ r->float_end_shift = ml - data.offset_float_min
+ - longest_float_length + (SvTAIL(data.longest_float) != 0)
+ + data.lookbehind_float;
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+
+ t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ remove_float:
+ r->float_substr = r->float_utf8 = NULL;
+ SvREFCNT_dec(data.longest_float);
+ longest_float_length = 0;
+ }
+
+ /* Note that code very similar to this but for floating string
+ is immediately above, changes may need to be made to both.
+ Be careful.
+ */
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ && (longest_fixed_length
+ || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)))) )
+ {
+ I32 t,ml;
+
+ /* copy the information about the longest fixed
+ from the reg_scan_data over to the program. */
+ if (SvUTF8(data.longest_fixed)) {
+ r->anchored_utf8 = data.longest_fixed;
+ r->anchored_substr = NULL;
+ } else {
+ r->anchored_substr = data.longest_fixed;
+ r->anchored_utf8 = NULL;
+ }
+ /* fixed_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_fixed ? *(data.minlen_fixed)
+ : (I32)longest_fixed_length;
+ r->anchored_end_shift = ml - data.offset_fixed
+ - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
+ + data.lookbehind_fixed;
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+
+ t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ SvREFCNT_dec(data.longest_fixed);
+ longest_fixed_length = 0;
+ }
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && !(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->extflags & RXf_ANCH_SINGLE)
+ r->extflags |= RXf_NOSCAN;
+ }
+ else {
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
+ This should be changed ASAP! */
+ if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ I32 fake;
+ struct regnode_charclass_class ch_class;
+ I32 last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+
+ minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
+ &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
+
+ CHECK_RESTUDY_GOTO;
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (!(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_SEEN_GPOS)
+ r->extflags |= RXf_GPOS_SEEN;
+ if (RExC_seen & REG_SEEN_LOOKBEHIND)
+ r->extflags |= RXf_LOOKBEHIND_SEEN;
+ if (RExC_seen & REG_SEEN_EVAL)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_SEEN_CANY)
+ r->extflags |= RXf_CANY_SEEN;
+ if (RExC_seen & REG_SEEN_VERBARG)
+ r->intflags |= PREGf_VERBARG_SEEN;
+ if (RExC_seen & REG_SEEN_CUTGROUP)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+#ifdef STUPID_PATTERN_CHECKS
+ if (RX_PRELEN(rx) == 0)
+ r->extflags |= RXf_NULL;
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
+ r->extflags |= RXf_WHITE;
+ else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
+ r->extflags |= RXf_START_ONLY;
+#else
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else {
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+
+ if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_NULL;
+ else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
+ && OP(regnext(first)) == END)
+ r->extflags |= RXf_WHITE;
+ }
+#endif
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, 1, "a" );
+ ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+
+ DEBUG_DUMP_r({
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const U32 len = ri->u.offsets[0];
+ U32 i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+ return rx;
+}
+
+#undef RE_ENGINE_PTR
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify(aTHX);
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ I32 length;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_len(av);
+ SvREFCNT_dec(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ char *s = NULL;
+ I32 i = 0;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (!rx->subbeg) {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ else
+ if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
+ /* $` */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
+ /* $' */
+ s = rx->subbeg + rx->offs[0].end;
+ i = rx->sublen - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= paren && paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ /* $& $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1;
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ assert(rx->sublen >= (s - rx->subbeg) + i );
+ if (i >= 0) {
+ const int oldtainted = PL_tainted;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ PL_tainted = oldtainted;
+ if ( (rx->extflags & RXf_CANY_SEEN)
+ ? (RXp_MATCH_UTF8(rx)
+ && (!i || is_utf8_string((U8*)s, i)))
+ : (RXp_MATCH_UTF8(rx)) )
+ {
+ SvUTF8_on(sv);
+ }
+ else
+ SvUTF8_off(sv);
+ if (PL_tainting) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ PL_tainted = 1;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ PL_tainted = 1;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify(aTHX);
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ /* $` / ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $' / ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $& / ${^MATCH}, $1, $2, ... */
+ default:
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isALNUM_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isALNUM(*RExC_parse));
+ }
+
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ /* NOT REACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int rem=(int)(RExC_end - RExC_parse); \
+ int cut; \
+ int num; \
+ int iscut=0; \
+ if (rem>10) { \
+ rem=10; \
+ iscut=1; \
+ } \
+ cut=10-rem; \
+ if (RExC_lastparse!=RExC_parse) \
+ PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
+ rem, RExC_parse, \
+ cut + 4, \
+ iscut ? "..." : "<" \
+ ); \
+ else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * with some added info that is placed as UVs at the beginning in a header
+ * portion. An inversion list for Unicode is an array of code points, sorted
+ * by ordinal number. The zeroth element is the first code point in the list.
+ * The 1th element is the first element beyond that not in the list. In other
+ * words, the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion list
+ * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
+ * beginning of the list is either that element if 0, or the next one if 1.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+#define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
+#define INVLIST_ITER_OFFSET 1 /* Current iteration position */
+
+/* This is a combination of a version and data structure type, so that one
+ * being passed in can be validated to be an inversion list of the correct
+ * vintage. When the structure of the header is changed, a new random number
+ * in the range 2**31-1 should be generated and the new() method changed to
+ * insert that at this location. Then, if an auxiliary program doesn't change
+ * correspondingly, it will be discovered immediately */
+#define INVLIST_VERSION_ID_OFFSET 2
+#define INVLIST_VERSION_ID 1064334010
+
+/* For safety, when adding new elements, remember to #undef them at the end of
+ * the inversion list code section */
+
+#define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
+/* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
+ * contains the code point U+00000, and begins here. If 1, the inversion list
+ * doesn't contain U+0000, and it begins at the next UV in the array.
+ * Inverting an inversion list consists of adding or removing the 0 at the
+ * beginning of it. By reserving a space for that 0, inversion can be made
+ * very fast */
+
+#define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
+
+/* Internally things are UVs */
+#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
+
+#define INVLIST_INITIAL_LEN 10
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000
+ * in it or not. The other parameter tells it whether the code that
+ * follows this call is about to put a 0 in the inversion list or not.
+ * The first element is either the element with 0, if 0, or the next one,
+ * if 1 */
+
+ UV* zero = get_invlist_zero_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! *get_invlist_len_addr(invlist));
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *zero = 1 ^ will_have_0;
+ return zero + *zero;
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(pTHX_ SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(*get_invlist_len_addr(invlist));
+ assert(*get_invlist_zero_addr(invlist) == 0
+ || *get_invlist_zero_addr(invlist) == 1);
+
+ /* The array begins either at the element reserved for zero if the
+ * list contains 0 (that element will be set to 0), or otherwise the next
+ * element (in which case the reserved element will be set to 1). */
+ return (UV *) (get_invlist_zero_addr(invlist)
+ + *get_invlist_zero_addr(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_len_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current number
+ * of used elements in the inversion list */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_len(pTHX_ SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT_INVLIST_LEN;
+
+ return *get_invlist_len_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
+{
+ /* Sets the current number of elements stored in the inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ *get_invlist_len_addr(invlist) = len;
+
+ assert(len <= SvLEN(invlist));
+
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
+ /* If the list contains U+0000, that element is part of the header,
+ * and should not be counted as part of the array. It will contain
+ * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
+ * subtract:
+ * SvCUR_set(invlist,
+ * TO_INTERNAL_SIZE(len
+ * - (*get_invlist_zero_addr(inv_list) ^ 1)));
+ * But, this is only valid if len is not 0. The consequences of not doing
+ * this is that the memory allocation code may think that 1 more UV is
+ * being used than actually is, and so might do an unnecessary grow. That
+ * seems worth not bothering to make this the precise amount.
+ *
+ * Note that when inverting, SvCUR shouldn't change */
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_max(pTHX_ SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ return FROM_INTERNAL_SIZE(SvLEN(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_zero_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that is reserved to hold 0 if the inversion
+ * list contains 0. This has to be the last element of the heading, as the
+ * list proper starts with either it if 0, or the next element if not.
+ * (But we force it to contain either 0 or 1) */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = INVLIST_INITIAL_LEN;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV(TO_INTERNAL_SIZE(initial_size));
+ invlist_set_len(new_list, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = UV_MAX;
+
+ /* This should force a segfault if a method doesn't initialize this
+ * properly */
+ *get_invlist_zero_addr(new_list) = UV_MAX;
+
+ *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
+#if HEADER_LENGTH != 4
+# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
+#endif
+
+ return new_list;
+}
+#endif
+
+STATIC SV*
+S__new_invlist_C_array(pTHX_ UV* list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands */
+
+ SV* invlist = newSV_type(SVt_PV);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ SvPV_set(invlist, (char *) list);
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
+
+ if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ return invlist;
+}
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(pTHX_ SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = invlist_len(invlist);
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ array = _invlist_array_init(invlist, start == 0);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If overflows the existing space, extend, which may cause the array to be
+ * moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+ invlist_set_len(invlist, len); /* Have to set len here to avoid assert
+ failure in invlist_array() */
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+STATIC IV
+S_invlist_search(pTHX_ SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV high = invlist_len(invlist);
+ const UV * const array = invlist_array(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_SEARCH;
+
+ /* If list is empty or the code point is before the first element, return
+ * failure. */
+ if (high == 0 || cp < array[0]) {
+ return -1;
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. */
+ while (low < high) {
+ IV mid = (low + high) / 2;
+ if (array[mid] <= cp) {
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ return high - 1;
+}
+
+void
+Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ return;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented. The first list,
+ * <a>, may be NULL, in which case a copy of the second list is returned.
+ * If <complement_b> is TRUE, the union is taken of the complement
+ * (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
+ if (*output == a) {
+ if (a != NULL) {
+ SvREFCNT_dec(a);
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+ return;
+ }
+ else if ((len_b = invlist_len(b)) == 0) {
+ if (*output == b) {
+ SvREFCNT_dec(b);
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ SvREFCNT_dec(a);
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != invlist_len(u)) {
+ invlist_set_len(u, len_u);
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *output || b == *output) {
+ SvREFCNT_dec(*output);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *output = u;
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented.
+ * If <complement_b> is TRUE, the result will be the intersection of <a>
+ * and the complement (or inversion) of <b> instead of <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = invlist_len(a);
+ if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ *i = invlist_clone(a);
+
+ if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ }
+ /* else *i is already 'a' */
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ SvREFCNT_dec(a);
+ }
+ else if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ *i = _new_invlist(0);
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != invlist_len(r)) {
+ invlist_set_len(r, len_r);
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *i || b == *i) {
+ SvREFCNT_dec(*i);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *i = r;
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = invlist_len(invlist);
+ }
+
+ /* If comes after the final entry, can just append it to the end */
+ if (len == 0
+ || start >= invlist_array(invlist)
+ [invlist_len(invlist) - 1])
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec(range_invlist);
+
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ UV* len_pos = get_invlist_len_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ /* The inverse of matching nothing is matching everything */
+ if (*len_pos == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
+ * zero element was a 0, so it is being removed, so the length decrements
+ * by 1; and vice-versa. SvCUR is unaffected */
+ if (*get_invlist_zero_addr(invlist) ^= 1) {
+ (*len_pos)--;
+ }
+ else {
+ (*len_pos)++;
+ }
+}
+
+void
+Perl__invlist_invert_prop(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list (which must be a Unicode property,
+ * all of which don't match above the Unicode maximum code point.) And
+ * Perl has chosen to not have the inversion match above that either. This
+ * adds a 0x110000 if the list didn't end with it, and removes it if it did
+ */
+
+ UV len;
+ UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
+
+ _invlist_invert(invlist);
+
+ len = invlist_len(invlist);
+
+ if (len != 0) { /* If empty do nothing */
+ array = invlist_array(invlist);
+ if (array[len - 1] != PERL_UNICODE_MAX + 1) {
+ /* Add 0x110000. First, grow if necessary */
+ len++;
+ if (invlist_max(invlist) < len) {
+ invlist_extend(invlist, len);
+ array = invlist_array(invlist);
+ }
+ invlist_set_len(invlist, len);
+ array[len - 1] = PERL_UNICODE_MAX + 1;
+ }
+ else { /* Remove the 0x110000 */
+ invlist_set_len(invlist, len - 1);
+ }
+ }
+
+ return;
+}
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
+ STRLEN length = SvCUR(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ SvCUR_set(new_invlist, length); /* This isn't done automatically */
+ Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_iter_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_version_id_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the version id. */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+STATIC bool
+S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ UV* pos = get_invlist_iter_addr(invlist);
+ UV len = invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = UV_MAX; /* Force iternit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#if 0
+void
+S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
+{
+ /* Dumps out the ranges in an inversion list. The string 'header'
+ * if present is output on a line before the first range */
+
+ UV start, end;
+
+ if (header && strlen(header)) {
+ PerlIO_printf(Perl_debug_log, "%s\n", header);
+ }
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
+ }
+ else {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
+ }
+ }
+}
+#endif
+
+#undef HEADER_LENGTH
+#undef INVLIST_INITIAL_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_LEN_OFFSET
+#undef INVLIST_ZERO_OFFSET
+#undef INVLIST_ITER_OFFSET
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
+{
+ dVAR;
+ register regnode *ret; /* Will be the head of the group. */
+ register regnode *br;
+ register regnode *lastbr;
+ register regnode *ender = NULL;
+ register I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (0x02|0x04)
+ I32 wastedflags = 0x00;
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if !argok */
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_SEEN_CUTGROUP;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse++;
+ vFAIL3("Unknown verb pattern '%.*s'",
+ verb_len, start_verb);
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_SEEN_VERBARG;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ } else
+ if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ bool has_use_defaults = FALSE;
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in regatom(), if
+ you change this make sure you change that */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? /* reverse test from the others */
+ REG_RSN_RETURN_NAME :
+ REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start) {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ if (*RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls */
+ if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '#': /* (?#...) */
+ while (*RExC_parse && *RExC_parse != ')')
+ RExC_parse++;
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?#... not terminated");
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ { /* named and numeric backreferences */
+ I32 num;
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ goto gen_recurse_regop;
+ /* NOT REACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOT REACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /*FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ num = atoi(RExC_parse);
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-')
+ RExC_parse++;
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reganode(pRExC_state, GOSUB, num);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ ARG2L_SET( ret, RExC_recurse_count++);
+ RExC_emit++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
+ } else {
+ RExC_size++;
+ }
+ RExC_seen |= REG_SEEN_RECURSE;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ } /* named and numeric backreferences */
+ /* NOT REACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALL THROUGH */
+ case '{': /* (?{...}) */
+ {
+ I32 count = 1;
+ U32 n = 0;
+ char c;
+ char *s = RExC_parse;
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_EVAL;
+ while (count && (c = *RExC_parse)) {
+ if (c == '\\') {
+ if (RExC_parse[1])
+ RExC_parse++;
+ }
+ else if (c == '{')
+ count++;
+ else if (c == '}')
+ count--;
+ RExC_parse++;
+ }
+ if (*RExC_parse != ')') {
+ RExC_parse = s;
+ vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
+ }
+ if (!SIZE_ONLY) {
+ PAD *pad;
+ OP_4tree *sop, *rop;
+ SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
+
+ ENTER;
+ Perl_save_re_context(aTHX);
+ rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
+ sop->op_private |= OPpREFCOUNTED;
+ /* re_dup will OpREFCNT_inc */
+ OpREFCNT_set(sop, 1);
+ LEAVE;
+
+ n = add_data(pRExC_state, 3, "nop");
+ RExC_rxi->data->data[n] = (void*)rop;
+ RExC_rxi->data->data[n+1] = (void*)sop;
+ RExC_rxi->data->data[n+2] = (void*)pad;
+ SvREFCNT_dec(sv);
+ }
+ else { /* First pass */
+ if (PL_reginterp_cnt < ++RExC_seen_evals
+ && IN_PERL_RUNTIME)
+ /* No compiled RE interpolated, has runtime
+ components ===> unsafe. */
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ if (PL_tainting && PL_tainted)
+ FAIL("Eval-group in insecure regular expression");
+#if PERL_VERSION > 8
+ if (IN_PERL_COMPILETIME)
+ PL_cv_has_eval = 1;
+#endif
+ }
+
+ nextchar(pRExC_state);
+ if (is_logical) {
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 2;
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reganode(pRExC_state, EVAL, n);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+ REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
+ goto insert_if;
+ }
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'D' &&
+ RExC_parse[1] == 'E' &&
+ RExC_parse[2] == 'F' &&
+ RExC_parse[3] == 'I' &&
+ RExC_parse[4] == 'N' &&
+ RExC_parse[5] == 'E')
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse +=6 ;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ parno = atoi(RExC_parse++);
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ parno = atoi(RExC_parse++);
+
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if ((c = *nextchar(pRExC_state)) != ')')
+ vFAIL("Switch condition not recognized");
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL)
+ br = reganode(pRExC_state, LONGJMP, 0);
+ else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+ lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
+ regbranch(pRExC_state, &flags, 1,depth+1);
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')')
+ vFAIL("Switch (?(condition)... contains too many branches");
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ else {
+ vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
+ }
+ }
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
+ that follow */
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ goto parse_flags;
+ default:
+ --RExC_parse;
+ parse_flags: /* (?i) */
+ {
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ RExC_contains_locale = 1;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
+ /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (SIZE_ONLY)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ fail_modifiers:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ paren = ':';
+ /*FALLTHROUGH*/
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (paren != ':') {
+ oregflags |= posflags;
+ oregflags &= ~negflags;
+ set_regex_charset(&oregflags, cs);
+ }
+ nextchar(pRExC_state);
+ if (paren != ':') {
+ *flagp = TRYAGAIN;
+ return NULL;
+ } else {
+ ret = NULL;
+ goto parse_rest;
+ }
+ /*NOTREACHED*/
+ default:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ ++RExC_parse;
+ }
+ }} /* one for the default block, one for the switch */
+ }
+ else { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_SEEN_RECURSE
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting open paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL)
+ return(NULL);
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL)
+ return(NULL);
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting close paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALL THROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ RExC_flags = oregflags;
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register regnode *chain = NULL;
+ register regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ return(NULL);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ RExC_naughty++;
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register char op;
+ register char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN)
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ min = atoi(RExC_parse);
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ max = atoi(maxpos);
+ if (!max && *maxpos != '0')
+ max = REG_INFTY; /* meaning "infinity" */
+ else if (max >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ RExC_parse = next;
+ nextchar(pRExC_state);
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ RExC_naughty += 2 + RExC_naughty / 2;
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ RExC_naughty += 4 + RExC_naughty; /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (max < min)
+ vFAIL("Can't do {n,m} with n > m");
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 4;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 3;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ ckWARN3reg(RExC_parse,
+ "%.*s matches null string many times",
+ (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
+ origparse);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+#ifndef REG_ALLOW_MINMOD_SUSPEND
+ else
+#endif
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ /*ret= ender;*/
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+
+/* reg_namedseq(pRExC_state,UVp, UV depth)
+
+ This is expected to be called by a parser routine that has
+ recognized '\N' and needs to handle the rest. RExC_parse is
+ expected to point at the first char following the N at the time
+ of the call.
+
+ The \N may be inside (indicated by valuep not being NULL) or outside a
+ character class.
+
+ \N may begin either a named sequence, or if outside a character class, mean
+ to match a non-newline. For non single-quoted regexes, the tokenizer has
+ attempted to decide which, and in the case of a named sequence converted it
+ into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
+ where c1... are the characters in the sequence. For single-quoted regexes,
+ the tokenizer passes the \N sequence through unchanged; this code will not
+ attempt to determine this nor expand those. The net effect is that if the
+ beginning of the passed-in pattern isn't '{U+' or there is no '}', it
+ signals that this \N occurrence means to match a non-newline.
+
+ Only the \N{U+...} form should occur in a character class, for the same
+ reason that '.' inside a character class means to just match a period: it
+ just doesn't make sense.
+
+ If valuep is non-null then it is assumed that we are parsing inside
+ of a charclass definition and the first codepoint in the resolved
+ string is returned via *valuep and the routine will return NULL.
+ In this mode if a multichar string is returned from the charnames
+ handler, a warning will be issued, and only the first char in the
+ sequence will be examined. If the string returned is zero length
+ then the value of *valuep is undefined and NON-NULL will
+ be returned to indicate failure. (This will NOT be a valid pointer
+ to a regnode.)
+
+ If valuep is null then it is assumed that we are parsing normal text and a
+ new EXACT node is inserted into the program containing the resolved string,
+ and a pointer to the new node is returned. But if the string is zero length
+ a NOTHING node is emitted instead.
+
+ On success RExC_parse is set to the char following the endbrace.
+ Parsing failures will generate a fatal error via vFAIL(...)
+ */
+STATIC regnode *
+S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
+{
+ char * endbrace; /* '}' following the name */
+ regnode *ret = NULL;
+ char* p;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMEDSEQ;
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meaning does not */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regwhite( pRExC_state, RExC_parse )
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The former is assumed when it can't be the latter. */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (valuep) {
+ /* no bare \N in a charclass */
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ nextchar(pRExC_state);
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ RExC_parse--;
+ Set_Node_Length(ret, 1); /* MJD */
+ return ret;
+ }
+
+ /* Here, we have decided it should be a named sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
+ && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (! valuep) {
+ RExC_parse = endbrace + 1;
+ return reg_node(pRExC_state,NOTHING);
+ }
+
+ if (SIZE_ONLY) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class"
+ );
+ RExC_parse = endbrace + 1;
+ }
+ *valuep = 0;
+ return (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+
+ REQUIRE_UTF8; /* named sequences imply Unicode semantics */
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ if (valuep) { /* In a bracketed char class */
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. XXX Solution is to recharacterize as
+ [rest-of-class]|multi1|multi2... */
+
+ STRLEN length_of_hex;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
+
+ char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ if (endchar < endbrace) {
+ ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
+ }
+
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) RExC_parse = endchar;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ if (endchar == endbrace) return NULL;
+
+ ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+ else { /* Not a char class */
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * (?:\x{char1}\x{char2}...)
+ * and then call reg recursively. That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. toke.c has converted the original Unicode values
+ * to native, so that we can just pass on the hex values unchanged. We
+ * do have to set a flag to keep recoding from happening in the
+ * recursion */
+
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
+ STRLEN len;
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char *orig_end = RExC_end;
+
+ while (RExC_parse < endbrace) {
+
+ /* Code points are separated by dots. If none, there is only one
+ * code point, and is terminated by the brace */
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < 8) {
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding */
+ RExC_override_recoding = 1;
+
+ ret = reg(pRExC_state, 1, flagp, depth+1);
+
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+
+ nextchar(pRExC_state);
+ }
+
+ return ret;
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends can either, depending
+ on context. Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret = NULL;
+ I32 flags;
+ char *parse_start = RExC_parse;
+ U8 op;
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_PARSE("atom");
+ *flagp = WORST; /* Tentatively. */
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SBOL);
+ else
+ ret = reg_node(pRExC_state, BOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SEOL);
+ else
+ ret = reg_node(pRExC_state, EOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state,depth+1);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 1, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ return(NULL);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '{':
+ if (!regcurly(RExC_parse)) {
+ RExC_parse++;
+ goto defchar;
+ }
+ /* FALL THROUGH */
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_SEEN_GPOS;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ ret = reg_node(pRExC_state, CANY);
+ RExC_seen |= REG_SEEN_CANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+ case 'w':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = ALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = ALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = ALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = ALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'W':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'b':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = BOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = BOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = BOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = BOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
+ ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
+ }
+ goto finish_meta_pat;
+ case 'B':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NBOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NBOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NBOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NBOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
+ ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
+ }
+ goto finish_meta_pat;
+ case 's':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = SPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = SPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = SPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = SPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'S':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NSPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NSPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NSPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NSPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'd':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = DIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = DIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = DIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'D':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NDIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NDIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = NDIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'h':
+ ret = reg_node(pRExC_state, HORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'H':
+ ret = reg_node(pRExC_state, NHORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'v':
+ ret = reg_node(pRExC_state, VERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'V':
+ ret = reg_node(pRExC_state, NVERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+ char* const oldregxend = RExC_end;
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ if (RExC_parse[1] == '{') {
+ /* a lovely hack--pretend we saw [\pX] instead */
+ RExC_end = strchr(RExC_parse, '}');
+ if (!RExC_end) {
+ const U8 c = (U8)*RExC_parse;
+ RExC_parse += 2;
+ RExC_end = oldregxend;
+ vFAIL2("Missing right brace on \\%c{}", c);
+ }
+ RExC_end++;
+ }
+ else {
+ RExC_end = RExC_parse + 2;
+ if (RExC_end > oldregxend)
+ RExC_end = oldregxend;
+ }
+ RExC_parse--;
+
+ ret = regclass(pRExC_state,depth+1);
+
+ RExC_end = oldregxend;
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret);
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ break;
+ case 'N':
+ /* Handle \N and \N{NAME} here and not below because it can be
+ multicharacter. join_exact() will join them up later on.
+ Also this makes sure that things like /\N{BLAH}+/ and
+ \N{BLAH} being multi char Just Happen. dmq*/
+ ++RExC_parse;
+ ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
+ break;
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool isg = *RExC_parse == 'g';
+ bool isrel = 0;
+ bool hasbrace = 0;
+ if (isg) {
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ } }
+ num = atoi(RExC_parse);
+ if (isg && num == 0)
+ vFAIL("Reference to invalid group 0");
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ if (!isg && num > 9 && num >= RExC_npar)
+ goto defchar;
+ else {
+ char * const parse_start = RExC_parse - 1; /* MJD */
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (parse_start == RExC_parse - 1)
+ vFAIL("Unterminated \\g... pattern");
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (MORE_ASCII_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if ( reg_skipcomment( pRExC_state ) )
+ goto tryagain;
+ }
+ /* FALL THROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ register STRLEN len;
+ register UV ender;
+ register char *p;
+ char *s;
+ STRLEN foldlen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
+ U8 node_type;
+
+ /* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
+ * it is folded to 'ss' even if not utf8 */
+ bool is_exactfu_sharp_s;
+
+ ender = 0;
+ node_type = ((! FOLD) ? EXACT
+ : (LOC)
+ ? EXACTFL
+ : (MORE_ASCII_RESTRICTED)
+ ? EXACTFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? EXACTFU
+ : EXACTF);
+ ret = reg_node(pRExC_state, node_type);
+ s = STRING(ret);
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (len = 0, p = RExC_parse - 1;
+ len < 127 && p < RExC_end;
+ len++)
+ {
+ char * const oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'N': /* named char sequence */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ASCII_TO_NATIVE('\033');
+ p++;
+ break;
+ case 'a':
+ ender = ASCII_TO_NATIVE('\007');
+ p++;
+ break;
+ case 'o':
+ {
+ STRLEN brace_len = len;
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(p,
+ &result,
+ &brace_len,
+ &error_msg,
+ 1);
+ p += brace_len;
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ else
+ {
+ ender = result;
+ }
+ if (PL_encoding && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ if (*++p == '{') {
+ char* const e = strchr(p, '}');
+
+ if (!e) {
+ RExC_parse = p + 1;
+ vFAIL("Missing right brace on \\x{}");
+ }
+ else {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = e - p - 1;
+ ender = grok_hex(p + 1, &numlen, &flags, NULL);
+ if (ender > 0xff)
+ REQUIRE_UTF8;
+ p = e + 1;
+ }
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = 2;
+ ender = grok_hex(p, &numlen, &flags, NULL);
+ p += numlen;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7': case '8':case '9':
+ if (*p == '0' ||
+ (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ }
+ else {
+ --p;
+ goto loopdone;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHA(*p)) {
+ /* Include any { following the alpha to emphasize
+ * that it could be part of an escape at some point
+ * in the future */
+ int len = (*(p + 1) == '{') ? 2 : 1;
+ ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
+ }
+ goto normal_default;
+ }
+ break;
+ default:
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ is_exactfu_sharp_s = (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S);
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ if ((UTF && FOLD) || is_exactfu_sharp_s) {
+ /* Prime the casefolded buffer. Locale rules, which apply
+ * only to code points < 256, aren't known until execution,
+ * so for them, just output the original character using
+ * utf8. If we start to fold non-UTF patterns, be sure to
+ * update join_exact() */
+ if (LOC && ender < 256) {
+ if (UNI_IS_INVARIANT(ender)) {
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ } else {
+ *tmpbuf = UTF8_TWO_BYTE_HI(ender);
+ *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
+ foldlen = 2;
+ }
+ }
+ else if (isASCII(ender)) { /* Note: Here can't also be LOC
+ */
+ ender = toLOWER(ender);
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ }
+ else if (! MORE_ASCII_RESTRICTED && ! LOC) {
+
+ /* Locale and /aa require more selectivity about the
+ * fold, so are handled below. Otherwise, here, just
+ * use the fold */
+ ender = toFOLD_uni(ender, tmpbuf, &foldlen);
+ }
+ else {
+ /* Under locale rules or /aa we are not to mix,
+ * respectively, ords < 256 or ASCII with non-. So
+ * reject folds that mix them, using only the
+ * non-folded code point. So do the fold to a
+ * temporary, and inspect each character in it. */
+ U8 trialbuf[UTF8_MAXBYTES_CASE+1];
+ U8* s = trialbuf;
+ UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
+ U8* e = s + foldlen;
+ bool fold_ok = TRUE;
+
+ while (s < e) {
+ if (isASCII(*s)
+ || (LOC && (UTF8_IS_INVARIANT(*s)
+ || UTF8_IS_DOWNGRADEABLE_START(*s))))
+ {
+ fold_ok = FALSE;
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ if (fold_ok) {
+ Copy(trialbuf, tmpbuf, foldlen, U8);
+ ender = tmpender;
+ }
+ else {
+ uvuni_to_utf8(tmpbuf, ender);
+ foldlen = UNISKIP(ender);
+ }
+ }
+ }
+ if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
+ if (len)
+ p = oldp;
+ else if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+
+ /* tmpbuf has been constructed by us, so we
+ * know it is valid utf8 */
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ s += unilen;
+ len += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break; /* "Can't happen." */
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ }
+ else {
+ len++;
+ REGC((char)ender, s++);
+ }
+ break;
+ }
+ if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ len += unilen;
+ s += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break;
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ len--;
+ }
+ else {
+ REGC((char)ender, s++);
+ }
+ }
+ loopdone: /* Jumped to when encounters something that shouldn't be in
+ the node */
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+ if (len > 0)
+ *flagp |= HASWIDTH;
+ if (len == 1 && UNI_IS_INVARIANT(ender))
+ *flagp |= SIMPLE;
+
+ if (SIZE_ONLY)
+ RExC_size += STR_SZ(len);
+ else {
+ STR_LEN(ret) = len;
+ RExC_emit += STR_SZ(len);
+ }
+ }
+ break;
+ }
+
+ return(ret);
+
+/* Jumped to when an unrecognized character set is encountered */
+bad_charset:
+ Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
+ return(NULL);
+}
+
+STATIC char *
+S_regwhite( RExC_state_t *pRExC_state, char *p )
+{
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGWHITE;
+
+ while (p < e) {
+ if (isSPACE(*p))
+ ++p;
+ else if (*p == '#') {
+ bool ended = 0;
+ do {
+ if (*p++ == '\n') {
+ ended = 1;
+ break;
+ }
+ } while (p < e);
+ if (!ended)
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+STATIC I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
+{
+ dVAR;
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse))) {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end)
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
+ namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ Simple_vFAIL3("POSIX class [:%.*s:] unknown",
+ t - s - 1, s + 1);
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC void
+S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_CHECKPOSIXCC;
+
+ if (POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ while (isALNUM(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+
+ /* [[=foo=]] and [[.foo.]] are still future. */
+ if (POSIXCC_NOTYET(c)) {
+ /* adjust RExC_parse so the error shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
+ NOOP;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ }
+ }
+}
+
+/* Generate the code to add a full posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * Xsourcelist is the full Unicode range list to use otherwise. */
+#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ \
+ /* Set this class in the node for runtime matching */ \
+ ANYOF_CLASS_SET(node, class); \
+ \
+ /* For above Latin1 code points, we use the full Unicode range */ \
+ _invlist_intersection(PL_AboveLatin1, \
+ Xsourcelist, \
+ &scratch_list); \
+ /* And set the output to it, adding instead if there already is an \
+ * output. Checking if <destlist> is NULL first saves an extra \
+ * clone. Its reference count will be decremented at the next \
+ * union, etc, or if this is the only instance, at the end of the \
+ * routine */ \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ /* For non-locale, just add it to any existing list */ \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
+ */
+#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ ANYOF_CLASS_SET(node, class); \
+ _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ _invlist_union_complement_2nd(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ /* Under /d, everything in the upper half of the Latin1 range \
+ * matches this complement */ \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ }
+
+/* Generate the code to add a posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * l1_sourcelist is the Latin1 range list to use otherwise.
+ * Xpropertyname is the name to add to <run_time_list> of the property to
+ * specify the code points above Latin1 that will have to be
+ * determined at run-time
+ * run_time_list is a SV* that contains text names of properties that are to
+ * be computed at run time. This concatenates <Xpropertyname>
+ * to it, apppropriately
+ * This is essentially DO_POSIX, but we know only the Latin1 values at compile
+ * time */
+#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ /* If not /a matching, there are going to be code points we will have \
+ * to defer to runtime to look-up */ \
+ if (! AT_LEAST_ASCII_RESTRICTED) { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
+ } \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, class); \
+ } \
+ else { \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : l1_sourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
+ * this and DO_N_POSIX */
+#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ if (AT_LEAST_ASCII_RESTRICTED) { \
+ _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
+ } \
+ else { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, namedclass); \
+ } \
+ else { \
+ SV* scratch_list = NULL; \
+ _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ } \
+ }
+
+STATIC U8
+S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+
+ /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
+ * Locale folding is done at run-time, so this function should not be
+ * called for nodes that are for locales.
+ *
+ * This function sets the bit corresponding to the fold of the input
+ * 'value', if not already set. The fold of 'f' is 'F', and the fold of
+ * 'F' is 'f'.
+ *
+ * It also knows about the characters that are in the bitmap that have
+ * folds that are matchable only outside it, and sets the appropriate lists
+ * and flags.
+ *
+ * It returns the number of bits that actually changed from 0 to 1 */
+
+ U8 stored = 0;
+ U8 fold;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
+
+ fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
+ : PL_fold[value];
+
+ /* It assumes the bit for 'value' has already been set */
+ if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
+ ANYOF_BITMAP_SET(node, fold);
+ stored++;
+ }
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
+ /* Certain Latin1 characters have matches outside the bitmap. To get
+ * here, 'value' is one of those characters. None of these matches is
+ * valid for ASCII characters under /aa, which have been excluded by
+ * the 'if' above. The matches fall into three categories:
+ * 1) They are singly folded-to or -from an above 255 character, as
+ * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
+ * WITH DIAERESIS;
+ * 2) They are part of a multi-char fold with another character in the
+ * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
+ * 3) They are part of a multi-char fold with a character not in the
+ * bitmap, such as various ligatures.
+ * We aren't dealing fully with multi-char folds, except we do deal
+ * with the pattern containing a character that has a multi-char fold
+ * (not so much the inverse).
+ * For types 1) and 3), the matches only happen when the target string
+ * is utf8; that's not true for 2), and we set a flag for it.
+ *
+ * The code below adds to the passed in inversion list the single fold
+ * closures for 'value'. The values are hard-coded here so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out
+ * to disk to find the possible matches. XXX It would be better to
+ * generate these via regen, in case a new version of the Unicode
+ * standard adds new mappings, though that is not really likely. */
+ switch (value) {
+ case 'k':
+ case 'K':
+ /* KELVIN SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
+ break;
+ case 's':
+ case 'S':
+ /* LATIN SMALL LETTER LONG S */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
+ break;
+ case MICRO_SIGN:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_SMALL_LETTER_MU);
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_CAPITAL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ /* ANGSTROM SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
+ if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ PL_fold_latin1[value]);
+ }
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_SHARP_S);
+
+ /* Under /a, /d, and /u, this can match the two chars "ss" */
+ if (! MORE_ASCII_RESTRICTED) {
+ add_alternate(alternate_ptr, (U8 *) "ss", 2);
+
+ /* And under /u or /a, it can match even if the target is
+ * not utf8 */
+ if (AT_LEAST_UNI_SEMANTICS) {
+ ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ break;
+ case 'F': case 'f':
+ case 'I': case 'i':
+ case 'L': case 'l':
+ case 'T': case 't':
+ case 'A': case 'a':
+ case 'H': case 'h':
+ case 'J': case 'j':
+ case 'N': case 'n':
+ case 'W': case 'w':
+ case 'Y': case 'y':
+ /* These all are targets of multi-character folds from code
+ * points that require UTF8 to express, so they can't match
+ * unless the target string is in UTF-8, so no action here is
+ * necessary, as regexec.c properly handles the general case
+ * for UTF-8 matching */
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this
+ * being output */
+ ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
+ break;
+ }
+ }
+ else if (DEPENDS_SEMANTICS
+ && ! isASCII(value)
+ && PL_fold_latin1[value] != value)
+ {
+ /* Under DEPENDS rules, non-ASCII Latin1 characters match their
+ * folds only when the target string is in UTF-8. We add the fold
+ * here to the list of things to match outside the bitmap, which
+ * won't be looked at unless it is UTF8 (or else if something else
+ * says to look even if not utf8, but those things better not happen
+ * under DEPENDS semantics. */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
+ }
+
+ return stored;
+}
+
+
+PERL_STATIC_INLINE U8
+S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+ /* This inline function sets a bit in the bitmap if not already set, and if
+ * appropriate, its fold, returning the number of bits that actually
+ * changed from 0 to 1 */
+
+ U8 stored;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
+
+ if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
+ return 0;
+ }
+
+ ANYOF_BITMAP_SET(node, value);
+ stored = 1;
+
+ if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
+ stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
+ }
+
+ return stored;
+}
+
+STATIC void
+S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
+{
+ /* Adds input 'string' with length 'len' to the ANYOF node's unicode
+ * alternate list, pointed to by 'alternate_ptr'. This is an array of
+ * the multi-character folds of characters in the node */
+ SV *sv;
+
+ PERL_ARGS_ASSERT_ADD_ALTERNATE;
+
+ if (! *alternate_ptr) {
+ *alternate_ptr = newAV();
+ }
+ sv = newSVpvn_utf8((char*)string, len, TRUE);
+ av_push(*alternate_ptr, sv);
+ return;
+}
+
+/*
+ parse a class specification and produce either an ANYOF node that
+ matches the pattern or perhaps will be optimized into an EXACTish node
+ instead. The node contains a bit map for the first 256 characters, with the
+ corresponding bit set if that character is in the list. For characters
+ above 255, a range list is used */
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
+{
+ dVAR;
+ register UV nextvalue;
+ register IV prevvalue = OOB_UNICODE;
+ register IV range = 0;
+ UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
+ register regnode *ret;
+ STRLEN numlen;
+ IV namedclass;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ UV n;
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ UV has_user_defined_property = 0;
+
+ /* code points this node matches that can't be stored in the bitmap */
+ SV* nonbitmap = NULL;
+
+ /* The items that are to match that aren't stored in the bitmap, but are a
+ * result of things that are stored there. This is the fold closure of
+ * such a character, either because it has DEPENDS semantics and shouldn't
+ * be matched unless the target string is utf8, or is a code point that is
+ * too large for the bit map, as for example, the fold of the MICRO SIGN is
+ * above 255. This all is solely for performance reasons. By having this
+ * code know the outside-the-bitmap folds that the bitmapped characters are
+ * involved with, we don't have to go out to disk to find the list of
+ * matches, unless the character class includes code points that aren't
+ * storable in the bit map. That means that a character class with an 's'
+ * in it, for example, doesn't need to go out to disk to find everything
+ * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
+ * empty unless there is something whose fold we don't know about, and will
+ * have to go out to the disk to find. */
+ SV* l1_fold_invlist = NULL;
+
+ /* List of multi-character folds that are matched by this node */
+ AV* unicode_alternate = NULL;
+#ifdef EBCDIC
+ UV literal_endpoint = 0;
+#endif
+ UV stored = 0; /* how many chars stored in the bitmap */
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state, ANYOF, 0);
+
+
+ if (!SIZE_ONLY) {
+ ANYOF_FLAGS(ret) = 0;
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_naughty++;
+ RExC_parse++;
+ if (!SIZE_ONLY)
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+
+ /* We have decided to not allow multi-char folds in inverted character
+ * classes, due to the confusion that can happen, especially with
+ * classes that are designed for a non-Unicode world: You have the
+ * peculiar case that:
+ "s s" =~ /^[^\xDF]+$/i => Y
+ "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ allow_full_fold = FALSE;
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ RExC_emit += ANYOF_SKIP;
+ if (LOC) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
+ }
+ ANYOF_BITMAP_ZERO(ret);
+ listsv = newSVpvs("# comment\n");
+ initial_listsv_len = SvCUR(listsv);
+ }
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+
+ if (!SIZE_ONLY && POSIXCC(nextvalue))
+ checkposixcc(pRExC_state);
+
+ /* allow 1st char to be ] (allowing it to be - is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+parseit:
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+ if (value == '[' && POSIXCC(nextvalue))
+ namedclass = regpposixcc(pRExC_state, value);
+ else if (value == '\\') {
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+ switch ((I32)value) {
+ case 'w': namedclass = ANYOF_ALNUM; break;
+ case 'W': namedclass = ANYOF_NALNUM; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. */
+ UV v; /* value is register so we cant & it /grrr */
+ if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
+ goto parseit;
+ }
+ value= v;
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(UCHARAT(RExC_parse)))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(UCHARAT(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV** invlistsvp;
+ SV* invlist;
+ char* name;
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ value = value == 'p' ? 'P' : 'p'; /* toggle */
+ while (isSPACE(UCHARAT(RExC_parse))) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ Newx(name, n + sizeof("_i__\n"), char);
+
+ sprintf(name, "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ );
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ TRUE, /* this routine will handle
+ undefined properties */
+ NULL, FALSE /* No inversion list */
+ );
+ if ( ! swash
+ || ! SvROK(swash)
+ || ! SvTYPE(SvRV(swash)) == SVt_PVHV
+ || ! (invlistsvp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "INVLIST", FALSE))
+ || ! (invlist = *invlistsvp))
+ {
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. Add it
+ * to the list to look up then */
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
+ (value == 'p' ? '+' : '!'),
+ name);
+ has_user_defined_property = 1;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8 */
+ ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ SV** user_defined_svp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "USER_DEFINED", FALSE);
+ if (user_defined_svp) {
+ has_user_defined_property
+ |= SvUV(*user_defined_svp);
+ }
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties, invlist, &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_MAX; /* no official name, but it's named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ASCII_TO_NATIVE('\033');break;
+ case 'a': value = ASCII_TO_NATIVE('\007');break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(RExC_parse,
+ &value,
+ &numlen,
+ &error_msg,
+ SIZE_ONLY);
+ RExC_parse += numlen;
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ if (PL_encoding && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ if (*RExC_parse == '{') {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ char * const e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL("Missing right brace on \\x{}");
+
+ numlen = e - RExC_parse;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse = e + 1;
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ numlen = 2;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ }
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isALNUM(value) && value != '_') {
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ }
+ break;
+ }
+ } /* end of \blah */
+#ifdef EBCDIC
+ else
+ literal_endpoint++;
+#endif
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+
+ /* What matches in a locale is not known until runtime, so need to
+ * (one time per class) allocate extra space to pass to regexec.
+ * The space will contain a bit for each named class that is to be
+ * matched against. This isn't needed for \p{} and pseudo-classes,
+ * as they are not affected by locale, and hence are dealt with
+ * separately */
+ if (LOC && namedclass < ANYOF_MAX && ! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ ANYOF_CLASS_ZERO(ret);
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_CLASS;
+ }
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ ckWARN4reg(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ if (prevvalue < 256) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
+ }
+ else {
+ nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ }
+
+ if (!SIZE_ONLY) {
+
+ /* Possible truncation here but in some 64-bit environments
+ * the compiler gets heartburn about switch on 64-bit values.
+ * A similar issue a little earlier when switching on value.
+ * --jhi */
+ switch ((I32)namedclass) {
+
+ case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_NALNUMC:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_ALPHA:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_NALPHA:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_ASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union(properties, PL_ASCII, &properties);
+ }
+ break;
+ case ANYOF_NASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union_complement_2nd(properties,
+ PL_ASCII, &properties);
+ if (DEPENDS_SEMANTICS) {
+ ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ break;
+ case ANYOF_BLANK:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_NBLANK:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_CNTRL:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_NCNTRL:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_DIGIT:
+ /* Ignore the compiler warning for this macro, planned to
+ * be eliminated later */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_NDIGIT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_GRAPH:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_NGRAPH:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_HORIZWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding. It turns out that \h
+ * is just a synonym for XPosixBlank */
+ _invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_NHORIZWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ { /* These require special handling, as they differ under
+ folding, matching Cased there (which in the ASCII range
+ is the same as Alpha */
+
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixLower;
+ l1_source = PL_L1PosixLower;
+ Xname = "XPosixLower";
+ }
+ if (namedclass == ANYOF_LOWER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_PRINT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_NPRINT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_PUNCT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_NPUNCT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_PSXSPC:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_NPSXSPC:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_SPACE:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_NSPACE:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_UPPER: /* Same as LOWER, above */
+ case ANYOF_NUPPER:
+ {
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixUpper;
+ l1_source = PL_L1PosixUpper;
+ Xname = "XPosixUpper";
+ }
+ if (namedclass == ANYOF_UPPER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_ALNUM: /* Really is 'Word' */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_NALNUM:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_VERTWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding */
+ _invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_NVERTWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_XDIGIT:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_NXDIGIT:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_MAX:
+ /* this is to handle \p and \P */
+ break;
+ default:
+ vFAIL("Invalid [::] class");
+ break;
+ }
+
+ continue;
+ }
+ } /* end of namedclass \blah */
+
+ if (range) {
+ if (prevvalue > (IV)value) /* b-a */ {
+ const int w = RExC_parse - rangebegin;
+ Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
+ range = 0; /* not a valid range */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the range */
+ if (RExC_parse+1 < RExC_end
+ && *RExC_parse == '-'
+ && RExC_parse[1] != ']')
+ {
+ RExC_parse++;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (ckWARN(WARN_REGEXP)) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ if (!SIZE_ONLY)
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* now is the next time */
+ if (!SIZE_ONLY) {
+ if (prevvalue < 256) {
+ const IV ceilvalue = value < 256 ? value : 255;
+ IV i;
+#ifdef EBCDIC
+ /* In EBCDIC [\x89-\x91] should include
+ * the \x8e but [i-j] should not. */
+ if (literal_endpoint == 2 &&
+ ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
+ (isUPPER(prevvalue) && isUPPER(ceilvalue))))
+ {
+ if (isLOWER(prevvalue)) {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ } else {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ }
+ else
+#endif
+ for (i = prevvalue; i <= ceilvalue; i++) {
+ stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ if (value > 255) {
+ const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
+ const UV natvalue = NATIVE_TO_UNI(value);
+ nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
+ }
+#ifdef EBCDIC
+ literal_endpoint = 0;
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ }
+
+
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY AFTER HERE *********/
+
+ /* If folding and there are code points above 255, we calculate all
+ * characters that could fold to or from the ones already on the list */
+ if (FOLD && nonbitmap) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+
+ /* This is a list of all the characters that participate in folds
+ * (except marks, etc in multi-char folds */
+ if (! PL_utf8_foldable) {
+ SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
+ PL_utf8_foldable = _swash_to_invlist(swash);
+ SvREFCNT_dec(swash);
+ }
+
+ /* This is a hash that for a particular fold gives all characters
+ * that are involved in it */
+ if (! PL_utf8_foldclosures) {
+
+ /* If we were unable to find any folds, then we likely won't be
+ * able to find the closures. So just create an empty list.
+ * Folding will effectively be restricted to the non-Unicode rules
+ * hard-coded into Perl. (This case happens legitimately during
+ * compilation of Perl itself before the Unicode tables are
+ * generated) */
+ if (invlist_len(PL_utf8_foldable) == 0) {
+ PL_utf8_foldclosures = newHV();
+ } else {
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES+1];
+ STRLEN dummy_len;
+
+ /* This particular string is above \xff in both UTF-8 and
+ * UTFEBCDIC */
+ to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+ }
+ }
+
+ /* Only the characters in this class that participate in folds need be
+ * checked. Get the intersection of this class and all the possible
+ * characters that are foldable. This can quickly narrow down a large
+ * class */
+ _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+
+ /* Get its fold */
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ const UV f =
+ _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
+
+ if (foldlen > (STRLEN)UNISKIP(f)) {
+
+ /* Any multicharacter foldings (disallowed in lookbehind
+ * patterns) require the following transform: [ABCDEF] ->
+ * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
+ * folds into "rst", all other characters fold to single
+ * characters. We save away these multicharacter foldings,
+ * to be later saved as part of the additional "s" data. */
+ if (! RExC_in_lookbehind) {
+ U8* loc = foldbuf;
+ U8* e = foldbuf + foldlen;
+
+ /* If any of the folded characters of this are in the
+ * Latin1 range, tell the regex engine that this can
+ * match a non-utf8 target string. The only multi-byte
+ * fold whose source is in the Latin1 range (U+00DF)
+ * applies only when the target string is utf8, or
+ * under unicode rules */
+ if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
+ while (loc < e) {
+
+ /* Can't mix ascii with non- under /aa */
+ if (MORE_ASCII_RESTRICTED
+ && (isASCII(*loc) != isASCII(j)))
+ {
+ goto end_multi_fold;
+ }
+ if (UTF8_IS_INVARIANT(*loc)
+ || UTF8_IS_DOWNGRADEABLE_START(*loc))
+ {
+ /* Can't mix above and below 256 under LOC
+ */
+ if (LOC) {
+ goto end_multi_fold;
+ }
+ ANYOF_FLAGS(ret)
+ |= ANYOF_NONBITMAP_NON_UTF8;
+ break;
+ }
+ loc += UTF8SKIP(loc);
+ }
+ }
+
+ add_alternate(&unicode_alternate, foldbuf, foldlen);
+ end_multi_fold: ;
+ }
+
+ /* This is special-cased, as it is the only letter which
+ * has both a multi-fold and single-fold in Latin1. All
+ * the other chars that have single and multi-folds are
+ * always in utf8, and the utf8 folding algorithm catches
+ * them */
+ if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ LATIN_SMALL_LETTER_SHARP_S,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ else {
+ /* Single character fold. Add everything in its fold
+ * closure to the list that this node should match */
+ SV** listp;
+
+ /* The fold closures data structure is a hash with the keys
+ * being every character that is folded to, like 'k', and
+ * the values each an array of everything that folds to its
+ * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_len(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non-;
+ * /l doesn't allow them between above and below
+ * 256 */
+ if ((MORE_ASCII_RESTRICTED
+ && (isASCII(c) != isASCII(j)))
+ || (LOC && ((c < 256) != (j < 256))))
+ {
+ continue;
+ }
+
+ if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ (U8) c,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ /* It may be that the code point is already in
+ * this range or already in the bitmap, in
+ * which case we need do nothing */
+ else if ((c < start || c > end)
+ && (c > 255
+ || ! ANYOF_BITMAP_TEST(ret, c)))
+ {
+ nonbitmap = add_cp_to_invlist(nonbitmap, c);
+ }
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec(fold_intersection);
+ }
+
+ /* Combine the two lists into one. */
+ if (l1_fold_invlist) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
+ SvREFCNT_dec(l1_fold_invlist);
+ }
+ else {
+ nonbitmap = l1_fold_invlist;
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now because we don't want to fold the
+ * properties */
+ if (properties) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, properties, &nonbitmap);
+ SvREFCNT_dec(properties);
+ }
+ else {
+ nonbitmap = properties;
+ }
+ }
+
+ /* Here, <nonbitmap> contains all the code points we can determine at
+ * compile time that we haven't put into the bitmap. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <nonbitmap> */
+ if (nonbitmap) {
+
+ /* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
+ * possibly only should match when the target string is UTF-8 */
+ UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through <nonbitmap> */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ UV high;
+ int i;
+
+ /* Quit if are above what we should change */
+ if (start > max_cp_to_set) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < max_cp_to_set) ? end : max_cp_to_set;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_SET(ret, i);
+ stored++;
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * <nonbitmap> */
+ if (change_invlist) {
+ _invlist_subtract(nonbitmap,
+ (DEPENDS_SEMANTICS)
+ ? PL_ASCII
+ : PL_Latin1,
+ &nonbitmap);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (invlist_len(nonbitmap) == 0) {
+ SvREFCNT_dec(nonbitmap);
+ nonbitmap = NULL;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class. <nonbitmap> does not overlap the bitmap except possibly in the
+ * case of DEPENDS rules.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. */
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
+ * set the FOLD flag yet, so this does optimize those. It doesn't
+ * optimize locale. Doing so perhaps could be done as long as there is
+ * nothing like \w in it; some thought also would have to be given to the
+ * interaction with above 0x100 chars */
+ if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
+ && ! LOC
+ && ! unicode_alternate
+ /* In case of /d, there are some things that should match only when in
+ * not in the bitmap, i.e., they require UTF8 to match. These are
+ * listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
+ * case, they don't require UTF8, so can invert here */
+ && (! nonbitmap
+ || ! DEPENDS_SEMANTICS
+ || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ && SvCUR(listsv) == initial_listsv_len)
+ {
+ int i;
+ if (! nonbitmap) {
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ /* The inversion means that everything above 255 is matched */
+ ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
+ }
+ else {
+ /* Here, also has things outside the bitmap that may overlap with
+ * the bitmap. We have to sync them up, so that they get inverted
+ * in both places. Earlier, we removed all overlaps except in the
+ * case of /d rules, so no syncing is needed except for this case
+ */
+ SV *remove_list = NULL;
+
+ if (DEPENDS_SEMANTICS) {
+ UV start, end;
+
+ /* Set the bits that correspond to the ones that aren't in the
+ * bitmap. Otherwise, when we invert, we'll miss these.
+ * Earlier, we removed from the nonbitmap all code points
+ * < 128, so there is no extra work here */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ if (start > 255) { /* The bit map goes to 255 */
+ break;
+ }
+ if (end > 255) {
+ end = 255;
+ }
+ for (i = start; i <= (int) end; ++i) {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Now invert both the bitmap and the nonbitmap. Anything in the
+ * bitmap has to also be removed from the non-bitmap, but again,
+ * there should not be overlap unless is /d rules. */
+ _invlist_invert(nonbitmap);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ if (DEPENDS_SEMANTICS) {
+ if (! remove_list) {
+ remove_list = _new_invlist(2);
+ }
+ remove_list = add_cp_to_invlist(remove_list, i);
+ }
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+
+ /* And do the removal */
+ if (DEPENDS_SEMANTICS) {
+ if (remove_list) {
+ _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
+ SvREFCNT_dec(remove_list);
+ }
+ }
+ else {
+ /* There is no overlap for non-/d, so just delete anything
+ * below 256 */
+ _invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
+ }
+ }
+
+ stored = 256 - stored;
+
+ /* Clear the invert flag since have just done it here */
+ ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
+ }
+
+ /* Folding in the bitmap is taken care of above, but not for locale (for
+ * which we have to wait to see what folding is in effect at runtime), and
+ * for some things not in the bitmap (only the upper latin folds in this
+ * case, as all other single-char folding has been set above). Set
+ * run-time fold flag for these */
+ if (FOLD && (LOC
+ || (DEPENDS_SEMANTICS
+ && nonbitmap
+ && ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ || unicode_alternate))
+ {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
+ }
+
+ /* A single character class can be "optimized" into an EXACTish node.
+ * Note that since we don't currently count how many characters there are
+ * outside the bitmap, we are XXX missing optimization possibilities for
+ * them. This optimization can't happen unless this is a truly single
+ * character class, which means that it can't be an inversion into a
+ * many-character class, and there must be no possibility of there being
+ * things outside the bitmap. 'stored' (only) for locales doesn't include
+ * \w, etc, so have to make a special test that they aren't present
+ *
+ * Similarly A 2-character class of the very special form like [bB] can be
+ * optimized into an EXACTFish node, but only for non-locales, and for
+ * characters which only have the two folds; so things like 'fF' and 'Ii'
+ * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
+ * FI'. */
+ if (! nonbitmap
+ && ! unicode_alternate
+ && SvCUR(listsv) == initial_listsv_len
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
+ && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
+ || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
+ /* If the latest code point has a fold whose
+ * bit is set, it must be the only other one */
+ && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
+ && ANYOF_BITMAP_TEST(ret, prevvalue)))))
+ {
+ /* Note that the information needed to decide to do this optimization
+ * is not currently available until the 2nd pass, and that the actually
+ * used EXACTish node takes less space than the calculated ANYOF node,
+ * and hence the amount of space calculated in the first pass is larger
+ * than actually used, so this optimization doesn't gain us any space.
+ * But an EXACT node is faster than an ANYOF node, and can be combined
+ * with any adjacent EXACT nodes later by the optimizer for further
+ * gains. The speed of executing an EXACTF is similar to an ANYOF
+ * node, so the optimization advantage comes from the ability to join
+ * it to adjacent EXACT nodes */
+
+ const char * cur_parse= RExC_parse;
+ U8 op;
+ RExC_emit = (regnode *)orig_emit;
+ RExC_parse = (char *)orig_parse;
+
+ if (stored == 1) {
+
+ /* A locale node with one point can be folded; all the other cases
+ * with folding will have two points, since we calculate them above
+ */
+ if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
+ op = EXACTFL;
+ }
+ else {
+ op = EXACT;
+ }
+ }
+ else { /* else 2 chars in the bit map: the folds of each other */
+
+ /* Use the folded value, which for the cases where we get here,
+ * is just the lower case of the current one (which may resolve to
+ * itself, or to the other one */
+ value = toLOWER_LATIN1(value);
+
+ /* To join adjacent nodes, they must be the exact EXACTish type.
+ * Try to use the most likely type, by using EXACTFA if possible,
+ * then EXACTFU if the regex calls for it, or is required because
+ * the character is non-ASCII. (If <value> is ASCII, its fold is
+ * also ASCII for the cases where we get here.) */
+ if (MORE_ASCII_RESTRICTED && isASCII(value)) {
+ op = EXACTFA;
+ }
+ else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
+ op = EXACTFU;
+ }
+ else { /* Otherwise, more likely to be EXACTF type */
+ op = EXACTF;
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+ RExC_parse = (char *)cur_parse;
+ if (UTF && ! NATIVE_IS_INVARIANT(value)) {
+ *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
+ *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
+ STR_LEN(ret)= 2;
+ RExC_emit += STR_SZ(2);
+ }
+ else {
+ *STRING(ret)= (char)value;
+ STR_LEN(ret)= 1;
+ RExC_emit += STR_SZ(1);
+ }
+ SvREFCNT_dec(listsv);
+ return ret;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ if (! nonbitmap
+ && SvCUR(listsv) == initial_listsv_len
+ && ! unicode_alternate)
+ {
+ ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
+ SvREFCNT_dec(listsv);
+ SvREFCNT_dec(unicode_alternate);
+ }
+ else {
+ /* av[0] stores the character class description in its textual form:
+ * used later (regexec.c:Perl_regclass_swash()) to initialize the
+ * appropriate swash, and is also useful for dumping the regnode.
+ * av[1] if NULL, is a placeholder to later contain the swash computed
+ * from av[0]. But if no further computation need be done, the
+ * swash is stored there now.
+ * av[2] stores the multicharacter foldings, used later in
+ * regexec.c:S_reginclass().
+ * av[3] stores the nonbitmap inversion list for use in addition or
+ * instead of av[0]; not used if av[1] isn't NULL
+ * av[4] is set if any component of the class is from a user-defined
+ * property; not used if av[1] isn't NULL */
+ AV * const av = newAV();
+ SV *rv;
+
+ av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
+ ? &PL_sv_undef
+ : listsv);
+ if (swash) {
+ av_store(av, 1, swash);
+ SvREFCNT_dec(nonbitmap);
+ }
+ else {
+ av_store(av, 1, NULL);
+ if (nonbitmap) {
+ av_store(av, 3, nonbitmap);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ /* Store any computed multi-char folds only if we are allowing
+ * them */
+ if (allow_full_fold) {
+ av_store(av, 2, MUTABLE_SV(unicode_alternate));
+ if (unicode_alternate) { /* This node is variable length */
+ OP(ret) = ANYOFV;
+ }
+ }
+ else {
+ av_store(av, 2, NULL);
+ }
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, 1, "s");
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(ret, n);
+ }
+ return ret;
+}
+
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comments from the input stream.
+ Returns true if there is more text remaining in the stream.
+ Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
+ terminates the pattern without including a newline.
+
+ Note its the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+STATIC bool
+S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
+{
+ bool ended = 0;
+
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ while (RExC_parse < RExC_end)
+ if (*RExC_parse++ == '\n') {
+ ended = 1;
+ break;
+ }
+ if (!ended) {
+ /* we ran off the end of the pattern without ending
+ the comment, so we have to add an \n when wrapping */
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ return 0;
+ } else
+ return 1;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ continue;
+ }
+ else if (*RExC_parse == '#') {
+ if ( reg_skipcomment( pRExC_state ) )
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ "reg_node", __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 2;
+ /*
+ We can't do this:
+
+ assert(2==regarglen[op]+1);
+
+ Anything larger than this has to allocate the extra amount.
+ If we changed this to be:
+
+ RExC_size += (1 + regarglen[op]);
+
+ then it wouldn't matter. Its not clear what side effect
+ might come from that so its not done so far.
+ -- dmq
+ */
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reganode",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
+ "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Cur_Node_Offset;
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reguni - emit (if appropriate) a Unicode character
+*/
+STATIC STRLEN
+S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGUNI;
+
+ return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ dVAR;
+ register regnode *src;
+ register regnode *dst;
+ register regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool has_exactf_sharp_s; /* Unexamined in this routine */
+ if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTF:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv_val=sv_newmortal();
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, mysv_val, val);
+ PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(mysv_val),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ for (bit=0; bit<32; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ dVAR;
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->extflags & RXf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->extflags & RXf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->extflags & RXf_ANCH_BOL)
+ PerlIO_printf(Perl_debug_log, "(BOL)");
+ if (r->extflags & RXf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->extflags & RXf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->extflags & RXf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->extflags & RXf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode
+*/
+#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
+STMT_START { \
+ if (do_sep) { \
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
+ if (flags & ANYOF_INVERT) \
+ /*make sure the invert info is in each */ \
+ sv_catpvs(sv, "^"); \
+ do_sep = 0; \
+ } \
+} STMT_END
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
+{
+#ifdef DEBUGGING
+ dVAR;
+ register int k;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvs(sv, "");
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ )
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ int i;
+ int rangestart = -1;
+ U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
+ sv_catpvs(sv, "[");
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && BITMAP_TEST(bitmap,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ rangestart = -1;
+ }
+ }
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ if ( k != REF || (OP(o) < NREF)) {
+ AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ SV **name= av_fetch(list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ } else if (k == GOSUB)
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
+ else if (k == ANYOF) {
+ int i, rangestart = -1;
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+ "\\w",
+ "\\W",
+ "\\s",
+ "\\S",
+ "\\d",
+ "\\D",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:space:]",
+ "[:^space:]",
+ "[:blank:]",
+ "[:^blank:]"
+ };
+
+ if (flags & ANYOF_LOCALE)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_NONBITMAP_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-255 bitmap matches */
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ do_sep = 1;
+ rangestart = -1;
+ }
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+ /* output any special charclass tests (used entirely under use locale) */
+ if (ANYOF_CLASS_TEST_ANY_SET(o))
+ for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
+ if (ANYOF_CLASS_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+
+ if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ /* output information about the unicode matching */
+ if (flags & ANYOF_UNICODE_ALL)
+ sv_catpvs(sv, "{unicode_all}");
+ else if (ANYOF_NONBITMAP(o))
+ sv_catpvs(sv, "{unicode}");
+ if (flags & ANYOF_NONBITMAP_NON_UTF8)
+ sv_catpvs(sv, "{outside bitmap}");
+
+ if (ANYOF_NONBITMAP(o)) {
+ SV *lv; /* Set if there is something outside the bit map */
+ SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
+ bool byte_output = FALSE; /* If something in the bitmap has been
+ output */
+
+ if (lv && lv != &PL_sv_undef) {
+ if (sw) {
+ U8 s[UTF8_MAXBYTES_CASE+1];
+
+ for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
+ uvchr_to_utf8(s, i);
+
+ if (i < 256
+ && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
+ things already
+ output as part
+ of the bitmap */
+ && swash_fetch(sw, s, TRUE))
+ {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ byte_output = TRUE;
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++) {
+ put_byte(sv, rangestart);
+ }
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i-1);
+ }
+ rangestart = -1;
+ }
+ }
+ }
+
+ {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ }
+ SvREFCNT_dec(lv);
+ }
+ }
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+#endif /* DEBUGGING */
+}
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(prog->check_substr
+ ? prog->check_substr : prog->check_utf8);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ prog->check_substr ? "" : "utf8 ",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ return prog->check_substr ? prog->check_substr : prog->check_utf8;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ register const I32 npar = r->nparens+1;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ ret = (struct regexp *)SvANY(ret_x);
+
+ (void)ReREFCNT_inc(rx);
+ /* We can take advantage of the existing "copied buffer" mechanism in SVs
+ by pointing directly at the buffer, but flagging that the allocated
+ space in the copy is zero. As we've just done a struct copy, it's now
+ a case of zero-ing that, rather than copying the current length. */
+ SvPV_set(ret_x, RX_WRAPPED(rx));
+ SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ SvLEN_set(ret_x, 0);
+ SvSTASH_set(ret_x, NULL);
+ SvMAGIC_set(ret_x, NULL);
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = rx;
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->data) {
+ int n = ri->data->count;
+ PAD* new_comppad = NULL;
+ PAD* old_comppad;
+ PADOFFSET refcnt;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'p':
+ new_comppad = MUTABLE_AV(ri->data->data[n]);
+ break;
+ case 'o':
+ if (new_comppad == NULL)
+ Perl_croak(aTHX_ "panic: pregfree comppad");
+ PAD_SAVE_LOCAL(old_comppad,
+ /* Watch out for global destruction's random ordering. */
+ (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
+ );
+ OP_REFCNT_LOCK;
+ refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
+ OP_REFCNT_UNLOCK;
+ if (!refcnt)
+ op_free((OP_4tree*)ri->data->data[n]);
+
+ PAD_RESTORE_LOCAL(old_comppad);
+ SvREFCNT_dec(MUTABLE_SV(new_comppad));
+ new_comppad = NULL;
+ break;
+ case 'n':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ PerlMemShared_free(ri->regstclass);
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = (const struct regexp *)SvANY(sstr);
+ struct regexp *ret = (struct regexp *)SvANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if(ret->swap) {
+ /* no need to copy these */
+ Newx(ret->swap, npar, regexp_paren_pair);
+ }
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+
+ if (ret->mother_re) {
+ if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
+ /* Our storage points directly to our mother regexp, but that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ /* Note we need to use SvCUR(), rather than
+ SvLEN(), on our mother_re, because it, in
+ turn, may well be pointing to its own mother_re. */
+ SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
+ SvCUR(ret->mother_re)+1));
+ SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
+ }
+ ret->mother_re = NULL;
+ }
+ ret->gofs = 0;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* legal options are one of: sSfpontTua
+ see also regcomp.h and pregfree() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 's':
+ case 'S':
+ case 'p': /* actually an AV, but the dup function is identical. */
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, struct regnode_charclass_class);
+ StructCopy(ri->data->data[i], d->data[i],
+ struct regnode_charclass_class);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'o':
+ /* Compiled op trees are readonly and in shared memory,
+ and can thus be shared without duplication. */
+ OP_REFCNT_LOCK;
+ d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
+ OP_REFCNT_UNLOCK;
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* Fall through */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* Fall through */
+ case 'n':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ register regnode *p)
+{
+ dVAR;
+ register I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+#ifdef I_STDARG
+ /* ANSI variant takes additional second argument */
+ va_start(args, pat2);
+#else
+ va_start(args);
+#endif
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ buf[l1-1] = '\0'; /* Overwrite \n */
+ Perl_croak(aTHX_ "%s", buf);
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ dVAR;
+
+ struct re_save_state *state;
+
+ SAVEVPTR(PL_curcop);
+ SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
+
+ state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
+ PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
+ SSPUSHUV(SAVEt_RE_STATE);
+
+ Copy(&PL_reg_state, state, 1, struct re_save_state);
+
+ PL_reg_start_tmp = 0;
+ PL_reg_start_tmpl = 0;
+ PL_reg_oldsaved = NULL;
+ PL_reg_oldsavedlen = 0;
+ PL_reg_maxiter = 0;
+ PL_reg_leftiter = 0;
+ PL_reg_poscache = NULL;
+ PL_reg_poscache_size = 0;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = NULL;
+#endif
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx) {
+ U32 i;
+ for (i = 1; i <= RX_NPARENS(rx); i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+ }
+ }
+}
+#endif
+
+static void
+clear_re(pTHX_ void *r)
+{
+ dVAR;
+ ReREFCNT_dec((REGEXP *)r);
+}
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_byte(pTHX_ SV *sv, int c)
+{
+ PERL_ARGS_ASSERT_PUT_BYTE;
+
+ /* Our definition of isPRINT() ignores locales, so only bytes that are
+ not part of UTF-8 are considered printable. I assume that the same
+ holds for UTF-EBCDIC.
+ Also, code point 255 is not printable in either (it's E0 in EBCDIC,
+ which Wikipedia says:
+
+ EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
+ ones (binary 1111 1111, hexadecimal FF). It is similar, but not
+ identical, to the ASCII delete (DEL) or rubout control character.
+ ) So the old condition can be simplified to !isPRINT(c) */
+ if (!isPRINT(c)) {
+ if (c < 256) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
+ }
+ }
+ else {
+ const char string = c;
+ if (c == '-' || c == ']' || c == '\\' || c == '^')
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+}
+
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ dVAR;
+ register U8 op = PSEUDO; /* Arbitrary non-END op. */
+ register const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ register const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
+ ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+#include "re_defs.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#define RF_tainted 1 /* tainted information used? e.g. locale */
+#define RF_warned 2 /* warned about big count? */
+
+#define RF_utf8 8 /* Pattern contains multibyte chars? */
+
+#define UTF_PATTERN ((PL_reg_flags & RF_utf8) != 0)
+
+#define RS_init 1 /* eval environment created */
+#define RS_set 2 /* replsv value is set */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid for non-utf8 strings, non-ANYOFV nodes only: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,0,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (PL_reg_match_utf8 ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(PL_reg_match_utf8 \
+ ? reghop3((U8*)pos, off, (U8*)(off >= 0 ? PL_regeol : PL_bostr)) \
+ : (U8*)(pos + off))
+#define HOPBACKc(pos, off) \
+ (char*)(PL_reg_match_utf8\
+ ? reghopmaybe3((U8*)pos, -off, (U8*)PL_bostr) \
+ : (pos - off >= PL_bostr) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (PL_reg_match_utf8 ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* these are unrolled below in the CCC_TRY_XXX defined */
+#ifdef EBCDIC
+ /* Often 'str' is a hard-coded utf8 string instead of utfebcdic. so just
+ * skip the check on EBCDIC platforms */
+# define LOAD_UTF8_CHARCLASS(class,str) LOAD_UTF8_CHARCLASS_NO_CHECK(class)
+#else
+# define LOAD_UTF8_CHARCLASS(class,str) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool ok; \
+ ENTER; save_re_context(); \
+ ok=CAT2(is_utf8_,class)((const U8*)str); \
+ assert(ok); assert(CAT2(PL_utf8_,class)); LEAVE; } } STMT_END
+#endif
+
+/* Doesn't do an assert to verify that is correct */
+#define LOAD_UTF8_CHARCLASS_NO_CHECK(class) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool throw_away PERL_UNUSED_DECL; \
+ ENTER; save_re_context(); \
+ throw_away = CAT2(is_utf8_,class)((const U8*)" "); \
+ LEAVE; } } STMT_END
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS(alnum,"a")
+#define LOAD_UTF8_CHARCLASS_DIGIT() LOAD_UTF8_CHARCLASS(digit,"0")
+#define LOAD_UTF8_CHARCLASS_SPACE() LOAD_UTF8_CHARCLASS(space," ")
+
+#define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \
+ LOAD_UTF8_CHARCLASS(X_begin, " "); \
+ LOAD_UTF8_CHARCLASS(X_non_hangul, "A"); \
+ /* These are utf8 constants, and not utf-ebcdic constants, so the \
+ * assert should likely and hopefully fail on an EBCDIC machine */ \
+ LOAD_UTF8_CHARCLASS(X_extend, "\xcc\x80"); /* U+0300 */ \
+ \
+ /* No asserts are done for these, in case called on an early \
+ * Unicode version in which they map to nothing */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_prepend);/* U+0E40 "\xe0\xb9\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_L); /* U+1100 "\xe1\x84\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV); /* U+AC00 "\xea\xb0\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LVT); /* U+AC01 "\xea\xb0\x81" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV_LVT_V);/* U+AC01 "\xea\xb0\x81" */\
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_T); /* U+11A8 "\xe1\x86\xa8" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_V) /* U+1160 "\xe1\x85\xa0" */
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+
+/* The actual code for CCC_TRY, which uses several variables from the routine
+ * it's callable from. It is designed to be the bulk of a case statement.
+ * FUNC is the macro or function to call on non-utf8 targets that indicate if
+ * nextchr matches the class.
+ * UTF8_TEST is the whole test string to use for utf8 targets
+ * LOAD is what to use to test, and if not present to load in the swash for the
+ * class
+ * POS_OR_NEG is either empty or ! to complement the results of FUNC or
+ * UTF8_TEST test.
+ * The logic is: Fail if we're at the end-of-string; otherwise if the target is
+ * utf8 and a variant, load the swash if necessary and test using the utf8
+ * test. Advance to the next character if test is ok, otherwise fail; If not
+ * utf8 or an invariant under utf8, use the non-utf8 test, and fail if it
+ * fails, or advance to the next character */
+
+#define _CCC_TRY_CODE(POS_OR_NEG, FUNC, UTF8_TEST, CLASS, STR) \
+ if (locinput >= PL_regeol) { \
+ sayNO; \
+ } \
+ if (utf8_target && UTF8_IS_CONTINUED(nextchr)) { \
+ LOAD_UTF8_CHARCLASS(CLASS, STR); \
+ if (POS_OR_NEG (UTF8_TEST)) { \
+ sayNO; \
+ } \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ break; \
+ } \
+ if (POS_OR_NEG (FUNC(nextchr))) { \
+ sayNO; \
+ } \
+ nextchr = UCHARAT(++locinput); \
+ break;
+
+/* Handle the non-locale cases for a character class and its complement. It
+ * calls _CCC_TRY_CODE with a ! to complement the test for the character class.
+ * This is because that code fails when the test succeeds, so we want to have
+ * the test fail so that the code succeeds. The swash is stored in a
+ * predictable PL_ place */
+#define _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, \
+ CLASS, STR) \
+ case NAME: \
+ _CCC_TRY_CODE( !, FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+ case NNAME: \
+ _CCC_TRY_CODE( PLACEHOLDER , FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+
+/* Generate the case statements for both locale and non-locale character
+ * classes in regmatch for classes that don't have special unicode semantics.
+ * Locales don't use an immediate swash, but an intermediary special locale
+ * function that is called on the pointer to the current place in the input
+ * string. That function will resolve to needing the same swash. One might
+ * think that because we don't know what the locale will match, we shouldn't
+ * check with the swash loading function that it loaded properly; ie, that we
+ * should use LOAD_UTF8_CHARCLASS_NO_CHECK for those, but what is passed to the
+ * regular LOAD_UTF8_CHARCLASS is in non-locale terms, and so locale is
+ * irrelevant here */
+#define CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ case NAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( !, LCFUNC, LCFUNC_utf8((U8*)locinput), CLASS, STR) \
+ case NNAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( PLACEHOLDER, LCFUNC, LCFUNC_utf8((U8*)locinput), \
+ CLASS, STR) \
+ case NAMEA: \
+ if (locinput >= PL_regeol || ! FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ /* Matched a utf8-invariant, so don't have to worry about utf8 */ \
+ nextchr = UCHARAT(++locinput); \
+ break; \
+ case NNAMEA: \
+ if (locinput >= PL_regeol || FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ if (utf8_target) { \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ } \
+ else { \
+ nextchr = UCHARAT(++locinput); \
+ } \
+ break; \
+ /* Generate the non-locale cases */ \
+ _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, CLASS, STR)
+
+/* This is like CCC_TRY, but has an extra set of parameters for generating case
+ * statements to handle separate Unicode semantics nodes */
+#define CCC_TRY_U(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEU, NNAMEU, FUNCU, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ _CCC_TRY_NONLOCALE(NAMEU, NNAMEU, FUNCU, CLASS, STR)
+
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn)==EXACTFA || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn) == EXACTFA)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+
+static void restore_pos(pTHX_ void *arg);
+
+#define REGCP_PAREN_ELEMS 4
+#define REGCP_OTHER_ELEMS 5
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ I32 parenfloor)
+{
+ dVAR;
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push = (PL_regsize - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ int p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0",
+ paren_elems_to_push);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems, (unsigned long)PL_regsize, (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ for (p = PL_regsize; p > parenfloor; p--) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHINT(PL_regoffs[p].end);
+ SSPUSHINT(PL_regoffs[p].start);
+ SSPUSHPTR(PL_reg_start_tmp[p]);
+ SSPUSHINT(p);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " saving \\%"UVuf" %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p, (IV)PL_regoffs[p].start,
+ (IV)(PL_reg_start_tmp[p] - PL_bostr),
+ (IV)PL_regoffs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHPTR(PL_regoffs);
+ SSPUSHINT(PL_regsize);
+ SSPUSHINT(*PL_reglastparen);
+ SSPUSHINT(*PL_reglastcloseparen);
+ SSPUSHPTR(PL_reginput);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+STATIC char *
+S_regcppop(pTHX_ const regexp *rex)
+{
+ dVAR;
+ UV i;
+ char *input;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ input = (char *) SSPOPPTR;
+ *PL_reglastcloseparen = SSPOPINT;
+ *PL_reglastparen = SSPOPINT;
+ PL_regsize = SSPOPINT;
+ PL_regoffs=(regexp_paren_pair *) SSPOPPTR;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ I32 tmps;
+ U32 paren = (U32)SSPOPINT;
+ PL_reg_start_tmp[paren] = (char *) SSPOPPTR;
+ PL_regoffs[paren].start = SSPOPINT;
+ tmps = SSPOPINT;
+ if (paren <= *PL_reglastparen)
+ PL_regoffs[paren].end = tmps;
+ DEBUG_BUFFERS_r(
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"UVuf" to %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren, (IV)PL_regoffs[paren].start,
+ (IV)(PL_reg_start_tmp[paren] - PL_bostr),
+ (IV)PL_regoffs[paren].end,
+ (paren > *PL_reglastparen ? "(no)" : ""));
+ );
+ }
+ DEBUG_BUFFERS_r(
+ if (*PL_reglastparen + 1 <= rex->nparens) {
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"IVdf"..\\%"IVdf" to undef\n",
+ (IV)(*PL_reglastparen + 1), (IV)rex->nparens);
+ }
+ );
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = *PL_reglastparen + 1; i <= rex->nparens; i++) {
+ if (i > PL_regsize)
+ PL_regoffs[i].start = -1;
+ PL_regoffs[i].end = -1;
+ }
+#endif
+ return input;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *screamer, U32 nosave)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+/*
+ * Need to implement the following flags for reg_anch:
+ *
+ * USE_INTUIT_NOML - Useful to call re_intuit_start() first
+ * USE_INTUIT_ML
+ * INTUIT_AUTORITATIVE_NOML - Can trust a positive answer
+ * INTUIT_AUTORITATIVE_ML
+ * INTUIT_ONCE_NOML - Intuit can match in one location only.
+ * INTUIT_ONCE_ML
+ *
+ * Another flag for this function: SECOND_TIME (so that float substrs
+ * with giant delta may be not rechecked).
+ */
+
+/* Assumptions: if ANCH_GPOS, then strpos is anchored. XXXX Check GPOS logic */
+
+/* If SCREAM, then SvPVX_const(sv) should be compatible with strpos and strend.
+ Otherwise, only SvCUR(sv) is used to get strbeg. */
+
+/* XXXX We assume that strpos is strbeg unless sv. */
+
+/* XXXX Some places assume that there is a fixed substring.
+ An update may be needed if optimizer marks as "INTUITable"
+ RExen without fixed substrings. Similarly, it is assumed that
+ lengths of all the strings are no more than minlen, thus they
+ cannot come from lookahead.
+ (Or minlen should take into account lookahead.)
+ NOTE: Some of this comment is not correct. minlen does now take account
+ of lookahead/behind. Further research is required. -- demerphq
+
+*/
+
+/* A failure to find a constant substring means that there is no need to make
+ an expensive call to REx engine, thus we celebrate a failure. Similarly,
+ finding a substring too deep into the string means that less calls to
+ regtry() should be needed.
+
+ REx compiler's optimizer found 4 possible hints:
+ a) Anchored substring;
+ b) Fixed substring;
+ c) Whether we are anchored (beginning-of-line or \G);
+ d) First node (of those at offset 0) which may distinguish positions;
+ We use a)b)d) and multiline-part of c), and try to find a position in the
+ string which does not contradict any of them.
+ */
+
+/* Most of decisions we do here should have been done at compile time.
+ The nodes of the REx which we used for the search should have been
+ deleted from the finite automaton. */
+
+char *
+Perl_re_intuit_start(pTHX_ REGEXP * const rx, SV *sv, char *strpos,
+ char *strend, const U32 flags, re_scream_pos_data *data)
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ register I32 start_shift = 0;
+ /* Should be nonnegative! */
+ register I32 end_shift = 0;
+ register char *s;
+ register SV *check;
+ char *strbeg;
+ char *t;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ I32 ml_anch;
+ register char *other_last = NULL; /* other substr checked before this */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+#ifdef DEBUGGING
+ const char * const i_strpos = strpos;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+
+ if (RX_UTF8(rx)) {
+ PL_reg_flags |= RF_utf8;
+ }
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, strpos, strend,
+ sv ? "Guessing start of match in sv for"
+ : "Guessing start of match in string for");
+ );
+
+ /* CHR_DIST() would be more correct here but it makes things slow. */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short... [re_intuit_start]\n"));
+ goto fail;
+ }
+
+ strbeg = (sv && SvPOK(sv)) ? strend - SvCUR(sv) : strpos;
+ PL_regeol = strend;
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8)
+ to_byte_substr(prog);
+ check = prog->check_substr;
+ }
+ if (check == &PL_sv_undef) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Non-utf8 string cannot match utf8 check string\n"));
+ goto fail;
+ }
+ if (prog->extflags & RXf_ANCH) { /* Match at beg-of-str or after \n */
+ ml_anch = !( (prog->extflags & RXf_ANCH_SINGLE)
+ || ( (prog->extflags & RXf_ANCH_BOL)
+ && !multiline ) ); /* Check after \n? */
+
+ if (!ml_anch) {
+ if ( !(prog->extflags & RXf_ANCH_GPOS) /* Checked by the caller */
+ && !(prog->intflags & PREGf_IMPLICIT) /* not a real BOL */
+ /* SvCUR is not set on references: SvRV and SvPVX_const overlap */
+ && sv && !SvROK(sv)
+ && (strpos != strbeg)) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not at start...\n"));
+ goto fail;
+ }
+ if (prog->check_offset_min == prog->check_offset_max &&
+ !(prog->extflags & RXf_CANY_SEEN)) {
+ /* Substring at constant offset from beg-of-str... */
+ I32 slen;
+
+ s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ if (SvTAIL(check)) {
+ slen = SvCUR(check); /* >= 1 */
+
+ if ( strend - s > slen || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1
+ && memNE(SvPVX_const(check), s, slen)))) {
+ report_neq:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String not equal...\n"));
+ goto fail_finish;
+ }
+ }
+ else if (*SvPVX_const(check) != *s
+ || ((slen = SvCUR(check)) > 1
+ && memNE(SvPVX_const(check), s, slen)))
+ goto report_neq;
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ /* Match is anchored, but substr is not anchored wrt beg-of-str. */
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ if (!ml_anch) {
+ const I32 end = prog->check_offset_max + CHR_SVLEN(check)
+ - (SvTAIL(check) != 0);
+ const I32 eshift = CHR_DIST((U8*)strend, (U8*)s) - end;
+
+ if (end_shift < eshift)
+ end_shift = eshift;
+ }
+ }
+ else { /* Can match at random position */
+ ml_anch = 0;
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ /* end shift should be non negative here */
+ }
+
+#ifdef QDEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+ /* Find a possible match in the region s..strend by looking for
+ the "check" substring in the region corrected by start/end_shift. */
+
+ {
+ I32 srch_start_shift = start_shift;
+ I32 srch_end_shift = end_shift;
+ if (srch_start_shift < 0 && strbeg - s > srch_start_shift) {
+ srch_end_shift -= ((strbeg - s) - srch_start_shift);
+ srch_start_shift = strbeg - s;
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "Check offset min: %"IVdf" Start shift: %"IVdf" End shift %"IVdf" Real End Shift: %"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)srch_start_shift,
+ (IV)srch_end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ I32 p = -1; /* Internal iterator of scream. */
+ I32 * const pp = data ? data->scream_pos : &p;
+ const MAGIC *mg;
+ bool found = FALSE;
+
+ assert(SvMAGICAL(sv));
+ mg = mg_find(sv, PERL_MAGIC_study);
+ assert(mg);
+
+ if (mg->mg_private == 1) {
+ found = ((U8 *)mg->mg_ptr)[BmRARE(check)] != (U8)~0;
+ } else if (mg->mg_private == 2) {
+ found = ((U16 *)mg->mg_ptr)[BmRARE(check)] != (U16)~0;
+ } else {
+ assert (mg->mg_private == 4);
+ found = ((U32 *)mg->mg_ptr)[BmRARE(check)] != (U32)~0;
+ }
+
+ if (found
+ || ( BmRARE(check) == '\n'
+ && (BmPREVIOUS(check) == SvCUR(check) - 1)
+ && SvTAIL(check) ))
+ s = screaminstr(sv, check,
+ srch_start_shift + (s - strbeg), srch_end_shift, pp, 0);
+ else
+ goto fail_finish;
+ /* we may be pointing at the wrong string */
+ if (s && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ if (data)
+ *data->scream_olds = s;
+ }
+ else {
+ U8* start_point;
+ U8* end_point;
+ if (prog->extflags & RXf_CANY_SEEN) {
+ start_point= (U8*)(s + srch_start_shift);
+ end_point= (U8*)(strend - srch_end_shift);
+ } else {
+ start_point= HOP3(s, srch_start_shift, srch_start_shift < 0 ? strbeg : strend);
+ end_point= HOP3(strend, -srch_end_shift, strbeg);
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "fbm_instr len=%d str=<%.*s>\n",
+ (int)(end_point - start_point),
+ (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point),
+ start_point);
+ });
+
+ s = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+ }
+ }
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, "%s %s substr %s%s%s",
+ (s ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (s ? " at offset " : "...\n") );
+ });
+
+ if (!s)
+ goto fail_finish;
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(s - i_strpos)) );
+
+ /* XXX dmq: first branch is for positive lookbehind...
+ Our check string is offset from the beginning of the pattern.
+ So we need to do any stclass tests offset forward from that
+ point. I think. :-(
+ */
+
+
+
+ check_at=s;
+
+
+ /* Got a candidate. Check MBOL anchoring, and the *other* substr.
+ Start with the other substr.
+ XXXX no SCREAM optimization yet - and a very coarse implementation
+ XXXX /ttx+/ results in anchored="ttx", floating="x". floating will
+ *always* match. Probably should be marked during compile...
+ Probably it is right to do no SCREAM here...
+ */
+
+ if (utf8_target ? (prog->float_utf8 && prog->anchored_utf8)
+ : (prog->float_substr && prog->anchored_substr))
+ {
+ /* Take into account the "other" substring. */
+ /* XXXX May be hopelessly wrong for UTF... */
+ if (!other_last)
+ other_last = strpos;
+ if (check == (utf8_target ? prog->float_utf8 : prog->float_substr)) {
+ do_other_anchored:
+ {
+ char * const last = HOP3c(s, -start_shift, strbeg);
+ char *last1, *last2;
+ char * const saved_s = s;
+ SV* must;
+
+ t = s - prog->check_offset_max;
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -(prog->check_offset_max), (U8*)strpos))
+ && t > strpos)))
+ NOOP;
+ else
+ t = strpos;
+ t = HOP3c(t, prog->anchored_offset, strend);
+ if (t < other_last) /* These positions already checked */
+ t = other_last;
+ last2 = last1 = HOP3c(strend, -prog->minlen, strbeg);
+ if (last < last1)
+ last1 = last;
+ /* XXXX It is not documented what units *_offsets are in.
+ We assume bytes, but this is clearly wrong.
+ Meaning this code needs to be carefully reviewed for errors.
+ dmq.
+ */
+
+ /* On end-of-str: see comment below. */
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->anchored_utf8); /* for debug */
+ }
+ else
+ s = fbm_instr(
+ (unsigned char*)t,
+ HOP3(HOP3(last1, prog->anchored_offset, strend)
+ + SvCUR(must), -(SvTAIL(must)!=0), strbeg),
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s anchored substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ if (last1 >= last2) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying floating at offset %ld...\n",
+ (long)(HOP3c(saved_s, 1, strend) - i_strpos)));
+ other_last = HOP3c(last1, prog->anchored_offset+1, strend);
+ s = HOP3c(last, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ t = HOP3c(s, -prog->anchored_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+ else { /* Take into account the floating substring. */
+ char *last, *last1;
+ char * const saved_s = s;
+ SV* must;
+
+ t = HOP3c(s, -start_shift, strbeg);
+ last1 = last =
+ HOP3c(strend, -prog->minlen + prog->float_min_offset, strbeg);
+ if (CHR_DIST((U8*)last, (U8*)t) > prog->float_max_offset)
+ last = HOP3c(t, prog->float_max_offset, strend);
+ s = HOP3c(t, prog->float_min_offset, strend);
+ if (s < other_last)
+ s = other_last;
+ /* XXXX It is not documented what units *_offsets are in. Assume bytes. */
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ /* fbm_instr() takes into account exact value of end-of-str
+ if the check is SvTAIL(ed). Since false positives are OK,
+ and end-of-str is not later than strend we are OK. */
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->float_utf8); /* for debug message */
+ }
+ else
+ s = fbm_instr((unsigned char*)s,
+ (unsigned char*)last + SvCUR(must)
+ - (SvTAIL(must)!=0),
+ must, multiline ? FBMrf_MULTILINE : 0);
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s floating substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+ if (!s) {
+ if (last1 == last) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying anchored starting at offset %ld...\n",
+ (long)(saved_s + 1 - i_strpos)));
+ other_last = last;
+ s = HOP3c(t, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ other_last = s; /* Fix this later. --Hugo */
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+
+
+ t= (char*)HOP3( s, -prog->check_offset_max, (prog->check_offset_max<0) ? strend : strpos);
+
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "Check offset min:%"IVdf" max:%"IVdf" S:%"IVdf" t:%"IVdf" D:%"IVdf" end:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(s-strpos),
+ (IV)(t-strpos),
+ (IV)(t-s),
+ (IV)(strend-strpos)
+ )
+ );
+
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -prog->check_offset_max, (U8*) ((prog->check_offset_max<0) ? strend : strpos)))
+ && t > strpos)))
+ {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+ try_at_offset:
+ if (ml_anch && t[-1] != '\n') {
+ /* Eventually fbm_*() should handle this, but often
+ anchored_offset is not 0, so this check will not be wasted. */
+ /* XXXX In the code below we prefer to look for "^" even in
+ presence of anchored substrings. And we search even
+ beyond the found float position. These pessimizations
+ are historical artefacts only. */
+ find_anchor:
+ while (t < strend - prog->minlen) {
+ if (*t == '\n') {
+ if (t < check_at - prog->check_offset_min) {
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* Since we moved from the found position,
+ we definitely contradict the found anchored
+ substr. Due to the above check we do not
+ contradict "check" substr.
+ Thus we can arrive here only if check substr
+ is float. Redo checking for "other"=="fixed".
+ */
+ strpos = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(strpos - i_strpos), (long)(strpos - i_strpos + prog->anchored_offset)));
+ goto do_other_anchored;
+ }
+ /* We don't contradict the found floating substring. */
+ /* XXXX Why not check for STCLASS? */
+ s = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(s - i_strpos)));
+ goto set_useful;
+ }
+ /* Position contradicts check-string */
+ /* XXXX probably better to look for check-string
+ than for "\n", so one should lower the limit for t? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t + 1 - i_strpos)));
+ other_last = strpos = s = t + 1;
+ goto restart;
+ }
+ t++;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Starting position does not contradict /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ }
+ s = t;
+ set_useful:
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found string does not prohibit matching at strpos,
+ - no optimization of calling REx engine can be performed,
+ unless it was an MBOL and we are not after MBOL,
+ or a future STCLASS check will fail this. */
+ try_at_start:
+ /* Even in this situation we may use MBOL flag if strpos is offset
+ wrt the start of the string. */
+ if (ml_anch && sv && !SvROK(sv) /* See prev comment on SvROK */
+ && (strpos != strbeg) && strpos[-1] != '\n'
+ /* May be due to an implicit anchor of m{.*foo} */
+ && !(prog->intflags & PREGf_IMPLICIT))
+ {
+ t = strpos;
+ goto find_anchor;
+ }
+ DEBUG_EXECUTE_r( if (ml_anch)
+ PerlIO_printf(Perl_debug_log, "Position at offset %ld does not contradict /%s^%s/m...\n",
+ (long)(strpos - i_strpos), PL_colors[0], PL_colors[1]);
+ );
+ success_at_start:
+ if (!(prog->intflags & PREGf_NAUGHTY) /* XXXX If strpos moved? */
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ s = strpos;
+ /* XXXX If the check string was an implicit check MBOL, then we need to unset the relevant flag
+ see http://bugs.activestate.com/show_bug.cgi?id=87173 */
+ if (prog->intflags & PREGf_IMPLICIT)
+ prog->extflags &= ~RXf_ANCH_MBOL;
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ /* XXXX What other flags might need to be cleared in this branch? */
+ }
+ else
+ s = strpos;
+ }
+
+ /* Last resort... */
+ /* XXXX BmUSEFUL already changed, maybe multiple change is meaningful... */
+ /* trie stclasses are too expensive to use here, we are better off to
+ leave it to regmatch itself */
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ /* minlen == 0 is possible if regstclass is \b or \B,
+ and the fixed substr is ''$.
+ Since minlen is already taken into account, s+1 is before strend;
+ accidentally, minlen >= 1 guaranties no false positives at s + 1
+ even for \b or \B. But (minlen? 1 : 0) below assumes that
+ regstclass does not come from lookahead... */
+ /* If regstclass takes bytelength more than 1: If charlength==1, OK.
+ This leaves EXACTF-ish only, which are dealt with in find_byclass(). */
+ const U8* const str = (U8*)STRING(progi->regstclass);
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? CHR_DIST(str+STR_LEN(progi->regstclass), str)
+ : 1);
+ char * endpos;
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(s, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8)
+ endpos= HOP3c(HOP3c(check_at, -start_shift, strbeg), cl_l, strend);
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "start_shift: %"IVdf" check_at: %"IVdf" s: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg), (IV)(s - strbeg), (IV)(endpos - strbeg)));
+
+ t = s;
+ s = find_byclass(prog, progi->regstclass, s, endpos, NULL);
+ if (!s) {
+#ifdef DEBUGGING
+ const char *what = NULL;
+#endif
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "This position contradicts STCLASS...\n") );
+ if ((prog->extflags & RXf_ANCH) && !ml_anch)
+ goto fail;
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if ((utf8_target ? prog->anchored_utf8 : prog->anchored_substr) == check) {
+ DEBUG_EXECUTE_r( what = "anchored" );
+ hop_and_restart:
+ s = HOP3c(t, 1, strend);
+ if (s + start_shift + end_shift > strend) {
+ /* XXXX Should be taken into account earlier? */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for %s substr starting at offset %ld...\n",
+ what, (long)(s + start_shift - i_strpos)) );
+ goto restart;
+ }
+ /* Have both, check_string is floating */
+ if (t + start_shift >= check_at) /* Contradicts floating=check */
+ goto retry_floating_check;
+ /* Recheck anchored substring, but not floating... */
+ s = check_at;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for anchored substr starting at offset %ld...\n",
+ (long)(other_last - i_strpos)) );
+ goto do_other_anchored;
+ }
+ /* Another way we could have checked stclass at the
+ current position only: */
+ if (ml_anch) {
+ s = t = t + 1;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for /%s^%s/m starting at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t - i_strpos)) );
+ goto try_at_offset;
+ }
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) /* Could have been deleted */
+ goto fail;
+ /* Check is floating substring. */
+ retry_floating_check:
+ t = check_at - start_shift;
+ DEBUG_EXECUTE_r( what = "floating" );
+ goto hop_and_restart;
+ }
+ if (t != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "By STCLASS: moving %ld --> %ld\n",
+ (long)(t - i_strpos), (long)(s - i_strpos))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Does not contradict STCLASS...\n");
+ );
+ }
+ }
+ giveup:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s%s:%s match at offset %ld\n",
+ PL_colors[4], (check ? "Guessed" : "Giving up"),
+ PL_colors[5], (long)(s - i_strpos)) );
+ return s;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (utf8_target ? trie_utf8_fold : trie_latin_utf8_fold))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, \
+uvc, charid, foldlen, foldbuf, uniflags) STMT_START { \
+ STRLEN skiplen; \
+ switch (trie_type) { \
+ case trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = to_utf8_fold( (const U8*) uc, foldbuf, &foldlen ); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8: \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define REXEC_FBC_EXACTISH_SCAN(CoNd) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (CoNd) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (!reginfo || regtry(reginfo, &s)) ) \
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CoDe) \
+STMT_START { \
+ while (s + (uskip = UTF8SKIP(s)) <= strend) { \
+ CoDe \
+ s += uskip; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CoDe) \
+STMT_START { \
+ while (s < strend) { \
+ CoDe \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \
+REXEC_FBC_UTF8_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(CoNd) \
+REXEC_FBC_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_TRYIT \
+if ((!reginfo || regtry(reginfo, &s))) \
+ goto got_it
+
+#define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_PRELOAD(UtFpReLoAd,CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ UtFpReLoAd; \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_TAINT(CoNdUtF8,CoNd) \
+ PL_reg_flags |= RF_tainted; \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(PL_regeol),(PL_bostr),(PL_reg_starttry),doutf8)
+
+
+#define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+#define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \
+ if (s == PL_bostr) { \
+ tmp = '\n'; \
+ } \
+ else { \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)PL_bostr); \
+ tmp = utf8n_to_uvchr(r, UTF8SKIP(r), 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TeSt1_UtF8; \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! (TeSt2_UtF8)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it in either the if or else clause,
+ * with the other one being empty */
+#define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+
+/* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to
+ * be passed in completely with the variable name being tested, which isn't
+ * such a clean interface, but this is easier to read than it was before. We
+ * are looking for the boundary (or non-boundary between a word and non-word
+ * character. The utf8 and non-utf8 cases have the same logic, but the details
+ * must be different. Find the "wordness" of the character just prior to this
+ * one, and compare it with the wordness of this one. If they differ, we have
+ * a boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ if ((!prog->minlen && tmp) && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it;
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo is NULL, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ register STRLEN uskip;
+ U8 c1;
+ U8 c2;
+ char *e;
+ register I32 tmp = 1; /* Scratch variable? */
+ register const bool utf8_target = PL_reg_match_utf8;
+ UV utf8_fold_flags = 0;
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(c) == ANYOFV) {
+ STRLEN inclasslen = strend - s;
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, &inclasslen, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+ case CANY:
+ REXEC_FBC_SCAN(
+ if (tmp && (!reginfo || regtry(reginfo, &s)))
+ goto got_it;
+ else
+ tmp = doevery;
+ );
+ break;
+
+ case EXACTFA:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:
+ if (utf8_target) {
+
+ /* regcomp.c already folded this if pattern is in UTF-8 */
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (UTF_PATTERN) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALL THROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((I32)ln), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+
+ /* If one of the operands is in utf8, we can't use the simpler
+ * folding above, due to the fact that many different characters
+ * can have the same fold, or portion of a fold, or different-
+ * length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = (UTF_PATTERN) /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((I32)lnc), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, cBOOL(UTF_PATTERN), utf8_fold_flags)
+ && (!reginfo || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+ case BOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_BOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_NBOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case BOUND:
+ FBC_BOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case BOUNDA:
+ FBC_BOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case NBOUND:
+ FBC_NBOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDA:
+ FBC_NBOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case BOUNDU:
+ FBC_BOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDU:
+ FBC_NBOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case ALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ isALNUM_LC_utf8((U8*)s),
+ isALNUM_LC(*s)
+ );
+ break;
+ case ALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case ALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR((U8) *s)
+ );
+ break;
+ case ALNUMA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isWORDCHAR_A(*s));
+ break;
+ case NALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ ! isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case NALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target),
+ ! isALNUM(*s)
+ );
+ break;
+ case NALNUMA:
+ REXEC_FBC_CSCAN(
+ !isWORDCHAR_A(*s),
+ !isWORDCHAR_A(*s)
+ );
+ break;
+ case NALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ !isALNUM_LC_utf8((U8*)s),
+ !isALNUM_LC(*s)
+ );
+ break;
+ case SPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE_L1((U8) *s)
+ );
+ break;
+ case SPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE((U8) *s)
+ );
+ break;
+ case SPACEA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isSPACE_A(*s));
+ break;
+ case SPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ isSPACE_LC_utf8((U8*)s),
+ isSPACE_LC(*s)
+ );
+ break;
+ case NSPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !( *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE_L1((U8) *s)
+ );
+ break;
+ case NSPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !(*s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE((U8) *s)
+ );
+ break;
+ case NSPACEA:
+ REXEC_FBC_CSCAN(
+ !isSPACE_A(*s),
+ !isSPACE_A(*s)
+ );
+ break;
+ case NSPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isSPACE_LC_utf8((U8*)s),
+ !isSPACE_LC(*s)
+ );
+ break;
+ case DIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ isDIGIT(*s)
+ );
+ break;
+ case DIGITA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isDIGIT_A(*s));
+ break;
+ case DIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ isDIGIT_LC_utf8((U8*)s),
+ isDIGIT_LC(*s)
+ );
+ break;
+ case NDIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ !swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ !isDIGIT(*s)
+ );
+ break;
+ case NDIGITA:
+ REXEC_FBC_CSCAN(
+ !isDIGIT_A(*s),
+ !isDIGIT_A(*s)
+ );
+ break;
+ case NDIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isDIGIT_LC_utf8((U8*)s),
+ !isDIGIT_LC(*s)
+ );
+ break;
+ case LNBREAK:
+ REXEC_FBC_CSCAN(
+ is_LNBREAK_utf8(s),
+ is_LNBREAK_latin1(s)
+ );
+ break;
+ case VERTWS:
+ REXEC_FBC_CSCAN(
+ is_VERTWS_utf8(s),
+ is_VERTWS_latin1(s)
+ );
+ break;
+ case NVERTWS:
+ REXEC_FBC_CSCAN(
+ !is_VERTWS_utf8(s),
+ !is_VERTWS_latin1(s)
+ );
+ break;
+ case HORIZWS:
+ REXEC_FBC_CSCAN(
+ is_HORIZWS_utf8(s),
+ is_HORIZWS_latin1(s)
+ );
+ break;
+ case NHORIZWS:
+ REXEC_FBC_CSCAN(
+ !is_HORIZWS_utf8(s),
+ !is_HORIZWS_latin1(s)
+ );
+ break;
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho
+ = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie
+ = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char"
+ sequences. The basic idea being that we use AC as long
+ as we are dealing with a possible matching char, when
+ we encounter an unknown char (and we have not encountered
+ an accepting state) we scan forward until we find a legal
+ starting char.
+ AC matching is basically that of trie matching, except
+ that when we encounter a failing transition, we fall back
+ to the current states "fail state", and try the current char
+ again, a process we repeat until we reach the root state,
+ state 1, or a legal transition. If we fail on the root state
+ then we can either terminate if we have reached an accepting
+ state previously, or restart the entire process from the beginning
+ if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (!reginfo || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ break;
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *sv, void *data, U32 flags)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* data: May be used for some additional optimizations.
+ Currently its only used, with a U32 cast, for transmitting
+ the ganch offset when doing a /g match. This will change */
+/* nosave: For optimizations. */
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ /*register*/ char *s;
+ register regnode *c;
+ /*register*/ char *startpos = stringarg;
+ I32 minlen; /* must match at least this many chars */
+ I32 dontbother = 0; /* how many characters not to try at end */
+ I32 end_shift = 0; /* Same for the end. */ /* CC */
+ I32 scream_pos = -1; /* Internal iterator of scream. */
+ char *scream_olds = NULL;
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo; /* create some info to pass to regtry etc */
+ regexp_paren_pair *swap = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL || startpos == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ return 0;
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+ reginfo.prog = rx; /* Yes, sorry that this is confusing. */
+
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, startpos, strend,
+ "Matching");
+ );
+
+ minlen = prog->minlen;
+
+ if (strend - startpos < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ PL_reg_flags = 0;
+ PL_reg_eval_set = 0;
+ PL_reg_maxiter = 0;
+
+ if (RX_UTF8(rx))
+ PL_reg_flags |= RF_utf8;
+
+ /* Mark beginning of line for ^ and lookbehind. */
+ reginfo.bol = startpos; /* XXX not used ??? */
+ PL_bostr = strbeg;
+ reginfo.sv = sv;
+
+ /* Mark end of line for $ (and such) */
+ PL_regeol = strend;
+
+ /* see how far we have to get to not match where we matched before */
+ reginfo.till = startpos+minend;
+
+ /* If there is a "must appear" string, look for it. */
+ s = startpos;
+
+ if (prog->extflags & RXf_GPOS_SEEN) { /* Need to set reginfo->ganch */
+ MAGIC *mg;
+ if (flags & REXEC_IGNOREPOS){ /* Means: check only at start */
+ reginfo.ganch = startpos + prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS IGNOREPOS: reginfo.ganch = startpos + %"UVxf"\n",(UV)prog->gofs));
+ } else if (sv && SvTYPE(sv) >= SVt_PVMG
+ && SvMAGIC(sv)
+ && (mg = mg_find(sv, PERL_MAGIC_regex_global))
+ && mg->mg_len >= 0) {
+ reginfo.ganch = strbeg + mg->mg_len; /* Defined pos() */
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS MAGIC: reginfo.ganch = strbeg + %"IVdf"\n",(IV)mg->mg_len));
+
+ if (prog->extflags & RXf_ANCH_GPOS) {
+ if (s > reginfo.ganch)
+ goto phooey;
+ s = reginfo.ganch - prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ANCH_GPOS: s = ganch - %"UVxf"\n",(UV)prog->gofs));
+ if (s < strbeg)
+ goto phooey;
+ }
+ }
+ else if (data) {
+ reginfo.ganch = strbeg + PTR2UV(data);
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS DATA: reginfo.ganch= strbeg + %"UVxf"\n",PTR2UV(data)));
+
+ } else { /* pos() not defined */
+ reginfo.ganch = strbeg;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS: reginfo.ganch = strbeg\n"));
+ }
+ }
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail
+ we switch it back, otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ }
+ if (!(flags & REXEC_CHECKED) && (prog->check_substr != NULL || prog->check_utf8 != NULL)) {
+ re_scream_pos_data d;
+
+ d.scream_olds = &scream_olds;
+ d.scream_pos = &scream_pos;
+ s = re_intuit_start(rx, sv, s, strend, flags, &d);
+ if (!s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not present...\n"));
+ goto phooey; /* not present */
+ }
+ }
+
+
+
+ /* Simplest case: anchored match need be tried only once. */
+ /* [unless only anchor is BOL and multiline is set] */
+ if (prog->extflags & (RXf_ANCH & ~RXf_ANCH_GPOS)) {
+ if (s == startpos && regtry(®info, &startpos))
+ goto got_it;
+ else if (multiline || (prog->intflags & PREGf_IMPLICIT)
+ || (prog->extflags & RXf_ANCH_MBOL)) /* XXXX SBOL? */
+ {
+ char *end;
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+ /* for multiline we only have to try after newlines */
+ if (prog->check_substr || prog->check_utf8) {
+ /* because of the goto we can not easily reuse the macros for bifurcating the
+ unicode/non-unicode match modes here like we do elsewhere - demerphq */
+ if (utf8_target) {
+ if (s == startpos)
+ goto after_try_utf8;
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_utf8:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + UTF8SKIP(s), strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ }
+ } /* end search for check string in unicode */
+ else {
+ if (s == startpos) {
+ goto after_try_latin;
+ }
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_latin:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + 1, strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s++;
+ }
+ }
+ } /* end search for check string in latin*/
+ } /* end search for check string */
+ else { /* search for newline */
+ if (s > startpos) {
+ /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/
+ s--;
+ }
+ /* We can use a more efficient search as newlines are the same in unicode as they are in latin */
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ if (*s++ == '\n') { /* don't need PL_utf8skip here */
+ if (regtry(®info, &s))
+ goto got_it;
+ }
+ }
+ } /* end search for newline */
+ } /* end anchored/multiline check string search */
+ goto phooey;
+ } else if (RXf_GPOS_CHECK == (prog->extflags & RXf_GPOS_CHECK))
+ {
+ /* the warning about reginfo.ganch being used without initialization
+ is bogus -- we set it above, when prog->extflags & RXf_GPOS_SEEN
+ and we only enter this block when the same bit is set. */
+ char *tmp_s = reginfo.ganch - prog->gofs;
+
+ if (tmp_s >= strbeg && regtry(®info, &tmp_s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except UTF_PATTERN?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ ch = SvPVX_const(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)[0];
+
+ if (utf8_target) {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+ }
+ else {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ I32 back_max;
+ I32 back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+
+ if (must == &PL_sv_undef)
+ /* could not downgrade utf8 check substring, so must fail */
+ goto phooey;
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(I32)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > PL_bostr)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ scream_pos = -1;
+ dontbother = end_shift;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ ((flags & REXEC_SCREAM) && SvSCREAM(sv)
+ ? (s = screaminstr(sv, must, HOP3c(s, back_min, (back_min<0 ? strbeg : strend)) - strbeg,
+ end_shift, &scream_pos, 0))
+ : (s = fbm_instr((unsigned char*)HOP3(s, back_min, (back_min<0 ? strbeg : strend)),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0))) ) {
+ /* we may be pointing at the wrong string */
+ if ((flags & REXEC_SCREAM) && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= PL_bostr) ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, ®info))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ float_real = utf8_target ? prog->float_utf8 : prog->float_substr;
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ last = screaminstr(sv, float_real, s - strbeg,
+ end_shift, &scream_pos, 1); /* last one */
+ if (!last)
+ last = scream_olds; /* Only one occurrence. */
+ /* we may be pointing at the wrong string */
+ else if (RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ }
+ else {
+ STRLEN len;
+ const char * const little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on the end
+ * due to the presence of something like this: /foo$/
+ * where we can match both "foo" and "foo\n" at the end of the string.
+ * So we have to compare the end of the string first against the float_real
+ * without the \n and then against the full float_real with the string.
+ * We have to watch out for cases where the string might be smaller
+ * than the float_real or the float_real without the \n.
+ */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was probably
+ * incorrect, which said that this was a "should not happen" case.
+ * Even if it was true when it was written I am pretty sure it is
+ * not anymore, so I have removed the comment and replaced it with
+ * this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "String does not contain required substring, cannot match.\n"
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(®info, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(®info, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+got_it:
+ Safefree(swap);
+ RX_MATCH_TAINTED_set(rx, PL_reg_flags & RF_tainted);
+
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) ) {
+ RX_MATCH_COPY_FREE(rx);
+ if (flags & REXEC_COPY_STR) {
+ const I32 i = PL_regeol - startpos + (stringarg - strbeg);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if ((SvIsCOW(sv)
+ || (SvFLAGS(sv) & CAN_COW_MASK) == CAN_COW_FLAGS)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ } else
+#endif
+ {
+ RX_MATCH_COPIED_on(rx);
+ s = savepvn(strbeg, i);
+ prog->subbeg = s;
+ }
+ prog->sublen = i;
+ }
+ else {
+ prog->subbeg = strbeg;
+ prog->sublen = PL_regeol - strbeg; /* strend may have been modified */
+ }
+ }
+
+ return 1;
+
+phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (swap) {
+ /* we failed :-( roll it back */
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+
+ return 0;
+}
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startpos)
+{
+ dVAR;
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ if ((prog->extflags & RXf_EVAL_SEEN) && !PL_reg_eval_set) {
+ MAGIC *mg;
+
+ PL_reg_eval_set = RS_init;
+ DEBUG_EXECUTE_r(DEBUG_s(
+ PerlIO_printf(Perl_debug_log, " setting stack tmpbase at %"IVdf"\n",
+ (IV)(PL_stack_sp - PL_stack_base));
+ ));
+ SAVESTACK_CXPOS();
+ cxstack[cxstack_ix].blk_oldsp = PL_stack_sp - PL_stack_base;
+ /* Otherwise OP_NEXTSTATE will free whatever on stack now. */
+ SAVETMPS;
+ /* Apparently this is not needed, judging by wantarray. */
+ /* SAVEI8(cxstack[cxstack_ix].blk_gimme);
+ cxstack[cxstack_ix].blk_gimme = G_SCALAR; */
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(SvTYPE(reginfo->sv) >= SVt_PVMG && SvMAGIC(reginfo->sv)
+ && (mg = mg_find(reginfo->sv, PERL_MAGIC_regex_global)))) {
+ /* prepare for quick setting of pos */
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if (SvIsCOW(reginfo->sv))
+ sv_force_normal_flags(reginfo->sv, 0);
+#endif
+ mg = sv_magicext(reginfo->sv, NULL, PERL_MAGIC_regex_global,
+ &PL_vtbl_mglob, NULL, 0);
+ mg->mg_len = -1;
+ }
+ PL_reg_magic = mg;
+ PL_reg_oldpos = mg->mg_len;
+ SAVEDESTRUCTOR_X(restore_pos, prog);
+ }
+ if (!PL_reg_curpm) {
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_len(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+#ifdef USE_ITHREADS
+ /* It seems that non-ithreads works both with and without this code.
+ So for efficiency reasons it seems best not to have the code
+ compiled when it is not needed. */
+ /* This is safe against NULLs: */
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm));
+ /* PM_reg_curpm owns a reference to this regexp. */
+ (void)ReREFCNT_inc(rx);
+#endif
+ PM_SETRE(PL_reg_curpm, rx);
+ PL_reg_oldcurpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(prog)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ PL_reg_oldsaved = prog->subbeg;
+ PL_reg_oldsavedlen = prog->sublen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = prog->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(prog);
+ }
+ else
+ PL_reg_oldsaved = NULL;
+ prog->subbeg = PL_bostr;
+ prog->sublen = PL_regeol - PL_bostr; /* strend may have been modified */
+ }
+ DEBUG_EXECUTE_r(PL_reg_starttry = *startpos);
+ prog->offs[0].start = *startpos - PL_bostr;
+ PL_reginput = *startpos;
+ PL_reglastparen = &prog->lastparen;
+ PL_reglastcloseparen = &prog->lastcloseparen;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+ PL_regsize = 0;
+ PL_regoffs = prog->offs;
+ if (PL_reg_start_tmpl <= prog->nparens) {
+ PL_reg_start_tmpl = prog->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, PL_reglastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * PL_reglastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = PL_regoffs;
+ register I32 i;
+ for (i = prog->nparens; i > (I32)*PL_reglastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ if (regmatch(reginfo, progi->program + 1)) {
+ PL_regoffs[0].end = PL_reginput - PL_bostr;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startpos= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ PL_reg_poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node);
+ PUSH_YES_STATE_GOTO(resume_state, node);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(pTHX_ const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)*PL_reglastparen >= nums[n] &&
+ PL_regoffs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+/* free all slabs above current one - called during LEAVE_SCOPE */
+
+STATIC void
+S_clear_backtrack_stack(pTHX_ void *p)
+{
+ regmatch_slab *s = PL_regmatch_slab->next;
+ PERL_UNUSED_ARG(p);
+
+ if (!s)
+ return;
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+}
+
+
+#define SETREX(Re1,Re2) \
+ if (PL_reg_eval_set) PM_SETRE((PL_reg_curpm), (Re2)); \
+ Re1 = (Re2)
+
+STATIC I32 /* 0 failure, 1 success */
+S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ register const bool utf8_target = PL_reg_match_utf8;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = (struct regexp *)SvANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ I32 oldsave;
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ register regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ register regnode *scan;
+ register regnode *next;
+ register U32 n = 0; /* general value; init to avoid compiler warning */
+ register I32 ln = 0; /* len or last; init to avoid compiler warning */
+ register char *locinput = PL_reginput;
+ register I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = PL_reginput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSV(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+ /* on first ever call to regmatch, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ oldsave = PL_savestack_ix;
+ SAVEDESTRUCTOR_X(S_clear_backtrack_stack, NULL);
+ SAVEVPTR(PL_regmatch_slab);
+ SAVEVPTR(PL_regmatch_state);
+
+ /* grab next free state slot */
+ st = ++PL_regmatch_state;
+ if (st > SLAB_LAST(PL_regmatch_slab))
+ st = PL_regmatch_state = S_push_slab(aTHX);
+
+ /* Note that nextchr is a byte even in UTF */
+ nextchr = UCHARAT(locinput);
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+
+ assert(PL_reglastparen == &rex->lastparen);
+ assert(PL_reglastcloseparen == &rex->lastcloseparen);
+ assert(PL_regoffs == rex->offs);
+
+ switch (state_num) {
+ case BOL:
+ if (locinput == PL_bostr)
+ {
+ /* reginfo->till = reginfo->bol; */
+ break;
+ }
+ sayNO;
+ case MBOL:
+ if (locinput == PL_bostr ||
+ ((nextchr || locinput < PL_regeol) && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+ case SBOL:
+ if (locinput == PL_bostr)
+ break;
+ sayNO;
+ case GPOS:
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS:
+ /* update the startpoint */
+ st->u.keeper.val = PL_regoffs[0].start;
+ PL_reginput = locinput;
+ PL_regoffs[0].start = locinput - PL_bostr;
+ PUSH_STATE_GOTO(KEEPS_next, next);
+ /*NOT-REACHED*/
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ PL_regoffs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /*NOT-REACHED*/
+ case EOL:
+ goto seol;
+ case MEOL:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ break;
+ case SEOL:
+ seol:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ if (PL_regeol - locinput > 1)
+ sayNO;
+ break;
+ case EOS:
+ if (PL_regeol != locinput)
+ sayNO;
+ break;
+ case SANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+ case CANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ case REG_ANY:
+ if ((!nextchr && locinput >= PL_regeol) || nextchr == '\n')
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC:
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!ANYOF_BITMAP_TEST(scan, *locinput)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ }
+ /* FALL THROUGH */
+ case TRIE:
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 1 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (trie->bitmap && !TRIE_BITMAP_TEST(trie,*locinput) ) {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.B = next;
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)PL_regeol ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base ) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ register U16 min = 0;
+ register U16 word;
+ register U16 const nextword = ST.nextword;
+ register reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = *PL_reglastparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ U8 *uc = ST.firstpos;
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ PL_reginput = (char *)uc;
+ }
+
+ scan = (ST.jump && ST.jump[ST.nextword])
+ ? ST.me + ST.jump[ST.nextword]
+ : ST.B;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan);
+ /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = av_fetch( trie_words,
+ ST.nextword-1, 0 );
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+#undef ST
+
+ case EXACT: {
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != UTF_PATTERN) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*(U8*)s) !=
+ utf8n_to_uvuni((U8*)l, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ l += ulen;
+ s ++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*((U8*)l)) !=
+ utf8n_to_uvuni((U8*)s, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ s += ulen;
+ l ++;
+ }
+ }
+ locinput = l;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr)
+ sayNO;
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && memNE(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case EXACTFL: {
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = (UTF_PATTERN) ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target || UTF_PATTERN || state_num == EXACTFU_SS) {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = PL_regeol;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, cBOOL(UTF_PATTERN),
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr &&
+ UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* XXX Could improve efficiency by separating these all out using a
+ * macro or in-line function. At that point regcomp.c would no longer
+ * have to set the FLAGS fields of these */
+ case BOUNDL:
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ /* FALL THROUGH */
+ case BOUND:
+ case BOUNDU:
+ case BOUNDA:
+ case NBOUND:
+ case NBOUNDU:
+ case NBOUNDA:
+ /* was last char in word? */
+ if (utf8_target
+ && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET
+ && FLAGS(scan) != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+ {
+ if (locinput == PL_bostr)
+ ln = '\n';
+ else {
+ const U8 * const r = reghop3((U8*)locinput, -1, (U8*)PL_bostr);
+
+ ln = utf8n_to_uvchr(r, UTF8SKIP(r), 0, uniflags);
+ }
+ if (FLAGS(scan) != REGEX_LOCALE_CHARSET) {
+ ln = isALNUM_uni(ln);
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ n = swash_fetch(PL_utf8_alnum, (U8*)locinput, utf8_target);
+ }
+ else {
+ ln = isALNUM_LC_uvchr(UNI_TO_NATIVE(ln));
+ n = isALNUM_LC_utf8((U8*)locinput);
+ }
+ }
+ else {
+
+ /* Here the string isn't utf8, or is utf8 and only ascii
+ * characters are to match \w. In the latter case looking at
+ * the byte just prior to the current one may be just the final
+ * byte of a multi-byte character. This is ok. There are two
+ * cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final
+ * byte is never mistakable for ASCII, and so the test
+ * will say it is not a word character, which is the
+ * correct answer. */
+ ln = (locinput != PL_bostr) ?
+ UCHARAT(locinput - 1) : '\n';
+ switch (FLAGS(scan)) {
+ case REGEX_UNICODE_CHARSET:
+ ln = isWORDCHAR_L1(ln);
+ n = isWORDCHAR_L1(nextchr);
+ break;
+ case REGEX_LOCALE_CHARSET:
+ ln = isALNUM_LC(ln);
+ n = isALNUM_LC(nextchr);
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ ln = isALNUM(ln);
+ n = isALNUM(nextchr);
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ ln = isWORDCHAR_A(ln);
+ n = isWORDCHAR_A(nextchr);
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan));
+ break;
+ }
+ }
+ /* Note requires that all BOUNDs be lower than all NBOUNDs in
+ * regcomp.sym */
+ if (((!ln) == (!n)) == (OP(scan) < NBOUND))
+ sayNO;
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || state_num == ANYOFV) {
+ STRLEN inclasslen = PL_regeol - locinput;
+ if (locinput >= PL_regeol)
+ sayNO;
+
+ if (!reginclass(rex, scan, (U8*)locinput, &inclasslen, utf8_target))
+ sayNO;
+ locinput += inclasslen;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ else {
+ if (nextchr < 0)
+ nextchr = UCHARAT(locinput);
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ }
+ break;
+ /* Special char classes - The defines start on line 129 or so */
+ CCC_TRY_U(ALNUM, NALNUM, isWORDCHAR,
+ ALNUML, NALNUML, isALNUM_LC, isALNUM_LC_utf8,
+ ALNUMU, NALNUMU, isWORDCHAR_L1,
+ ALNUMA, NALNUMA, isWORDCHAR_A,
+ alnum, "a");
+
+ CCC_TRY_U(SPACE, NSPACE, isSPACE,
+ SPACEL, NSPACEL, isSPACE_LC, isSPACE_LC_utf8,
+ SPACEU, NSPACEU, isSPACE_L1,
+ SPACEA, NSPACEA, isSPACE_A,
+ space, " ");
+
+ CCC_TRY(DIGIT, NDIGIT, isDIGIT,
+ DIGITL, NDIGITL, isDIGIT_LC, isDIGIT_LC_utf8,
+ DIGITA, NDIGITA, isDIGIT_A,
+ digit, "0");
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ /* From http://www.unicode.org/reports/tr29 (5.2 version). An
+ extended Grapheme Cluster is:
+
+ CR LF
+ | Prepend* Begin Extend*
+ | .
+
+ Begin is (Hangul-syllable | ! Control)
+ Extend is (Grapheme_Extend | Spacing_Mark)
+ Control is [ GCB_Control CR LF ]
+
+ The discussion below shows how the code for CLUMP is derived
+ from this regex. Note that most of these concepts are from
+ property values of the Grapheme Cluster Boundary (GCB) property.
+ No code point can have multiple property values for a given
+ property. Thus a code point in Prepend can't be in Control, but
+ it must be in !Control. This is why Control above includes
+ GCB_Control plus CR plus LF. The latter two are used in the GCB
+ property separately, and so can't be in GCB_Control, even though
+ they logically are controls. Control is not the same as gc=cc,
+ but includes format and other characters as well.
+
+ The Unicode definition of Hangul-syllable is:
+ L+
+ | (L* ( ( V | LV ) V* | LVT ) T*)
+ | T+
+ )
+ Each of these is a value for the GCB property, and hence must be
+ disjoint, so the order they are tested is immaterial, so the
+ above can safely be changed to
+ T+
+ | L+
+ | (L* ( LVT | ( V | LV ) V*) T*)
+
+ The last two terms can be combined like this:
+ L* ( L
+ | (( LVT | ( V | LV ) V*) T*))
+
+ And refactored into this:
+ L* (L | LVT T* | V V* T* | LV V* T*)
+
+ That means that if we have seen any L's at all we can quit
+ there, but if the next character is an LVT, a V, or an LV we
+ should keep going.
+
+ There is a subtlety with Prepend* which showed up in testing.
+ Note that the Begin, and only the Begin is required in:
+ | Prepend* Begin Extend*
+ Also, Begin contains '! Control'. A Prepend must be a
+ '! Control', which means it must also be a Begin. What it
+ comes down to is that if we match Prepend* and then find no
+ suitable Begin afterwards, that if we backtrack the last
+ Prepend, that one will be a suitable Begin.
+ */
+
+ if (locinput >= PL_regeol)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < PL_regeol
+ && UCHARAT(locinput) == '\n') locinput++;
+ }
+ else {
+
+ /* Utf8: See if is ( CR LF ); already know that locinput <
+ * PL_regeol, so locinput+1 is in bounds */
+ if (nextchr == '\r' && UCHARAT(locinput + 1) == '\n') {
+ locinput += 2;
+ }
+ else {
+ /* In case have to backtrack to beginning, then match '.' */
+ char *starting = locinput;
+
+ /* In case have to backtrack the last prepend */
+ char *previous_prepend = 0;
+
+ LOAD_UTF8_CHARCLASS_GCB();
+
+ /* Match (prepend)* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_prepend,
+ (U8*)locinput, utf8_target))
+ {
+ previous_prepend = locinput;
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* As noted above, if we matched a prepend character, but
+ * the next thing won't match, back off the last prepend we
+ * matched, as it is guaranteed to match the begin */
+ if (previous_prepend
+ && (locinput >= PL_regeol
+ || ! swash_fetch(PL_utf8_X_begin,
+ (U8*)locinput, utf8_target)))
+ {
+ locinput = previous_prepend;
+ }
+
+ /* Note that here we know PL_regeol > locinput, as we
+ * tested that upon input to this switch case, and if we
+ * moved locinput forward, we tested the result just above
+ * and it either passed, or we backed off so that it will
+ * now pass */
+ if (! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target)) {
+
+ /* Here did not match the required 'Begin' in the
+ * second term. So just match the very first
+ * character, the '.' of the final term of the regex */
+ locinput = starting + UTF8SKIP(starting);
+ } else {
+
+ /* Here is the beginning of a character that can have
+ * an extender. It is either a hangul syllable, or a
+ * non-control */
+ if (swash_fetch(PL_utf8_X_non_hangul,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Here not a Hangul syllable, must be a
+ * ('! * Control') */
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Here is a Hangul syllable. It can be composed
+ * of several individual characters. One
+ * possibility is T+ */
+ if (swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ } else {
+
+ /* Here, not T+, but is a Hangul. That means
+ * it is one of the others: L, LV, LVT or V,
+ * and matches:
+ * L* (L | LVT T* | V V* T* | LV V* T*) */
+
+ /* Match L* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_L,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* Here, have exhausted L*. If the next
+ * character is not an LV, LVT nor V, it means
+ * we had to have at least one L, so matches L+
+ * in the original equation, we have a complete
+ * hangul syllable. Are done. */
+
+ if (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_LV_LVT_V,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Otherwise keep going. Must be LV, LVT
+ * or V. See if LVT */
+ if (swash_fetch(PL_utf8_X_LVT,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Must be V or LV. Take it, then
+ * match V* */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_V,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+
+ /* And any of LV, LVT, or V can be followed
+ * by T* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput,
+ utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ }
+
+ /* Match any extender */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_extend,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ if (locinput > PL_regeol) sayNO;
+ }
+ nextchr = UCHARAT(locinput);
+ break;
+
+ case NREFFL:
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_nref;
+
+ case NREFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF:
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL:
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_ref;
+
+ case REFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF:
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = PL_regoffs[n].start;
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (*PL_reglastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == PL_regoffs[n].end)
+ break;
+
+ s = PL_bostr + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU))
+ { /* XXX handle REFFL better */
+ char * limit = PL_regeol;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by PL_regeol, and returns in
+ * limit upon success, how much of the current input was
+ * matched */
+ if (! foldEQ_utf8_flags(s, NULL, PL_regoffs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = PL_regoffs[n].end - ln;
+ if (locinput + ln > PL_regeol)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case NOTHING:
+ case TAIL:
+ break;
+ case BACK:
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART:
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ (void)ReREFCNT_inc(rex_sv);
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+ dSP;
+ SV ** const before = SP;
+ OP_4tree * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ PAD *old_comppad;
+ char *saved_regeol = PL_regeol;
+ struct re_save_state saved_state;
+
+ /* To not corrupt the existing regex state while executing the
+ * eval we would normally put it on the save stack, like with
+ * save_re_context. However, re-evals have a weird scoping so we
+ * can't just add ENTER/LEAVE here. With that, things like
+ *
+ * (?{$a=2})(a(?{local$a=$a+1}))*aak*c(?{$b=$a})
+ *
+ * would break, as they expect the localisation to be unwound
+ * only when the re-engine backtracks through the bit that
+ * localised it.
+ *
+ * What we do instead is just saving the state in a local c
+ * variable.
+ */
+ Copy(&PL_reg_state, &saved_state, 1, struct re_save_state);
+
+ n = ARG(scan);
+ PL_op = (OP_4tree*)rexi->data->data[n];
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re_eval 0x%"UVxf"\n", PTR2UV(PL_op)) );
+ /* wrap the call in two SAVECOMPPADs. This ensures that
+ * when the save stack is eventually unwound, all the
+ * accumulated SAVEt_CLEARSV's will be processed with
+ * interspersed SAVEt_COMPPAD's to ensure that lexicals
+ * are cleared in the right pad */
+ SAVECOMPPAD();
+ PAD_SAVE_LOCAL(old_comppad, (PAD*)rexi->data->data[n + 2]);
+ PL_regoffs[0].end = PL_reg_magic->mg_len = locinput - PL_bostr;
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if (SP == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ Copy(&saved_state, &PL_reg_state, 1, struct re_save_state);
+
+ PL_op = oop;
+ SAVECOMPPAD();
+ PAD_RESTORE_LOCAL(old_comppad);
+ PL_curcop = ocurcop;
+ PL_regeol = saved_regeol;
+ if (!logical) {
+ /* /(?{...})/ */
+ sv_setsv(save_scalar(PL_replgv), ret);
+ break;
+ }
+ }
+ if (logical == 2) { /* Postponed subexpression: /(??{...})/ */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+ MAGIC *mg = NULL;
+ REGEXP *rx = NULL;
+
+ if (SvROK(ret)) {
+ SV *const sv = SvRV(ret);
+
+ if (SvTYPE(sv) == SVt_REGEXP) {
+ rx = (REGEXP*) sv;
+ } else if (SvSMAGICAL(sv)) {
+ mg = mg_find(sv, PERL_MAGIC_qr);
+ assert(mg);
+ }
+ } else if (SvTYPE(ret) == SVt_REGEXP) {
+ rx = (REGEXP*) ret;
+ } else if (SvSMAGICAL(ret)) {
+ if (SvGMAGICAL(ret)) {
+ /* I don't believe that there is ever qr magic
+ here. */
+ assert(!mg_find(ret, PERL_MAGIC_qr));
+ sv_unmagic(ret, PERL_MAGIC_qr);
+ }
+ else {
+ mg = mg_find(ret, PERL_MAGIC_qr);
+ /* testing suggests mg only ends up non-NULL for
+ scalars who were upgraded and compiled in the
+ else block below. In turn, this is only
+ triggered in the "postponed utf8 string" tests
+ in t/op/pat.t */
+ }
+ }
+
+ if (mg) {
+ rx = (REGEXP *) mg->mg_obj; /*XXX:dmq*/
+ assert(rx);
+ }
+ if (rx) {
+ rx = reg_temp_copy(NULL, rx);
+ }
+ else {
+ U32 pm_flags = 0;
+ const I32 osize = PL_regsize;
+
+ if (DO_UTF8(ret)) {
+ assert (SvUTF8(ret));
+ } else if (SvUTF8(ret)) {
+ /* Not doing UTF-8, despite what the SV says. Is
+ this only if we're trapped in use 'bytes'? */
+ /* Make a copy of the octet sequence, but without
+ the flag on, as the compiler now honours the
+ SvUTF8 flag on ret. */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ rx = CALLREGCOMP(ret, pm_flags);
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_PADTMP | SVf_READONLY
+ | SVs_GMG))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(rx), PERL_MAGIC_qr, 0, 0);
+ }
+ PL_regsize = osize;
+ }
+ re_sv = rx;
+ re = (struct regexp *)SvANY(rx);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput, PL_regeol,
+ "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* borrowed from regtry */
+ if (PL_reg_start_tmpl <= re->nparens) {
+ PL_reg_start_tmpl = re->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ eval_recurse_doit: /* Share code with GOSUB below this line */
+ /* run the pattern returned from (??{...}) */
+ ST.cp = regcppush(0); /* Save *all* the positions. */
+ REGCP_SET(ST.lastcp);
+
+ PL_regoffs = re->offs; /* essentially NOOP on GOSUB */
+
+ /* see regtry, specifically PL_reglast(?:close)?paren is a pointer! (i dont know why) :dmq */
+ PL_reglastparen = &re->lastparen;
+ PL_reglastcloseparen = &re->lastcloseparen;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+
+ PL_reginput = locinput;
+ PL_regsize = 0;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+
+ ST.toggle_reg_flags = PL_reg_flags;
+ if (RX_UTF8(re_sv))
+ PL_reg_flags |= RF_utf8;
+ else
+ PL_reg_flags &= ~RF_utf8;
+ ST.toggle_reg_flags ^= PL_reg_flags; /* diff of old and new */
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ SETREX(rex_sv,re_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint);
+ /* NOTREACHED */
+ }
+ /* logical is 1, /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ break;
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ regcpblow(ST.cp);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+ /* also update PL_regoffs */
+ PL_regoffs = rex->offs;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ PL_reginput = locinput;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN:
+ n = ARG(scan); /* which paren pair */
+ PL_reg_start_tmp[n] = locinput;
+ if (n > PL_regsize)
+ PL_regsize = n;
+ lastopen = n;
+ break;
+ case CLOSE:
+ n = ARG(scan); /* which paren pair */
+ PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+ case ACCEPT:
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ PL_regoffs[n].start
+ = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /*NOTREACHED*/
+ case GROUPP:
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(*PL_reglastparen >= n && PL_regoffs[n].end != -1);
+ break;
+ case NGROUPP:
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+ case INSUBP:
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+ case DEFINEP:
+ sw = 0;
+ break;
+ case IFTHEN:
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+ case LOGICAL:
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > PL_regsize... */
+ if (parenfloor > (I32)*PL_reglastparen)
+ parenfloor = *PL_reglastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next));
+ /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min = ARG1(cur_curlyx->u.curlyx.me);
+ int max = ARG2(cur_curlyx->u.curlyx.me);
+ regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+ PL_reginput = locinput;
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A);
+ /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing */
+
+ if (scan->flags) {
+
+ if (!PL_reg_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ PL_reg_maxiter = (PL_regeol - PL_bostr + 1) * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (PL_reg_maxiter < 0)
+ PL_reg_maxiter = I32_MAX;
+ PL_reg_leftiter = PL_reg_maxiter;
+ }
+
+ if (PL_reg_leftiter-- == 0) {
+ /* initialise cache */
+ const I32 size = (PL_reg_maxiter + 7)/8;
+ if (PL_reg_poscache) {
+ if ((I32)PL_reg_poscache_size < size) {
+ Renew(PL_reg_poscache, size, char);
+ PL_reg_poscache_size = size;
+ }
+ Zero(PL_reg_poscache, size, char);
+ }
+ else {
+ PL_reg_poscache_size = size;
+ Newxz(PL_reg_poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (PL_reg_leftiter < 0) {
+ /* have we already failed at this position? */
+ I32 offset, mask;
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - PL_bostr) * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (PL_reg_poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(ST.save_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A);
+ /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALL THROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex); /* Restore some previous $<digit>s? */
+ PL_reginput = locinput;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ PL_reginput = locinput;
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS);
+ /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALL THROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = *PL_reglastparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+ PL_reginput = locinput;
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan);
+ }
+ /* NOTREACHED */
+ case CUTGROUP:
+ PL_reginput = locinput;
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next,next);
+ /* NOTREACHED */
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ /*dmq: *PL_reglastcloseparen = n; */
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD:
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > PL_regsize)
+ PL_regsize = paren;
+ if (paren > *PL_reglastparen)
+ *PL_reglastparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A); /* match A */
+ /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ locinput = st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (PL_reg_match_utf8) {
+ char *s = locinput;
+ while (s < PL_reginput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = PL_reginput - locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ locinput = PL_reginput;
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ PL_reginput = locinput;
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT)
+ {
+
+ ST.c1 = (U8)*STRING(text_node);
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (ST.c1 != CHRTEST_VOID
+ && UCHARAT(PL_reginput) != ST.c1
+ && UCHARAT(PL_reginput) != ST.c2)
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail c1=%"IVdf" c2=%"IVdf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (IV)ST.c1,(IV)ST.c2
+ ));
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+
+ if (ST.me->flags) {
+ /* mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ PL_regoffs[paren].start
+ = HOPc(PL_reginput, -ST.alen) - PL_bostr;
+ PL_regoffs[paren].end = PL_reginput - PL_bostr;
+ /*dmq: *PL_reglastcloseparen = paren; */
+ }
+ else
+ PL_regoffs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B); /* match B */
+ /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ locinput = HOPc(locinput, -ST.alen);
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ PL_regoffs[paren].start = HOPc(locinput, -1) - PL_bostr; \
+ PL_regoffs[paren].end = locinput - PL_bostr; \
+ *PL_reglastcloseparen = paren; \
+ } \
+ else \
+ PL_regoffs[paren].end = -1; \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case PLUS: /* /A+B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 */
+ ST.paren = scan->flags; /* Which paren to set */
+ if (ST.paren > PL_regsize)
+ PL_regsize = ST.paren;
+ if (ST.paren > *PL_reglastparen)
+ *PL_reglastparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+ case CURLY: /* /A{m,n}B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ if (ST.min > ST.max) /* XXX make this a compile-time check? */
+ sayNO;
+ if (HAS_TEXT(next) || JUMPABLE(next)) {
+ U8 *s;
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ goto assume_ok_easy;
+ }
+ else
+ s = (U8*)STRING(text_node);
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (!UTF_PATTERN) {
+ ST.c1 = *s;
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1; break;
+ }
+ }
+ else { /* UTF_PATTERN */
+ if (IS_TEXTFU(text_node) || IS_TEXTF(text_node)) {
+ STRLEN ulen1, ulen2;
+ U8 tmpbuf1[UTF8_MAXBYTES_CASE+1];
+ U8 tmpbuf2[UTF8_MAXBYTES_CASE+1];
+
+ to_utf8_lower((U8*)s, tmpbuf1, &ulen1);
+ to_utf8_upper((U8*)s, tmpbuf2, &ulen2);
+#ifdef EBCDIC
+ ST.c1 = utf8n_to_uvchr(tmpbuf1, UTF8_MAXLEN, 0,
+ ckWARN(WARN_UTF8) ?
+ 0 : UTF8_ALLOW_ANY);
+ ST.c2 = utf8n_to_uvchr(tmpbuf2, UTF8_MAXLEN, 0,
+ ckWARN(WARN_UTF8) ?
+ 0 : UTF8_ALLOW_ANY);
+#else
+ ST.c1 = utf8n_to_uvuni(tmpbuf1, UTF8_MAXBYTES, 0,
+ uniflags);
+ ST.c2 = utf8n_to_uvuni(tmpbuf2, UTF8_MAXBYTES, 0,
+ uniflags);
+#endif
+ }
+ else {
+ ST.c2 = ST.c1 = utf8n_to_uvchr(s, UTF8_MAXBYTES, 0,
+ uniflags);
+ }
+ }
+ }
+ }
+ else
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assume_ok_easy:
+
+ ST.A = scan;
+ ST.B = next;
+ PL_reginput = locinput;
+ if (minmod) {
+ minmod = 0;
+ if (ST.min && regrepeat(rex, ST.A, ST.min, depth) < ST.min)
+ sayNO;
+ ST.count = ST.min;
+ locinput = PL_reginput;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = PL_regeol - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos + UTF8SKIP(ST.maxpos) <= PL_regeol; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= PL_regeol)
+ ST.maxpos = PL_regeol - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ ST.count = regrepeat(rex, ST.A, ST.max, depth);
+ locinput = PL_reginput;
+ if (ST.count < ST.min)
+ sayNO;
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(PL_reginput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ PL_reginput = locinput; /* Could be reset... */
+ REGCP_UNWIND(ST.cp);
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ STRLEN len;
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos &&
+ utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags) != (UV)ST.c1) {
+ locinput += len;
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos) {
+ STRLEN len;
+ const UV c = utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags);
+ if (c == (UV)ST.c1 || c == (UV)ST.c2)
+ break;
+ locinput += len;
+ n++;
+ }
+ }
+ }
+ else {
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ /* PL_reginput == oldloc now */
+ if (n) {
+ ST.count += n;
+ if (regrepeat(rex, ST.A, n, depth) < n)
+ sayNO;
+ }
+ PL_reginput = locinput;
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B);
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* failed -- move forward one */
+ PL_reginput = locinput;
+ if (regrepeat(rex, ST.A, 1, depth)) {
+ ST.count++;
+ locinput = PL_reginput;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ UV c = 0;
+ if (ST.c1 != CHRTEST_VOID)
+ c = utf8_target ? utf8n_to_uvchr((U8*)PL_reginput,
+ UTF8_MAXBYTES, 0, uniflags)
+ : (UV) UCHARAT(PL_reginput);
+ /* If it could work, try it. */
+ if (ST.c1 == CHRTEST_VOID || c == (UV)ST.c1 || c == (UV)ST.c2) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B);
+ /* NOTREACHED */
+ }
+ }
+ /* FALL THROUGH */
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ PL_reginput = locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END:
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+ I32 tmpix;
+ st->u.eval.toggle_reg_flags
+ = cur_eval->u.eval.toggle_reg_flags;
+ PL_reg_flags ^= st->u.eval.toggle_reg_flags;
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+ SETREX(rex_sv,cur_eval->u.eval.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+ (void)ReREFCNT_inc(rex_sv);
+ st->u.eval.cp = regcppush(0); /* Save *all* the positions. */
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ REGCP_SET(st->u.eval.lastcp);
+ PL_reginput = locinput;
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ tmpix = PL_savestack_ix;
+ PL_savestack_ix = cur_eval->u.eval.lastcp;
+ regcppop(rex);
+ PL_savestack_ix = tmpix;
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB,
+ st->u.eval.prev_eval->u.eval.B); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - PL_reg_starttry),
+ (long)(reginfo->till - PL_reg_starttry),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ PL_reginput = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ PL_reginput = s;
+ }
+ else
+ PL_reginput = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)));
+ /* NOTREACHED */
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALL THROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) == SUSPEND)
+ locinput = PL_reginput;
+ else {
+ locinput = PL_reginput = st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP:
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ case COMMIT:
+ reginfo->cutpoint = PL_regeol;
+ /* FALLTHROUGH */
+ case PRUNE:
+ PL_reginput = locinput;
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next,next);
+ /* NOTREACHED */
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+ case OPFAIL:
+ sayNO;
+ /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT:
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next,next);
+ /* NOTREACHED */
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ case SKIP:
+ PL_reginput = locinput;
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next );
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+#undef ST
+ case LNBREAK:
+ if ((n=is_LNBREAK(locinput,utf8_target))) {
+ locinput += n;
+ nextchr = UCHARAT(locinput);
+ } else
+ sayNO;
+ break;
+
+#define CASE_CLASS(nAmE) \
+ case nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ locinput += n; \
+ nextchr = UCHARAT(locinput); \
+ } else \
+ sayNO; \
+ break; \
+ case N##nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ sayNO; \
+ } else { \
+ locinput += UTF8SKIP(locinput); \
+ nextchr = UCHARAT(locinput); \
+ } \
+ break
+
+ CASE_CLASS(VERTWS);
+ CASE_CLASS(HORIZWS);
+#undef CASE_CLASS
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALL THROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /*NOTREACHED*/
+ sayNO;
+
+yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final) {
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (PL_reg_eval_set) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* clean up; in particular, free all slabs above current one */
+ LEAVE_SCOPE(oldsave);
+
+ return result;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ */
+/*
+ * [This routine now assumes that it will only match on things of length 1.
+ * That was true before, but now we assume scan - reginput is the count,
+ * rather than incrementing count on every character. [Er, except utf8.]]
+ */
+STATIC I32
+S_regrepeat(pTHX_ const regexp *prog, const regnode *p, I32 max, int depth)
+{
+ dVAR;
+ register char *scan;
+ register I32 c;
+ register char *loceol = PL_regeol;
+ register I32 hardcount = 0;
+ register bool utf8_target = PL_reg_match_utf8;
+ UV utf8_flags;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = PL_reginput;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (max < loceol - scan)
+ loceol = scan + max;
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case CANY:
+ scan = loceol;
+ break;
+ case EXACT:
+ /* To get here, EXACTish nodes must have *byte* length == 1. That
+ * means they match only characters in the string that can be expressed
+ * as a single byte. For non-utf8 strings, that means a simple match.
+ * For utf8 strings, the character matched must be an invariant, or
+ * downgradable to a single byte. The pattern's utf8ness is
+ * irrelevant, as since it's a single byte, it either isn't utf8, or if
+ * it is, it's an invariant */
+
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (! utf8_target || UNI_IS_INVARIANT(c)) {
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else {
+
+ /* Here, the string is utf8, and the pattern char is different
+ * in utf8 than not, so can't compare them directly. Outside the
+ * loop, find the two utf8 bytes that represent c, and then
+ * look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+ loceol = PL_regeol;
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ PL_reg_flags |= RF_tainted;
+ utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTF:
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ utf8_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ /* The comments for the EXACT case above apply as well to these fold
+ * ones */
+
+ do_exactf:
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (utf8_target || OP(p) == EXACTFU_SS) { /* Use full Unicode fold matching */
+ char *tmpeol = loceol;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, 1, cBOOL(UTF_PATTERN), utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = loceol;
+ hardcount++;
+ }
+
+ /* XXX Note that the above handles properly the German sharp s in
+ * the pattern matching ss in the string. But it doesn't handle
+ * properly cases where the string contains say 'LIGATURE ff' and
+ * the pattern is 'f+'. This would require, say, a new function or
+ * revised interface to foldEQ_utf8(), in which the maximum number
+ * of characters to match could be passed and it would return how
+ * many actually did. This is just one of many cases where
+ * multi-char folds don't work properly, and so the fix is being
+ * deferred */
+ }
+ else {
+ U8 folded;
+
+ /* Here, the string isn't utf8 and c is a single byte; and either
+ * the pattern isn't utf8 or c is an invariant, so its utf8ness
+ * doesn't affect c. Can just do simple comparisons for exact or
+ * fold matching. */
+ switch (OP(p)) {
+ case EXACTF: folded = PL_fold[c]; break;
+ case EXACTFA:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folded = PL_fold_latin1[c]; break;
+ case EXACTFL: folded = PL_fold_locale[c]; break;
+ default: Perl_croak(aTHX_ "panic: Unexpected op %u", OP(p));
+ }
+ while (scan < loceol &&
+ (UCHARAT(scan) == c || UCHARAT(scan) == folded))
+ {
+ scan++;
+ }
+ }
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(p) == ANYOFV) {
+ STRLEN inclasslen;
+ loceol = PL_regeol;
+ inclasslen = loceol - scan;
+ while (hardcount < max
+ && ((inclasslen = loceol - scan) > 0)
+ && reginclass(prog, p, (U8*)scan, &inclasslen, utf8_target))
+ {
+ scan += inclasslen;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+ case ALNUMU:
+ if (utf8_target) {
+ utf8_wordchar:
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case ALNUM:
+ if (utf8_target)
+ goto utf8_wordchar;
+ while (scan < loceol && isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUMA:
+ while (scan < loceol && isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case NALNUMU:
+ if (utf8_target) {
+
+ utf8_Nwordchar:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ ! swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && ! isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUM:
+ if (utf8_target)
+ goto utf8_Nwordchar;
+ while (scan < loceol && ! isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NALNUMA:
+ if (utf8_target) {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case SPACEU:
+ if (utf8_target) {
+
+ utf8_space:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ break;
+ }
+ case SPACE:
+ if (utf8_target)
+ goto utf8_space;
+
+ while (scan < loceol && isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEA:
+ while (scan < loceol && isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case NSPACEU:
+ if (utf8_target) {
+
+ utf8_Nspace:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ ! (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && ! isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACE:
+ if (utf8_target)
+ goto utf8_Nspace;
+
+ while (scan < loceol && ! isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NSPACEA:
+ if (utf8_target) {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case DIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case DIGITA:
+ while (scan < loceol && isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case DIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case NDIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ !swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case NDIGITA:
+ if (utf8_target) {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NDIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case LNBREAK:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_LNBREAK_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /*
+ LNBREAK can match two latin chars, which is ok,
+ because we have a null terminated string, but we
+ have to use hardcount in this situation
+ */
+ while (scan < loceol && (c=is_LNBREAK_latin1(scan))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+ case HORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_HORIZWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_HORIZWS_latin1(scan))
+ scan++;
+ }
+ break;
+ case NHORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_HORIZWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_HORIZWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case VERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_VERTWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case NVERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_VERTWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+
+ default: /* Called on something of 0 width. */
+ break; /* So match right here or not at all. */
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - PL_reginput;
+ PL_reginput = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+ return newSVsv(core_regclass_swash(prog, node, doinit, listsvp, altsvp));
+}
+#endif
+
+STATIC SV *
+S_core_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ /* Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is true, will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the swash initialization string in
+ * it.
+ * If <altsvp> is non-null, will return the alternates to the regular swash
+ * in it
+ * Tied intimately to how regcomp.c sets up the data structure */
+
+ dVAR;
+ SV *sw = NULL;
+ SV *si = NULL;
+ SV *alt = NULL;
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT_CORE_REGCLASS_SWASH;
+
+ assert(ANYOF_NONBITMAP(node));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ bool invlist_has_user_defined_property;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_len(av) >= 3) {
+ invlist = ary[3];
+ invlist_has_user_defined_property = cBOOL(SvUV(ary[4]));
+ }
+ else {
+ invlist = NULL;
+ invlist_has_user_defined_property = FALSE;
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (si && doinit) {
+
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ FALSE, /* is error if can't find
+ property */
+ invlist,
+ invlist_has_user_defined_property);
+ (void)av_store(av, 1, sw);
+ }
+
+ /* Element [2] is for any multi-char folds. Note that is a
+ * fundamentally flawed design, because can't backtrack and try
+ * again. See [perl #89774] */
+ if (SvTYPE(ary[2]) == SVt_PVAV) {
+ alt = ary[2];
+ }
+ }
+ }
+
+ if (listsvp) {
+ SV* matches_string = newSVpvn("", 0);
+ SV** invlistsvp;
+
+ /* Use the swash, if any, which has to have incorporated into it all
+ * possibilities */
+ if ( sw
+ && SvROK(sw)
+ && SvTYPE(SvRV(sw)) == SVt_PVHV
+ && (invlistsvp = hv_fetchs(MUTABLE_HV(SvRV(sw)), "INVLIST", FALSE)))
+ {
+ invlist = *invlistsvp;
+ }
+ else if (si && si != &PL_sv_undef) {
+
+ /* If no swash, use the input nitialization string, if available */
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ *listsvp = matches_string;
+ }
+
+ if (altsvp)
+ *altsvp = alt;
+
+ return sw;
+}
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF regnode
+ p is the target string
+ lenp is pointer to the maximum number of bytes of how far to go in p
+ (This is assumed wthout checking to always be at least the current
+ character's size)
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise. If lenp is not NULL, on return
+ from a successful match, the value it points to will be updated to how many
+ bytes in p were matched. If there was no match, the value is undefined,
+ possibly changed from the input.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ const regexp * const prog, register const regnode * const n, register const U8* const p, STRLEN* lenp, register const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+ STRLEN c_len = 0;
+ STRLEN maxlen;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it */
+ if (utf8_target && !UTF8_IS_INVARIANT(c)) {
+ c = utf8n_to_uvchr(p, UTF8_MAXBYTES, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ }
+ else {
+ c_len = 1;
+ }
+
+ /* Use passed in max length, or one character if none passed in or less
+ * than one character. And assume will match just one character. This is
+ * overwritten later if matched more. */
+ if (lenp) {
+ maxlen = (*lenp > c_len) ? *lenp : c_len;
+ *lenp = c_len;
+
+ }
+ else {
+ maxlen = c_len;
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < 256) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if (flags & ANYOF_NON_UTF8_LATIN1_ALL
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+
+ else if (flags & ANYOF_LOCALE) {
+ PL_reg_flags |= RF_tainted;
+
+ if ((flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_CLASS_TEST_ANY_SET(n) &&
+ ((ANYOF_CLASS_TEST(n, ANYOF_ALNUM) && isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUM) && !isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_SPACE) && isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NSPACE) && !isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_DIGIT) && isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NDIGIT) && !isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALNUMC) && isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUMC) && !isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALPHA) && isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALPHA) && !isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ASCII) && isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NASCII) && !isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_CNTRL) && isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NCNTRL) && !isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_GRAPH) && isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NGRAPH) && !isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_LOWER) && isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NLOWER) && !isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PRINT) && isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPRINT) && !isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PUNCT) && isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPUNCT) && !isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_UPPER) && isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NUPPER) && !isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_XDIGIT) && isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NXDIGIT) && !isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PSXSPC) && isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPSXSPC) && !isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_BLANK) && isBLANK_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NBLANK) && !isBLANK_LC(c))
+ ) /* How's that for a conditional? */
+ ) {
+ match = TRUE;
+ }
+ }
+ }
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. Locale nodes specifiy completely the
+ * behavior of code points in the bit map (otherwise, a utf8 target would
+ * cause them to be treated as Unicode and not locale), except in
+ * the very unlikely event when this node is a synthetic start class, which
+ * could be a combination of locale and non-locale nodes. So allow locale
+ * to match for the synthetic start class, which will give a false
+ * positive that will be resolved when the match is done again as not part
+ * of the synthetic start class */
+ if (!match) {
+ if (utf8_target && (flags & ANYOF_UNICODE_ALL) && c >= 256) {
+ match = TRUE; /* Everything above 255 matches */
+ }
+ else if (ANYOF_NONBITMAP(n)
+ && ((flags & ANYOF_NONBITMAP_NON_UTF8)
+ || (utf8_target
+ && (c >=256
+ || (! (flags & ANYOF_LOCALE))
+ || (flags & ANYOF_IS_SYNTHETIC)))))
+ {
+ AV *av;
+ SV * const sw = core_regclass_swash(prog, n, TRUE, 0, (SV**)&av);
+
+ if (sw) {
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else {
+
+ /* Not utf8. Convert as much of the string as available up
+ * to the limit of how far the (single) character in the
+ * pattern can possibly match (no need to go further). If
+ * the node is a straight ANYOF or not folding, it can't
+ * match more than one. Otherwise, It can match up to how
+ * far a single char can fold to. Since not utf8, each
+ * character is a single byte, so the max it can be in
+ * bytes is the same as the max it can be in characters */
+ STRLEN len = (OP(n) == ANYOF
+ || ! (flags & ANYOF_LOC_NONBITMAP_FOLD))
+ ? 1
+ : (maxlen < UTF8_MAX_FOLD_CHAR_EXPAND)
+ ? maxlen
+ : UTF8_MAX_FOLD_CHAR_EXPAND;
+ utf8_p = bytes_to_utf8(p, &len);
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE))
+ match = TRUE;
+ else if (flags & ANYOF_LOC_NONBITMAP_FOLD) {
+
+ /* Here, we need to test if the fold of the target string
+ * matches. The non-multi char folds have all been moved to
+ * the compilation phase, and the multi-char folds have
+ * been stored by regcomp into 'av'; we linearly check to
+ * see if any match the target string (folded). We know
+ * that the originals were each one character, but we don't
+ * currently know how many characters/bytes each folded to,
+ * except we do know that there are small limits imposed by
+ * Unicode. XXX A performance enhancement would be to have
+ * regcomp.c store the max number of chars/bytes that are
+ * in an av entry, as, say the 0th element. Even better
+ * would be to have a hash of the few characters that can
+ * start a multi-char fold to the max number of chars of
+ * those folds.
+ *
+ * If there is a match, we will need to advance (if lenp is
+ * specified) the match pointer in the target string. But
+ * what we are comparing here isn't that string directly,
+ * but its fold, whose length may differ from the original.
+ * As we go along in constructing the fold, therefore, we
+ * create a map so that we know how many bytes in the
+ * source to advance given that we have matched a certain
+ * number of bytes in the fold. This map is stored in
+ * 'map_fold_len_back'. Let n mean the number of bytes in
+ * the fold of the first character that we are folding.
+ * Then map_fold_len_back[n] is set to the number of bytes
+ * in that first character. Similarly let m be the
+ * corresponding number for the second character to be
+ * folded. Then map_fold_len_back[n+m] is set to the
+ * number of bytes occupied by the first two source
+ * characters. ... */
+ U8 map_fold_len_back[UTF8_MAXBYTES_CASE+1] = { 0 };
+ U8 folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen = 0; /* num bytes in fold of 1st char */
+ STRLEN total_foldlen = 0; /* num bytes in fold of all
+ chars */
+
+ if (OP(n) == ANYOF || maxlen == 1 || ! lenp || ! av) {
+
+ /* Here, only need to fold the first char of the target
+ * string. It the source wasn't utf8, is 1 byte long */
+ to_utf8_fold(utf8_p, folded, &foldlen);
+ total_foldlen = foldlen;
+ map_fold_len_back[foldlen] = (utf8_target)
+ ? UTF8SKIP(utf8_p)
+ : 1;
+ }
+ else {
+
+ /* Here, need to fold more than the first char. Do so
+ * up to the limits */
+ U8* source_ptr = utf8_p; /* The source for the fold
+ is the regex target
+ string */
+ U8* folded_ptr = folded;
+ U8* e = utf8_p + maxlen; /* Can't go beyond last
+ available byte in the
+ target string */
+ U8 i;
+ for (i = 0;
+ i < UTF8_MAX_FOLD_CHAR_EXPAND && source_ptr < e;
+ i++)
+ {
+
+ /* Fold the next character */
+ U8 this_char_folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN this_char_foldlen;
+ to_utf8_fold(source_ptr,
+ this_char_folded,
+ &this_char_foldlen);
+
+ /* Bail if it would exceed the byte limit for
+ * folding a single char. */
+ if (this_char_foldlen + folded_ptr - folded >
+ UTF8_MAXBYTES_CASE)
+ {
+ break;
+ }
+
+ /* Add the fold of this character */
+ Copy(this_char_folded,
+ folded_ptr,
+ this_char_foldlen,
+ U8);
+ source_ptr += UTF8SKIP(source_ptr);
+ folded_ptr += this_char_foldlen;
+ total_foldlen = folded_ptr - folded;
+
+ /* Create map from the number of bytes in the fold
+ * back to the number of bytes in the source. If
+ * the source isn't utf8, the byte count is just
+ * the number of characters so far */
+ map_fold_len_back[total_foldlen]
+ = (utf8_target)
+ ? source_ptr - utf8_p
+ : i + 1;
+ }
+ *folded_ptr = '\0';
+ }
+
+
+ /* Do the linear search to see if the fold is in the list
+ * of multi-char folds. */
+ if (av) {
+ I32 i;
+ for (i = 0; i <= av_len(av); i++) {
+ SV* const sv = *av_fetch(av, i, FALSE);
+ STRLEN len;
+ const char * const s = SvPV_const(sv, len);
+
+ if (len <= total_foldlen
+ && memEQ(s, (char*)folded, len)
+
+ /* If 0, means matched a partial char. See
+ * [perl #90536] */
+ && map_fold_len_back[len])
+ {
+
+ /* Advance the target string ptr to account for
+ * this fold, but have to translate from the
+ * folded length to the corresponding source
+ * length. */
+ if (lenp) {
+ *lenp = map_fold_len_back[len];
+ }
+ match = TRUE;
+ break;
+ }
+ }
+ }
+ }
+
+ /* If we allocated a string above, free it */
+ if (! utf8_target) Safefree(utf8_p);
+ }
+ }
+ }
+
+ return (flags & ANYOF_INVERT) ? !match : match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, I32 off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+#ifdef XXX_dmq
+/* there are a bunch of places where we use two reghop3's that should
+ be replaced with this routine. but since thats not done yet
+ we ifdef it out - dmq
+*/
+STATIC U8 *
+S_reghop4(U8 *s, I32 off, const U8* llim, const U8* rlim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+#endif
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, I32 off, const U8* lim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+static void
+restore_pos(pTHX_ void *arg)
+{
+ dVAR;
+ regexp * const rex = (regexp *)arg;
+ if (PL_reg_eval_set) {
+ if (PL_reg_oldsaved) {
+ rex->subbeg = PL_reg_oldsaved;
+ rex->sublen = PL_reg_oldsavedlen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ rex->saved_copy = PL_nrs;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ PL_reg_magic->mg_len = PL_reg_oldpos;
+ PL_reg_eval_set = 0;
+ PL_curpm = PL_reg_oldcurpm;
+ }
+}
+
+STATIC void
+S_to_utf8_substr(pTHX_ register regexp *prog)
+{
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC void
+S_to_byte_substr(pTHX_ register regexp *prog)
+{
+ dVAR;
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (sv_utf8_downgrade(sv, TRUE)) {
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ } else {
+ SvREFCNT_dec(sv);
+ sv = &PL_sv_undef;
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "proto.h"
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(pTHX_ register const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+ if (*s != '}')
+ return FALSE;
+ return TRUE;
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool utf8, const bool output_warning)
+{
+
+ U8 result;
+
+ if (utf8) {
+ /* Trying to deprecate non-ASCII usages. This construct has never
+ * worked for a utf8 variant. So, even though are accepting non-ASCII
+ * Latin1 in 5.14, no need to make them work under utf8 */
+ if (! isASCII(source)) {
+ Perl_croak(aTHX_ "Character following \"\\c\" must be ASCII");
+ }
+ }
+
+ result = toCTRL(source);
+ if (! isASCII(source)) {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "Character following \"\\c\" must be ASCII");
+ }
+ else if (! isCNTRL(result) && output_warning) {
+ if (source == '{') {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "\"\\c{\" is deprecated and is more clearly written as \";\"");
+ }
+ else {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isALNUM(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ const char *s,
+ UV *uv,
+ STRLEN *len,
+ const char** error_msg,
+ const bool output_warning)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; , otherwise TRUE. In either case the caller should look at *len
+ * On input:
+ * s points to a string that begins with 'o', and the previous character
+ * was a backslash.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * len on success will point to the next character in the string past the
+ * end of this construct.
+ * on failure, it will point to the failure
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ */
+ const char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(*s == 'o');
+ s++;
+
+ if (*s != '{') {
+ *len = 1; /* Move past the o */
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(s, '}');
+ if (!e) {
+ *len = 2; /* Move past the o{ */
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ /* Return past the '}' no matter what is inside the braces */
+ *len = e - s + 2; /* 2 = 1 for the o + 1 for the '}' */
+
+ s++; /* Point to first digit */
+
+ numbers_len = e - s;
+ if (numbers_len == 0) {
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ *uv = NATIVE_TO_UNI(grok_oct(s, &numbers_len, &flags, NULL));
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (output_warning && numbers_len != (STRLEN) (e - s)) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(s + numbers_len),
+ (int) numbers_len,
+ s);
+ }
+
+ return TRUE;
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* dquote_static.c
+ *
+ * This file contains static functions that are related to
+ * parsing double-quotish expressions, but are used in more than
+ * one file.
+ *
+ * It is currently #included by regcomp.c and toke.c.
+*/
+
+#define PERL_IN_DQUOTE_STATIC_C
+#include "proto.h"
+#include "embed.h"
+
+/*
+ - regcurly - a little FSA that accepts {\d+,?\d*}
+ Pulled from regcomp.c.
+ */
+PERL_STATIC_INLINE I32
+S_regcurly(pTHX_ register const char *s)
+{
+ PERL_ARGS_ASSERT_REGCURLY;
+
+ if (*s++ != '{')
+ return FALSE;
+ if (!isDIGIT(*s))
+ return FALSE;
+ while (isDIGIT(*s))
+ s++;
+ if (*s == ',') {
+ s++;
+ while (isDIGIT(*s))
+ s++;
+ }
+ if (*s != '}')
+ return FALSE;
+ return TRUE;
+}
+
+/* XXX Add documentation after final interface and behavior is decided */
+/* May want to show context for error, so would pass Perl_bslash_c(pTHX_ const char* current, const char* start, const bool output_warning)
+ U8 source = *current;
+*/
+
+STATIC char
+S_grok_bslash_c(pTHX_ const char source, const bool utf8, const bool output_warning)
+{
+
+ U8 result;
+
+ if (utf8) {
+ /* Trying to deprecate non-ASCII usages. This construct has never
+ * worked for a utf8 variant. So, even though are accepting non-ASCII
+ * Latin1 in 5.14, no need to make them work under utf8 */
+ if (! isASCII(source)) {
+ Perl_croak(aTHX_ "Character following \"\\c\" must be ASCII");
+ }
+ }
+
+ result = toCTRL(source);
+ if (! isASCII(source)) {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "Character following \"\\c\" must be ASCII");
+ }
+ else if (! isCNTRL(result) && output_warning) {
+ if (source == '{') {
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_SYNTAX),
+ "\"\\c{\" is deprecated and is more clearly written as \";\"");
+ }
+ else {
+ U8 clearer[3];
+ U8 i = 0;
+ if (! isALNUM(result)) {
+ clearer[i++] = '\\';
+ }
+ clearer[i++] = result;
+ clearer[i++] = '\0';
+
+ Perl_ck_warner(aTHX_ packWARN(WARN_SYNTAX),
+ "\"\\c%c\" is more clearly written simply as \"%s\"",
+ source,
+ clearer);
+ }
+ }
+
+ return result;
+}
+
+STATIC bool
+S_grok_bslash_o(pTHX_ const char *s,
+ UV *uv,
+ STRLEN *len,
+ const char** error_msg,
+ const bool output_warning)
+{
+
+/* Documentation to be supplied when interface nailed down finally
+ * This returns FALSE if there is an error which the caller need not recover
+ * from; , otherwise TRUE. In either case the caller should look at *len
+ * On input:
+ * s points to a string that begins with 'o', and the previous character
+ * was a backslash.
+ * uv points to a UV that will hold the output value, valid only if the
+ * return from the function is TRUE
+ * len on success will point to the next character in the string past the
+ * end of this construct.
+ * on failure, it will point to the failure
+ * error_msg is a pointer that will be set to an internal buffer giving an
+ * error message upon failure (the return is FALSE). Untouched if
+ * function succeeds
+ * output_warning says whether to output any warning messages, or suppress
+ * them
+ */
+ const char* e;
+ STRLEN numbers_len;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ /* XXX Until the message is improved in grok_oct, handle errors
+ * ourselves */
+ | PERL_SCAN_SILENT_ILLDIGIT;
+
+ PERL_ARGS_ASSERT_GROK_BSLASH_O;
+
+
+ assert(*s == 'o');
+ s++;
+
+ if (*s != '{') {
+ *len = 1; /* Move past the o */
+ *error_msg = "Missing braces on \\o{}";
+ return FALSE;
+ }
+
+ e = strchr(s, '}');
+ if (!e) {
+ *len = 2; /* Move past the o{ */
+ *error_msg = "Missing right brace on \\o{";
+ return FALSE;
+ }
+
+ /* Return past the '}' no matter what is inside the braces */
+ *len = e - s + 2; /* 2 = 1 for the o + 1 for the '}' */
+
+ s++; /* Point to first digit */
+
+ numbers_len = e - s;
+ if (numbers_len == 0) {
+ *error_msg = "Number with no digits";
+ return FALSE;
+ }
+
+ *uv = NATIVE_TO_UNI(grok_oct(s, &numbers_len, &flags, NULL));
+ /* Note that if has non-octal, will ignore everything starting with that up
+ * to the '}' */
+
+ if (output_warning && numbers_len != (STRLEN) (e - s)) {
+ Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT),
+ /* diag_listed_as: Non-octal character '%c'. Resolved as "%s" */
+ "Non-octal character '%c'. Resolved as \"\\o{%.*s}\"",
+ *(s + numbers_len),
+ (int) numbers_len,
+ s);
+ }
+
+ return TRUE;
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+# include "INTERN.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#ifndef PERL_IN_XSUB_RE
+# include "charclass_invlists.h"
+#endif
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifdef op
+#undef op
+#endif /* op */
+
+#ifdef MSDOS
+# if defined(BUGGY_MSC6)
+ /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
+# pragma optimize("a",off)
+ /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
+# pragma optimize("w",on )
+# endif /* BUGGY_MSC6 */
+#endif /* MSDOS */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+typedef struct RExC_state_t {
+ U32 flags; /* are we folding, multilining? */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ I32 whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the allocated space */
+ regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ I32 size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN). */
+ I32 cpar; /* Capture buffer count, (CLOSE). */
+ I32 nestroot; /* root parens we are in - used by accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ I32 seen_evals;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 override_recoding;
+#if ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#endif
+} RExC_state_t;
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_naughty (pRExC_state->naughty)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_seen_evals (pRExC_state->seen_evals)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+#ifdef SPSTART
+#undef SPSTART /* dratted cpp namespace... */
+#endif
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
+ * character, and if utf8, must be invariant. Note that this is not the same
+ * thing as REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or +. */
+#define TRYAGAIN 0x08 /* Weeded out a declaration. */
+#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+/* If not already in utf8, do a longjmp back to the beginning */
+#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
+#define REQUIRE_UTF8 STMT_START { \
+ if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
+ } STMT_END
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to I32 max it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum length of the pattern that the string
+ was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ I32 pos_min;
+ I32 pos_delta;
+ SV *last_found;
+ I32 last_end; /* min value, <0 unless valid. */
+ I32 last_start_min;
+ I32 last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ I32 offset_fixed; /* offset where it starts */
+ I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ I32 offset_float_min; /* earliest point in string it can appear */
+ I32 offset_float_max; /* latest point in string it can appear */
+ I32 *minlen_float; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_float; /* is the position of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ I32 *last_closep;
+ struct regnode_charclass_class *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#ifdef NO_UNARY_PLUS
+# define SF_FIX_SHIFT_EOL (0+2)
+# define SF_FL_SHIFT_EOL (0+4)
+#else
+# define SF_FIX_SHIFT_EOL (+2)
+# define SF_FL_SHIFT_EOL (+4)
+#endif
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
+#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+#define OOB_UNICODE 12345678
+#define OOB_NAMEDCLASS -1
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
+ msg, (int)len, RExC_precomp, ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
+ arg, (int)len, RExC_precomp, ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2regdep(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+
+/* Allow for side effects in s */
+#define REGC(c,s) STMT_START { \
+ if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
+#define Set_Node_Cur_Length(node) \
+ Set_Node_Length(node, RExC_parse - parse_start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags), \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+static void clear_re(pTHX_ void *r);
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : data->pos_min + data->pos_delta);
+ if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
+ data->offset_float_max = I32_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_ANYTHING;
+
+ ANYOF_BITMAP_SETALL(cl);
+ cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
+ |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
+
+ /* If any portion of the regex is to operate under locale rules,
+ * initialization includes it. The reason this isn't done for all regexes
+ * is that the optimizer was written under the assumption that locale was
+ * all-or-nothing. Given the complexity and lack of documentation in the
+ * optimizer, and that there are inadequate test cases for locale, so many
+ * parts of it may not work properly, it is safest to avoid locale unless
+ * necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_CLASS_SETALL(cl); /* /l uses class */
+ cl->flags |= ANYOF_LOCALE;
+ }
+ else {
+ ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
+ }
+}
+
+/* Can match anything (initialization) */
+STATIC int
+S_cl_is_anything(const struct regnode_charclass_class *cl)
+{
+ int value;
+
+ PERL_ARGS_ASSERT_CL_IS_ANYTHING;
+
+ for (value = 0; value <= ANYOF_MAX; value += 2)
+ if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
+ return 1;
+ if (!(cl->flags & ANYOF_UNICODE_ALL))
+ return 0;
+ if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
+ return 0;
+ return 1;
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_INIT;
+
+ Zero(cl, 1, struct regnode_charclass_class);
+ cl->type = ANYOF;
+ cl_anything(pRExC_state, cl);
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+}
+
+/* These two functions currently do the exact same thing */
+#define cl_init_zero S_cl_init
+
+/* 'AND' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
+ * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_and(struct regnode_charclass_class *cl,
+ const struct regnode_charclass_class *and_with)
+{
+ PERL_ARGS_ASSERT_CL_AND;
+
+ assert(and_with->type == ANYOF);
+
+ /* I (khw) am not sure all these restrictions are necessary XXX */
+ if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
+ && !(ANYOF_CLASS_TEST_ANY_SET(cl))
+ && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
+ int i;
+
+ if (and_with->flags & ANYOF_INVERT)
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= ~and_with->bitmap[i];
+ else
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= and_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
+
+ if (and_with->flags & ANYOF_INVERT) {
+
+ /* Here, the and'ed node is inverted. Get the AND of the flags that
+ * aren't affected by the inversion. Those that are affected are
+ * handled individually below */
+ U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
+ cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
+ cl->flags |= affected_flags;
+
+ /* We currently don't know how to deal with things that aren't in the
+ * bitmap, but we know that the intersection is no greater than what
+ * is already in cl, so let there be false positives that get sorted
+ * out after the synthetic start class succeeds, and the node is
+ * matched for real. */
+
+ /* The inversion of these two flags indicate that the resulting
+ * intersection doesn't have them */
+ if (and_with->flags & ANYOF_UNICODE_ALL) {
+ cl->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ else { /* and'd node is not inverted */
+ U8 outside_bitmap_but_not_utf8; /* Temp variable */
+
+ if (! ANYOF_NONBITMAP(and_with)) {
+
+ /* Here 'and_with' doesn't match anything outside the bitmap
+ * (except possibly ANYOF_UNICODE_ALL), which means the
+ * intersection can't either, except for ANYOF_UNICODE_ALL, in
+ * which case we don't know what the intersection is, but it's no
+ * greater than what cl already has, so can just leave it alone,
+ * with possible false positives */
+ if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+ cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else if (! ANYOF_NONBITMAP(cl)) {
+
+ /* Here, 'and_with' does match something outside the bitmap, and cl
+ * doesn't have a list of things to match outside the bitmap. If
+ * cl can match all code points above 255, the intersection will
+ * be those above-255 code points that 'and_with' matches. If cl
+ * can't match all Unicode code points, it means that it can't
+ * match anything outside the bitmap (since the 'if' that got us
+ * into this block tested for that), so we leave the bitmap empty.
+ */
+ if (cl->flags & ANYOF_UNICODE_ALL) {
+ ARG_SET(cl, ARG(and_with));
+
+ /* and_with's ARG may match things that don't require UTF8.
+ * And now cl's will too, in spite of this being an 'and'. See
+ * the comments below about the kludge */
+ cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else {
+ /* Here, both 'and_with' and cl match something outside the
+ * bitmap. Currently we do not do the intersection, so just match
+ * whatever cl had at the beginning. */
+ }
+
+
+ /* Take the intersection of the two sets of flags. However, the
+ * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
+ * kludge around the fact that this flag is not treated like the others
+ * which are initialized in cl_anything(). The way the optimizer works
+ * is that the synthetic start class (SSC) is initialized to match
+ * anything, and then the first time a real node is encountered, its
+ * values are AND'd with the SSC's with the result being the values of
+ * the real node. However, there are paths through the optimizer where
+ * the AND never gets called, so those initialized bits are set
+ * inappropriately, which is not usually a big deal, as they just cause
+ * false positives in the SSC, which will just mean a probably
+ * imperceptible slow down in execution. However this bit has a
+ * higher false positive consequence in that it can cause utf8.pm,
+ * utf8_heavy.pl ... to be loaded when not necessary, which is a much
+ * bigger slowdown and also causes significant extra memory to be used.
+ * In order to prevent this, the code now takes a different tack. The
+ * bit isn't set unless some part of the regular expression needs it,
+ * but once set it won't get cleared. This means that these extra
+ * modules won't get loaded unless there was some path through the
+ * pattern that would have required them anyway, and so any false
+ * positives that occur by not ANDing them out when they could be
+ * aren't as severe as they would be if we treated this bit like all
+ * the others */
+ outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
+ & ANYOF_NONBITMAP_NON_UTF8;
+ cl->flags &= and_with->flags;
+ cl->flags |= outside_bitmap_but_not_utf8;
+ }
+}
+
+/* 'OR' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
+ * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
+{
+ PERL_ARGS_ASSERT_CL_OR;
+
+ if (or_with->flags & ANYOF_INVERT) {
+
+ /* Here, the or'd node is to be inverted. This means we take the
+ * complement of everything not in the bitmap, but currently we don't
+ * know what that is, so give up and match anything */
+ if (ANYOF_NONBITMAP(or_with)) {
+ cl_anything(pRExC_state, cl);
+ }
+ /* We do not use
+ * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
+ * <= (B1 | !B2) | (CL1 | !CL2)
+ * which is wasteful if CL2 is small, but we ignore CL2:
+ * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
+ * XXXX Can we handle case-fold? Unclear:
+ * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
+ * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
+ */
+ else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
+ int i;
+
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= ~or_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise */
+ else {
+ cl_anything(pRExC_state, cl);
+ }
+
+ /* And, we can just take the union of the flags that aren't affected
+ * by the inversion */
+ cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
+
+ /* For the remaining flags:
+ ANYOF_UNICODE_ALL and inverted means to not match anything above
+ 255, which means that the union with cl should just be
+ what cl has in it, so can ignore this flag
+ ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
+ is 127-255 to match them, but then invert that, so the
+ union with cl should just be what cl has in it, so can
+ ignore this flag
+ */
+ } else { /* 'or_with' is not inverted */
+ /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
+ if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
+ int i;
+
+ /* OR char bitmap and class bitmap separately */
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= or_with->bitmap[i];
+ if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
+ for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
+ cl->classflags[i] |= or_with->classflags[i];
+ cl->flags |= ANYOF_CLASS;
+ }
+ }
+ else { /* XXXX: logic is complicated, leave it along for a moment. */
+ cl_anything(pRExC_state, cl);
+ }
+
+ if (ANYOF_NONBITMAP(or_with)) {
+
+ /* Use the added node's outside-the-bit-map match if there isn't a
+ * conflict. If there is a conflict (both nodes match something
+ * outside the bitmap, but what they match outside is not the same
+ * pointer, and hence not easily compared until XXX we extend
+ * inversion lists this far), give up and allow the start class to
+ * match everything outside the bitmap. If that stuff is all above
+ * 255, can just set UNICODE_ALL, otherwise caould be anything. */
+ if (! ANYOF_NONBITMAP(cl)) {
+ ARG_SET(cl, ARG(or_with));
+ }
+ else if (ARG(cl) != ARG(or_with)) {
+
+ if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
+ cl_anything(pRExC_state, cl);
+ }
+ else {
+ cl->flags |= ANYOF_UNICODE_ALL;
+ }
+ }
+ }
+
+ /* Take the union */
+ cl->flags |= or_with->flags;
+ }
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occured in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvuni_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need folding */ \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* if we use this folder we have to obey unicode rules on latin-1 data */ \
+ if ( foldlen > 0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ scan += len; \
+ len = 0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP(uvc); \
+ foldlen -= skiplen; \
+ scan = foldbuf + skiplen; \
+ } \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
+{
+ dVAR;
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, 2, "tu" );
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ case EXACTFL: folder = PL_fold_locale; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail),
+ (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use the
+ native representation of the character value as the key and IV's for the
+ coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ STRLEN foldlen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+ const U8 *scan = (U8*)NULL;
+ U32 wordlen = 0; /* required init */
+ STRLEN chars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ trie->minlen= 0;
+ continue;
+ }
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie,0xDF);
+ }
+ }
+ for ( ; uc < e ; uc += len ) {
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+ chars++;
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UNI_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ }
+ if( cur == first ) {
+ trie->minlen = chars;
+ trie->maxlen = chars;
+ } else if (chars < trie->minlen) {
+ trie->minlen = chars;
+ } else if (chars > trie->maxlen) {
+ trie->maxlen = chars;
+ }
+ if (OP( noper ) == EXACTFU_SS) {
+ /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
+ if (trie->minlen > 1)
+ trie->minlen= 1;
+ }
+ if (OP( noper ) == EXACTFU_TRICKYFOLD) {
+ /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
+ * - We assume that any such sequence might match a 2 byte string */
+ if (trie->minlen > 2 )
+ trie->minlen= 2;
+ }
+
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
+ if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
+ We know that we will need Charcount+1 trans at most to store the data
+ (one row per char at worst case) So we preallocate both structures
+ assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily to
+ make compression both faster and easier by keeping track of how many non
+ zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is a
+ number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
+ TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
+ are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we also
+ have to deal with the states array which is indexed by nodenum we have to
+ use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ STRLEN skiplen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
+ trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC void
+S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest proper
+ suffix of the current state's 'word' that is also a proper prefix of another word in our
+ trie. State 1 represents the word '' and is thus the default fail state. This allows
+ the DFA not to have to restart after its tried and failed a word at a given point, it
+ simply continues as though it had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter 'g' which would
+ fail, which would bring us to the state representing 'd' in the second word where we would
+ try 'g' and succeed, proceeding to match 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, 1, "T" );
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_SEEN_TRIEDFA;*/
+}
+
+
+/*
+ * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
+ * These need to be revisited when a newer toolchain becomes available.
+ */
+#if defined(__sparc64__) && defined(__GNUC__)
+# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
+# undef SPARC64_GCC_WORKAROUND
+# define SPARC64_GCC_WORKAROUND 1
+# endif
+#endif
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ SV * const mysv=sv_newmortal(); \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, mysv, scan); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ }});
+
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one, and looks for problematic sequences of characters whose folds vs.
+ * non-folds have sufficiently different lengths, that the optimizer would be
+ * fooled into rejecting legitimate matches of them, and the trie construction
+ * code can't cope with them. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING kind nodes, and
+ * these get optimized out
+ *
+ * If there are problematic code sequences, *min_subtract is set to the delta
+ * that the minimum size of the node can be less than its actual size. And,
+ * the node type of the result is changed to reflect that it contains these
+ * sequences.
+ *
+ * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
+ * and contains LATIN SMALL LETTER SHARP S
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * problematic sequences. It's been wrong in Perl for a very long time. There
+ * are three code points in Unicode whose folded lengths differ so much from
+ * the un-folded lengths that it causes problems for the optimizer and trie
+ * construction. Why only these are problematic, and not others where lengths
+ * also differ is something I (khw) do not understand. New versions of Unicode
+ * might add more such code points. Hopefully the logic in fold_grind.t that
+ * figures out what to test (in part by verifying that each size-combination
+ * gets tested) will catch any that do come along, so they can be added to the
+ * special handling below. The chances of new ones are actually rather small,
+ * as most, if not all, of the world's scripts that have casefolding have
+ * already been encoded by Unicode. Also, a number of Unicode's decisions were
+ * made to allow compatibility with pre-existing standards, and almost all of
+ * those have already been dealt with. These would otherwise be the most
+ * likely candidates for generating further tricky sequences. In other words,
+ * Unicode by itself is unlikely to add new ones unless it is for compatibility
+ * with pre-existing standards, and there aren't many of those left.
+ *
+ * The previous designs for dealing with these involved assigning a special
+ * node for them. This approach doesn't work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both these fold to "sss", but if the pattern is parsed to create a node of
+ * that would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss".
+ *
+ * There are a number of components to the approach (a lot of work for just
+ * three code points!):
+ * 1) This routine examines each EXACTFish node that could contain the
+ * problematic sequences. It returns in *min_subtract how much to
+ * subtract from the the actual length of the string to get a real minimum
+ * for one that could match it. This number is usually 0 except for the
+ * problematic sequences. This delta is used by the caller to adjust the
+ * min length of the match, and the delta between min and max, so that the
+ * optimizer doesn't reject these possibilities based on size constraints.
+ * 2) These sequences are not currently correctly handled by the trie code
+ * either, so it changes the joined node type to ops that are not handled
+ * by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
+ * 3) This is sufficient for the two Greek sequences (described below), but
+ * the one involving the Sharp s (\xDF) needs more. The node type
+ * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
+ * sequence in it. For non-UTF-8 patterns and strings, this is the only
+ * case where there is a possible fold length change. That means that a
+ * regular EXACTFU node without UTF-8 involvement doesn't have to concern
+ * itself with length changes, and so can be processed faster. regexec.c
+ * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
+ * is pre-folded by regcomp.c. This saves effort in regex matching.
+ * However, probably mostly for historical reasons, the pre-folding isn't
+ * done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
+ * nodes, as what they fold to isn't known until runtime.) The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string
+ * are members of a fold-pair, and arrays are set up for all of them
+ * that quickly find the other member of the pair. It might actually
+ * be faster to pre-fold these, but it isn't currently done, except for
+ * the sharp s. Code elsewhere in this file makes sure that it gets
+ * folded to 'ss', even if the pattern isn't UTF-8. This avoids the
+ * issues described in the next item.
+ * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
+ * 'ss' or not is not knowable at compile time. It will match iff the
+ * target string is in UTF-8, unlike the EXACTFU nodes, where it always
+ * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
+ * it can't be folded to "ss" at compile time, unlike EXACTFU does as
+ * described in item 3). An assumption that the optimizer part of
+ * regexec.c (probably unwittingly) makes is that a character in the
+ * pattern corresponds to at most a single character in the target string.
+ * (And I do mean character, and not byte here, unlike other parts of the
+ * documentation that have never been updated to account for multibyte
+ * Unicode.) This assumption is wrong only in this case, as all other
+ * cases are either 1-1 folds when no UTF-8 is involved; or is true by
+ * virtue of having this file pre-fold UTF-8 patterns. I'm
+ * reluctant to try to change this assumption, so instead the code punts.
+ * This routine examines EXACTF nodes for the sharp s, and returns a
+ * boolean indicating whether or not the node is an EXACTF node that
+ * contains a sharp s. When it is true, the caller sets a flag that later
+ * causes the optimizer in this file to not set values for the floating
+ * and fixed string lengths, and thus avoids the optimizer code in
+ * regexec.c that makes the invalid assumption. Thus, there is no
+ * optimization based on string lengths for EXACTF nodes that contain the
+ * sharp s. This only happens for /id rules (which means the pattern
+ * isn't in UTF-8).
+ */
+
+#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *has_exactf_sharp_s = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT) {
+ U8 *s;
+ U8 * s0 = (U8*) STRING(scan);
+ U8 * const s_end = s0 + STR_LEN(scan);
+
+ /* The below is perhaps overboard, but this allows us to save a test
+ * each time through the loop at the expense of a mask. This is
+ * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
+ * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
+ * This uses an exclusive 'or' to find that bit and then inverts it to
+ * form a mask, with just a single 0, in the bit position where 'S' and
+ * 's' differ. */
+ const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
+ const U8 s_masked = 's' & S_or_s_mask;
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. to avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+
+ /* There are two problematic Greek code points in Unicode
+ * casefolding
+ *
+ * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
+ * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
+ *
+ * which casefold to
+ *
+ * Unicode UTF-8
+ *
+ * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
+ * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
+ *
+ * This means that in case-insensitive matching (or "loose
+ * matching", as Unicode calls it), an EXACTF of length six (the
+ * UTF-8 encoded byte length of the above casefolded versions) can
+ * match a target string of length two (the byte length of UTF-8
+ * encoded U+0390 or U+03B0). This would rather mess up the
+ * minimum length computation. (there are other code points that
+ * also fold to these two sequences, but the delta is smaller)
+ *
+ * If these sequences are found, the minimum length is decreased by
+ * four (six minus two).
+ *
+ * Similarly, 'ss' may match the single char and byte LATIN SMALL
+ * LETTER SHARP S. We decrease the min length by 1 for each
+ * occurrence of 'ss' found */
+
+#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
+# define U390_first_byte 0xb4
+ const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
+# define U3B0_first_byte 0xb5
+ const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
+#else
+# define U390_first_byte 0xce
+ const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
+# define U3B0_first_byte 0xcf
+ const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
+#endif
+ const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
+ yields a net of 0 */
+ /* Examine the string for one of the problematic sequences */
+ for (s = s0;
+ s < s_end - 1; /* Can stop 1 before the end, as minimum length
+ * sequence we are looking for is 2 */
+ s += UTF8SKIP(s))
+ {
+
+ /* Look for the first byte in each problematic sequence */
+ switch (*s) {
+ /* We don't have to worry about other things that fold to
+ * 's' (such as the long s, U+017F), as all above-latin1
+ * code points have been pre-folded */
+ case 's':
+ case 'S':
+
+ /* Current character is an 's' or 'S'. If next one is
+ * as well, we have the dreaded sequence */
+ if (((*(s+1) & S_or_s_mask) == s_masked)
+ /* These two node types don't have special handling
+ * for 'ss' */
+ && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
+ {
+ *min_subtract += 1;
+ OP(scan) = EXACTFU_SS;
+ s++; /* No need to look at this character again */
+ }
+ break;
+
+ case U390_first_byte:
+ if (s_end - s >= len
+
+ /* The 1's are because are skipping comparing the
+ * first byte */
+ && memEQ(s + 1, U390_tail, len - 1))
+ {
+ goto greek_sequence;
+ }
+ break;
+
+ case U3B0_first_byte:
+ if (! (s_end - s >= len
+ && memEQ(s + 1, U3B0_tail, len - 1)))
+ {
+ break;
+ }
+ greek_sequence:
+ *min_subtract += 4;
+
+ /* This can't currently be handled by trie's, so change
+ * the node type to indicate this. If EXACTFA and
+ * EXACTFL were ever to be handled by trie's, this
+ * would have to be changed. If this node has already
+ * been changed to EXACTFU_SS in this loop, leave it as
+ * is. (I (khw) think it doesn't matter in regexec.c
+ * for UTF patterns, but no need to change it */
+ if (OP(scan) == EXACTFU) {
+ OP(scan) = EXACTFU_TRICKYFOLD;
+ }
+ s += 6; /* We already know what this sequence is. Skip
+ the rest of it */
+ break;
+ }
+ }
+ }
+ else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
+
+ /* Here, the pattern is not UTF-8. We need to look only for the
+ * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
+ * in the final position. Otherwise we can stop looking 1 byte
+ * earlier because have to find both the first and second 's' */
+ const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
+
+ for (s = s0; s < upper; s++) {
+ switch (*s) {
+ case 'S':
+ case 's':
+ if (s_end - s > 1
+ && ((*(s+1) & S_or_s_mask) == s_masked))
+ {
+ *min_subtract += 1;
+
+ /* EXACTF nodes need to know that the minimum
+ * length changed so that a sharp s in the string
+ * can match this ss in the pattern, but they
+ * remain EXACTF nodes, as they are not trie'able,
+ * so don't have to invent a new node type to
+ * exclude them from the trie code */
+ if (OP(scan) != EXACTF) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s++;
+ }
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ if (OP(scan) == EXACTF) {
+ *has_exactf_sharp_s = TRUE;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1,struct regnode_charclass_class); \
+ SAVEFREEPV(and_withp)
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last; /* last node to process in this frame */
+ regnode *next; /* next node to process when last is reached */
+ struct scan_frame *prev; /*previous frame*/
+ I32 stop; /* what stopparen do we use */
+} scan_frame;
+
+
+#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
+
+#define CASE_SYNST_FNC(nAmE) \
+case nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break; \
+case N ## nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break
+
+
+
+STATIC I32
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ I32 *minlenp, I32 *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U8* recursed,
+ struct regnode_charclass_class *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ dVAR;
+ I32 min = 0, pars = 0, code;
+ regnode *scan = *scanp, *next;
+ I32 delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ I32 stopmin = I32_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+#ifdef DEBUGGING
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+#endif
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How much to subtract from the minimum node
+ length to get a real minimum (because the
+ folded version may be shorter) */
+ bool has_exactf_sharp_s = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data,depth);
+ DEBUG_PEEP("Peep",scan,depth);
+
+ /* Its not clear to khw or hv why this is done here, and not in the
+ * clauses that deal with EXACT nodes. khw's guess is that it's
+ * because of a previous design */
+ JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
+ || OP(scan) == IFTHEN) {
+ next = regnext(scan);
+ code = OP(scan);
+ /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
+
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for handling
+ TRIE nodes on a re-study. If you change stuff here check there
+ too. */
+ I32 max1 = 0, min1 = I32_MAX, num = 0;
+ struct regnode_charclass_class accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR)
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ I32 deltanext, minnext, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ num++;
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ if (code != BRANCH)
+ scan = NEXTOPER(scan);
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ next, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ if (min1 > minnext)
+ min1 = minnext;
+ if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan' now
+ points at the item that follows the branch sequence, whatever
+ it is. We now start at the beginning of the sequence and look
+ for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+#ifdef DEBUGGING
+ SV * const mysv = sv_newmortal(); /* for dumping */
+#endif
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, tail );
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this /FOO[xyz]|BAR[pqr]/
+ via a "jump trie" but we also support building with NOJUMPTRIE,
+ which restricts the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is a possible optimization
+ target. If we are building under NOJUMPTRIE then we require that noper_next
+ is the same as scan (our current position in the regex program).
+
+ Once we have two or more consecutive such branches we can create a
+ trie of the EXACT's contents and stitch it in place into the program.
+
+ If the sequence represents all of the branches in the alternation we
+ replace the entire thing with a single TRIE node.
+
+ Otherwise when it is a subsequence we need to stitch it in place and
+ replace only the relevant branches. This means the first branch has
+ to remain as it is used by the alternation logic, and its next pointer,
+ and needs to be repointed at the item on the branch chain following
+ the last branch we have optimized away.
+
+ This could be either a BRANCH, in which case the subsequence is internal,
+ or it could be the item following the branch sequence in which case the
+ subsequence is at the end (which does not necessarily mean the first node
+ is the start of the alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFU_TRICKYFOLD | EXACTFU
+ EXACTFA | 0
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
+ ( EXACT == (X) ) ? EXACT : \
+ ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
+ 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+#endif
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, mysv, noper);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, mysv, noper_next );
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
+ });
+
+ /* Is noper a trieable nodetype that can be merged with the
+ * current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ /* XXX: Currently we cannot allow a NOTHING node to be the first element
+ * of a TRIEABLE sequence, Otherwise we will overwrite the regop following
+ * the NOTHING with the TRIE regop later on. This is because a NOTHING node
+ * is only one regnode wide, and a TRIE is two regnodes. An example of a
+ * problematic pattern is: "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/
+ * At a later point of time we can somewhat workaround this by handling
+ * NOTHING -> EXACT sequences as generated by /(?:)A|(?:)B/ type patterns,
+ * as we can effectively ignore the NOTHING regop in that case.
+ * This clause, which allows NOTHING to start a sequence is left commented
+ * out as a reference.
+ * - Yves
+
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ */
+ ( noper_trietype == NOTHING && trietype )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node
+ * Either we are the first node in a new trieable sequence,
+ * in which case we do some bookkeeping, otherwise we update
+ * the end pointer. */
+ count++;
+ if ( !first ) {
+ first = cur;
+ trietype = noper_trietype;
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can not be tried
+ * together with the current trie, or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not NOTHING then we have found
+ * at least two triable branch sequences in a row of a similar
+ * trietype so we can turn them into a trie. If/when we
+ * allow NOTHING to start a trie sequence this condition will be
+ * required, and it isn't expensive so we leave it in for now. */
+ if ( trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail, count,
+ trietype, depth+1 );
+ last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype != NOTHING ) {
+ /* the last branch of the sequence was part of a trie,
+ * so we have to construct it here outside of the loop
+ */
+ made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
+ }
+ }
+#endif
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ scan_frame *newframe = NULL;
+ I32 paren;
+ regnode *start;
+ regnode *end;
+
+ if (OP(scan) != SUSPEND) {
+ /* set the pointer */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ paren = 0;
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ if (!recursed) {
+ Newxz(recursed, (((RExC_npar)>>3) +1), U8);
+ SAVEFREEPV(recursed);
+ }
+ if (!PAREN_TEST(recursed,paren+1)) {
+ PAREN_SET(recursed,paren+1);
+ Newx(newframe,1,scan_frame);
+ } else {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ } else {
+ Newx(newframe,1,scan_frame);
+ paren = stopparen;
+ start = scan+2;
+ end = regnext(scan);
+ }
+ if (newframe) {
+ assert(start);
+ assert(end);
+ SAVEFREEPV(newframe);
+ newframe->next = regnext(scan);
+ newframe->last = last;
+ newframe->stop = stopparen;
+ newframe->prev = frame;
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT) {
+ I32 l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? I32_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+
+
+ /* If compatible, we or it in below. It is compatible if is
+ * in the bitmp and either 1) its bit or its fold is set, or 2)
+ * it's for a locale. Even if there isn't unicode semantics
+ * here, at runtime there may be because of matching against a
+ * utf8 string, so accept a possible false positive for
+ * latin1-range folds */
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ )
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else if (uc >= 0x100) {
+ int i;
+
+ /* Some Unicode code points fold to the Latin1 range; as
+ * XXX temporary code, instead of figuring out if this is
+ * one, just assume it is and set all the start class bits
+ * that could be some such above 255 code point's fold
+ * which will generate fals positives. As the code
+ * elsewhere that does compute the fold settles down, it
+ * can be extracted out and re-used here */
+ for (i = 0; i < 256; i++){
+ if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ if (uc < 0x100)
+ data->start_class->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ /* false positive possible if the class is case-folded */
+ if (uc < 0x100)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else
+ data->start_class->flags |= ANYOF_UNICODE_ALL;
+ data->start_class->flags &= ~ANYOF_EOS;
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
+ I32 l = STR_LEN(scan);
+ UV uc = *((U8*)STRING(scan));
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ SCAN_COMMIT(pRExC_state, data, minlenp);
+ }
+ if (UTF) {
+ const U8 * const s = (U8 *)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ }
+ else if (has_exactf_sharp_s) {
+ RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
+ }
+ min += l - min_subtract;
+ if (min < 0) {
+ min = 0;
+ }
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ data->start_class->flags &= ~ANYOF_EOS;
+ data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
+ if (OP(scan) == EXACTFL) {
+ /* XXX This set is probably no longer necessary, and
+ * probably wrong as LOCALE now is on in the initial
+ * state */
+ data->start_class->flags |= ANYOF_LOCALE;
+ }
+ else {
+
+ /* Also set the other member of the fold pair. In case
+ * that unicode semantics is called for at runtime, use
+ * the full latin1 fold. (Can't do this for locale,
+ * because not known until runtime) */
+ ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
+
+ /* All other (EXACTFL handled above) folds except under
+ * /iaa that include s, S, and sharp_s also may include
+ * the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ else if (uc >= 0x100) {
+ int i;
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
+ /* false positive possible if the class is case-folded.
+ Assume that the locale settings are the same... */
+ if (uc < 0x100) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ if (OP(scan) != EXACTFL) {
+
+ /* And set the other member of the fold pair, but
+ * can't do that in locale because not known until
+ * run-time */
+ ANYOF_BITMAP_SET(data->start_class,
+ PL_fold_latin1[uc]);
+
+ /* All folds except under /iaa that include s, S,
+ * and sharp_s also may include the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ }
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ I32 mincount, maxcount, minnext, deltanext, fl = 0;
+ I32 f = flags, pos_before = 0;
+ regnode * const oscan = scan;
+ struct regnode_charclass_class this_class;
+ struct regnode_charclass_class *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* Fall through. */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ cl_and(data->start_class, and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class, &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if ( /* ? quantifier ok, except for (?{ ... }) */
+ (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big count */
+ {
+ ckWARNreg(RExC_parse,
+ "Quantifier unexpected on zero-length expression");
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= ((maxcount == REG_INFTY
+ && (minnext + deltanext) > 0)
+ || deltanext == I32_MAX);
+ is_inf |= is_inf_internal;
+ delta += (minnext + deltanext) * maxcount - minnext * mincount;
+
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
+#if defined(SPARC64_GCC_WORKAROUND)
+ I32 b = 0;
+ STRLEN l = 0;
+ const char *s = NULL;
+ I32 old = 0;
+
+ if (pos_before >= data->last_start_min)
+ b = pos_before;
+ else
+ b = data->last_start_min;
+
+ l = 0;
+ s = SvPV_const(data->last_found, l);
+ old = b - data->last_start_min;
+
+#else
+ I32 b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ I32 old = b - data->last_start_min;
+#endif
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l, mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += CHR_SVLEN(last_str) - l;
+ }
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max += is_inf ? I32_MAX
+ : (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min =
+ data->pos_min - CHR_SVLEN(last_str);
+ data->last_start_max = is_inf
+ ? I32_MAX
+ : data->pos_min + data->pos_delta
+ - CHR_SVLEN(last_str);
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+ default: /* REF, ANYOFV, and CLUMP only? */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ int value = 0;
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+ if (flags & SCF_DO_STCLASS_AND) {
+ for (value = 0; value < 256; value++)
+ if (!is_VERTWS_cp(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ for (value = 0; value < 256; value++)
+ if (is_VERTWS_cp(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min += 1;
+ delta += 1;
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+ int value = 0;
+
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (PL_regkind[OP(scan)]) {
+ case SANY:
+ default:
+ do_default:
+ /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ break;
+ case REG_ANY:
+ if (OP(scan) == SANY)
+ goto do_default;
+ if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
+ value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
+ || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
+ cl_anything(pRExC_state, data->start_class);
+ }
+ if (flags & SCF_DO_STCLASS_AND || !value)
+ ANYOF_BITMAP_CLEAR(data->start_class,'\n');
+ break;
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class,
+ (struct regnode_charclass_class*)scan);
+ else
+ cl_or(pRExC_state, data->start_class,
+ (struct regnode_charclass_class*)scan);
+ break;
+ case ALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (!isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
+
+ /* Even if under locale, set the bits for non-locale
+ * in case it isn't a true locale-node. This will
+ * create false positives if it truly is locale */
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
+
+ /* Even if under locale, set the bits for non-locale in
+ * case it isn't a true locale-node. This will create
+ * false positives if it truly is locale */
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (! isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (! isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case SPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE) {
+ ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
+ }
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NSPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case DIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ case NDIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE))
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ CASE_SYNST_FNC(VERTWS);
+ CASE_SYNST_FNC(HORIZWS);
+
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ I32 deltanext, minnext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ cl_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue */
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ I32 deltanext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ I32 *minnextp;
+ Newx( minnextp, 1, I32 );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
+ SvREFCNT_dec(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+
+
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->extflags |= RXf_ANCH_GPOS;
+ if (RExC_rx->gofs < (U32)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->extflags |= RXf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ I32 max1 = 0, min1 = I32_MAX;
+ struct regnode_charclass_class accum;
+
+ if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
+ SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ I32 deltanext=0, minnext=0, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused branches
+ even though they arent otherwise used.
+ */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (I32)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (max1 < (I32)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ if (frame) {
+ last = frame->last;
+ scan = frame->next;
+ stopparen = frame->stop;
+ frame = frame->prev;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? I32_MAX : delta;
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = I32_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ return min < stopmin ? min : stopmin;
+}
+
+STATIC U32
+S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ dVAR;
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) goto reStudy
+#else
+#define CHECK_RESTUDY_GOTO
+#endif
+
+/*
+ - pregcomp - compile a regular expression into internal code
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+
+
+#ifndef PERL_IN_XSUB_RE
+#define RE_ENGINE_PTR &PL_core_reg_engine
+#else
+extern const struct regexp_engine my_reg_engine;
+#define RE_ENGINE_PTR &my_reg_engine
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ dVAR;
+ HV * const table = GvHV(PL_hintgv);
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct
+ regexp engine. */
+ if (table) {
+ SV **ptr= hv_fetchs(table, "regcomp", FALSE);
+ GET_RE_DEBUG_FLAGS_DECL;
+ if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
+ const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ SvIV(*ptr));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+ }
+ }
+ return Perl_re_compile(aTHX_ pattern, flags);
+}
+#endif
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
+{
+ dVAR;
+ REGEXP *rx;
+ struct regexp *r;
+ register regexp_internal *ri;
+ STRLEN plen;
+ char* VOL exp;
+ char* xend;
+ regnode *scan;
+ I32 flags;
+ I32 minlen = 0;
+ U32 pm_flags;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ bool used_setjump = FALSE;
+ regex_charset initial_charset = get_regex_charset(orig_pm_flags);
+
+ U8 jump_ret = 0;
+ dJMPENV;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+#ifndef PERL_IN_XSUB_RE
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_ASCII = _new_invlist_C_array(ASCII_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
+ PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
+
+ PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
+ PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
+
+ PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
+
+ PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
+ PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
+
+ PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
+
+ PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
+ PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
+ PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
+
+ PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
+ PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
+
+ PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
+ PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
+
+ PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
+ PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
+
+ PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
+ PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
+
+ PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
+ PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
+
+ PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
+
+ PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
+ PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
+
+ PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
+ PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
+ }
+#endif
+
+ exp = SvPV(pattern, plen);
+
+ if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = 0;
+ }
+ else {
+ RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
+ }
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+
+ /****************** LONG JUMP TARGET HERE***********************/
+ /* Longjmp back to here if have to switch in midstream to utf8 */
+ if (! RExC_orig_utf8) {
+ JMPENV_PUSH(jump_ret);
+ used_setjump = TRUE;
+ }
+
+ if (jump_ret == 0) { /* First time through */
+ xend = exp + plen;
+
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8,
+ dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+ }
+ else { /* longjumped back */
+ STRLEN len = plen;
+
+ /* If the cause for the longjmp was other than changing to utf8, pop
+ * our own setjmp, and longjmp to the correct handler */
+ if (jump_ret != UTF8_LONGJMP) {
+ JMPENV_POP;
+ JMPENV_JUMP(jump_ret);
+ }
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+ exp = (char*)Perl_bytes_to_utf8(aTHX_
+ (U8*)SvPV_nomg(pattern, plen),
+ &len);
+ xend = exp + len;
+ RExC_orig_utf8 = RExC_utf8 = 1;
+ SAVEFREEPV(exp);
+ }
+
+#ifdef TRIE_STUDY_OPT
+ restudied = 0;
+#endif
+
+ pm_flags = orig_pm_flags;
+
+ if (initial_charset == REGEX_LOCALE_CHARSET) {
+ RExC_contains_locale = 1;
+ }
+ else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = pm_flags;
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_seen_evals = 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = &PL_regdummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_recurse_count = 0;
+
+#if 0 /* REGC() is (currently) a NOP at the first pass.
+ * Clever compilers notice this and complain. --jhi */
+ REGC((U8)REG_MAGIC, (char*)RExC_emit);
+#endif
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ RExC_precomp = NULL;
+ return(NULL);
+ }
+
+ /* Here, finished first pass. Get rid of any added setjmp */
+ if (used_setjump) {
+ JMPENV_POP;
+ }
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = (struct regexp*)SvANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= RE_ENGINE_PTR;
+ r->extflags = pm_flags;
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msix"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
+ SvPOK_on(rx);
+ SvFLAGS(rx) |= SvUTF8(pattern);
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - SvPVX_const(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ if (RExC_seen & REG_SEEN_RECURSE) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+
+ /* Second pass: emit code. */
+ RExC_flags = pm_flags; /* don't let top level (?i) bleed */
+ RExC_parse = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+
+ /* Store the count of eval-groups for security checks: */
+ RExC_rx->seen_evals = RExC_seen_evals;
+ REGC((U8)REG_MAGIC, (char*) RExC_emit++);
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ return(NULL);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
+ Zero(r->substrs, 1, struct reg_substr_data);
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
+ if (data.last_found) {
+ SvREFCNT_dec(data.longest_fixed);
+ SvREFCNT_dec(data.longest_float);
+ SvREFCNT_dec(data.last_found);
+ }
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= 10) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
+ I32 fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ struct regnode_charclass_class ch_class; /* pointed to by data */
+ int stclass_flag;
+ I32 last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else
+ first += regarglen[OP(first)];
+
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ regnode *trie_op;
+ /* this can happen only on restudy */
+ if ( OP(first) == TRIE ) {
+ struct regnode_1 *trieop = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(first,trieop,struct regnode_1);
+ trie_op=(regnode *)trieop;
+ } else {
+ struct regnode_charclass *trieop = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(first,trieop,struct regnode_charclass);
+ trie_op=(regnode *)trieop;
+ }
+ OP(trie_op)+=2;
+ make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
+ ri->regstclass = trie_op;
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->extflags |= (OP(first) == MBOL
+ ? RXf_ANCH_MBOL
+ : (OP(first) == SBOL
+ ? RXf_ANCH_SBOL
+ : RXf_ANCH_BOL));
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->extflags |= RXf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? RXf_ANCH_MBOL
+ : RXf_ANCH_SBOL;
+ r->extflags |= type;
+ r->intflags |= PREGf_IMPLICIT;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
+ && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ first = scan;
+ if (!ri->regstclass) {
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
+ &data, -1, NULL, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
+
+
+ CHECK_RESTUDY_GOTO;
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_SEEN_VERBARG)
+ && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
+ r->extflags |= RXf_CHECK_ALL;
+ scan_commit(pRExC_state, &data,&minlen,0);
+ SvREFCNT_dec(data.last_found);
+
+ /* Note that code very similar to this but for anchored string
+ follows immediately below, changes may need to be made to both.
+ Be careful.
+ */
+ longest_float_length = CHR_SVLEN(data.longest_float);
+ if (longest_float_length
+ || (data.flags & SF_FL_BEFORE_EOL
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE))))
+ {
+ I32 t,ml;
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ || (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ goto remove_float; /* As in (a)+. */
+
+ /* copy the information about the longest float from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(data.longest_float)) {
+ r->float_utf8 = data.longest_float;
+ r->float_substr = NULL;
+ } else {
+ r->float_substr = data.longest_float;
+ r->float_utf8 = NULL;
+ }
+ /* float_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_float ? *(data.minlen_float)
+ : (I32)longest_float_length;
+ r->float_end_shift = ml - data.offset_float_min
+ - longest_float_length + (SvTAIL(data.longest_float) != 0)
+ + data.lookbehind_float;
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+
+ t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ remove_float:
+ r->float_substr = r->float_utf8 = NULL;
+ SvREFCNT_dec(data.longest_float);
+ longest_float_length = 0;
+ }
+
+ /* Note that code very similar to this but for floating string
+ is immediately above, changes may need to be made to both.
+ Be careful.
+ */
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ && (longest_fixed_length
+ || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)))) )
+ {
+ I32 t,ml;
+
+ /* copy the information about the longest fixed
+ from the reg_scan_data over to the program. */
+ if (SvUTF8(data.longest_fixed)) {
+ r->anchored_utf8 = data.longest_fixed;
+ r->anchored_substr = NULL;
+ } else {
+ r->anchored_substr = data.longest_fixed;
+ r->anchored_utf8 = NULL;
+ }
+ /* fixed_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_fixed ? *(data.minlen_fixed)
+ : (I32)longest_fixed_length;
+ r->anchored_end_shift = ml - data.offset_fixed
+ - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
+ + data.lookbehind_fixed;
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+
+ t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ SvREFCNT_dec(data.longest_fixed);
+ longest_fixed_length = 0;
+ }
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && !(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->extflags & RXf_ANCH_SINGLE)
+ r->extflags |= RXf_NOSCAN;
+ }
+ else {
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
+ This should be changed ASAP! */
+ if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ I32 fake;
+ struct regnode_charclass_class ch_class;
+ I32 last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+
+ minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
+ &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
+
+ CHECK_RESTUDY_GOTO;
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (!(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_SEEN_GPOS)
+ r->extflags |= RXf_GPOS_SEEN;
+ if (RExC_seen & REG_SEEN_LOOKBEHIND)
+ r->extflags |= RXf_LOOKBEHIND_SEEN;
+ if (RExC_seen & REG_SEEN_EVAL)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_SEEN_CANY)
+ r->extflags |= RXf_CANY_SEEN;
+ if (RExC_seen & REG_SEEN_VERBARG)
+ r->intflags |= PREGf_VERBARG_SEEN;
+ if (RExC_seen & REG_SEEN_CUTGROUP)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+#ifdef STUPID_PATTERN_CHECKS
+ if (RX_PRELEN(rx) == 0)
+ r->extflags |= RXf_NULL;
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
+ r->extflags |= RXf_WHITE;
+ else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
+ r->extflags |= RXf_START_ONLY;
+#else
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else {
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+
+ if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_NULL;
+ else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
+ && OP(regnext(first)) == END)
+ r->extflags |= RXf_WHITE;
+ }
+#endif
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, 1, "a" );
+ ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+
+ DEBUG_DUMP_r({
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const U32 len = ri->u.offsets[0];
+ U32 i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+ return rx;
+}
+
+#undef RE_ENGINE_PTR
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify(aTHX);
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ I32 length;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_len(av);
+ SvREFCNT_dec(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ char *s = NULL;
+ I32 i = 0;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (!rx->subbeg) {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ else
+ if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
+ /* $` */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
+ /* $' */
+ s = rx->subbeg + rx->offs[0].end;
+ i = rx->sublen - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= paren && paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ /* $& $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1;
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ assert(rx->sublen >= (s - rx->subbeg) + i );
+ if (i >= 0) {
+ const int oldtainted = PL_tainted;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ PL_tainted = oldtainted;
+ if ( (rx->extflags & RXf_CANY_SEEN)
+ ? (RXp_MATCH_UTF8(rx)
+ && (!i || is_utf8_string((U8*)s, i)))
+ : (RXp_MATCH_UTF8(rx)) )
+ {
+ SvUTF8_on(sv);
+ }
+ else
+ SvUTF8_off(sv);
+ if (PL_tainting) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ PL_tainted = 1;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ PL_tainted = 1;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify(aTHX);
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ /* $` / ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $' / ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $& / ${^MATCH}, $1, $2, ... */
+ default:
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isALNUM_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isALNUM(*RExC_parse));
+ }
+
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ /* NOT REACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int rem=(int)(RExC_end - RExC_parse); \
+ int cut; \
+ int num; \
+ int iscut=0; \
+ if (rem>10) { \
+ rem=10; \
+ iscut=1; \
+ } \
+ cut=10-rem; \
+ if (RExC_lastparse!=RExC_parse) \
+ PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
+ rem, RExC_parse, \
+ cut + 4, \
+ iscut ? "..." : "<" \
+ ); \
+ else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * with some added info that is placed as UVs at the beginning in a header
+ * portion. An inversion list for Unicode is an array of code points, sorted
+ * by ordinal number. The zeroth element is the first code point in the list.
+ * The 1th element is the first element beyond that not in the list. In other
+ * words, the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion list
+ * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
+ * beginning of the list is either that element if 0, or the next one if 1.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+#define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
+#define INVLIST_ITER_OFFSET 1 /* Current iteration position */
+
+/* This is a combination of a version and data structure type, so that one
+ * being passed in can be validated to be an inversion list of the correct
+ * vintage. When the structure of the header is changed, a new random number
+ * in the range 2**31-1 should be generated and the new() method changed to
+ * insert that at this location. Then, if an auxiliary program doesn't change
+ * correspondingly, it will be discovered immediately */
+#define INVLIST_VERSION_ID_OFFSET 2
+#define INVLIST_VERSION_ID 1064334010
+
+/* For safety, when adding new elements, remember to #undef them at the end of
+ * the inversion list code section */
+
+#define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
+/* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
+ * contains the code point U+00000, and begins here. If 1, the inversion list
+ * doesn't contain U+0000, and it begins at the next UV in the array.
+ * Inverting an inversion list consists of adding or removing the 0 at the
+ * beginning of it. By reserving a space for that 0, inversion can be made
+ * very fast */
+
+#define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
+
+/* Internally things are UVs */
+#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
+
+#define INVLIST_INITIAL_LEN 10
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000
+ * in it or not. The other parameter tells it whether the code that
+ * follows this call is about to put a 0 in the inversion list or not.
+ * The first element is either the element with 0, if 0, or the next one,
+ * if 1 */
+
+ UV* zero = get_invlist_zero_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! *get_invlist_len_addr(invlist));
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *zero = 1 ^ will_have_0;
+ return zero + *zero;
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(pTHX_ SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(*get_invlist_len_addr(invlist));
+ assert(*get_invlist_zero_addr(invlist) == 0
+ || *get_invlist_zero_addr(invlist) == 1);
+
+ /* The array begins either at the element reserved for zero if the
+ * list contains 0 (that element will be set to 0), or otherwise the next
+ * element (in which case the reserved element will be set to 1). */
+ return (UV *) (get_invlist_zero_addr(invlist)
+ + *get_invlist_zero_addr(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_len_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current number
+ * of used elements in the inversion list */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_len(pTHX_ SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT_INVLIST_LEN;
+
+ return *get_invlist_len_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
+{
+ /* Sets the current number of elements stored in the inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ *get_invlist_len_addr(invlist) = len;
+
+ assert(len <= SvLEN(invlist));
+
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
+ /* If the list contains U+0000, that element is part of the header,
+ * and should not be counted as part of the array. It will contain
+ * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
+ * subtract:
+ * SvCUR_set(invlist,
+ * TO_INTERNAL_SIZE(len
+ * - (*get_invlist_zero_addr(inv_list) ^ 1)));
+ * But, this is only valid if len is not 0. The consequences of not doing
+ * this is that the memory allocation code may think that 1 more UV is
+ * being used than actually is, and so might do an unnecessary grow. That
+ * seems worth not bothering to make this the precise amount.
+ *
+ * Note that when inverting, SvCUR shouldn't change */
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_max(pTHX_ SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ return FROM_INTERNAL_SIZE(SvLEN(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_zero_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that is reserved to hold 0 if the inversion
+ * list contains 0. This has to be the last element of the heading, as the
+ * list proper starts with either it if 0, or the next element if not.
+ * (But we force it to contain either 0 or 1) */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = INVLIST_INITIAL_LEN;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV(TO_INTERNAL_SIZE(initial_size));
+ invlist_set_len(new_list, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = UV_MAX;
+
+ /* This should force a segfault if a method doesn't initialize this
+ * properly */
+ *get_invlist_zero_addr(new_list) = UV_MAX;
+
+ *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
+#if HEADER_LENGTH != 4
+# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
+#endif
+
+ return new_list;
+}
+#endif
+
+STATIC SV*
+S__new_invlist_C_array(pTHX_ UV* list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands */
+
+ SV* invlist = newSV_type(SVt_PV);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ SvPV_set(invlist, (char *) list);
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
+
+ if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ return invlist;
+}
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(pTHX_ SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = invlist_len(invlist);
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ array = _invlist_array_init(invlist, start == 0);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If overflows the existing space, extend, which may cause the array to be
+ * moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+ invlist_set_len(invlist, len); /* Have to set len here to avoid assert
+ failure in invlist_array() */
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+STATIC IV
+S_invlist_search(pTHX_ SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV high = invlist_len(invlist);
+ const UV * const array = invlist_array(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_SEARCH;
+
+ /* If list is empty or the code point is before the first element, return
+ * failure. */
+ if (high == 0 || cp < array[0]) {
+ return -1;
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. */
+ while (low < high) {
+ IV mid = (low + high) / 2;
+ if (array[mid] <= cp) {
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ return high - 1;
+}
+
+void
+Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ return;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented. The first list,
+ * <a>, may be NULL, in which case a copy of the second list is returned.
+ * If <complement_b> is TRUE, the union is taken of the complement
+ * (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
+ if (*output == a) {
+ if (a != NULL) {
+ SvREFCNT_dec(a);
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+ return;
+ }
+ else if ((len_b = invlist_len(b)) == 0) {
+ if (*output == b) {
+ SvREFCNT_dec(b);
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ SvREFCNT_dec(a);
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != invlist_len(u)) {
+ invlist_set_len(u, len_u);
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *output || b == *output) {
+ SvREFCNT_dec(*output);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *output = u;
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented.
+ * If <complement_b> is TRUE, the result will be the intersection of <a>
+ * and the complement (or inversion) of <b> instead of <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = invlist_len(a);
+ if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ *i = invlist_clone(a);
+
+ if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ }
+ /* else *i is already 'a' */
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ SvREFCNT_dec(a);
+ }
+ else if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ *i = _new_invlist(0);
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != invlist_len(r)) {
+ invlist_set_len(r, len_r);
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *i || b == *i) {
+ SvREFCNT_dec(*i);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *i = r;
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = invlist_len(invlist);
+ }
+
+ /* If comes after the final entry, can just append it to the end */
+ if (len == 0
+ || start >= invlist_array(invlist)
+ [invlist_len(invlist) - 1])
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec(range_invlist);
+
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ UV* len_pos = get_invlist_len_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ /* The inverse of matching nothing is matching everything */
+ if (*len_pos == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
+ * zero element was a 0, so it is being removed, so the length decrements
+ * by 1; and vice-versa. SvCUR is unaffected */
+ if (*get_invlist_zero_addr(invlist) ^= 1) {
+ (*len_pos)--;
+ }
+ else {
+ (*len_pos)++;
+ }
+}
+
+void
+Perl__invlist_invert_prop(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list (which must be a Unicode property,
+ * all of which don't match above the Unicode maximum code point.) And
+ * Perl has chosen to not have the inversion match above that either. This
+ * adds a 0x110000 if the list didn't end with it, and removes it if it did
+ */
+
+ UV len;
+ UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
+
+ _invlist_invert(invlist);
+
+ len = invlist_len(invlist);
+
+ if (len != 0) { /* If empty do nothing */
+ array = invlist_array(invlist);
+ if (array[len - 1] != PERL_UNICODE_MAX + 1) {
+ /* Add 0x110000. First, grow if necessary */
+ len++;
+ if (invlist_max(invlist) < len) {
+ invlist_extend(invlist, len);
+ array = invlist_array(invlist);
+ }
+ invlist_set_len(invlist, len);
+ array[len - 1] = PERL_UNICODE_MAX + 1;
+ }
+ else { /* Remove the 0x110000 */
+ invlist_set_len(invlist, len - 1);
+ }
+ }
+
+ return;
+}
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
+ STRLEN length = SvCUR(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ SvCUR_set(new_invlist, length); /* This isn't done automatically */
+ Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_iter_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_version_id_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the version id. */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+STATIC bool
+S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ UV* pos = get_invlist_iter_addr(invlist);
+ UV len = invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = UV_MAX; /* Force iternit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#if 0
+void
+S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
+{
+ /* Dumps out the ranges in an inversion list. The string 'header'
+ * if present is output on a line before the first range */
+
+ UV start, end;
+
+ if (header && strlen(header)) {
+ PerlIO_printf(Perl_debug_log, "%s\n", header);
+ }
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
+ }
+ else {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
+ }
+ }
+}
+#endif
+
+#undef HEADER_LENGTH
+#undef INVLIST_INITIAL_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_LEN_OFFSET
+#undef INVLIST_ZERO_OFFSET
+#undef INVLIST_ITER_OFFSET
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
+{
+ dVAR;
+ register regnode *ret; /* Will be the head of the group. */
+ register regnode *br;
+ register regnode *lastbr;
+ register regnode *ender = NULL;
+ register I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (0x02|0x04)
+ I32 wastedflags = 0x00;
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if !argok */
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_SEEN_CUTGROUP;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse++;
+ vFAIL3("Unknown verb pattern '%.*s'",
+ verb_len, start_verb);
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_SEEN_VERBARG;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ } else
+ if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ bool has_use_defaults = FALSE;
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in regatom(), if
+ you change this make sure you change that */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? /* reverse test from the others */
+ REG_RSN_RETURN_NAME :
+ REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start) {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ if (*RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls */
+ if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '#': /* (?#...) */
+ while (*RExC_parse && *RExC_parse != ')')
+ RExC_parse++;
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?#... not terminated");
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ { /* named and numeric backreferences */
+ I32 num;
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ goto gen_recurse_regop;
+ /* NOT REACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOT REACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /*FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ num = atoi(RExC_parse);
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-')
+ RExC_parse++;
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reganode(pRExC_state, GOSUB, num);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ ARG2L_SET( ret, RExC_recurse_count++);
+ RExC_emit++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
+ } else {
+ RExC_size++;
+ }
+ RExC_seen |= REG_SEEN_RECURSE;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ } /* named and numeric backreferences */
+ /* NOT REACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALL THROUGH */
+ case '{': /* (?{...}) */
+ {
+ I32 count = 1;
+ U32 n = 0;
+ char c;
+ char *s = RExC_parse;
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_EVAL;
+ while (count && (c = *RExC_parse)) {
+ if (c == '\\') {
+ if (RExC_parse[1])
+ RExC_parse++;
+ }
+ else if (c == '{')
+ count++;
+ else if (c == '}')
+ count--;
+ RExC_parse++;
+ }
+ if (*RExC_parse != ')') {
+ RExC_parse = s;
+ vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
+ }
+ if (!SIZE_ONLY) {
+ PAD *pad;
+ OP_4tree *sop, *rop;
+ SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
+
+ ENTER;
+ Perl_save_re_context(aTHX);
+ rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
+ sop->op_private |= OPpREFCOUNTED;
+ /* re_dup will OpREFCNT_inc */
+ OpREFCNT_set(sop, 1);
+ LEAVE;
+
+ n = add_data(pRExC_state, 3, "nop");
+ RExC_rxi->data->data[n] = (void*)rop;
+ RExC_rxi->data->data[n+1] = (void*)sop;
+ RExC_rxi->data->data[n+2] = (void*)pad;
+ SvREFCNT_dec(sv);
+ }
+ else { /* First pass */
+ if (PL_reginterp_cnt < ++RExC_seen_evals
+ && IN_PERL_RUNTIME)
+ /* No compiled RE interpolated, has runtime
+ components ===> unsafe. */
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ if (PL_tainting && PL_tainted)
+ FAIL("Eval-group in insecure regular expression");
+#if PERL_VERSION > 8
+ if (IN_PERL_COMPILETIME)
+ PL_cv_has_eval = 1;
+#endif
+ }
+
+ nextchar(pRExC_state);
+ if (is_logical) {
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 2;
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reganode(pRExC_state, EVAL, n);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+ REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
+ goto insert_if;
+ }
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'D' &&
+ RExC_parse[1] == 'E' &&
+ RExC_parse[2] == 'F' &&
+ RExC_parse[3] == 'I' &&
+ RExC_parse[4] == 'N' &&
+ RExC_parse[5] == 'E')
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse +=6 ;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ parno = atoi(RExC_parse++);
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ parno = atoi(RExC_parse++);
+
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if ((c = *nextchar(pRExC_state)) != ')')
+ vFAIL("Switch condition not recognized");
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL)
+ br = reganode(pRExC_state, LONGJMP, 0);
+ else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+ lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
+ regbranch(pRExC_state, &flags, 1,depth+1);
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')')
+ vFAIL("Switch (?(condition)... contains too many branches");
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ else {
+ vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
+ }
+ }
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
+ that follow */
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ goto parse_flags;
+ default:
+ --RExC_parse;
+ parse_flags: /* (?i) */
+ {
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ RExC_contains_locale = 1;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
+ /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (SIZE_ONLY)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ fail_modifiers:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ paren = ':';
+ /*FALLTHROUGH*/
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (paren != ':') {
+ oregflags |= posflags;
+ oregflags &= ~negflags;
+ set_regex_charset(&oregflags, cs);
+ }
+ nextchar(pRExC_state);
+ if (paren != ':') {
+ *flagp = TRYAGAIN;
+ return NULL;
+ } else {
+ ret = NULL;
+ goto parse_rest;
+ }
+ /*NOTREACHED*/
+ default:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ ++RExC_parse;
+ }
+ }} /* one for the default block, one for the switch */
+ }
+ else { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_SEEN_RECURSE
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting open paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL)
+ return(NULL);
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL)
+ return(NULL);
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting close paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALL THROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ RExC_flags = oregflags;
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register regnode *chain = NULL;
+ register regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ return(NULL);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ RExC_naughty++;
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register char op;
+ register char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN)
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ min = atoi(RExC_parse);
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ max = atoi(maxpos);
+ if (!max && *maxpos != '0')
+ max = REG_INFTY; /* meaning "infinity" */
+ else if (max >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ RExC_parse = next;
+ nextchar(pRExC_state);
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ RExC_naughty += 2 + RExC_naughty / 2;
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ RExC_naughty += 4 + RExC_naughty; /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (max < min)
+ vFAIL("Can't do {n,m} with n > m");
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 4;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 3;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ ckWARN3reg(RExC_parse,
+ "%.*s matches null string many times",
+ (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
+ origparse);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+#ifndef REG_ALLOW_MINMOD_SUSPEND
+ else
+#endif
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ /*ret= ender;*/
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+
+/* reg_namedseq(pRExC_state,UVp, UV depth)
+
+ This is expected to be called by a parser routine that has
+ recognized '\N' and needs to handle the rest. RExC_parse is
+ expected to point at the first char following the N at the time
+ of the call.
+
+ The \N may be inside (indicated by valuep not being NULL) or outside a
+ character class.
+
+ \N may begin either a named sequence, or if outside a character class, mean
+ to match a non-newline. For non single-quoted regexes, the tokenizer has
+ attempted to decide which, and in the case of a named sequence converted it
+ into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
+ where c1... are the characters in the sequence. For single-quoted regexes,
+ the tokenizer passes the \N sequence through unchanged; this code will not
+ attempt to determine this nor expand those. The net effect is that if the
+ beginning of the passed-in pattern isn't '{U+' or there is no '}', it
+ signals that this \N occurrence means to match a non-newline.
+
+ Only the \N{U+...} form should occur in a character class, for the same
+ reason that '.' inside a character class means to just match a period: it
+ just doesn't make sense.
+
+ If valuep is non-null then it is assumed that we are parsing inside
+ of a charclass definition and the first codepoint in the resolved
+ string is returned via *valuep and the routine will return NULL.
+ In this mode if a multichar string is returned from the charnames
+ handler, a warning will be issued, and only the first char in the
+ sequence will be examined. If the string returned is zero length
+ then the value of *valuep is undefined and NON-NULL will
+ be returned to indicate failure. (This will NOT be a valid pointer
+ to a regnode.)
+
+ If valuep is null then it is assumed that we are parsing normal text and a
+ new EXACT node is inserted into the program containing the resolved string,
+ and a pointer to the new node is returned. But if the string is zero length
+ a NOTHING node is emitted instead.
+
+ On success RExC_parse is set to the char following the endbrace.
+ Parsing failures will generate a fatal error via vFAIL(...)
+ */
+STATIC regnode *
+S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
+{
+ char * endbrace; /* '}' following the name */
+ regnode *ret = NULL;
+ char* p;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMEDSEQ;
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meaning does not */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regwhite( pRExC_state, RExC_parse )
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The former is assumed when it can't be the latter. */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (valuep) {
+ /* no bare \N in a charclass */
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ nextchar(pRExC_state);
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ RExC_parse--;
+ Set_Node_Length(ret, 1); /* MJD */
+ return ret;
+ }
+
+ /* Here, we have decided it should be a named sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
+ && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (! valuep) {
+ RExC_parse = endbrace + 1;
+ return reg_node(pRExC_state,NOTHING);
+ }
+
+ if (SIZE_ONLY) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class"
+ );
+ RExC_parse = endbrace + 1;
+ }
+ *valuep = 0;
+ return (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+
+ REQUIRE_UTF8; /* named sequences imply Unicode semantics */
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ if (valuep) { /* In a bracketed char class */
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. XXX Solution is to recharacterize as
+ [rest-of-class]|multi1|multi2... */
+
+ STRLEN length_of_hex;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
+
+ char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ if (endchar < endbrace) {
+ ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
+ }
+
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) RExC_parse = endchar;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ if (endchar == endbrace) return NULL;
+
+ ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+ else { /* Not a char class */
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * (?:\x{char1}\x{char2}...)
+ * and then call reg recursively. That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. toke.c has converted the original Unicode values
+ * to native, so that we can just pass on the hex values unchanged. We
+ * do have to set a flag to keep recoding from happening in the
+ * recursion */
+
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
+ STRLEN len;
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char *orig_end = RExC_end;
+
+ while (RExC_parse < endbrace) {
+
+ /* Code points are separated by dots. If none, there is only one
+ * code point, and is terminated by the brace */
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < 8) {
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding */
+ RExC_override_recoding = 1;
+
+ ret = reg(pRExC_state, 1, flagp, depth+1);
+
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+
+ nextchar(pRExC_state);
+ }
+
+ return ret;
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends can either, depending
+ on context. Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret = NULL;
+ I32 flags;
+ char *parse_start = RExC_parse;
+ U8 op;
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_PARSE("atom");
+ *flagp = WORST; /* Tentatively. */
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SBOL);
+ else
+ ret = reg_node(pRExC_state, BOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SEOL);
+ else
+ ret = reg_node(pRExC_state, EOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state,depth+1);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 1, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ return(NULL);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_SEEN_GPOS;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ ret = reg_node(pRExC_state, CANY);
+ RExC_seen |= REG_SEEN_CANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+ case 'w':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = ALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = ALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = ALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = ALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'W':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'b':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = BOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = BOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = BOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = BOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'B':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NBOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NBOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NBOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NBOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 's':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = SPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = SPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = SPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = SPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'S':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NSPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NSPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NSPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NSPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'd':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = DIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = DIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = DIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'D':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NDIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NDIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = NDIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'h':
+ ret = reg_node(pRExC_state, HORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'H':
+ ret = reg_node(pRExC_state, NHORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'v':
+ ret = reg_node(pRExC_state, VERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'V':
+ ret = reg_node(pRExC_state, NVERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+ char* const oldregxend = RExC_end;
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ if (RExC_parse[1] == '{') {
+ /* a lovely hack--pretend we saw [\pX] instead */
+ RExC_end = strchr(RExC_parse, '}');
+ if (!RExC_end) {
+ const U8 c = (U8)*RExC_parse;
+ RExC_parse += 2;
+ RExC_end = oldregxend;
+ vFAIL2("Missing right brace on \\%c{}", c);
+ }
+ RExC_end++;
+ }
+ else {
+ RExC_end = RExC_parse + 2;
+ if (RExC_end > oldregxend)
+ RExC_end = oldregxend;
+ }
+ RExC_parse--;
+
+ ret = regclass(pRExC_state,depth+1);
+
+ RExC_end = oldregxend;
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret);
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ break;
+ case 'N':
+ /* Handle \N and \N{NAME} here and not below because it can be
+ multicharacter. join_exact() will join them up later on.
+ Also this makes sure that things like /\N{BLAH}+/ and
+ \N{BLAH} being multi char Just Happen. dmq*/
+ ++RExC_parse;
+ ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
+ break;
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool isg = *RExC_parse == 'g';
+ bool isrel = 0;
+ bool hasbrace = 0;
+ if (isg) {
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ } }
+ num = atoi(RExC_parse);
+ if (isg && num == 0)
+ vFAIL("Reference to invalid group 0");
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ if (!isg && num > 9 && num >= RExC_npar)
+ goto defchar;
+ else {
+ char * const parse_start = RExC_parse - 1; /* MJD */
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (parse_start == RExC_parse - 1)
+ vFAIL("Unterminated \\g... pattern");
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (MORE_ASCII_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if ( reg_skipcomment( pRExC_state ) )
+ goto tryagain;
+ }
+ /* FALL THROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ register STRLEN len;
+ register UV ender;
+ register char *p;
+ char *s;
+ STRLEN foldlen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
+ U8 node_type;
+
+ /* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
+ * it is folded to 'ss' even if not utf8 */
+ bool is_exactfu_sharp_s;
+
+ ender = 0;
+ node_type = ((! FOLD) ? EXACT
+ : (LOC)
+ ? EXACTFL
+ : (MORE_ASCII_RESTRICTED)
+ ? EXACTFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? EXACTFU
+ : EXACTF);
+ ret = reg_node(pRExC_state, node_type);
+ s = STRING(ret);
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (len = 0, p = RExC_parse - 1;
+ len < 127 && p < RExC_end;
+ len++)
+ {
+ char * const oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'N': /* named char sequence */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ASCII_TO_NATIVE('\033');
+ p++;
+ break;
+ case 'a':
+ ender = ASCII_TO_NATIVE('\007');
+ p++;
+ break;
+ case 'o':
+ {
+ STRLEN brace_len = len;
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(p,
+ &result,
+ &brace_len,
+ &error_msg,
+ 1);
+ p += brace_len;
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ else
+ {
+ ender = result;
+ }
+ if (PL_encoding && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ if (*++p == '{') {
+ char* const e = strchr(p, '}');
+
+ if (!e) {
+ RExC_parse = p + 1;
+ vFAIL("Missing right brace on \\x{}");
+ }
+ else {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = e - p - 1;
+ ender = grok_hex(p + 1, &numlen, &flags, NULL);
+ if (ender > 0xff)
+ REQUIRE_UTF8;
+ p = e + 1;
+ }
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = 2;
+ ender = grok_hex(p, &numlen, &flags, NULL);
+ p += numlen;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7': case '8':case '9':
+ if (*p == '0' ||
+ (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ }
+ else {
+ --p;
+ goto loopdone;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHA(*p)) {
+ ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p);
+ }
+ goto normal_default;
+ }
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default:
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ is_exactfu_sharp_s = (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S);
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ if ((UTF && FOLD) || is_exactfu_sharp_s) {
+ /* Prime the casefolded buffer. Locale rules, which apply
+ * only to code points < 256, aren't known until execution,
+ * so for them, just output the original character using
+ * utf8. If we start to fold non-UTF patterns, be sure to
+ * update join_exact() */
+ if (LOC && ender < 256) {
+ if (UNI_IS_INVARIANT(ender)) {
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ } else {
+ *tmpbuf = UTF8_TWO_BYTE_HI(ender);
+ *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
+ foldlen = 2;
+ }
+ }
+ else if (isASCII(ender)) { /* Note: Here can't also be LOC
+ */
+ ender = toLOWER(ender);
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ }
+ else if (! MORE_ASCII_RESTRICTED && ! LOC) {
+
+ /* Locale and /aa require more selectivity about the
+ * fold, so are handled below. Otherwise, here, just
+ * use the fold */
+ ender = toFOLD_uni(ender, tmpbuf, &foldlen);
+ }
+ else {
+ /* Under locale rules or /aa we are not to mix,
+ * respectively, ords < 256 or ASCII with non-. So
+ * reject folds that mix them, using only the
+ * non-folded code point. So do the fold to a
+ * temporary, and inspect each character in it. */
+ U8 trialbuf[UTF8_MAXBYTES_CASE+1];
+ U8* s = trialbuf;
+ UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
+ U8* e = s + foldlen;
+ bool fold_ok = TRUE;
+
+ while (s < e) {
+ if (isASCII(*s)
+ || (LOC && (UTF8_IS_INVARIANT(*s)
+ || UTF8_IS_DOWNGRADEABLE_START(*s))))
+ {
+ fold_ok = FALSE;
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ if (fold_ok) {
+ Copy(trialbuf, tmpbuf, foldlen, U8);
+ ender = tmpender;
+ }
+ else {
+ uvuni_to_utf8(tmpbuf, ender);
+ foldlen = UNISKIP(ender);
+ }
+ }
+ }
+ if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
+ if (len)
+ p = oldp;
+ else if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+
+ /* tmpbuf has been constructed by us, so we
+ * know it is valid utf8 */
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ s += unilen;
+ len += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break; /* "Can't happen." */
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ }
+ else {
+ len++;
+ REGC((char)ender, s++);
+ }
+ break;
+ }
+ if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ len += unilen;
+ s += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break;
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ len--;
+ }
+ else {
+ REGC((char)ender, s++);
+ }
+ }
+ loopdone: /* Jumped to when encounters something that shouldn't be in
+ the node */
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+ if (len > 0)
+ *flagp |= HASWIDTH;
+ if (len == 1 && UNI_IS_INVARIANT(ender))
+ *flagp |= SIMPLE;
+
+ if (SIZE_ONLY)
+ RExC_size += STR_SZ(len);
+ else {
+ STR_LEN(ret) = len;
+ RExC_emit += STR_SZ(len);
+ }
+ }
+ break;
+ }
+
+ return(ret);
+
+/* Jumped to when an unrecognized character set is encountered */
+bad_charset:
+ Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
+ return(NULL);
+}
+
+STATIC char *
+S_regwhite( RExC_state_t *pRExC_state, char *p )
+{
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGWHITE;
+
+ while (p < e) {
+ if (isSPACE(*p))
+ ++p;
+ else if (*p == '#') {
+ bool ended = 0;
+ do {
+ if (*p++ == '\n') {
+ ended = 1;
+ break;
+ }
+ } while (p < e);
+ if (!ended)
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+STATIC I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
+{
+ dVAR;
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse))) {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end)
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
+ namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ Simple_vFAIL3("POSIX class [:%.*s:] unknown",
+ t - s - 1, s + 1);
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC void
+S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_CHECKPOSIXCC;
+
+ if (POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ while (isALNUM(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+
+ /* [[=foo=]] and [[.foo.]] are still future. */
+ if (POSIXCC_NOTYET(c)) {
+ /* adjust RExC_parse so the error shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
+ NOOP;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ }
+ }
+}
+
+/* Generate the code to add a full posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * Xsourcelist is the full Unicode range list to use otherwise. */
+#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ \
+ /* Set this class in the node for runtime matching */ \
+ ANYOF_CLASS_SET(node, class); \
+ \
+ /* For above Latin1 code points, we use the full Unicode range */ \
+ _invlist_intersection(PL_AboveLatin1, \
+ Xsourcelist, \
+ &scratch_list); \
+ /* And set the output to it, adding instead if there already is an \
+ * output. Checking if <destlist> is NULL first saves an extra \
+ * clone. Its reference count will be decremented at the next \
+ * union, etc, or if this is the only instance, at the end of the \
+ * routine */ \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ /* For non-locale, just add it to any existing list */ \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
+ */
+#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ ANYOF_CLASS_SET(node, class); \
+ _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ _invlist_union_complement_2nd(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ /* Under /d, everything in the upper half of the Latin1 range \
+ * matches this complement */ \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ }
+
+/* Generate the code to add a posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * l1_sourcelist is the Latin1 range list to use otherwise.
+ * Xpropertyname is the name to add to <run_time_list> of the property to
+ * specify the code points above Latin1 that will have to be
+ * determined at run-time
+ * run_time_list is a SV* that contains text names of properties that are to
+ * be computed at run time. This concatenates <Xpropertyname>
+ * to it, apppropriately
+ * This is essentially DO_POSIX, but we know only the Latin1 values at compile
+ * time */
+#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ /* First, resolve whether to use the ASCII-only list or the L1 \
+ * list */ \
+ DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \
+ ((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\
+ Xpropertyname, run_time_list)
+
+#define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \
+ Xpropertyname, run_time_list) \
+ /* If not /a matching, there are going to be code points we will have \
+ * to defer to runtime to look-up */ \
+ if (! AT_LEAST_ASCII_RESTRICTED) { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
+ } \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, class); \
+ } \
+ else { \
+ _invlist_union(destlist, sourcelist, &destlist); \
+ }
+
+/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
+ * this and DO_N_POSIX */
+#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ if (AT_LEAST_ASCII_RESTRICTED) { \
+ _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
+ } \
+ else { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, namedclass); \
+ } \
+ else { \
+ SV* scratch_list = NULL; \
+ _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ } \
+ }
+
+STATIC U8
+S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+
+ /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
+ * Locale folding is done at run-time, so this function should not be
+ * called for nodes that are for locales.
+ *
+ * This function sets the bit corresponding to the fold of the input
+ * 'value', if not already set. The fold of 'f' is 'F', and the fold of
+ * 'F' is 'f'.
+ *
+ * It also knows about the characters that are in the bitmap that have
+ * folds that are matchable only outside it, and sets the appropriate lists
+ * and flags.
+ *
+ * It returns the number of bits that actually changed from 0 to 1 */
+
+ U8 stored = 0;
+ U8 fold;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
+
+ fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
+ : PL_fold[value];
+
+ /* It assumes the bit for 'value' has already been set */
+ if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
+ ANYOF_BITMAP_SET(node, fold);
+ stored++;
+ }
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
+ /* Certain Latin1 characters have matches outside the bitmap. To get
+ * here, 'value' is one of those characters. None of these matches is
+ * valid for ASCII characters under /aa, which have been excluded by
+ * the 'if' above. The matches fall into three categories:
+ * 1) They are singly folded-to or -from an above 255 character, as
+ * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
+ * WITH DIAERESIS;
+ * 2) They are part of a multi-char fold with another character in the
+ * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
+ * 3) They are part of a multi-char fold with a character not in the
+ * bitmap, such as various ligatures.
+ * We aren't dealing fully with multi-char folds, except we do deal
+ * with the pattern containing a character that has a multi-char fold
+ * (not so much the inverse).
+ * For types 1) and 3), the matches only happen when the target string
+ * is utf8; that's not true for 2), and we set a flag for it.
+ *
+ * The code below adds to the passed in inversion list the single fold
+ * closures for 'value'. The values are hard-coded here so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out
+ * to disk to find the possible matches. XXX It would be better to
+ * generate these via regen, in case a new version of the Unicode
+ * standard adds new mappings, though that is not really likely. */
+ switch (value) {
+ case 'k':
+ case 'K':
+ /* KELVIN SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
+ break;
+ case 's':
+ case 'S':
+ /* LATIN SMALL LETTER LONG S */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
+ break;
+ case MICRO_SIGN:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_SMALL_LETTER_MU);
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_CAPITAL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ /* ANGSTROM SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
+ if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ PL_fold_latin1[value]);
+ }
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_SHARP_S);
+
+ /* Under /a, /d, and /u, this can match the two chars "ss" */
+ if (! MORE_ASCII_RESTRICTED) {
+ add_alternate(alternate_ptr, (U8 *) "ss", 2);
+
+ /* And under /u or /a, it can match even if the target is
+ * not utf8 */
+ if (AT_LEAST_UNI_SEMANTICS) {
+ ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ break;
+ case 'F': case 'f':
+ case 'I': case 'i':
+ case 'L': case 'l':
+ case 'T': case 't':
+ case 'A': case 'a':
+ case 'H': case 'h':
+ case 'J': case 'j':
+ case 'N': case 'n':
+ case 'W': case 'w':
+ case 'Y': case 'y':
+ /* These all are targets of multi-character folds from code
+ * points that require UTF8 to express, so they can't match
+ * unless the target string is in UTF-8, so no action here is
+ * necessary, as regexec.c properly handles the general case
+ * for UTF-8 matching */
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this
+ * being output */
+ ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
+ break;
+ }
+ }
+ else if (DEPENDS_SEMANTICS
+ && ! isASCII(value)
+ && PL_fold_latin1[value] != value)
+ {
+ /* Under DEPENDS rules, non-ASCII Latin1 characters match their
+ * folds only when the target string is in UTF-8. We add the fold
+ * here to the list of things to match outside the bitmap, which
+ * won't be looked at unless it is UTF8 (or else if something else
+ * says to look even if not utf8, but those things better not happen
+ * under DEPENDS semantics. */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
+ }
+
+ return stored;
+}
+
+
+PERL_STATIC_INLINE U8
+S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+ /* This inline function sets a bit in the bitmap if not already set, and if
+ * appropriate, its fold, returning the number of bits that actually
+ * changed from 0 to 1 */
+
+ U8 stored;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
+
+ if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
+ return 0;
+ }
+
+ ANYOF_BITMAP_SET(node, value);
+ stored = 1;
+
+ if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
+ stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
+ }
+
+ return stored;
+}
+
+STATIC void
+S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
+{
+ /* Adds input 'string' with length 'len' to the ANYOF node's unicode
+ * alternate list, pointed to by 'alternate_ptr'. This is an array of
+ * the multi-character folds of characters in the node */
+ SV *sv;
+
+ PERL_ARGS_ASSERT_ADD_ALTERNATE;
+
+ if (! *alternate_ptr) {
+ *alternate_ptr = newAV();
+ }
+ sv = newSVpvn_utf8((char*)string, len, TRUE);
+ av_push(*alternate_ptr, sv);
+ return;
+}
+
+/*
+ parse a class specification and produce either an ANYOF node that
+ matches the pattern or perhaps will be optimized into an EXACTish node
+ instead. The node contains a bit map for the first 256 characters, with the
+ corresponding bit set if that character is in the list. For characters
+ above 255, a range list is used */
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
+{
+ dVAR;
+ register UV nextvalue;
+ register IV prevvalue = OOB_UNICODE;
+ register IV range = 0;
+ UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
+ register regnode *ret;
+ STRLEN numlen;
+ IV namedclass;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ UV n;
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ UV has_user_defined_property = 0;
+
+ /* code points this node matches that can't be stored in the bitmap */
+ SV* nonbitmap = NULL;
+
+ /* The items that are to match that aren't stored in the bitmap, but are a
+ * result of things that are stored there. This is the fold closure of
+ * such a character, either because it has DEPENDS semantics and shouldn't
+ * be matched unless the target string is utf8, or is a code point that is
+ * too large for the bit map, as for example, the fold of the MICRO SIGN is
+ * above 255. This all is solely for performance reasons. By having this
+ * code know the outside-the-bitmap folds that the bitmapped characters are
+ * involved with, we don't have to go out to disk to find the list of
+ * matches, unless the character class includes code points that aren't
+ * storable in the bit map. That means that a character class with an 's'
+ * in it, for example, doesn't need to go out to disk to find everything
+ * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
+ * empty unless there is something whose fold we don't know about, and will
+ * have to go out to the disk to find. */
+ SV* l1_fold_invlist = NULL;
+
+ /* List of multi-character folds that are matched by this node */
+ AV* unicode_alternate = NULL;
+#ifdef EBCDIC
+ UV literal_endpoint = 0;
+#endif
+ UV stored = 0; /* how many chars stored in the bitmap */
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state, ANYOF, 0);
+
+
+ if (!SIZE_ONLY) {
+ ANYOF_FLAGS(ret) = 0;
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_naughty++;
+ RExC_parse++;
+ if (!SIZE_ONLY)
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+
+ /* We have decided to not allow multi-char folds in inverted character
+ * classes, due to the confusion that can happen, especially with
+ * classes that are designed for a non-Unicode world: You have the
+ * peculiar case that:
+ "s s" =~ /^[^\xDF]+$/i => Y
+ "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ allow_full_fold = FALSE;
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ RExC_emit += ANYOF_SKIP;
+ if (LOC) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
+ }
+ ANYOF_BITMAP_ZERO(ret);
+ listsv = newSVpvs("# comment\n");
+ initial_listsv_len = SvCUR(listsv);
+ }
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+
+ if (!SIZE_ONLY && POSIXCC(nextvalue))
+ checkposixcc(pRExC_state);
+
+ /* allow 1st char to be ] (allowing it to be - is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+parseit:
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+ if (value == '[' && POSIXCC(nextvalue))
+ namedclass = regpposixcc(pRExC_state, value);
+ else if (value == '\\') {
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+ switch ((I32)value) {
+ case 'w': namedclass = ANYOF_ALNUM; break;
+ case 'W': namedclass = ANYOF_NALNUM; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. */
+ UV v; /* value is register so we cant & it /grrr */
+ if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
+ goto parseit;
+ }
+ value= v;
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(UCHARAT(RExC_parse)))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(UCHARAT(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV** invlistsvp;
+ SV* invlist;
+ char* name;
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ value = value == 'p' ? 'P' : 'p'; /* toggle */
+ while (isSPACE(UCHARAT(RExC_parse))) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ Newx(name, n + sizeof("_i__\n"), char);
+
+ sprintf(name, "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ );
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ TRUE, /* this routine will handle
+ undefined properties */
+ NULL, FALSE /* No inversion list */
+ );
+ if ( ! swash
+ || ! SvROK(swash)
+ || ! SvTYPE(SvRV(swash)) == SVt_PVHV
+ || ! (invlistsvp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "INVLIST", FALSE))
+ || ! (invlist = *invlistsvp))
+ {
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. Add it
+ * to the list to look up then */
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
+ (value == 'p' ? '+' : '!'),
+ name);
+ has_user_defined_property = 1;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8 */
+ ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ SV** user_defined_svp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "USER_DEFINED", FALSE);
+ if (user_defined_svp) {
+ has_user_defined_property
+ |= SvUV(*user_defined_svp);
+ }
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties, invlist, &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_MAX; /* no official name, but it's named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ASCII_TO_NATIVE('\033');break;
+ case 'a': value = ASCII_TO_NATIVE('\007');break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(RExC_parse,
+ &value,
+ &numlen,
+ &error_msg,
+ SIZE_ONLY);
+ RExC_parse += numlen;
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ if (PL_encoding && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ if (*RExC_parse == '{') {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ char * const e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL("Missing right brace on \\x{}");
+
+ numlen = e - RExC_parse;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse = e + 1;
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ numlen = 2;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ }
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isALNUM(value) && value != '_') {
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ }
+ break;
+ }
+ } /* end of \blah */
+#ifdef EBCDIC
+ else
+ literal_endpoint++;
+#endif
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+
+ /* What matches in a locale is not known until runtime, so need to
+ * (one time per class) allocate extra space to pass to regexec.
+ * The space will contain a bit for each named class that is to be
+ * matched against. This isn't needed for \p{} and pseudo-classes,
+ * as they are not affected by locale, and hence are dealt with
+ * separately */
+ if (LOC && namedclass < ANYOF_MAX && ! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ ANYOF_CLASS_ZERO(ret);
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_CLASS;
+ }
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ ckWARN4reg(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ if (prevvalue < 256) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
+ }
+ else {
+ nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ }
+
+ if (!SIZE_ONLY) {
+
+ /* Possible truncation here but in some 64-bit environments
+ * the compiler gets heartburn about switch on 64-bit values.
+ * A similar issue a little earlier when switching on value.
+ * --jhi */
+ switch ((I32)namedclass) {
+
+ case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_NALNUMC:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_ALPHA:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_NALPHA:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_ASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union(properties, PL_ASCII, &properties);
+ }
+ break;
+ case ANYOF_NASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union_complement_2nd(properties,
+ PL_ASCII, &properties);
+ if (DEPENDS_SEMANTICS) {
+ ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ break;
+ case ANYOF_BLANK:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_NBLANK:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_CNTRL:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_NCNTRL:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_DIGIT:
+ /* There are no digits in the Latin1 range outside of
+ * ASCII, so call the macro that doesn't have to resolve
+ * them */
+ DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, properties,
+ PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_NDIGIT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_GRAPH:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_NGRAPH:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_HORIZWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding. It turns out that \h
+ * is just a synonym for XPosixBlank */
+ _invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_NHORIZWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ { /* These require special handling, as they differ under
+ folding, matching Cased there (which in the ASCII range
+ is the same as Alpha */
+
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixLower;
+ l1_source = PL_L1PosixLower;
+ Xname = "XPosixLower";
+ }
+ if (namedclass == ANYOF_LOWER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_PRINT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_NPRINT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_PUNCT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_NPUNCT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_PSXSPC:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_NPSXSPC:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_SPACE:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_NSPACE:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_UPPER: /* Same as LOWER, above */
+ case ANYOF_NUPPER:
+ {
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixUpper;
+ l1_source = PL_L1PosixUpper;
+ Xname = "XPosixUpper";
+ }
+ if (namedclass == ANYOF_UPPER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_ALNUM: /* Really is 'Word' */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_NALNUM:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_VERTWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding */
+ _invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_NVERTWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_XDIGIT:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_NXDIGIT:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_MAX:
+ /* this is to handle \p and \P */
+ break;
+ default:
+ vFAIL("Invalid [::] class");
+ break;
+ }
+
+ continue;
+ }
+ } /* end of namedclass \blah */
+
+ if (range) {
+ if (prevvalue > (IV)value) /* b-a */ {
+ const int w = RExC_parse - rangebegin;
+ Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
+ range = 0; /* not a valid range */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the range */
+ if (RExC_parse+1 < RExC_end
+ && *RExC_parse == '-'
+ && RExC_parse[1] != ']')
+ {
+ RExC_parse++;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (ckWARN(WARN_REGEXP)) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ if (!SIZE_ONLY)
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* now is the next time */
+ if (!SIZE_ONLY) {
+ if (prevvalue < 256) {
+ const IV ceilvalue = value < 256 ? value : 255;
+ IV i;
+#ifdef EBCDIC
+ /* In EBCDIC [\x89-\x91] should include
+ * the \x8e but [i-j] should not. */
+ if (literal_endpoint == 2 &&
+ ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
+ (isUPPER(prevvalue) && isUPPER(ceilvalue))))
+ {
+ if (isLOWER(prevvalue)) {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ } else {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ }
+ else
+#endif
+ for (i = prevvalue; i <= ceilvalue; i++) {
+ stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ if (value > 255) {
+ const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
+ const UV natvalue = NATIVE_TO_UNI(value);
+ nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
+ }
+#ifdef EBCDIC
+ literal_endpoint = 0;
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ }
+
+
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY AFTER HERE *********/
+
+ /* If folding and there are code points above 255, we calculate all
+ * characters that could fold to or from the ones already on the list */
+ if (FOLD && nonbitmap) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+
+ /* This is a list of all the characters that participate in folds
+ * (except marks, etc in multi-char folds */
+ if (! PL_utf8_foldable) {
+ SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
+ PL_utf8_foldable = _swash_to_invlist(swash);
+ SvREFCNT_dec(swash);
+ }
+
+ /* This is a hash that for a particular fold gives all characters
+ * that are involved in it */
+ if (! PL_utf8_foldclosures) {
+
+ /* If we were unable to find any folds, then we likely won't be
+ * able to find the closures. So just create an empty list.
+ * Folding will effectively be restricted to the non-Unicode rules
+ * hard-coded into Perl. (This case happens legitimately during
+ * compilation of Perl itself before the Unicode tables are
+ * generated) */
+ if (invlist_len(PL_utf8_foldable) == 0) {
+ PL_utf8_foldclosures = newHV();
+ } else {
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES+1];
+ STRLEN dummy_len;
+
+ /* This particular string is above \xff in both UTF-8 and
+ * UTFEBCDIC */
+ to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+ }
+ }
+
+ /* Only the characters in this class that participate in folds need be
+ * checked. Get the intersection of this class and all the possible
+ * characters that are foldable. This can quickly narrow down a large
+ * class */
+ _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+
+ /* Get its fold */
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ const UV f =
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (allow_full_fold) ? FOLD_FLAGS_FULL : 0);
+
+ if (foldlen > (STRLEN)UNISKIP(f)) {
+
+ /* Any multicharacter foldings (disallowed in lookbehind
+ * patterns) require the following transform: [ABCDEF] ->
+ * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
+ * folds into "rst", all other characters fold to single
+ * characters. We save away these multicharacter foldings,
+ * to be later saved as part of the additional "s" data. */
+ if (! RExC_in_lookbehind) {
+ U8* loc = foldbuf;
+ U8* e = foldbuf + foldlen;
+
+ /* If any of the folded characters of this are in the
+ * Latin1 range, tell the regex engine that this can
+ * match a non-utf8 target string. The only multi-byte
+ * fold whose source is in the Latin1 range (U+00DF)
+ * applies only when the target string is utf8, or
+ * under unicode rules */
+ if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
+ while (loc < e) {
+
+ /* Can't mix ascii with non- under /aa */
+ if (MORE_ASCII_RESTRICTED
+ && (isASCII(*loc) != isASCII(j)))
+ {
+ goto end_multi_fold;
+ }
+ if (UTF8_IS_INVARIANT(*loc)
+ || UTF8_IS_DOWNGRADEABLE_START(*loc))
+ {
+ /* Can't mix above and below 256 under LOC
+ */
+ if (LOC) {
+ goto end_multi_fold;
+ }
+ ANYOF_FLAGS(ret)
+ |= ANYOF_NONBITMAP_NON_UTF8;
+ break;
+ }
+ loc += UTF8SKIP(loc);
+ }
+ }
+
+ add_alternate(&unicode_alternate, foldbuf, foldlen);
+ end_multi_fold: ;
+ }
+
+ /* This is special-cased, as it is the only letter which
+ * has both a multi-fold and single-fold in Latin1. All
+ * the other chars that have single and multi-folds are
+ * always in utf8, and the utf8 folding algorithm catches
+ * them */
+ if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ LATIN_SMALL_LETTER_SHARP_S,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ else {
+ /* Single character fold. Add everything in its fold
+ * closure to the list that this node should match */
+ SV** listp;
+
+ /* The fold closures data structure is a hash with the keys
+ * being every character that is folded to, like 'k', and
+ * the values each an array of everything that folds to its
+ * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_len(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non-;
+ * /l doesn't allow them between above and below
+ * 256 */
+ if ((MORE_ASCII_RESTRICTED
+ && (isASCII(c) != isASCII(j)))
+ || (LOC && ((c < 256) != (j < 256))))
+ {
+ continue;
+ }
+
+ if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ (U8) c,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ /* It may be that the code point is already in
+ * this range or already in the bitmap, in
+ * which case we need do nothing */
+ else if ((c < start || c > end)
+ && (c > 255
+ || ! ANYOF_BITMAP_TEST(ret, c)))
+ {
+ nonbitmap = add_cp_to_invlist(nonbitmap, c);
+ }
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec(fold_intersection);
+ }
+
+ /* Combine the two lists into one. */
+ if (l1_fold_invlist) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
+ SvREFCNT_dec(l1_fold_invlist);
+ }
+ else {
+ nonbitmap = l1_fold_invlist;
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now because we don't want to fold the
+ * properties */
+ if (properties) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, properties, &nonbitmap);
+ SvREFCNT_dec(properties);
+ }
+ else {
+ nonbitmap = properties;
+ }
+ }
+
+ /* Here, <nonbitmap> contains all the code points we can determine at
+ * compile time that we haven't put into the bitmap. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <nonbitmap> */
+ if (nonbitmap) {
+
+ /* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
+ * possibly only should match when the target string is UTF-8 */
+ UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through <nonbitmap> */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ UV high;
+ int i;
+
+ /* Quit if are above what we should change */
+ if (start > max_cp_to_set) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < max_cp_to_set) ? end : max_cp_to_set;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_SET(ret, i);
+ stored++;
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * <nonbitmap> */
+ if (change_invlist) {
+ _invlist_subtract(nonbitmap,
+ (DEPENDS_SEMANTICS)
+ ? PL_ASCII
+ : PL_Latin1,
+ &nonbitmap);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (invlist_len(nonbitmap) == 0) {
+ SvREFCNT_dec(nonbitmap);
+ nonbitmap = NULL;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class. <nonbitmap> does not overlap the bitmap except possibly in the
+ * case of DEPENDS rules.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. */
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
+ * set the FOLD flag yet, so this does optimize those. It doesn't
+ * optimize locale. Doing so perhaps could be done as long as there is
+ * nothing like \w in it; some thought also would have to be given to the
+ * interaction with above 0x100 chars */
+ if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
+ && ! LOC
+ && ! unicode_alternate
+ /* In case of /d, there are some things that should match only when in
+ * not in the bitmap, i.e., they require UTF8 to match. These are
+ * listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
+ * case, they don't require UTF8, so can invert here */
+ && (! nonbitmap
+ || ! DEPENDS_SEMANTICS
+ || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ && SvCUR(listsv) == initial_listsv_len)
+ {
+ int i;
+ if (! nonbitmap) {
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ /* The inversion means that everything above 255 is matched */
+ ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
+ }
+ else {
+ /* Here, also has things outside the bitmap that may overlap with
+ * the bitmap. We have to sync them up, so that they get inverted
+ * in both places. Earlier, we removed all overlaps except in the
+ * case of /d rules, so no syncing is needed except for this case
+ */
+ SV *remove_list = NULL;
+
+ if (DEPENDS_SEMANTICS) {
+ UV start, end;
+
+ /* Set the bits that correspond to the ones that aren't in the
+ * bitmap. Otherwise, when we invert, we'll miss these.
+ * Earlier, we removed from the nonbitmap all code points
+ * < 128, so there is no extra work here */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ if (start > 255) { /* The bit map goes to 255 */
+ break;
+ }
+ if (end > 255) {
+ end = 255;
+ }
+ for (i = start; i <= (int) end; ++i) {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Now invert both the bitmap and the nonbitmap. Anything in the
+ * bitmap has to also be removed from the non-bitmap, but again,
+ * there should not be overlap unless is /d rules. */
+ _invlist_invert(nonbitmap);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ if (DEPENDS_SEMANTICS) {
+ if (! remove_list) {
+ remove_list = _new_invlist(2);
+ }
+ remove_list = add_cp_to_invlist(remove_list, i);
+ }
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+
+ /* And do the removal */
+ if (DEPENDS_SEMANTICS) {
+ if (remove_list) {
+ _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
+ SvREFCNT_dec(remove_list);
+ }
+ }
+ else {
+ /* There is no overlap for non-/d, so just delete anything
+ * below 256 */
+ _invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
+ }
+ }
+
+ stored = 256 - stored;
+
+ /* Clear the invert flag since have just done it here */
+ ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
+ }
+
+ /* Folding in the bitmap is taken care of above, but not for locale (for
+ * which we have to wait to see what folding is in effect at runtime), and
+ * for some things not in the bitmap (only the upper latin folds in this
+ * case, as all other single-char folding has been set above). Set
+ * run-time fold flag for these */
+ if (FOLD && (LOC
+ || (DEPENDS_SEMANTICS
+ && nonbitmap
+ && ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ || unicode_alternate))
+ {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
+ }
+
+ /* A single character class can be "optimized" into an EXACTish node.
+ * Note that since we don't currently count how many characters there are
+ * outside the bitmap, we are XXX missing optimization possibilities for
+ * them. This optimization can't happen unless this is a truly single
+ * character class, which means that it can't be an inversion into a
+ * many-character class, and there must be no possibility of there being
+ * things outside the bitmap. 'stored' (only) for locales doesn't include
+ * \w, etc, so have to make a special test that they aren't present
+ *
+ * Similarly A 2-character class of the very special form like [bB] can be
+ * optimized into an EXACTFish node, but only for non-locales, and for
+ * characters which only have the two folds; so things like 'fF' and 'Ii'
+ * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
+ * FI'. */
+ if (! nonbitmap
+ && ! unicode_alternate
+ && SvCUR(listsv) == initial_listsv_len
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
+ && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
+ || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
+ /* If the latest code point has a fold whose
+ * bit is set, it must be the only other one */
+ && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
+ && ANYOF_BITMAP_TEST(ret, prevvalue)))))
+ {
+ /* Note that the information needed to decide to do this optimization
+ * is not currently available until the 2nd pass, and that the actually
+ * used EXACTish node takes less space than the calculated ANYOF node,
+ * and hence the amount of space calculated in the first pass is larger
+ * than actually used, so this optimization doesn't gain us any space.
+ * But an EXACT node is faster than an ANYOF node, and can be combined
+ * with any adjacent EXACT nodes later by the optimizer for further
+ * gains. The speed of executing an EXACTF is similar to an ANYOF
+ * node, so the optimization advantage comes from the ability to join
+ * it to adjacent EXACT nodes */
+
+ const char * cur_parse= RExC_parse;
+ U8 op;
+ RExC_emit = (regnode *)orig_emit;
+ RExC_parse = (char *)orig_parse;
+
+ if (stored == 1) {
+
+ /* A locale node with one point can be folded; all the other cases
+ * with folding will have two points, since we calculate them above
+ */
+ if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
+ op = EXACTFL;
+ }
+ else {
+ op = EXACT;
+ }
+ }
+ else { /* else 2 chars in the bit map: the folds of each other */
+
+ /* Use the folded value, which for the cases where we get here,
+ * is just the lower case of the current one (which may resolve to
+ * itself, or to the other one */
+ value = toLOWER_LATIN1(value);
+
+ /* To join adjacent nodes, they must be the exact EXACTish type.
+ * Try to use the most likely type, by using EXACTFA if possible,
+ * then EXACTFU if the regex calls for it, or is required because
+ * the character is non-ASCII. (If <value> is ASCII, its fold is
+ * also ASCII for the cases where we get here.) */
+ if (MORE_ASCII_RESTRICTED && isASCII(value)) {
+ op = EXACTFA;
+ }
+ else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
+ op = EXACTFU;
+ }
+ else { /* Otherwise, more likely to be EXACTF type */
+ op = EXACTF;
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+ RExC_parse = (char *)cur_parse;
+ if (UTF && ! NATIVE_IS_INVARIANT(value)) {
+ *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
+ *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
+ STR_LEN(ret)= 2;
+ RExC_emit += STR_SZ(2);
+ }
+ else {
+ *STRING(ret)= (char)value;
+ STR_LEN(ret)= 1;
+ RExC_emit += STR_SZ(1);
+ }
+ SvREFCNT_dec(listsv);
+ return ret;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ if (! nonbitmap
+ && SvCUR(listsv) == initial_listsv_len
+ && ! unicode_alternate)
+ {
+ ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
+ SvREFCNT_dec(listsv);
+ SvREFCNT_dec(unicode_alternate);
+ }
+ else {
+ /* av[0] stores the character class description in its textual form:
+ * used later (regexec.c:Perl_regclass_swash()) to initialize the
+ * appropriate swash, and is also useful for dumping the regnode.
+ * av[1] if NULL, is a placeholder to later contain the swash computed
+ * from av[0]. But if no further computation need be done, the
+ * swash is stored there now.
+ * av[2] stores the multicharacter foldings, used later in
+ * regexec.c:S_reginclass().
+ * av[3] stores the nonbitmap inversion list for use in addition or
+ * instead of av[0]; not used if av[1] isn't NULL
+ * av[4] is set if any component of the class is from a user-defined
+ * property; not used if av[1] isn't NULL */
+ AV * const av = newAV();
+ SV *rv;
+
+ av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
+ ? &PL_sv_undef
+ : listsv);
+ if (swash) {
+ av_store(av, 1, swash);
+ SvREFCNT_dec(nonbitmap);
+ }
+ else {
+ av_store(av, 1, NULL);
+ if (nonbitmap) {
+ av_store(av, 3, nonbitmap);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ /* Store any computed multi-char folds only if we are allowing
+ * them */
+ if (allow_full_fold) {
+ av_store(av, 2, MUTABLE_SV(unicode_alternate));
+ if (unicode_alternate) { /* This node is variable length */
+ OP(ret) = ANYOFV;
+ }
+ }
+ else {
+ av_store(av, 2, NULL);
+ }
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, 1, "s");
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(ret, n);
+ }
+ return ret;
+}
+
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comments from the input stream.
+ Returns true if there is more text remaining in the stream.
+ Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
+ terminates the pattern without including a newline.
+
+ Note its the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+STATIC bool
+S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
+{
+ bool ended = 0;
+
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ while (RExC_parse < RExC_end)
+ if (*RExC_parse++ == '\n') {
+ ended = 1;
+ break;
+ }
+ if (!ended) {
+ /* we ran off the end of the pattern without ending
+ the comment, so we have to add an \n when wrapping */
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ return 0;
+ } else
+ return 1;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ continue;
+ }
+ else if (*RExC_parse == '#') {
+ if ( reg_skipcomment( pRExC_state ) )
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ "reg_node", __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 2;
+ /*
+ We can't do this:
+
+ assert(2==regarglen[op]+1);
+
+ Anything larger than this has to allocate the extra amount.
+ If we changed this to be:
+
+ RExC_size += (1 + regarglen[op]);
+
+ then it wouldn't matter. Its not clear what side effect
+ might come from that so its not done so far.
+ -- dmq
+ */
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reganode",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
+ "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Cur_Node_Offset;
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reguni - emit (if appropriate) a Unicode character
+*/
+STATIC STRLEN
+S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGUNI;
+
+ return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ dVAR;
+ register regnode *src;
+ register regnode *dst;
+ register regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool has_exactf_sharp_s; /* Unexamined in this routine */
+ if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTF:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv_val=sv_newmortal();
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, mysv_val, val);
+ PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(mysv_val),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ for (bit=0; bit<32; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ dVAR;
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->extflags & RXf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->extflags & RXf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->extflags & RXf_ANCH_BOL)
+ PerlIO_printf(Perl_debug_log, "(BOL)");
+ if (r->extflags & RXf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->extflags & RXf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->extflags & RXf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->extflags & RXf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode
+*/
+#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
+STMT_START { \
+ if (do_sep) { \
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
+ if (flags & ANYOF_INVERT) \
+ /*make sure the invert info is in each */ \
+ sv_catpvs(sv, "^"); \
+ do_sep = 0; \
+ } \
+} STMT_END
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
+{
+#ifdef DEBUGGING
+ dVAR;
+ register int k;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvs(sv, "");
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ )
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ int i;
+ int rangestart = -1;
+ U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
+ sv_catpvs(sv, "[");
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && BITMAP_TEST(bitmap,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ rangestart = -1;
+ }
+ }
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ if ( k != REF || (OP(o) < NREF)) {
+ AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ SV **name= av_fetch(list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ } else if (k == GOSUB)
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
+ else if (k == ANYOF) {
+ int i, rangestart = -1;
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+ "\\w",
+ "\\W",
+ "\\s",
+ "\\S",
+ "\\d",
+ "\\D",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:space:]",
+ "[:^space:]",
+ "[:blank:]",
+ "[:^blank:]"
+ };
+
+ if (flags & ANYOF_LOCALE)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_NONBITMAP_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-255 bitmap matches */
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ do_sep = 1;
+ rangestart = -1;
+ }
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+ /* output any special charclass tests (used entirely under use locale) */
+ if (ANYOF_CLASS_TEST_ANY_SET(o))
+ for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
+ if (ANYOF_CLASS_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+
+ if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ /* output information about the unicode matching */
+ if (flags & ANYOF_UNICODE_ALL)
+ sv_catpvs(sv, "{unicode_all}");
+ else if (ANYOF_NONBITMAP(o))
+ sv_catpvs(sv, "{unicode}");
+ if (flags & ANYOF_NONBITMAP_NON_UTF8)
+ sv_catpvs(sv, "{outside bitmap}");
+
+ if (ANYOF_NONBITMAP(o)) {
+ SV *lv; /* Set if there is something outside the bit map */
+ SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
+ bool byte_output = FALSE; /* If something in the bitmap has been
+ output */
+
+ if (lv && lv != &PL_sv_undef) {
+ if (sw) {
+ U8 s[UTF8_MAXBYTES_CASE+1];
+
+ for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
+ uvchr_to_utf8(s, i);
+
+ if (i < 256
+ && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
+ things already
+ output as part
+ of the bitmap */
+ && swash_fetch(sw, s, TRUE))
+ {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ byte_output = TRUE;
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++) {
+ put_byte(sv, rangestart);
+ }
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i-1);
+ }
+ rangestart = -1;
+ }
+ }
+ }
+
+ {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ }
+ SvREFCNT_dec(lv);
+ }
+ }
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+#endif /* DEBUGGING */
+}
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(prog->check_substr
+ ? prog->check_substr : prog->check_utf8);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ prog->check_substr ? "" : "utf8 ",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ return prog->check_substr ? prog->check_substr : prog->check_utf8;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ register const I32 npar = r->nparens+1;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ ret = (struct regexp *)SvANY(ret_x);
+
+ (void)ReREFCNT_inc(rx);
+ /* We can take advantage of the existing "copied buffer" mechanism in SVs
+ by pointing directly at the buffer, but flagging that the allocated
+ space in the copy is zero. As we've just done a struct copy, it's now
+ a case of zero-ing that, rather than copying the current length. */
+ SvPV_set(ret_x, RX_WRAPPED(rx));
+ SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ SvLEN_set(ret_x, 0);
+ SvSTASH_set(ret_x, NULL);
+ SvMAGIC_set(ret_x, NULL);
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = rx;
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->data) {
+ int n = ri->data->count;
+ PAD* new_comppad = NULL;
+ PAD* old_comppad;
+ PADOFFSET refcnt;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'p':
+ new_comppad = MUTABLE_AV(ri->data->data[n]);
+ break;
+ case 'o':
+ if (new_comppad == NULL)
+ Perl_croak(aTHX_ "panic: pregfree comppad");
+ PAD_SAVE_LOCAL(old_comppad,
+ /* Watch out for global destruction's random ordering. */
+ (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
+ );
+ OP_REFCNT_LOCK;
+ refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
+ OP_REFCNT_UNLOCK;
+ if (!refcnt)
+ op_free((OP_4tree*)ri->data->data[n]);
+
+ PAD_RESTORE_LOCAL(old_comppad);
+ SvREFCNT_dec(MUTABLE_SV(new_comppad));
+ new_comppad = NULL;
+ break;
+ case 'n':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ PerlMemShared_free(ri->regstclass);
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = (const struct regexp *)SvANY(sstr);
+ struct regexp *ret = (struct regexp *)SvANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if(ret->swap) {
+ /* no need to copy these */
+ Newx(ret->swap, npar, regexp_paren_pair);
+ }
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+
+ if (ret->mother_re) {
+ if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
+ /* Our storage points directly to our mother regexp, but that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ /* Note we need to use SvCUR(), rather than
+ SvLEN(), on our mother_re, because it, in
+ turn, may well be pointing to its own mother_re. */
+ SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
+ SvCUR(ret->mother_re)+1));
+ SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
+ }
+ ret->mother_re = NULL;
+ }
+ ret->gofs = 0;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* legal options are one of: sSfpontTua
+ see also regcomp.h and pregfree() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 's':
+ case 'S':
+ case 'p': /* actually an AV, but the dup function is identical. */
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, struct regnode_charclass_class);
+ StructCopy(ri->data->data[i], d->data[i],
+ struct regnode_charclass_class);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'o':
+ /* Compiled op trees are readonly and in shared memory,
+ and can thus be shared without duplication. */
+ OP_REFCNT_LOCK;
+ d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
+ OP_REFCNT_UNLOCK;
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* Fall through */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* Fall through */
+ case 'n':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ register regnode *p)
+{
+ dVAR;
+ register I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+#ifdef I_STDARG
+ /* ANSI variant takes additional second argument */
+ va_start(args, pat2);
+#else
+ va_start(args);
+#endif
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ buf[l1-1] = '\0'; /* Overwrite \n */
+ Perl_croak(aTHX_ "%s", buf);
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ dVAR;
+
+ struct re_save_state *state;
+
+ SAVEVPTR(PL_curcop);
+ SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
+
+ state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
+ PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
+ SSPUSHUV(SAVEt_RE_STATE);
+
+ Copy(&PL_reg_state, state, 1, struct re_save_state);
+
+ PL_reg_start_tmp = 0;
+ PL_reg_start_tmpl = 0;
+ PL_reg_oldsaved = NULL;
+ PL_reg_oldsavedlen = 0;
+ PL_reg_maxiter = 0;
+ PL_reg_leftiter = 0;
+ PL_reg_poscache = NULL;
+ PL_reg_poscache_size = 0;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = NULL;
+#endif
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx) {
+ U32 i;
+ for (i = 1; i <= RX_NPARENS(rx); i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+ }
+ }
+}
+#endif
+
+static void
+clear_re(pTHX_ void *r)
+{
+ dVAR;
+ ReREFCNT_dec((REGEXP *)r);
+}
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_byte(pTHX_ SV *sv, int c)
+{
+ PERL_ARGS_ASSERT_PUT_BYTE;
+
+ /* Our definition of isPRINT() ignores locales, so only bytes that are
+ not part of UTF-8 are considered printable. I assume that the same
+ holds for UTF-EBCDIC.
+ Also, code point 255 is not printable in either (it's E0 in EBCDIC,
+ which Wikipedia says:
+
+ EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
+ ones (binary 1111 1111, hexadecimal FF). It is similar, but not
+ identical, to the ASCII delete (DEL) or rubout control character.
+ ) So the old condition can be simplified to !isPRINT(c) */
+ if (!isPRINT(c)) {
+ if (c < 256) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
+ }
+ }
+ else {
+ const char string = c;
+ if (c == '-' || c == ']' || c == '\\' || c == '^')
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+}
+
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ dVAR;
+ register U8 op = PSEUDO; /* Arbitrary non-END op. */
+ register const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ register const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
+ ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#define RF_tainted 1 /* tainted information used? e.g. locale */
+#define RF_warned 2 /* warned about big count? */
+
+#define RF_utf8 8 /* Pattern contains multibyte chars? */
+
+#define UTF_PATTERN ((PL_reg_flags & RF_utf8) != 0)
+
+#define RS_init 1 /* eval environment created */
+#define RS_set 2 /* replsv value is set */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid for non-utf8 strings, non-ANYOFV nodes only: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,0,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (PL_reg_match_utf8 ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(PL_reg_match_utf8 \
+ ? reghop3((U8*)pos, off, (U8*)(off >= 0 ? PL_regeol : PL_bostr)) \
+ : (U8*)(pos + off))
+#define HOPBACKc(pos, off) \
+ (char*)(PL_reg_match_utf8\
+ ? reghopmaybe3((U8*)pos, -off, (U8*)PL_bostr) \
+ : (pos - off >= PL_bostr) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (PL_reg_match_utf8 ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* these are unrolled below in the CCC_TRY_XXX defined */
+#ifdef EBCDIC
+ /* Often 'str' is a hard-coded utf8 string instead of utfebcdic. so just
+ * skip the check on EBCDIC platforms */
+# define LOAD_UTF8_CHARCLASS(class,str) LOAD_UTF8_CHARCLASS_NO_CHECK(class)
+#else
+# define LOAD_UTF8_CHARCLASS(class,str) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool ok; \
+ ENTER; save_re_context(); \
+ ok=CAT2(is_utf8_,class)((const U8*)str); \
+ assert(ok); assert(CAT2(PL_utf8_,class)); LEAVE; } } STMT_END
+#endif
+
+/* Doesn't do an assert to verify that is correct */
+#define LOAD_UTF8_CHARCLASS_NO_CHECK(class) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool throw_away PERL_UNUSED_DECL; \
+ ENTER; save_re_context(); \
+ throw_away = CAT2(is_utf8_,class)((const U8*)" "); \
+ LEAVE; } } STMT_END
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS(alnum,"a")
+#define LOAD_UTF8_CHARCLASS_DIGIT() LOAD_UTF8_CHARCLASS(digit,"0")
+#define LOAD_UTF8_CHARCLASS_SPACE() LOAD_UTF8_CHARCLASS(space," ")
+
+#define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \
+ LOAD_UTF8_CHARCLASS(X_begin, " "); \
+ LOAD_UTF8_CHARCLASS(X_non_hangul, "A"); \
+ /* These are utf8 constants, and not utf-ebcdic constants, so the \
+ * assert should likely and hopefully fail on an EBCDIC machine */ \
+ LOAD_UTF8_CHARCLASS(X_extend, "\xcc\x80"); /* U+0300 */ \
+ \
+ /* No asserts are done for these, in case called on an early \
+ * Unicode version in which they map to nothing */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_prepend);/* U+0E40 "\xe0\xb9\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_L); /* U+1100 "\xe1\x84\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV); /* U+AC00 "\xea\xb0\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LVT); /* U+AC01 "\xea\xb0\x81" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV_LVT_V);/* U+AC01 "\xea\xb0\x81" */\
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_T); /* U+11A8 "\xe1\x86\xa8" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_V) /* U+1160 "\xe1\x85\xa0" */
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+
+/* The actual code for CCC_TRY, which uses several variables from the routine
+ * it's callable from. It is designed to be the bulk of a case statement.
+ * FUNC is the macro or function to call on non-utf8 targets that indicate if
+ * nextchr matches the class.
+ * UTF8_TEST is the whole test string to use for utf8 targets
+ * LOAD is what to use to test, and if not present to load in the swash for the
+ * class
+ * POS_OR_NEG is either empty or ! to complement the results of FUNC or
+ * UTF8_TEST test.
+ * The logic is: Fail if we're at the end-of-string; otherwise if the target is
+ * utf8 and a variant, load the swash if necessary and test using the utf8
+ * test. Advance to the next character if test is ok, otherwise fail; If not
+ * utf8 or an invariant under utf8, use the non-utf8 test, and fail if it
+ * fails, or advance to the next character */
+
+#define _CCC_TRY_CODE(POS_OR_NEG, FUNC, UTF8_TEST, CLASS, STR) \
+ if (locinput >= PL_regeol) { \
+ sayNO; \
+ } \
+ if (utf8_target && UTF8_IS_CONTINUED(nextchr)) { \
+ LOAD_UTF8_CHARCLASS(CLASS, STR); \
+ if (POS_OR_NEG (UTF8_TEST)) { \
+ sayNO; \
+ } \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ break; \
+ } \
+ if (POS_OR_NEG (FUNC(nextchr))) { \
+ sayNO; \
+ } \
+ nextchr = UCHARAT(++locinput); \
+ break;
+
+/* Handle the non-locale cases for a character class and its complement. It
+ * calls _CCC_TRY_CODE with a ! to complement the test for the character class.
+ * This is because that code fails when the test succeeds, so we want to have
+ * the test fail so that the code succeeds. The swash is stored in a
+ * predictable PL_ place */
+#define _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, \
+ CLASS, STR) \
+ case NAME: \
+ _CCC_TRY_CODE( !, FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+ case NNAME: \
+ _CCC_TRY_CODE( PLACEHOLDER , FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+
+/* Generate the case statements for both locale and non-locale character
+ * classes in regmatch for classes that don't have special unicode semantics.
+ * Locales don't use an immediate swash, but an intermediary special locale
+ * function that is called on the pointer to the current place in the input
+ * string. That function will resolve to needing the same swash. One might
+ * think that because we don't know what the locale will match, we shouldn't
+ * check with the swash loading function that it loaded properly; ie, that we
+ * should use LOAD_UTF8_CHARCLASS_NO_CHECK for those, but what is passed to the
+ * regular LOAD_UTF8_CHARCLASS is in non-locale terms, and so locale is
+ * irrelevant here */
+#define CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ case NAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( !, LCFUNC, LCFUNC_utf8((U8*)locinput), CLASS, STR) \
+ case NNAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( PLACEHOLDER, LCFUNC, LCFUNC_utf8((U8*)locinput), \
+ CLASS, STR) \
+ case NAMEA: \
+ if (locinput >= PL_regeol || ! FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ /* Matched a utf8-invariant, so don't have to worry about utf8 */ \
+ nextchr = UCHARAT(++locinput); \
+ break; \
+ case NNAMEA: \
+ if (locinput >= PL_regeol || FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ if (utf8_target) { \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ } \
+ else { \
+ nextchr = UCHARAT(++locinput); \
+ } \
+ break; \
+ /* Generate the non-locale cases */ \
+ _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, CLASS, STR)
+
+/* This is like CCC_TRY, but has an extra set of parameters for generating case
+ * statements to handle separate Unicode semantics nodes */
+#define CCC_TRY_U(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEU, NNAMEU, FUNCU, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ _CCC_TRY_NONLOCALE(NAMEU, NNAMEU, FUNCU, CLASS, STR)
+
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn)==EXACTFA || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn) == EXACTFA)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+
+static void restore_pos(pTHX_ void *arg);
+
+#define REGCP_PAREN_ELEMS 4
+#define REGCP_OTHER_ELEMS 5
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ I32 parenfloor)
+{
+ dVAR;
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push = (PL_regsize - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ int p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0",
+ paren_elems_to_push);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems, (unsigned long)PL_regsize, (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ for (p = PL_regsize; p > parenfloor; p--) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHINT(PL_regoffs[p].end);
+ SSPUSHINT(PL_regoffs[p].start);
+ SSPUSHPTR(PL_reg_start_tmp[p]);
+ SSPUSHINT(p);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " saving \\%"UVuf" %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p, (IV)PL_regoffs[p].start,
+ (IV)(PL_reg_start_tmp[p] - PL_bostr),
+ (IV)PL_regoffs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHPTR(PL_regoffs);
+ SSPUSHINT(PL_regsize);
+ SSPUSHINT(*PL_reglastparen);
+ SSPUSHINT(*PL_reglastcloseparen);
+ SSPUSHPTR(PL_reginput);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+STATIC char *
+S_regcppop(pTHX_ const regexp *rex)
+{
+ dVAR;
+ UV i;
+ char *input;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ input = (char *) SSPOPPTR;
+ *PL_reglastcloseparen = SSPOPINT;
+ *PL_reglastparen = SSPOPINT;
+ PL_regsize = SSPOPINT;
+ PL_regoffs=(regexp_paren_pair *) SSPOPPTR;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ I32 tmps;
+ U32 paren = (U32)SSPOPINT;
+ PL_reg_start_tmp[paren] = (char *) SSPOPPTR;
+ PL_regoffs[paren].start = SSPOPINT;
+ tmps = SSPOPINT;
+ if (paren <= *PL_reglastparen)
+ PL_regoffs[paren].end = tmps;
+ DEBUG_BUFFERS_r(
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"UVuf" to %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren, (IV)PL_regoffs[paren].start,
+ (IV)(PL_reg_start_tmp[paren] - PL_bostr),
+ (IV)PL_regoffs[paren].end,
+ (paren > *PL_reglastparen ? "(no)" : ""));
+ );
+ }
+ DEBUG_BUFFERS_r(
+ if (*PL_reglastparen + 1 <= rex->nparens) {
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"IVdf"..\\%"IVdf" to undef\n",
+ (IV)(*PL_reglastparen + 1), (IV)rex->nparens);
+ }
+ );
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = *PL_reglastparen + 1; i <= rex->nparens; i++) {
+ if (i > PL_regsize)
+ PL_regoffs[i].start = -1;
+ PL_regoffs[i].end = -1;
+ }
+#endif
+ return input;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *screamer, U32 nosave)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+/*
+ * Need to implement the following flags for reg_anch:
+ *
+ * USE_INTUIT_NOML - Useful to call re_intuit_start() first
+ * USE_INTUIT_ML
+ * INTUIT_AUTORITATIVE_NOML - Can trust a positive answer
+ * INTUIT_AUTORITATIVE_ML
+ * INTUIT_ONCE_NOML - Intuit can match in one location only.
+ * INTUIT_ONCE_ML
+ *
+ * Another flag for this function: SECOND_TIME (so that float substrs
+ * with giant delta may be not rechecked).
+ */
+
+/* Assumptions: if ANCH_GPOS, then strpos is anchored. XXXX Check GPOS logic */
+
+/* If SCREAM, then SvPVX_const(sv) should be compatible with strpos and strend.
+ Otherwise, only SvCUR(sv) is used to get strbeg. */
+
+/* XXXX We assume that strpos is strbeg unless sv. */
+
+/* XXXX Some places assume that there is a fixed substring.
+ An update may be needed if optimizer marks as "INTUITable"
+ RExen without fixed substrings. Similarly, it is assumed that
+ lengths of all the strings are no more than minlen, thus they
+ cannot come from lookahead.
+ (Or minlen should take into account lookahead.)
+ NOTE: Some of this comment is not correct. minlen does now take account
+ of lookahead/behind. Further research is required. -- demerphq
+
+*/
+
+/* A failure to find a constant substring means that there is no need to make
+ an expensive call to REx engine, thus we celebrate a failure. Similarly,
+ finding a substring too deep into the string means that less calls to
+ regtry() should be needed.
+
+ REx compiler's optimizer found 4 possible hints:
+ a) Anchored substring;
+ b) Fixed substring;
+ c) Whether we are anchored (beginning-of-line or \G);
+ d) First node (of those at offset 0) which may distinguish positions;
+ We use a)b)d) and multiline-part of c), and try to find a position in the
+ string which does not contradict any of them.
+ */
+
+/* Most of decisions we do here should have been done at compile time.
+ The nodes of the REx which we used for the search should have been
+ deleted from the finite automaton. */
+
+char *
+Perl_re_intuit_start(pTHX_ REGEXP * const rx, SV *sv, char *strpos,
+ char *strend, const U32 flags, re_scream_pos_data *data)
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ register I32 start_shift = 0;
+ /* Should be nonnegative! */
+ register I32 end_shift = 0;
+ register char *s;
+ register SV *check;
+ char *strbeg;
+ char *t;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ I32 ml_anch;
+ register char *other_last = NULL; /* other substr checked before this */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+#ifdef DEBUGGING
+ const char * const i_strpos = strpos;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+
+ if (RX_UTF8(rx)) {
+ PL_reg_flags |= RF_utf8;
+ }
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, strpos, strend,
+ sv ? "Guessing start of match in sv for"
+ : "Guessing start of match in string for");
+ );
+
+ /* CHR_DIST() would be more correct here but it makes things slow. */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short... [re_intuit_start]\n"));
+ goto fail;
+ }
+
+ strbeg = (sv && SvPOK(sv)) ? strend - SvCUR(sv) : strpos;
+ PL_regeol = strend;
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8)
+ to_byte_substr(prog);
+ check = prog->check_substr;
+ }
+ if (check == &PL_sv_undef) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Non-utf8 string cannot match utf8 check string\n"));
+ goto fail;
+ }
+ if (prog->extflags & RXf_ANCH) { /* Match at beg-of-str or after \n */
+ ml_anch = !( (prog->extflags & RXf_ANCH_SINGLE)
+ || ( (prog->extflags & RXf_ANCH_BOL)
+ && !multiline ) ); /* Check after \n? */
+
+ if (!ml_anch) {
+ if ( !(prog->extflags & RXf_ANCH_GPOS) /* Checked by the caller */
+ && !(prog->intflags & PREGf_IMPLICIT) /* not a real BOL */
+ /* SvCUR is not set on references: SvRV and SvPVX_const overlap */
+ && sv && !SvROK(sv)
+ && (strpos != strbeg)) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not at start...\n"));
+ goto fail;
+ }
+ if (prog->check_offset_min == prog->check_offset_max &&
+ !(prog->extflags & RXf_CANY_SEEN)) {
+ /* Substring at constant offset from beg-of-str... */
+ I32 slen;
+
+ s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ if (SvTAIL(check)) {
+ slen = SvCUR(check); /* >= 1 */
+
+ if ( strend - s > slen || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1
+ && memNE(SvPVX_const(check), s, slen)))) {
+ report_neq:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String not equal...\n"));
+ goto fail_finish;
+ }
+ }
+ else if (*SvPVX_const(check) != *s
+ || ((slen = SvCUR(check)) > 1
+ && memNE(SvPVX_const(check), s, slen)))
+ goto report_neq;
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ /* Match is anchored, but substr is not anchored wrt beg-of-str. */
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ if (!ml_anch) {
+ const I32 end = prog->check_offset_max + CHR_SVLEN(check)
+ - (SvTAIL(check) != 0);
+ const I32 eshift = CHR_DIST((U8*)strend, (U8*)s) - end;
+
+ if (end_shift < eshift)
+ end_shift = eshift;
+ }
+ }
+ else { /* Can match at random position */
+ ml_anch = 0;
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ /* end shift should be non negative here */
+ }
+
+#ifdef QDEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+ /* Find a possible match in the region s..strend by looking for
+ the "check" substring in the region corrected by start/end_shift. */
+
+ {
+ I32 srch_start_shift = start_shift;
+ I32 srch_end_shift = end_shift;
+ if (srch_start_shift < 0 && strbeg - s > srch_start_shift) {
+ srch_end_shift -= ((strbeg - s) - srch_start_shift);
+ srch_start_shift = strbeg - s;
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "Check offset min: %"IVdf" Start shift: %"IVdf" End shift %"IVdf" Real End Shift: %"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)srch_start_shift,
+ (IV)srch_end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ I32 p = -1; /* Internal iterator of scream. */
+ I32 * const pp = data ? data->scream_pos : &p;
+ const MAGIC *mg;
+ bool found = FALSE;
+
+ assert(SvMAGICAL(sv));
+ mg = mg_find(sv, PERL_MAGIC_study);
+ assert(mg);
+
+ if (mg->mg_private == 1) {
+ found = ((U8 *)mg->mg_ptr)[BmRARE(check)] != (U8)~0;
+ } else if (mg->mg_private == 2) {
+ found = ((U16 *)mg->mg_ptr)[BmRARE(check)] != (U16)~0;
+ } else {
+ assert (mg->mg_private == 4);
+ found = ((U32 *)mg->mg_ptr)[BmRARE(check)] != (U32)~0;
+ }
+
+ if (found
+ || ( BmRARE(check) == '\n'
+ && (BmPREVIOUS(check) == SvCUR(check) - 1)
+ && SvTAIL(check) ))
+ s = screaminstr(sv, check,
+ srch_start_shift + (s - strbeg), srch_end_shift, pp, 0);
+ else
+ goto fail_finish;
+ /* we may be pointing at the wrong string */
+ if (s && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ if (data)
+ *data->scream_olds = s;
+ }
+ else {
+ U8* start_point;
+ U8* end_point;
+ if (prog->extflags & RXf_CANY_SEEN) {
+ start_point= (U8*)(s + srch_start_shift);
+ end_point= (U8*)(strend - srch_end_shift);
+ } else {
+ start_point= HOP3(s, srch_start_shift, srch_start_shift < 0 ? strbeg : strend);
+ end_point= HOP3(strend, -srch_end_shift, strbeg);
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "fbm_instr len=%d str=<%.*s>\n",
+ (int)(end_point - start_point),
+ (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point),
+ start_point);
+ });
+
+ s = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+ }
+ }
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, "%s %s substr %s%s%s",
+ (s ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (s ? " at offset " : "...\n") );
+ });
+
+ if (!s)
+ goto fail_finish;
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(s - i_strpos)) );
+
+ /* XXX dmq: first branch is for positive lookbehind...
+ Our check string is offset from the beginning of the pattern.
+ So we need to do any stclass tests offset forward from that
+ point. I think. :-(
+ */
+
+
+
+ check_at=s;
+
+
+ /* Got a candidate. Check MBOL anchoring, and the *other* substr.
+ Start with the other substr.
+ XXXX no SCREAM optimization yet - and a very coarse implementation
+ XXXX /ttx+/ results in anchored="ttx", floating="x". floating will
+ *always* match. Probably should be marked during compile...
+ Probably it is right to do no SCREAM here...
+ */
+
+ if (utf8_target ? (prog->float_utf8 && prog->anchored_utf8)
+ : (prog->float_substr && prog->anchored_substr))
+ {
+ /* Take into account the "other" substring. */
+ /* XXXX May be hopelessly wrong for UTF... */
+ if (!other_last)
+ other_last = strpos;
+ if (check == (utf8_target ? prog->float_utf8 : prog->float_substr)) {
+ do_other_anchored:
+ {
+ char * const last = HOP3c(s, -start_shift, strbeg);
+ char *last1, *last2;
+ char * const saved_s = s;
+ SV* must;
+
+ t = s - prog->check_offset_max;
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -(prog->check_offset_max), (U8*)strpos))
+ && t > strpos)))
+ NOOP;
+ else
+ t = strpos;
+ t = HOP3c(t, prog->anchored_offset, strend);
+ if (t < other_last) /* These positions already checked */
+ t = other_last;
+ last2 = last1 = HOP3c(strend, -prog->minlen, strbeg);
+ if (last < last1)
+ last1 = last;
+ /* XXXX It is not documented what units *_offsets are in.
+ We assume bytes, but this is clearly wrong.
+ Meaning this code needs to be carefully reviewed for errors.
+ dmq.
+ */
+
+ /* On end-of-str: see comment below. */
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->anchored_utf8); /* for debug */
+ }
+ else
+ s = fbm_instr(
+ (unsigned char*)t,
+ HOP3(HOP3(last1, prog->anchored_offset, strend)
+ + SvCUR(must), -(SvTAIL(must)!=0), strbeg),
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s anchored substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ if (last1 >= last2) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying floating at offset %ld...\n",
+ (long)(HOP3c(saved_s, 1, strend) - i_strpos)));
+ other_last = HOP3c(last1, prog->anchored_offset+1, strend);
+ s = HOP3c(last, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ t = HOP3c(s, -prog->anchored_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+ else { /* Take into account the floating substring. */
+ char *last, *last1;
+ char * const saved_s = s;
+ SV* must;
+
+ t = HOP3c(s, -start_shift, strbeg);
+ last1 = last =
+ HOP3c(strend, -prog->minlen + prog->float_min_offset, strbeg);
+ if (CHR_DIST((U8*)last, (U8*)t) > prog->float_max_offset)
+ last = HOP3c(t, prog->float_max_offset, strend);
+ s = HOP3c(t, prog->float_min_offset, strend);
+ if (s < other_last)
+ s = other_last;
+ /* XXXX It is not documented what units *_offsets are in. Assume bytes. */
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ /* fbm_instr() takes into account exact value of end-of-str
+ if the check is SvTAIL(ed). Since false positives are OK,
+ and end-of-str is not later than strend we are OK. */
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->float_utf8); /* for debug message */
+ }
+ else
+ s = fbm_instr((unsigned char*)s,
+ (unsigned char*)last + SvCUR(must)
+ - (SvTAIL(must)!=0),
+ must, multiline ? FBMrf_MULTILINE : 0);
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s floating substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+ if (!s) {
+ if (last1 == last) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying anchored starting at offset %ld...\n",
+ (long)(saved_s + 1 - i_strpos)));
+ other_last = last;
+ s = HOP3c(t, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ other_last = s; /* Fix this later. --Hugo */
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+
+
+ t= (char*)HOP3( s, -prog->check_offset_max, (prog->check_offset_max<0) ? strend : strpos);
+
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "Check offset min:%"IVdf" max:%"IVdf" S:%"IVdf" t:%"IVdf" D:%"IVdf" end:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(s-strpos),
+ (IV)(t-strpos),
+ (IV)(t-s),
+ (IV)(strend-strpos)
+ )
+ );
+
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -prog->check_offset_max, (U8*) ((prog->check_offset_max<0) ? strend : strpos)))
+ && t > strpos)))
+ {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+ try_at_offset:
+ if (ml_anch && t[-1] != '\n') {
+ /* Eventually fbm_*() should handle this, but often
+ anchored_offset is not 0, so this check will not be wasted. */
+ /* XXXX In the code below we prefer to look for "^" even in
+ presence of anchored substrings. And we search even
+ beyond the found float position. These pessimizations
+ are historical artefacts only. */
+ find_anchor:
+ while (t < strend - prog->minlen) {
+ if (*t == '\n') {
+ if (t < check_at - prog->check_offset_min) {
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* Since we moved from the found position,
+ we definitely contradict the found anchored
+ substr. Due to the above check we do not
+ contradict "check" substr.
+ Thus we can arrive here only if check substr
+ is float. Redo checking for "other"=="fixed".
+ */
+ strpos = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(strpos - i_strpos), (long)(strpos - i_strpos + prog->anchored_offset)));
+ goto do_other_anchored;
+ }
+ /* We don't contradict the found floating substring. */
+ /* XXXX Why not check for STCLASS? */
+ s = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(s - i_strpos)));
+ goto set_useful;
+ }
+ /* Position contradicts check-string */
+ /* XXXX probably better to look for check-string
+ than for "\n", so one should lower the limit for t? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t + 1 - i_strpos)));
+ other_last = strpos = s = t + 1;
+ goto restart;
+ }
+ t++;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Starting position does not contradict /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ }
+ s = t;
+ set_useful:
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found string does not prohibit matching at strpos,
+ - no optimization of calling REx engine can be performed,
+ unless it was an MBOL and we are not after MBOL,
+ or a future STCLASS check will fail this. */
+ try_at_start:
+ /* Even in this situation we may use MBOL flag if strpos is offset
+ wrt the start of the string. */
+ if (ml_anch && sv && !SvROK(sv) /* See prev comment on SvROK */
+ && (strpos != strbeg) && strpos[-1] != '\n'
+ /* May be due to an implicit anchor of m{.*foo} */
+ && !(prog->intflags & PREGf_IMPLICIT))
+ {
+ t = strpos;
+ goto find_anchor;
+ }
+ DEBUG_EXECUTE_r( if (ml_anch)
+ PerlIO_printf(Perl_debug_log, "Position at offset %ld does not contradict /%s^%s/m...\n",
+ (long)(strpos - i_strpos), PL_colors[0], PL_colors[1]);
+ );
+ success_at_start:
+ if (!(prog->intflags & PREGf_NAUGHTY) /* XXXX If strpos moved? */
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ s = strpos;
+ /* XXXX If the check string was an implicit check MBOL, then we need to unset the relevant flag
+ see http://bugs.activestate.com/show_bug.cgi?id=87173 */
+ if (prog->intflags & PREGf_IMPLICIT)
+ prog->extflags &= ~RXf_ANCH_MBOL;
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ /* XXXX What other flags might need to be cleared in this branch? */
+ }
+ else
+ s = strpos;
+ }
+
+ /* Last resort... */
+ /* XXXX BmUSEFUL already changed, maybe multiple change is meaningful... */
+ /* trie stclasses are too expensive to use here, we are better off to
+ leave it to regmatch itself */
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ /* minlen == 0 is possible if regstclass is \b or \B,
+ and the fixed substr is ''$.
+ Since minlen is already taken into account, s+1 is before strend;
+ accidentally, minlen >= 1 guaranties no false positives at s + 1
+ even for \b or \B. But (minlen? 1 : 0) below assumes that
+ regstclass does not come from lookahead... */
+ /* If regstclass takes bytelength more than 1: If charlength==1, OK.
+ This leaves EXACTF-ish only, which are dealt with in find_byclass(). */
+ const U8* const str = (U8*)STRING(progi->regstclass);
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? CHR_DIST(str+STR_LEN(progi->regstclass), str)
+ : 1);
+ char * endpos;
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(s, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8)
+ endpos= HOP3c(HOP3c(check_at, -start_shift, strbeg), cl_l, strend);
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "start_shift: %"IVdf" check_at: %"IVdf" s: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg), (IV)(s - strbeg), (IV)(endpos - strbeg)));
+
+ t = s;
+ s = find_byclass(prog, progi->regstclass, s, endpos, NULL);
+ if (!s) {
+#ifdef DEBUGGING
+ const char *what = NULL;
+#endif
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "This position contradicts STCLASS...\n") );
+ if ((prog->extflags & RXf_ANCH) && !ml_anch)
+ goto fail;
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if ((utf8_target ? prog->anchored_utf8 : prog->anchored_substr) == check) {
+ DEBUG_EXECUTE_r( what = "anchored" );
+ hop_and_restart:
+ s = HOP3c(t, 1, strend);
+ if (s + start_shift + end_shift > strend) {
+ /* XXXX Should be taken into account earlier? */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for %s substr starting at offset %ld...\n",
+ what, (long)(s + start_shift - i_strpos)) );
+ goto restart;
+ }
+ /* Have both, check_string is floating */
+ if (t + start_shift >= check_at) /* Contradicts floating=check */
+ goto retry_floating_check;
+ /* Recheck anchored substring, but not floating... */
+ s = check_at;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for anchored substr starting at offset %ld...\n",
+ (long)(other_last - i_strpos)) );
+ goto do_other_anchored;
+ }
+ /* Another way we could have checked stclass at the
+ current position only: */
+ if (ml_anch) {
+ s = t = t + 1;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for /%s^%s/m starting at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t - i_strpos)) );
+ goto try_at_offset;
+ }
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) /* Could have been deleted */
+ goto fail;
+ /* Check is floating substring. */
+ retry_floating_check:
+ t = check_at - start_shift;
+ DEBUG_EXECUTE_r( what = "floating" );
+ goto hop_and_restart;
+ }
+ if (t != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "By STCLASS: moving %ld --> %ld\n",
+ (long)(t - i_strpos), (long)(s - i_strpos))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Does not contradict STCLASS...\n");
+ );
+ }
+ }
+ giveup:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s%s:%s match at offset %ld\n",
+ PL_colors[4], (check ? "Guessed" : "Giving up"),
+ PL_colors[5], (long)(s - i_strpos)) );
+ return s;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (utf8_target ? trie_utf8_fold : trie_latin_utf8_fold))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, \
+uvc, charid, foldlen, foldbuf, uniflags) STMT_START { \
+ STRLEN skiplen; \
+ switch (trie_type) { \
+ case trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = to_utf8_fold( (const U8*) uc, foldbuf, &foldlen ); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8: \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define REXEC_FBC_EXACTISH_SCAN(CoNd) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (CoNd) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (!reginfo || regtry(reginfo, &s)) ) \
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CoDe) \
+STMT_START { \
+ while (s + (uskip = UTF8SKIP(s)) <= strend) { \
+ CoDe \
+ s += uskip; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CoDe) \
+STMT_START { \
+ while (s < strend) { \
+ CoDe \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \
+REXEC_FBC_UTF8_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(CoNd) \
+REXEC_FBC_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_TRYIT \
+if ((!reginfo || regtry(reginfo, &s))) \
+ goto got_it
+
+#define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_PRELOAD(UtFpReLoAd,CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ UtFpReLoAd; \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_TAINT(CoNdUtF8,CoNd) \
+ PL_reg_flags |= RF_tainted; \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(PL_regeol),(PL_bostr),(PL_reg_starttry),doutf8)
+
+
+#define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+#define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \
+ if (s == PL_bostr) { \
+ tmp = '\n'; \
+ } \
+ else { \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)PL_bostr); \
+ tmp = utf8n_to_uvchr(r, UTF8SKIP(r), 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TeSt1_UtF8; \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! (TeSt2_UtF8)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it in either the if or else clause,
+ * with the other one being empty */
+#define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+
+/* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to
+ * be passed in completely with the variable name being tested, which isn't
+ * such a clean interface, but this is easier to read than it was before. We
+ * are looking for the boundary (or non-boundary between a word and non-word
+ * character. The utf8 and non-utf8 cases have the same logic, but the details
+ * must be different. Find the "wordness" of the character just prior to this
+ * one, and compare it with the wordness of this one. If they differ, we have
+ * a boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ if ((!prog->minlen && tmp) && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it;
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo is NULL, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ register STRLEN uskip;
+ U8 c1;
+ U8 c2;
+ char *e;
+ register I32 tmp = 1; /* Scratch variable? */
+ register const bool utf8_target = PL_reg_match_utf8;
+ UV utf8_fold_flags = 0;
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(c) == ANYOFV) {
+ STRLEN inclasslen = strend - s;
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, &inclasslen, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+ case CANY:
+ REXEC_FBC_SCAN(
+ if (tmp && (!reginfo || regtry(reginfo, &s)))
+ goto got_it;
+ else
+ tmp = doevery;
+ );
+ break;
+
+ case EXACTFA:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:
+ if (utf8_target) {
+
+ /* regcomp.c already folded this if pattern is in UTF-8 */
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (UTF_PATTERN) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALL THROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((I32)ln), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+
+ /* If one of the operands is in utf8, we can't use the simpler
+ * folding above, due to the fact that many different characters
+ * can have the same fold, or portion of a fold, or different-
+ * length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = (UTF_PATTERN) /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((I32)lnc), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, cBOOL(UTF_PATTERN), utf8_fold_flags)
+ && (!reginfo || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+ case BOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_BOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_NBOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case BOUND:
+ FBC_BOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case BOUNDA:
+ FBC_BOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case NBOUND:
+ FBC_NBOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDA:
+ FBC_NBOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case BOUNDU:
+ FBC_BOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDU:
+ FBC_NBOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case ALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ isALNUM_LC_utf8((U8*)s),
+ isALNUM_LC(*s)
+ );
+ break;
+ case ALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case ALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR((U8) *s)
+ );
+ break;
+ case ALNUMA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isWORDCHAR_A(*s));
+ break;
+ case NALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ ! isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case NALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target),
+ ! isALNUM(*s)
+ );
+ break;
+ case NALNUMA:
+ REXEC_FBC_CSCAN(
+ !isWORDCHAR_A(*s),
+ !isWORDCHAR_A(*s)
+ );
+ break;
+ case NALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ !isALNUM_LC_utf8((U8*)s),
+ !isALNUM_LC(*s)
+ );
+ break;
+ case SPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE_L1((U8) *s)
+ );
+ break;
+ case SPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE((U8) *s)
+ );
+ break;
+ case SPACEA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isSPACE_A(*s));
+ break;
+ case SPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ isSPACE_LC_utf8((U8*)s),
+ isSPACE_LC(*s)
+ );
+ break;
+ case NSPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !( *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE_L1((U8) *s)
+ );
+ break;
+ case NSPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !(*s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE((U8) *s)
+ );
+ break;
+ case NSPACEA:
+ REXEC_FBC_CSCAN(
+ !isSPACE_A(*s),
+ !isSPACE_A(*s)
+ );
+ break;
+ case NSPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isSPACE_LC_utf8((U8*)s),
+ !isSPACE_LC(*s)
+ );
+ break;
+ case DIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ isDIGIT(*s)
+ );
+ break;
+ case DIGITA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isDIGIT_A(*s));
+ break;
+ case DIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ isDIGIT_LC_utf8((U8*)s),
+ isDIGIT_LC(*s)
+ );
+ break;
+ case NDIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ !swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ !isDIGIT(*s)
+ );
+ break;
+ case NDIGITA:
+ REXEC_FBC_CSCAN(
+ !isDIGIT_A(*s),
+ !isDIGIT_A(*s)
+ );
+ break;
+ case NDIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isDIGIT_LC_utf8((U8*)s),
+ !isDIGIT_LC(*s)
+ );
+ break;
+ case LNBREAK:
+ REXEC_FBC_CSCAN(
+ is_LNBREAK_utf8(s),
+ is_LNBREAK_latin1(s)
+ );
+ break;
+ case VERTWS:
+ REXEC_FBC_CSCAN(
+ is_VERTWS_utf8(s),
+ is_VERTWS_latin1(s)
+ );
+ break;
+ case NVERTWS:
+ REXEC_FBC_CSCAN(
+ !is_VERTWS_utf8(s),
+ !is_VERTWS_latin1(s)
+ );
+ break;
+ case HORIZWS:
+ REXEC_FBC_CSCAN(
+ is_HORIZWS_utf8(s),
+ is_HORIZWS_latin1(s)
+ );
+ break;
+ case NHORIZWS:
+ REXEC_FBC_CSCAN(
+ !is_HORIZWS_utf8(s),
+ !is_HORIZWS_latin1(s)
+ );
+ break;
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho
+ = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie
+ = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char"
+ sequences. The basic idea being that we use AC as long
+ as we are dealing with a possible matching char, when
+ we encounter an unknown char (and we have not encountered
+ an accepting state) we scan forward until we find a legal
+ starting char.
+ AC matching is basically that of trie matching, except
+ that when we encounter a failing transition, we fall back
+ to the current states "fail state", and try the current char
+ again, a process we repeat until we reach the root state,
+ state 1, or a legal transition. If we fail on the root state
+ then we can either terminate if we have reached an accepting
+ state previously, or restart the entire process from the beginning
+ if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (!reginfo || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ break;
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *sv, void *data, U32 flags)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* data: May be used for some additional optimizations.
+ Currently its only used, with a U32 cast, for transmitting
+ the ganch offset when doing a /g match. This will change */
+/* nosave: For optimizations. */
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ /*register*/ char *s;
+ register regnode *c;
+ /*register*/ char *startpos = stringarg;
+ I32 minlen; /* must match at least this many chars */
+ I32 dontbother = 0; /* how many characters not to try at end */
+ I32 end_shift = 0; /* Same for the end. */ /* CC */
+ I32 scream_pos = -1; /* Internal iterator of scream. */
+ char *scream_olds = NULL;
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo; /* create some info to pass to regtry etc */
+ regexp_paren_pair *swap = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL || startpos == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ return 0;
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+ reginfo.prog = rx; /* Yes, sorry that this is confusing. */
+
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, startpos, strend,
+ "Matching");
+ );
+
+ minlen = prog->minlen;
+
+ if (strend - startpos < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ PL_reg_flags = 0;
+ PL_reg_eval_set = 0;
+ PL_reg_maxiter = 0;
+
+ if (RX_UTF8(rx))
+ PL_reg_flags |= RF_utf8;
+
+ /* Mark beginning of line for ^ and lookbehind. */
+ reginfo.bol = startpos; /* XXX not used ??? */
+ PL_bostr = strbeg;
+ reginfo.sv = sv;
+
+ /* Mark end of line for $ (and such) */
+ PL_regeol = strend;
+
+ /* see how far we have to get to not match where we matched before */
+ reginfo.till = startpos+minend;
+
+ /* If there is a "must appear" string, look for it. */
+ s = startpos;
+
+ if (prog->extflags & RXf_GPOS_SEEN) { /* Need to set reginfo->ganch */
+ MAGIC *mg;
+ if (flags & REXEC_IGNOREPOS){ /* Means: check only at start */
+ reginfo.ganch = startpos + prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS IGNOREPOS: reginfo.ganch = startpos + %"UVxf"\n",(UV)prog->gofs));
+ } else if (sv && SvTYPE(sv) >= SVt_PVMG
+ && SvMAGIC(sv)
+ && (mg = mg_find(sv, PERL_MAGIC_regex_global))
+ && mg->mg_len >= 0) {
+ reginfo.ganch = strbeg + mg->mg_len; /* Defined pos() */
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS MAGIC: reginfo.ganch = strbeg + %"IVdf"\n",(IV)mg->mg_len));
+
+ if (prog->extflags & RXf_ANCH_GPOS) {
+ if (s > reginfo.ganch)
+ goto phooey;
+ s = reginfo.ganch - prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ANCH_GPOS: s = ganch - %"UVxf"\n",(UV)prog->gofs));
+ if (s < strbeg)
+ goto phooey;
+ }
+ }
+ else if (data) {
+ reginfo.ganch = strbeg + PTR2UV(data);
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS DATA: reginfo.ganch= strbeg + %"UVxf"\n",PTR2UV(data)));
+
+ } else { /* pos() not defined */
+ reginfo.ganch = strbeg;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS: reginfo.ganch = strbeg\n"));
+ }
+ }
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail
+ we switch it back, otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ }
+ if (!(flags & REXEC_CHECKED) && (prog->check_substr != NULL || prog->check_utf8 != NULL)) {
+ re_scream_pos_data d;
+
+ d.scream_olds = &scream_olds;
+ d.scream_pos = &scream_pos;
+ s = re_intuit_start(rx, sv, s, strend, flags, &d);
+ if (!s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not present...\n"));
+ goto phooey; /* not present */
+ }
+ }
+
+
+
+ /* Simplest case: anchored match need be tried only once. */
+ /* [unless only anchor is BOL and multiline is set] */
+ if (prog->extflags & (RXf_ANCH & ~RXf_ANCH_GPOS)) {
+ if (s == startpos && regtry(®info, &startpos))
+ goto got_it;
+ else if (multiline || (prog->intflags & PREGf_IMPLICIT)
+ || (prog->extflags & RXf_ANCH_MBOL)) /* XXXX SBOL? */
+ {
+ char *end;
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+ /* for multiline we only have to try after newlines */
+ if (prog->check_substr || prog->check_utf8) {
+ /* because of the goto we can not easily reuse the macros for bifurcating the
+ unicode/non-unicode match modes here like we do elsewhere - demerphq */
+ if (utf8_target) {
+ if (s == startpos)
+ goto after_try_utf8;
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_utf8:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + UTF8SKIP(s), strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ }
+ } /* end search for check string in unicode */
+ else {
+ if (s == startpos) {
+ goto after_try_latin;
+ }
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_latin:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + 1, strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s++;
+ }
+ }
+ } /* end search for check string in latin*/
+ } /* end search for check string */
+ else { /* search for newline */
+ if (s > startpos) {
+ /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/
+ s--;
+ }
+ /* We can use a more efficient search as newlines are the same in unicode as they are in latin */
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ if (*s++ == '\n') { /* don't need PL_utf8skip here */
+ if (regtry(®info, &s))
+ goto got_it;
+ }
+ }
+ } /* end search for newline */
+ } /* end anchored/multiline check string search */
+ goto phooey;
+ } else if (RXf_GPOS_CHECK == (prog->extflags & RXf_GPOS_CHECK))
+ {
+ /* the warning about reginfo.ganch being used without initialization
+ is bogus -- we set it above, when prog->extflags & RXf_GPOS_SEEN
+ and we only enter this block when the same bit is set. */
+ char *tmp_s = reginfo.ganch - prog->gofs;
+
+ if (tmp_s >= strbeg && regtry(®info, &tmp_s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except UTF_PATTERN?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ ch = SvPVX_const(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)[0];
+
+ if (utf8_target) {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+ }
+ else {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ I32 back_max;
+ I32 back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+
+ if (must == &PL_sv_undef)
+ /* could not downgrade utf8 check substring, so must fail */
+ goto phooey;
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(I32)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > PL_bostr)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ scream_pos = -1;
+ dontbother = end_shift;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ ((flags & REXEC_SCREAM) && SvSCREAM(sv)
+ ? (s = screaminstr(sv, must, HOP3c(s, back_min, (back_min<0 ? strbeg : strend)) - strbeg,
+ end_shift, &scream_pos, 0))
+ : (s = fbm_instr((unsigned char*)HOP3(s, back_min, (back_min<0 ? strbeg : strend)),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0))) ) {
+ /* we may be pointing at the wrong string */
+ if ((flags & REXEC_SCREAM) && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= PL_bostr) ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, ®info))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ float_real = utf8_target ? prog->float_utf8 : prog->float_substr;
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ last = screaminstr(sv, float_real, s - strbeg,
+ end_shift, &scream_pos, 1); /* last one */
+ if (!last)
+ last = scream_olds; /* Only one occurrence. */
+ /* we may be pointing at the wrong string */
+ else if (RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ }
+ else {
+ STRLEN len;
+ const char * const little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on the end
+ * due to the presence of something like this: /foo$/
+ * where we can match both "foo" and "foo\n" at the end of the string.
+ * So we have to compare the end of the string first against the float_real
+ * without the \n and then against the full float_real with the string.
+ * We have to watch out for cases where the string might be smaller
+ * than the float_real or the float_real without the \n.
+ */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was probably
+ * incorrect, which said that this was a "should not happen" case.
+ * Even if it was true when it was written I am pretty sure it is
+ * not anymore, so I have removed the comment and replaced it with
+ * this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "String does not contain required substring, cannot match.\n"
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(®info, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(®info, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+got_it:
+ Safefree(swap);
+ RX_MATCH_TAINTED_set(rx, PL_reg_flags & RF_tainted);
+
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) ) {
+ RX_MATCH_COPY_FREE(rx);
+ if (flags & REXEC_COPY_STR) {
+ const I32 i = PL_regeol - startpos + (stringarg - strbeg);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if ((SvIsCOW(sv)
+ || (SvFLAGS(sv) & CAN_COW_MASK) == CAN_COW_FLAGS)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ } else
+#endif
+ {
+ RX_MATCH_COPIED_on(rx);
+ s = savepvn(strbeg, i);
+ prog->subbeg = s;
+ }
+ prog->sublen = i;
+ }
+ else {
+ prog->subbeg = strbeg;
+ prog->sublen = PL_regeol - strbeg; /* strend may have been modified */
+ }
+ }
+
+ return 1;
+
+phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (swap) {
+ /* we failed :-( roll it back */
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+
+ return 0;
+}
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startpos)
+{
+ dVAR;
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ if ((prog->extflags & RXf_EVAL_SEEN) && !PL_reg_eval_set) {
+ MAGIC *mg;
+
+ PL_reg_eval_set = RS_init;
+ DEBUG_EXECUTE_r(DEBUG_s(
+ PerlIO_printf(Perl_debug_log, " setting stack tmpbase at %"IVdf"\n",
+ (IV)(PL_stack_sp - PL_stack_base));
+ ));
+ SAVESTACK_CXPOS();
+ cxstack[cxstack_ix].blk_oldsp = PL_stack_sp - PL_stack_base;
+ /* Otherwise OP_NEXTSTATE will free whatever on stack now. */
+ SAVETMPS;
+ /* Apparently this is not needed, judging by wantarray. */
+ /* SAVEI8(cxstack[cxstack_ix].blk_gimme);
+ cxstack[cxstack_ix].blk_gimme = G_SCALAR; */
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(SvTYPE(reginfo->sv) >= SVt_PVMG && SvMAGIC(reginfo->sv)
+ && (mg = mg_find(reginfo->sv, PERL_MAGIC_regex_global)))) {
+ /* prepare for quick setting of pos */
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if (SvIsCOW(reginfo->sv))
+ sv_force_normal_flags(reginfo->sv, 0);
+#endif
+ mg = sv_magicext(reginfo->sv, NULL, PERL_MAGIC_regex_global,
+ &PL_vtbl_mglob, NULL, 0);
+ mg->mg_len = -1;
+ }
+ PL_reg_magic = mg;
+ PL_reg_oldpos = mg->mg_len;
+ SAVEDESTRUCTOR_X(restore_pos, prog);
+ }
+ if (!PL_reg_curpm) {
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_len(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+#ifdef USE_ITHREADS
+ /* It seems that non-ithreads works both with and without this code.
+ So for efficiency reasons it seems best not to have the code
+ compiled when it is not needed. */
+ /* This is safe against NULLs: */
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm));
+ /* PM_reg_curpm owns a reference to this regexp. */
+ (void)ReREFCNT_inc(rx);
+#endif
+ PM_SETRE(PL_reg_curpm, rx);
+ PL_reg_oldcurpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(prog)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ PL_reg_oldsaved = prog->subbeg;
+ PL_reg_oldsavedlen = prog->sublen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = prog->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(prog);
+ }
+ else
+ PL_reg_oldsaved = NULL;
+ prog->subbeg = PL_bostr;
+ prog->sublen = PL_regeol - PL_bostr; /* strend may have been modified */
+ }
+ DEBUG_EXECUTE_r(PL_reg_starttry = *startpos);
+ prog->offs[0].start = *startpos - PL_bostr;
+ PL_reginput = *startpos;
+ PL_reglastparen = &prog->lastparen;
+ PL_reglastcloseparen = &prog->lastcloseparen;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+ PL_regsize = 0;
+ PL_regoffs = prog->offs;
+ if (PL_reg_start_tmpl <= prog->nparens) {
+ PL_reg_start_tmpl = prog->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, PL_reglastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * PL_reglastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = PL_regoffs;
+ register I32 i;
+ for (i = prog->nparens; i > (I32)*PL_reglastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ if (regmatch(reginfo, progi->program + 1)) {
+ PL_regoffs[0].end = PL_reginput - PL_bostr;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startpos= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ PL_reg_poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node);
+ PUSH_YES_STATE_GOTO(resume_state, node);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(pTHX_ const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)*PL_reglastparen >= nums[n] &&
+ PL_regoffs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+/* free all slabs above current one - called during LEAVE_SCOPE */
+
+STATIC void
+S_clear_backtrack_stack(pTHX_ void *p)
+{
+ regmatch_slab *s = PL_regmatch_slab->next;
+ PERL_UNUSED_ARG(p);
+
+ if (!s)
+ return;
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+}
+
+
+#define SETREX(Re1,Re2) \
+ if (PL_reg_eval_set) PM_SETRE((PL_reg_curpm), (Re2)); \
+ Re1 = (Re2)
+
+STATIC I32 /* 0 failure, 1 success */
+S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ register const bool utf8_target = PL_reg_match_utf8;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = (struct regexp *)SvANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ I32 oldsave;
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ register regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ register regnode *scan;
+ register regnode *next;
+ register U32 n = 0; /* general value; init to avoid compiler warning */
+ register I32 ln = 0; /* len or last; init to avoid compiler warning */
+ register char *locinput = PL_reginput;
+ register I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = PL_reginput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSV(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+ /* on first ever call to regmatch, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ oldsave = PL_savestack_ix;
+ SAVEDESTRUCTOR_X(S_clear_backtrack_stack, NULL);
+ SAVEVPTR(PL_regmatch_slab);
+ SAVEVPTR(PL_regmatch_state);
+
+ /* grab next free state slot */
+ st = ++PL_regmatch_state;
+ if (st > SLAB_LAST(PL_regmatch_slab))
+ st = PL_regmatch_state = S_push_slab(aTHX);
+
+ /* Note that nextchr is a byte even in UTF */
+ nextchr = UCHARAT(locinput);
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ reenter_switch:
+
+ assert(PL_reglastparen == &rex->lastparen);
+ assert(PL_reglastcloseparen == &rex->lastcloseparen);
+ assert(PL_regoffs == rex->offs);
+
+ switch (state_num) {
+ case BOL:
+ if (locinput == PL_bostr)
+ {
+ /* reginfo->till = reginfo->bol; */
+ break;
+ }
+ sayNO;
+ case MBOL:
+ if (locinput == PL_bostr ||
+ ((nextchr || locinput < PL_regeol) && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+ case SBOL:
+ if (locinput == PL_bostr)
+ break;
+ sayNO;
+ case GPOS:
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS:
+ /* update the startpoint */
+ st->u.keeper.val = PL_regoffs[0].start;
+ PL_reginput = locinput;
+ PL_regoffs[0].start = locinput - PL_bostr;
+ PUSH_STATE_GOTO(KEEPS_next, next);
+ /*NOT-REACHED*/
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ PL_regoffs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /*NOT-REACHED*/
+ case EOL:
+ goto seol;
+ case MEOL:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ break;
+ case SEOL:
+ seol:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ if (PL_regeol - locinput > 1)
+ sayNO;
+ break;
+ case EOS:
+ if (PL_regeol != locinput)
+ sayNO;
+ break;
+ case SANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+ case CANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ case REG_ANY:
+ if ((!nextchr && locinput >= PL_regeol) || nextchr == '\n')
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC:
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!ANYOF_BITMAP_TEST(scan, *locinput)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ }
+ /* FALL THROUGH */
+ case TRIE:
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 1 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (trie->bitmap && !TRIE_BITMAP_TEST(trie,*locinput) ) {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.B = next;
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)PL_regeol ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base ) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ register U16 min = 0;
+ register U16 word;
+ register U16 const nextword = ST.nextword;
+ register reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = *PL_reglastparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ U8 *uc = ST.firstpos;
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ PL_reginput = (char *)uc;
+ }
+
+ scan = (ST.jump && ST.jump[ST.nextword])
+ ? ST.me + ST.jump[ST.nextword]
+ : ST.B;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan);
+ /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = av_fetch( trie_words,
+ ST.nextword-1, 0 );
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+#undef ST
+
+ case EXACT: {
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != UTF_PATTERN) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*(U8*)s) !=
+ utf8n_to_uvuni((U8*)l, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ l += ulen;
+ s ++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*((U8*)l)) !=
+ utf8n_to_uvuni((U8*)s, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ s += ulen;
+ l ++;
+ }
+ }
+ locinput = l;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr)
+ sayNO;
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && memNE(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case EXACTFL: {
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = (UTF_PATTERN) ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target || UTF_PATTERN || state_num == EXACTFU_SS) {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = PL_regeol;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, cBOOL(UTF_PATTERN),
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr &&
+ UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* XXX Could improve efficiency by separating these all out using a
+ * macro or in-line function. At that point regcomp.c would no longer
+ * have to set the FLAGS fields of these */
+ case BOUNDL:
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ /* FALL THROUGH */
+ case BOUND:
+ case BOUNDU:
+ case BOUNDA:
+ case NBOUND:
+ case NBOUNDU:
+ case NBOUNDA:
+ /* was last char in word? */
+ if (utf8_target
+ && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET
+ && FLAGS(scan) != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+ {
+ if (locinput == PL_bostr)
+ ln = '\n';
+ else {
+ const U8 * const r = reghop3((U8*)locinput, -1, (U8*)PL_bostr);
+
+ ln = utf8n_to_uvchr(r, UTF8SKIP(r), 0, uniflags);
+ }
+ if (FLAGS(scan) != REGEX_LOCALE_CHARSET) {
+ ln = isALNUM_uni(ln);
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ n = swash_fetch(PL_utf8_alnum, (U8*)locinput, utf8_target);
+ }
+ else {
+ ln = isALNUM_LC_uvchr(UNI_TO_NATIVE(ln));
+ n = isALNUM_LC_utf8((U8*)locinput);
+ }
+ }
+ else {
+
+ /* Here the string isn't utf8, or is utf8 and only ascii
+ * characters are to match \w. In the latter case looking at
+ * the byte just prior to the current one may be just the final
+ * byte of a multi-byte character. This is ok. There are two
+ * cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final
+ * byte is never mistakable for ASCII, and so the test
+ * will say it is not a word character, which is the
+ * correct answer. */
+ ln = (locinput != PL_bostr) ?
+ UCHARAT(locinput - 1) : '\n';
+ switch (FLAGS(scan)) {
+ case REGEX_UNICODE_CHARSET:
+ ln = isWORDCHAR_L1(ln);
+ n = isWORDCHAR_L1(nextchr);
+ break;
+ case REGEX_LOCALE_CHARSET:
+ ln = isALNUM_LC(ln);
+ n = isALNUM_LC(nextchr);
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ ln = isALNUM(ln);
+ n = isALNUM(nextchr);
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ ln = isWORDCHAR_A(ln);
+ n = isWORDCHAR_A(nextchr);
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan));
+ break;
+ }
+ }
+ /* Note requires that all BOUNDs be lower than all NBOUNDs in
+ * regcomp.sym */
+ if (((!ln) == (!n)) == (OP(scan) < NBOUND))
+ sayNO;
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || state_num == ANYOFV) {
+ STRLEN inclasslen = PL_regeol - locinput;
+ if (locinput >= PL_regeol)
+ sayNO;
+
+ if (!reginclass(rex, scan, (U8*)locinput, &inclasslen, utf8_target))
+ sayNO;
+ locinput += inclasslen;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ else {
+ if (nextchr < 0)
+ nextchr = UCHARAT(locinput);
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ }
+ break;
+ /* Special char classes - The defines start on line 129 or so */
+ CCC_TRY_U(ALNUM, NALNUM, isWORDCHAR,
+ ALNUML, NALNUML, isALNUM_LC, isALNUM_LC_utf8,
+ ALNUMU, NALNUMU, isWORDCHAR_L1,
+ ALNUMA, NALNUMA, isWORDCHAR_A,
+ alnum, "a");
+
+ CCC_TRY_U(SPACE, NSPACE, isSPACE,
+ SPACEL, NSPACEL, isSPACE_LC, isSPACE_LC_utf8,
+ SPACEU, NSPACEU, isSPACE_L1,
+ SPACEA, NSPACEA, isSPACE_A,
+ space, " ");
+
+ CCC_TRY(DIGIT, NDIGIT, isDIGIT,
+ DIGITL, NDIGITL, isDIGIT_LC, isDIGIT_LC_utf8,
+ DIGITA, NDIGITA, isDIGIT_A,
+ digit, "0");
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ /* From http://www.unicode.org/reports/tr29 (5.2 version). An
+ extended Grapheme Cluster is:
+
+ CR LF
+ | Prepend* Begin Extend*
+ | .
+
+ Begin is (Hangul-syllable | ! Control)
+ Extend is (Grapheme_Extend | Spacing_Mark)
+ Control is [ GCB_Control CR LF ]
+
+ The discussion below shows how the code for CLUMP is derived
+ from this regex. Note that most of these concepts are from
+ property values of the Grapheme Cluster Boundary (GCB) property.
+ No code point can have multiple property values for a given
+ property. Thus a code point in Prepend can't be in Control, but
+ it must be in !Control. This is why Control above includes
+ GCB_Control plus CR plus LF. The latter two are used in the GCB
+ property separately, and so can't be in GCB_Control, even though
+ they logically are controls. Control is not the same as gc=cc,
+ but includes format and other characters as well.
+
+ The Unicode definition of Hangul-syllable is:
+ L+
+ | (L* ( ( V | LV ) V* | LVT ) T*)
+ | T+
+ )
+ Each of these is a value for the GCB property, and hence must be
+ disjoint, so the order they are tested is immaterial, so the
+ above can safely be changed to
+ T+
+ | L+
+ | (L* ( LVT | ( V | LV ) V*) T*)
+
+ The last two terms can be combined like this:
+ L* ( L
+ | (( LVT | ( V | LV ) V*) T*))
+
+ And refactored into this:
+ L* (L | LVT T* | V V* T* | LV V* T*)
+
+ That means that if we have seen any L's at all we can quit
+ there, but if the next character is an LVT, a V, or an LV we
+ should keep going.
+
+ There is a subtlety with Prepend* which showed up in testing.
+ Note that the Begin, and only the Begin is required in:
+ | Prepend* Begin Extend*
+ Also, Begin contains '! Control'. A Prepend must be a
+ '! Control', which means it must also be a Begin. What it
+ comes down to is that if we match Prepend* and then find no
+ suitable Begin afterwards, that if we backtrack the last
+ Prepend, that one will be a suitable Begin.
+ */
+
+ if (locinput >= PL_regeol)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < PL_regeol
+ && UCHARAT(locinput) == '\n') locinput++;
+ }
+ else {
+
+ /* Utf8: See if is ( CR LF ); already know that locinput <
+ * PL_regeol, so locinput+1 is in bounds */
+ if (nextchr == '\r' && UCHARAT(locinput + 1) == '\n') {
+ locinput += 2;
+ }
+ else {
+ /* In case have to backtrack to beginning, then match '.' */
+ char *starting = locinput;
+
+ /* In case have to backtrack the last prepend */
+ char *previous_prepend = 0;
+
+ LOAD_UTF8_CHARCLASS_GCB();
+
+ /* Match (prepend)* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_prepend,
+ (U8*)locinput, utf8_target))
+ {
+ previous_prepend = locinput;
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* As noted above, if we matched a prepend character, but
+ * the next thing won't match, back off the last prepend we
+ * matched, as it is guaranteed to match the begin */
+ if (previous_prepend
+ && (locinput >= PL_regeol
+ || ! swash_fetch(PL_utf8_X_begin,
+ (U8*)locinput, utf8_target)))
+ {
+ locinput = previous_prepend;
+ }
+
+ /* Note that here we know PL_regeol > locinput, as we
+ * tested that upon input to this switch case, and if we
+ * moved locinput forward, we tested the result just above
+ * and it either passed, or we backed off so that it will
+ * now pass */
+ if (! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target)) {
+
+ /* Here did not match the required 'Begin' in the
+ * second term. So just match the very first
+ * character, the '.' of the final term of the regex */
+ locinput = starting + UTF8SKIP(starting);
+ } else {
+
+ /* Here is the beginning of a character that can have
+ * an extender. It is either a hangul syllable, or a
+ * non-control */
+ if (swash_fetch(PL_utf8_X_non_hangul,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Here not a Hangul syllable, must be a
+ * ('! * Control') */
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Here is a Hangul syllable. It can be composed
+ * of several individual characters. One
+ * possibility is T+ */
+ if (swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ } else {
+
+ /* Here, not T+, but is a Hangul. That means
+ * it is one of the others: L, LV, LVT or V,
+ * and matches:
+ * L* (L | LVT T* | V V* T* | LV V* T*) */
+
+ /* Match L* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_L,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* Here, have exhausted L*. If the next
+ * character is not an LV, LVT nor V, it means
+ * we had to have at least one L, so matches L+
+ * in the original equation, we have a complete
+ * hangul syllable. Are done. */
+
+ if (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_LV_LVT_V,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Otherwise keep going. Must be LV, LVT
+ * or V. See if LVT */
+ if (swash_fetch(PL_utf8_X_LVT,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Must be V or LV. Take it, then
+ * match V* */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_V,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+
+ /* And any of LV, LVT, or V can be followed
+ * by T* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput,
+ utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ }
+
+ /* Match any extender */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_extend,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ if (locinput > PL_regeol) sayNO;
+ }
+ nextchr = UCHARAT(locinput);
+ break;
+
+ case NREFFL:
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_nref;
+
+ case NREFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF:
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL:
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_ref;
+
+ case REFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF:
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = PL_regoffs[n].start;
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (*PL_reglastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == PL_regoffs[n].end)
+ break;
+
+ s = PL_bostr + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU))
+ { /* XXX handle REFFL better */
+ char * limit = PL_regeol;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by PL_regeol, and returns in
+ * limit upon success, how much of the current input was
+ * matched */
+ if (! foldEQ_utf8_flags(s, NULL, PL_regoffs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = PL_regoffs[n].end - ln;
+ if (locinput + ln > PL_regeol)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case NOTHING:
+ case TAIL:
+ break;
+ case BACK:
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART:
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ (void)ReREFCNT_inc(rex_sv);
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+ dSP;
+ SV ** const before = SP;
+ OP_4tree * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ PAD *old_comppad;
+ char *saved_regeol = PL_regeol;
+ struct re_save_state saved_state;
+
+ /* To not corrupt the existing regex state while executing the
+ * eval we would normally put it on the save stack, like with
+ * save_re_context. However, re-evals have a weird scoping so we
+ * can't just add ENTER/LEAVE here. With that, things like
+ *
+ * (?{$a=2})(a(?{local$a=$a+1}))*aak*c(?{$b=$a})
+ *
+ * would break, as they expect the localisation to be unwound
+ * only when the re-engine backtracks through the bit that
+ * localised it.
+ *
+ * What we do instead is just saving the state in a local c
+ * variable.
+ */
+ Copy(&PL_reg_state, &saved_state, 1, struct re_save_state);
+
+ n = ARG(scan);
+ PL_op = (OP_4tree*)rexi->data->data[n];
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re_eval 0x%"UVxf"\n", PTR2UV(PL_op)) );
+ /* wrap the call in two SAVECOMPPADs. This ensures that
+ * when the save stack is eventually unwound, all the
+ * accumulated SAVEt_CLEARSV's will be processed with
+ * interspersed SAVEt_COMPPAD's to ensure that lexicals
+ * are cleared in the right pad */
+ SAVECOMPPAD();
+ PAD_SAVE_LOCAL(old_comppad, (PAD*)rexi->data->data[n + 2]);
+ PL_regoffs[0].end = PL_reg_magic->mg_len = locinput - PL_bostr;
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if (SP == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ Copy(&saved_state, &PL_reg_state, 1, struct re_save_state);
+
+ PL_op = oop;
+ SAVECOMPPAD();
+ PAD_RESTORE_LOCAL(old_comppad);
+ PL_curcop = ocurcop;
+ PL_regeol = saved_regeol;
+ if (!logical) {
+ /* /(?{...})/ */
+ sv_setsv(save_scalar(PL_replgv), ret);
+ break;
+ }
+ }
+ if (logical == 2) { /* Postponed subexpression: /(??{...})/ */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+ MAGIC *mg = NULL;
+ REGEXP *rx = NULL;
+
+ if (SvROK(ret)) {
+ SV *const sv = SvRV(ret);
+
+ if (SvTYPE(sv) == SVt_REGEXP) {
+ rx = (REGEXP*) sv;
+ } else if (SvSMAGICAL(sv)) {
+ mg = mg_find(sv, PERL_MAGIC_qr);
+ assert(mg);
+ }
+ } else if (SvTYPE(ret) == SVt_REGEXP) {
+ rx = (REGEXP*) ret;
+ } else if (SvSMAGICAL(ret)) {
+ if (SvGMAGICAL(ret)) {
+ /* I don't believe that there is ever qr magic
+ here. */
+ assert(!mg_find(ret, PERL_MAGIC_qr));
+ sv_unmagic(ret, PERL_MAGIC_qr);
+ }
+ else {
+ mg = mg_find(ret, PERL_MAGIC_qr);
+ /* testing suggests mg only ends up non-NULL for
+ scalars who were upgraded and compiled in the
+ else block below. In turn, this is only
+ triggered in the "postponed utf8 string" tests
+ in t/op/pat.t */
+ }
+ }
+
+ if (mg) {
+ rx = (REGEXP *) mg->mg_obj; /*XXX:dmq*/
+ assert(rx);
+ }
+ if (rx) {
+ rx = reg_temp_copy(NULL, rx);
+ }
+ else {
+ U32 pm_flags = 0;
+ const I32 osize = PL_regsize;
+
+ if (DO_UTF8(ret)) {
+ assert (SvUTF8(ret));
+ } else if (SvUTF8(ret)) {
+ /* Not doing UTF-8, despite what the SV says. Is
+ this only if we're trapped in use 'bytes'? */
+ /* Make a copy of the octet sequence, but without
+ the flag on, as the compiler now honours the
+ SvUTF8 flag on ret. */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ rx = CALLREGCOMP(ret, pm_flags);
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_PADTMP | SVf_READONLY
+ | SVs_GMG))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(rx), PERL_MAGIC_qr, 0, 0);
+ }
+ PL_regsize = osize;
+ }
+ re_sv = rx;
+ re = (struct regexp *)SvANY(rx);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput, PL_regeol,
+ "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* borrowed from regtry */
+ if (PL_reg_start_tmpl <= re->nparens) {
+ PL_reg_start_tmpl = re->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ eval_recurse_doit: /* Share code with GOSUB below this line */
+ /* run the pattern returned from (??{...}) */
+ ST.cp = regcppush(0); /* Save *all* the positions. */
+ REGCP_SET(ST.lastcp);
+
+ PL_regoffs = re->offs; /* essentially NOOP on GOSUB */
+
+ /* see regtry, specifically PL_reglast(?:close)?paren is a pointer! (i dont know why) :dmq */
+ PL_reglastparen = &re->lastparen;
+ PL_reglastcloseparen = &re->lastcloseparen;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+
+ PL_reginput = locinput;
+ PL_regsize = 0;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+
+ ST.toggle_reg_flags = PL_reg_flags;
+ if (RX_UTF8(re_sv))
+ PL_reg_flags |= RF_utf8;
+ else
+ PL_reg_flags &= ~RF_utf8;
+ ST.toggle_reg_flags ^= PL_reg_flags; /* diff of old and new */
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ SETREX(rex_sv,re_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint);
+ /* NOTREACHED */
+ }
+ /* logical is 1, /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ break;
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ regcpblow(ST.cp);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+ /* also update PL_regoffs */
+ PL_regoffs = rex->offs;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ PL_reginput = locinput;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN:
+ n = ARG(scan); /* which paren pair */
+ PL_reg_start_tmp[n] = locinput;
+ if (n > PL_regsize)
+ PL_regsize = n;
+ lastopen = n;
+ break;
+ case CLOSE:
+ n = ARG(scan); /* which paren pair */
+ PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+ case ACCEPT:
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ PL_regoffs[n].start
+ = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /*NOTREACHED*/
+ case GROUPP:
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(*PL_reglastparen >= n && PL_regoffs[n].end != -1);
+ break;
+ case NGROUPP:
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+ case INSUBP:
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+ case DEFINEP:
+ sw = 0;
+ break;
+ case IFTHEN:
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+ case LOGICAL:
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > PL_regsize... */
+ if (parenfloor > (I32)*PL_reglastparen)
+ parenfloor = *PL_reglastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next));
+ /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min = ARG1(cur_curlyx->u.curlyx.me);
+ int max = ARG2(cur_curlyx->u.curlyx.me);
+ regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+ PL_reginput = locinput;
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A);
+ /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing */
+
+ if (scan->flags) {
+
+ if (!PL_reg_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ PL_reg_maxiter = (PL_regeol - PL_bostr + 1) * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (PL_reg_maxiter < 0)
+ PL_reg_maxiter = I32_MAX;
+ PL_reg_leftiter = PL_reg_maxiter;
+ }
+
+ if (PL_reg_leftiter-- == 0) {
+ /* initialise cache */
+ const I32 size = (PL_reg_maxiter + 7)/8;
+ if (PL_reg_poscache) {
+ if ((I32)PL_reg_poscache_size < size) {
+ Renew(PL_reg_poscache, size, char);
+ PL_reg_poscache_size = size;
+ }
+ Zero(PL_reg_poscache, size, char);
+ }
+ else {
+ PL_reg_poscache_size = size;
+ Newxz(PL_reg_poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (PL_reg_leftiter < 0) {
+ /* have we already failed at this position? */
+ I32 offset, mask;
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - PL_bostr) * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (PL_reg_poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(ST.save_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A);
+ /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALL THROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex); /* Restore some previous $<digit>s? */
+ PL_reginput = locinput;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ PL_reginput = locinput;
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS);
+ /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALL THROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = *PL_reglastparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+ PL_reginput = locinput;
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan);
+ }
+ /* NOTREACHED */
+ case CUTGROUP:
+ PL_reginput = locinput;
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next,next);
+ /* NOTREACHED */
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ /*dmq: *PL_reglastcloseparen = n; */
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD:
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > PL_regsize)
+ PL_regsize = paren;
+ if (paren > *PL_reglastparen)
+ *PL_reglastparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A); /* match A */
+ /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ locinput = st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (PL_reg_match_utf8) {
+ char *s = locinput;
+ while (s < PL_reginput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = PL_reginput - locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ locinput = PL_reginput;
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ PL_reginput = locinput;
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT)
+ {
+
+ ST.c1 = (U8)*STRING(text_node);
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (ST.c1 != CHRTEST_VOID
+ && UCHARAT(PL_reginput) != ST.c1
+ && UCHARAT(PL_reginput) != ST.c2)
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail c1=%"IVdf" c2=%"IVdf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (IV)ST.c1,(IV)ST.c2
+ ));
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+
+ if (ST.me->flags) {
+ /* mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ PL_regoffs[paren].start
+ = HOPc(PL_reginput, -ST.alen) - PL_bostr;
+ PL_regoffs[paren].end = PL_reginput - PL_bostr;
+ /*dmq: *PL_reglastcloseparen = paren; */
+ }
+ else
+ PL_regoffs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B); /* match B */
+ /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ locinput = HOPc(locinput, -ST.alen);
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ PL_regoffs[paren].start = HOPc(locinput, -1) - PL_bostr; \
+ PL_regoffs[paren].end = locinput - PL_bostr; \
+ *PL_reglastcloseparen = paren; \
+ } \
+ else \
+ PL_regoffs[paren].end = -1; \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case PLUS: /* /A+B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 */
+ ST.paren = scan->flags; /* Which paren to set */
+ if (ST.paren > PL_regsize)
+ PL_regsize = ST.paren;
+ if (ST.paren > *PL_reglastparen)
+ *PL_reglastparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+ case CURLY: /* /A{m,n}B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ if (ST.min > ST.max) /* XXX make this a compile-time check? */
+ sayNO;
+ if (HAS_TEXT(next) || JUMPABLE(next)) {
+ U8 *s;
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ goto assume_ok_easy;
+ }
+ else
+ s = (U8*)STRING(text_node);
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (!UTF_PATTERN) {
+ ST.c1 = *s;
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1; break;
+ }
+ }
+ else { /* UTF_PATTERN */
+ if (IS_TEXTFU(text_node) || IS_TEXTF(text_node)) {
+ STRLEN ulen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
+
+ to_utf8_fold((U8*)s, tmpbuf, &ulen);
+ ST.c1 = ST.c2 = utf8n_to_uvchr(tmpbuf, UTF8_MAXLEN, 0,
+ uniflags);
+ }
+ else {
+ ST.c2 = ST.c1 = utf8n_to_uvchr(s, UTF8_MAXBYTES, 0,
+ uniflags);
+ }
+ }
+ }
+ }
+ else
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assume_ok_easy:
+
+ ST.A = scan;
+ ST.B = next;
+ PL_reginput = locinput;
+ if (minmod) {
+ minmod = 0;
+ if (ST.min && regrepeat(rex, ST.A, ST.min, depth) < ST.min)
+ sayNO;
+ ST.count = ST.min;
+ locinput = PL_reginput;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = PL_regeol - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos + UTF8SKIP(ST.maxpos) <= PL_regeol; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= PL_regeol)
+ ST.maxpos = PL_regeol - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ ST.count = regrepeat(rex, ST.A, ST.max, depth);
+ locinput = PL_reginput;
+ if (ST.count < ST.min)
+ sayNO;
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(PL_reginput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ PL_reginput = locinput; /* Could be reset... */
+ REGCP_UNWIND(ST.cp);
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ STRLEN len;
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos &&
+ utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags) != (UV)ST.c1) {
+ locinput += len;
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos) {
+ STRLEN len;
+ const UV c = utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags);
+ if (c == (UV)ST.c1 || c == (UV)ST.c2)
+ break;
+ locinput += len;
+ n++;
+ }
+ }
+ }
+ else {
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ /* PL_reginput == oldloc now */
+ if (n) {
+ ST.count += n;
+ if (regrepeat(rex, ST.A, n, depth) < n)
+ sayNO;
+ }
+ PL_reginput = locinput;
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B);
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* failed -- move forward one */
+ PL_reginput = locinput;
+ if (regrepeat(rex, ST.A, 1, depth)) {
+ ST.count++;
+ locinput = PL_reginput;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ UV c = 0;
+ if (ST.c1 != CHRTEST_VOID)
+ c = utf8_target ? utf8n_to_uvchr((U8*)PL_reginput,
+ UTF8_MAXBYTES, 0, uniflags)
+ : (UV) UCHARAT(PL_reginput);
+ /* If it could work, try it. */
+ if (ST.c1 == CHRTEST_VOID || c == (UV)ST.c1 || c == (UV)ST.c2) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B);
+ /* NOTREACHED */
+ }
+ }
+ /* FALL THROUGH */
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ PL_reginput = locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END:
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+ I32 tmpix;
+ st->u.eval.toggle_reg_flags
+ = cur_eval->u.eval.toggle_reg_flags;
+ PL_reg_flags ^= st->u.eval.toggle_reg_flags;
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+ SETREX(rex_sv,cur_eval->u.eval.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+ (void)ReREFCNT_inc(rex_sv);
+ st->u.eval.cp = regcppush(0); /* Save *all* the positions. */
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ REGCP_SET(st->u.eval.lastcp);
+ PL_reginput = locinput;
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ tmpix = PL_savestack_ix;
+ PL_savestack_ix = cur_eval->u.eval.lastcp;
+ regcppop(rex);
+ PL_savestack_ix = tmpix;
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB,
+ st->u.eval.prev_eval->u.eval.B); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - PL_reg_starttry),
+ (long)(reginfo->till - PL_reg_starttry),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ PL_reginput = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ PL_reginput = s;
+ }
+ else
+ PL_reginput = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)));
+ /* NOTREACHED */
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALL THROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) == SUSPEND)
+ locinput = PL_reginput;
+ else {
+ locinput = PL_reginput = st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP:
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ case COMMIT:
+ reginfo->cutpoint = PL_regeol;
+ /* FALLTHROUGH */
+ case PRUNE:
+ PL_reginput = locinput;
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next,next);
+ /* NOTREACHED */
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+ case OPFAIL:
+ sayNO;
+ /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT:
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next,next);
+ /* NOTREACHED */
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ case SKIP:
+ PL_reginput = locinput;
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next );
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+#undef ST
+ case LNBREAK:
+ if ((n=is_LNBREAK(locinput,utf8_target))) {
+ locinput += n;
+ nextchr = UCHARAT(locinput);
+ } else
+ sayNO;
+ break;
+
+#define CASE_CLASS(nAmE) \
+ case nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ locinput += n; \
+ nextchr = UCHARAT(locinput); \
+ } else \
+ sayNO; \
+ break; \
+ case N##nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ sayNO; \
+ } else { \
+ locinput += UTF8SKIP(locinput); \
+ nextchr = UCHARAT(locinput); \
+ } \
+ break
+
+ CASE_CLASS(VERTWS);
+ CASE_CLASS(HORIZWS);
+#undef CASE_CLASS
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALL THROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /*NOTREACHED*/
+ sayNO;
+
+yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final) {
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (PL_reg_eval_set) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* clean up; in particular, free all slabs above current one */
+ LEAVE_SCOPE(oldsave);
+
+ return result;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ */
+/*
+ * [This routine now assumes that it will only match on things of length 1.
+ * That was true before, but now we assume scan - reginput is the count,
+ * rather than incrementing count on every character. [Er, except utf8.]]
+ */
+STATIC I32
+S_regrepeat(pTHX_ const regexp *prog, const regnode *p, I32 max, int depth)
+{
+ dVAR;
+ register char *scan;
+ register I32 c;
+ register char *loceol = PL_regeol;
+ register I32 hardcount = 0;
+ register bool utf8_target = PL_reg_match_utf8;
+ UV utf8_flags;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = PL_reginput;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (max < loceol - scan)
+ loceol = scan + max;
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case CANY:
+ scan = loceol;
+ break;
+ case EXACT:
+ /* To get here, EXACTish nodes must have *byte* length == 1. That
+ * means they match only characters in the string that can be expressed
+ * as a single byte. For non-utf8 strings, that means a simple match.
+ * For utf8 strings, the character matched must be an invariant, or
+ * downgradable to a single byte. The pattern's utf8ness is
+ * irrelevant, as since it's a single byte, it either isn't utf8, or if
+ * it is, it's an invariant */
+
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (! utf8_target || UNI_IS_INVARIANT(c)) {
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else {
+
+ /* Here, the string is utf8, and the pattern char is different
+ * in utf8 than not, so can't compare them directly. Outside the
+ * loop, find the two utf8 bytes that represent c, and then
+ * look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+ loceol = PL_regeol;
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ PL_reg_flags |= RF_tainted;
+ utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTF:
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ utf8_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ /* The comments for the EXACT case above apply as well to these fold
+ * ones */
+
+ do_exactf:
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (utf8_target || OP(p) == EXACTFU_SS) { /* Use full Unicode fold matching */
+ char *tmpeol = loceol;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, 1, cBOOL(UTF_PATTERN), utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = loceol;
+ hardcount++;
+ }
+
+ /* XXX Note that the above handles properly the German sharp s in
+ * the pattern matching ss in the string. But it doesn't handle
+ * properly cases where the string contains say 'LIGATURE ff' and
+ * the pattern is 'f+'. This would require, say, a new function or
+ * revised interface to foldEQ_utf8(), in which the maximum number
+ * of characters to match could be passed and it would return how
+ * many actually did. This is just one of many cases where
+ * multi-char folds don't work properly, and so the fix is being
+ * deferred */
+ }
+ else {
+ U8 folded;
+
+ /* Here, the string isn't utf8 and c is a single byte; and either
+ * the pattern isn't utf8 or c is an invariant, so its utf8ness
+ * doesn't affect c. Can just do simple comparisons for exact or
+ * fold matching. */
+ switch (OP(p)) {
+ case EXACTF: folded = PL_fold[c]; break;
+ case EXACTFA:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folded = PL_fold_latin1[c]; break;
+ case EXACTFL: folded = PL_fold_locale[c]; break;
+ default: Perl_croak(aTHX_ "panic: Unexpected op %u", OP(p));
+ }
+ while (scan < loceol &&
+ (UCHARAT(scan) == c || UCHARAT(scan) == folded))
+ {
+ scan++;
+ }
+ }
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(p) == ANYOFV) {
+ STRLEN inclasslen;
+ loceol = PL_regeol;
+ inclasslen = loceol - scan;
+ while (hardcount < max
+ && ((inclasslen = loceol - scan) > 0)
+ && reginclass(prog, p, (U8*)scan, &inclasslen, utf8_target))
+ {
+ scan += inclasslen;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+ case ALNUMU:
+ if (utf8_target) {
+ utf8_wordchar:
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case ALNUM:
+ if (utf8_target)
+ goto utf8_wordchar;
+ while (scan < loceol && isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUMA:
+ while (scan < loceol && isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case NALNUMU:
+ if (utf8_target) {
+
+ utf8_Nwordchar:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ ! swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && ! isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUM:
+ if (utf8_target)
+ goto utf8_Nwordchar;
+ while (scan < loceol && ! isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NALNUMA:
+ if (utf8_target) {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case SPACEU:
+ if (utf8_target) {
+
+ utf8_space:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ break;
+ }
+ case SPACE:
+ if (utf8_target)
+ goto utf8_space;
+
+ while (scan < loceol && isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEA:
+ while (scan < loceol && isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case NSPACEU:
+ if (utf8_target) {
+
+ utf8_Nspace:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ ! (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && ! isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACE:
+ if (utf8_target)
+ goto utf8_Nspace;
+
+ while (scan < loceol && ! isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NSPACEA:
+ if (utf8_target) {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case DIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case DIGITA:
+ while (scan < loceol && isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case DIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case NDIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ !swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case NDIGITA:
+ if (utf8_target) {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NDIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case LNBREAK:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_LNBREAK_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /*
+ LNBREAK can match two latin chars, which is ok,
+ because we have a null terminated string, but we
+ have to use hardcount in this situation
+ */
+ while (scan < loceol && (c=is_LNBREAK_latin1(scan))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+ case HORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_HORIZWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_HORIZWS_latin1(scan))
+ scan++;
+ }
+ break;
+ case NHORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_HORIZWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_HORIZWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case VERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_VERTWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case NVERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_VERTWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+
+ default: /* Called on something of 0 width. */
+ break; /* So match right here or not at all. */
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - PL_reginput;
+ PL_reginput = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+ return newSVsv(core_regclass_swash(prog, node, doinit, listsvp, altsvp));
+}
+#endif
+
+STATIC SV *
+S_core_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ /* Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is true, will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the swash initialization string in
+ * it.
+ * If <altsvp> is non-null, will return the alternates to the regular swash
+ * in it
+ * Tied intimately to how regcomp.c sets up the data structure */
+
+ dVAR;
+ SV *sw = NULL;
+ SV *si = NULL;
+ SV *alt = NULL;
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT_CORE_REGCLASS_SWASH;
+
+ assert(ANYOF_NONBITMAP(node));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ bool invlist_has_user_defined_property;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_len(av) >= 3) {
+ invlist = ary[3];
+ invlist_has_user_defined_property = cBOOL(SvUV(ary[4]));
+ }
+ else {
+ invlist = NULL;
+ invlist_has_user_defined_property = FALSE;
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (si && doinit) {
+
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ FALSE, /* is error if can't find
+ property */
+ invlist,
+ invlist_has_user_defined_property);
+ (void)av_store(av, 1, sw);
+ }
+
+ /* Element [2] is for any multi-char folds. Note that is a
+ * fundamentally flawed design, because can't backtrack and try
+ * again. See [perl #89774] */
+ if (SvTYPE(ary[2]) == SVt_PVAV) {
+ alt = ary[2];
+ }
+ }
+ }
+
+ if (listsvp) {
+ SV* matches_string = newSVpvn("", 0);
+ SV** invlistsvp;
+
+ /* Use the swash, if any, which has to have incorporated into it all
+ * possibilities */
+ if ( sw
+ && SvROK(sw)
+ && SvTYPE(SvRV(sw)) == SVt_PVHV
+ && (invlistsvp = hv_fetchs(MUTABLE_HV(SvRV(sw)), "INVLIST", FALSE)))
+ {
+ invlist = *invlistsvp;
+ }
+ else if (si && si != &PL_sv_undef) {
+
+ /* If no swash, use the input nitialization string, if available */
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ *listsvp = matches_string;
+ }
+
+ if (altsvp)
+ *altsvp = alt;
+
+ return sw;
+}
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF regnode
+ p is the target string
+ lenp is pointer to the maximum number of bytes of how far to go in p
+ (This is assumed wthout checking to always be at least the current
+ character's size)
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise. If lenp is not NULL, on return
+ from a successful match, the value it points to will be updated to how many
+ bytes in p were matched. If there was no match, the value is undefined,
+ possibly changed from the input.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ const regexp * const prog, register const regnode * const n, register const U8* const p, STRLEN* lenp, register const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+ STRLEN c_len = 0;
+ STRLEN maxlen;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it */
+ if (utf8_target && !UTF8_IS_INVARIANT(c)) {
+ c = utf8n_to_uvchr(p, UTF8_MAXBYTES, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ }
+ else {
+ c_len = 1;
+ }
+
+ /* Use passed in max length, or one character if none passed in or less
+ * than one character. And assume will match just one character. This is
+ * overwritten later if matched more. */
+ if (lenp) {
+ maxlen = (*lenp > c_len) ? *lenp : c_len;
+ *lenp = c_len;
+
+ }
+ else {
+ maxlen = c_len;
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < 256) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if (flags & ANYOF_NON_UTF8_LATIN1_ALL
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+
+ else if (flags & ANYOF_LOCALE) {
+ PL_reg_flags |= RF_tainted;
+
+ if ((flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_CLASS_TEST_ANY_SET(n) &&
+ ((ANYOF_CLASS_TEST(n, ANYOF_ALNUM) && isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUM) && !isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_SPACE) && isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NSPACE) && !isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_DIGIT) && isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NDIGIT) && !isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALNUMC) && isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUMC) && !isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALPHA) && isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALPHA) && !isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ASCII) && isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NASCII) && !isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_CNTRL) && isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NCNTRL) && !isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_GRAPH) && isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NGRAPH) && !isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_LOWER) && isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NLOWER) && !isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PRINT) && isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPRINT) && !isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PUNCT) && isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPUNCT) && !isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_UPPER) && isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NUPPER) && !isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_XDIGIT) && isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NXDIGIT) && !isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PSXSPC) && isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPSXSPC) && !isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_BLANK) && isBLANK_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NBLANK) && !isBLANK_LC(c))
+ ) /* How's that for a conditional? */
+ ) {
+ match = TRUE;
+ }
+ }
+ }
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. Locale nodes specifiy completely the
+ * behavior of code points in the bit map (otherwise, a utf8 target would
+ * cause them to be treated as Unicode and not locale), except in
+ * the very unlikely event when this node is a synthetic start class, which
+ * could be a combination of locale and non-locale nodes. So allow locale
+ * to match for the synthetic start class, which will give a false
+ * positive that will be resolved when the match is done again as not part
+ * of the synthetic start class */
+ if (!match) {
+ if (utf8_target && (flags & ANYOF_UNICODE_ALL) && c >= 256) {
+ match = TRUE; /* Everything above 255 matches */
+ }
+ else if (ANYOF_NONBITMAP(n)
+ && ((flags & ANYOF_NONBITMAP_NON_UTF8)
+ || (utf8_target
+ && (c >=256
+ || (! (flags & ANYOF_LOCALE))
+ || (flags & ANYOF_IS_SYNTHETIC)))))
+ {
+ AV *av;
+ SV * const sw = core_regclass_swash(prog, n, TRUE, 0, (SV**)&av);
+
+ if (sw) {
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else {
+
+ /* Not utf8. Convert as much of the string as available up
+ * to the limit of how far the (single) character in the
+ * pattern can possibly match (no need to go further). If
+ * the node is a straight ANYOF or not folding, it can't
+ * match more than one. Otherwise, It can match up to how
+ * far a single char can fold to. Since not utf8, each
+ * character is a single byte, so the max it can be in
+ * bytes is the same as the max it can be in characters */
+ STRLEN len = (OP(n) == ANYOF
+ || ! (flags & ANYOF_LOC_NONBITMAP_FOLD))
+ ? 1
+ : (maxlen < UTF8_MAX_FOLD_CHAR_EXPAND)
+ ? maxlen
+ : UTF8_MAX_FOLD_CHAR_EXPAND;
+ utf8_p = bytes_to_utf8(p, &len);
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE))
+ match = TRUE;
+ else if (flags & ANYOF_LOC_NONBITMAP_FOLD) {
+
+ /* Here, we need to test if the fold of the target string
+ * matches. The non-multi char folds have all been moved to
+ * the compilation phase, and the multi-char folds have
+ * been stored by regcomp into 'av'; we linearly check to
+ * see if any match the target string (folded). We know
+ * that the originals were each one character, but we don't
+ * currently know how many characters/bytes each folded to,
+ * except we do know that there are small limits imposed by
+ * Unicode. XXX A performance enhancement would be to have
+ * regcomp.c store the max number of chars/bytes that are
+ * in an av entry, as, say the 0th element. Even better
+ * would be to have a hash of the few characters that can
+ * start a multi-char fold to the max number of chars of
+ * those folds.
+ *
+ * If there is a match, we will need to advance (if lenp is
+ * specified) the match pointer in the target string. But
+ * what we are comparing here isn't that string directly,
+ * but its fold, whose length may differ from the original.
+ * As we go along in constructing the fold, therefore, we
+ * create a map so that we know how many bytes in the
+ * source to advance given that we have matched a certain
+ * number of bytes in the fold. This map is stored in
+ * 'map_fold_len_back'. Let n mean the number of bytes in
+ * the fold of the first character that we are folding.
+ * Then map_fold_len_back[n] is set to the number of bytes
+ * in that first character. Similarly let m be the
+ * corresponding number for the second character to be
+ * folded. Then map_fold_len_back[n+m] is set to the
+ * number of bytes occupied by the first two source
+ * characters. ... */
+ U8 map_fold_len_back[UTF8_MAXBYTES_CASE+1] = { 0 };
+ U8 folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen = 0; /* num bytes in fold of 1st char */
+ STRLEN total_foldlen = 0; /* num bytes in fold of all
+ chars */
+
+ if (OP(n) == ANYOF || maxlen == 1 || ! lenp || ! av) {
+
+ /* Here, only need to fold the first char of the target
+ * string. It the source wasn't utf8, is 1 byte long */
+ to_utf8_fold(utf8_p, folded, &foldlen);
+ total_foldlen = foldlen;
+ map_fold_len_back[foldlen] = (utf8_target)
+ ? UTF8SKIP(utf8_p)
+ : 1;
+ }
+ else {
+
+ /* Here, need to fold more than the first char. Do so
+ * up to the limits */
+ U8* source_ptr = utf8_p; /* The source for the fold
+ is the regex target
+ string */
+ U8* folded_ptr = folded;
+ U8* e = utf8_p + maxlen; /* Can't go beyond last
+ available byte in the
+ target string */
+ U8 i;
+ for (i = 0;
+ i < UTF8_MAX_FOLD_CHAR_EXPAND && source_ptr < e;
+ i++)
+ {
+
+ /* Fold the next character */
+ U8 this_char_folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN this_char_foldlen;
+ to_utf8_fold(source_ptr,
+ this_char_folded,
+ &this_char_foldlen);
+
+ /* Bail if it would exceed the byte limit for
+ * folding a single char. */
+ if (this_char_foldlen + folded_ptr - folded >
+ UTF8_MAXBYTES_CASE)
+ {
+ break;
+ }
+
+ /* Add the fold of this character */
+ Copy(this_char_folded,
+ folded_ptr,
+ this_char_foldlen,
+ U8);
+ source_ptr += UTF8SKIP(source_ptr);
+ folded_ptr += this_char_foldlen;
+ total_foldlen = folded_ptr - folded;
+
+ /* Create map from the number of bytes in the fold
+ * back to the number of bytes in the source. If
+ * the source isn't utf8, the byte count is just
+ * the number of characters so far */
+ map_fold_len_back[total_foldlen]
+ = (utf8_target)
+ ? source_ptr - utf8_p
+ : i + 1;
+ }
+ *folded_ptr = '\0';
+ }
+
+
+ /* Do the linear search to see if the fold is in the list
+ * of multi-char folds. */
+ if (av) {
+ I32 i;
+ for (i = 0; i <= av_len(av); i++) {
+ SV* const sv = *av_fetch(av, i, FALSE);
+ STRLEN len;
+ const char * const s = SvPV_const(sv, len);
+
+ if (len <= total_foldlen
+ && memEQ(s, (char*)folded, len)
+
+ /* If 0, means matched a partial char. See
+ * [perl #90536] */
+ && map_fold_len_back[len])
+ {
+
+ /* Advance the target string ptr to account for
+ * this fold, but have to translate from the
+ * folded length to the corresponding source
+ * length. */
+ if (lenp) {
+ *lenp = map_fold_len_back[len];
+ }
+ match = TRUE;
+ break;
+ }
+ }
+ }
+ }
+
+ /* If we allocated a string above, free it */
+ if (! utf8_target) Safefree(utf8_p);
+ }
+ }
+ }
+
+ return (flags & ANYOF_INVERT) ? !match : match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, I32 off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+#ifdef XXX_dmq
+/* there are a bunch of places where we use two reghop3's that should
+ be replaced with this routine. but since thats not done yet
+ we ifdef it out - dmq
+*/
+STATIC U8 *
+S_reghop4(U8 *s, I32 off, const U8* llim, const U8* rlim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+#endif
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, I32 off, const U8* lim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+static void
+restore_pos(pTHX_ void *arg)
+{
+ dVAR;
+ regexp * const rex = (regexp *)arg;
+ if (PL_reg_eval_set) {
+ if (PL_reg_oldsaved) {
+ rex->subbeg = PL_reg_oldsaved;
+ rex->sublen = PL_reg_oldsavedlen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ rex->saved_copy = PL_nrs;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ PL_reg_magic->mg_len = PL_reg_oldpos;
+ PL_reg_eval_set = 0;
+ PL_curpm = PL_reg_oldcurpm;
+ }
+}
+
+STATIC void
+S_to_utf8_substr(pTHX_ register regexp *prog)
+{
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC void
+S_to_byte_substr(pTHX_ register regexp *prog)
+{
+ dVAR;
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (sv_utf8_downgrade(sv, TRUE)) {
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ } else {
+ SvREFCNT_dec(sv);
+ sv = &PL_sv_undef;
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regcomp.c
+ */
+
+/*
+ * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
+ *
+ * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
+ */
+
+/* This file contains functions for compiling a regular expression. See
+ * also regexec.c which funnily enough, contains functions for executing
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_comp.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGCOMP_C
+#include "perl.h"
+
+#ifndef PERL_IN_XSUB_RE
+#include "re_defs.h"
+#endif
+
+#define REG_COMP_C
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#include "dquote_static.c"
+#ifndef PERL_IN_XSUB_RE
+# include "charclass_invlists.h"
+#endif
+
+#define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
+
+#ifdef op
+#undef op
+#endif /* op */
+
+#ifdef MSDOS
+# if defined(BUGGY_MSC6)
+ /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
+# pragma optimize("a",off)
+ /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
+# pragma optimize("w",on )
+# endif /* BUGGY_MSC6 */
+#endif /* MSDOS */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+typedef struct RExC_state_t {
+ U32 flags; /* are we folding, multilining? */
+ char *precomp; /* uncompiled string. */
+ REGEXP *rx_sv; /* The SV that is the regexp. */
+ regexp *rx; /* perl core regexp structure */
+ regexp_internal *rxi; /* internal data for regexp object pprivate field */
+ char *start; /* Start of input for compile */
+ char *end; /* End of input for compile */
+ char *parse; /* Input-scan pointer. */
+ I32 whilem_seen; /* number of WHILEM in this expr */
+ regnode *emit_start; /* Start of emitted-code area */
+ regnode *emit_bound; /* First regnode outside of the allocated space */
+ regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
+ I32 naughty; /* How bad is this pattern? */
+ I32 sawback; /* Did we see \1, ...? */
+ U32 seen;
+ I32 size; /* Code size. */
+ I32 npar; /* Capture buffer count, (OPEN). */
+ I32 cpar; /* Capture buffer count, (CLOSE). */
+ I32 nestroot; /* root parens we are in - used by accept */
+ I32 extralen;
+ I32 seen_zerolen;
+ I32 seen_evals;
+ regnode **open_parens; /* pointers to open parens */
+ regnode **close_parens; /* pointers to close parens */
+ regnode *opend; /* END node in program */
+ I32 utf8; /* whether the pattern is utf8 or not */
+ I32 orig_utf8; /* whether the pattern was originally in utf8 */
+ /* XXX use this for future optimisation of case
+ * where pattern must be upgraded to utf8. */
+ I32 uni_semantics; /* If a d charset modifier should use unicode
+ rules, even if the pattern is not in
+ utf8 */
+ HV *paren_names; /* Paren names */
+
+ regnode **recurse; /* Recurse regops */
+ I32 recurse_count; /* Number of recurse regops */
+ I32 in_lookbehind;
+ I32 contains_locale;
+ I32 override_recoding;
+#if ADD_TO_REGEXEC
+ char *starttry; /* -Dr: where regtry was called. */
+#define RExC_starttry (pRExC_state->starttry)
+#endif
+#ifdef DEBUGGING
+ const char *lastparse;
+ I32 lastnum;
+ AV *paren_name_list; /* idx -> name */
+#define RExC_lastparse (pRExC_state->lastparse)
+#define RExC_lastnum (pRExC_state->lastnum)
+#define RExC_paren_name_list (pRExC_state->paren_name_list)
+#endif
+} RExC_state_t;
+
+#define RExC_flags (pRExC_state->flags)
+#define RExC_precomp (pRExC_state->precomp)
+#define RExC_rx_sv (pRExC_state->rx_sv)
+#define RExC_rx (pRExC_state->rx)
+#define RExC_rxi (pRExC_state->rxi)
+#define RExC_start (pRExC_state->start)
+#define RExC_end (pRExC_state->end)
+#define RExC_parse (pRExC_state->parse)
+#define RExC_whilem_seen (pRExC_state->whilem_seen)
+#ifdef RE_TRACK_PATTERN_OFFSETS
+#define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
+#endif
+#define RExC_emit (pRExC_state->emit)
+#define RExC_emit_start (pRExC_state->emit_start)
+#define RExC_emit_bound (pRExC_state->emit_bound)
+#define RExC_naughty (pRExC_state->naughty)
+#define RExC_sawback (pRExC_state->sawback)
+#define RExC_seen (pRExC_state->seen)
+#define RExC_size (pRExC_state->size)
+#define RExC_npar (pRExC_state->npar)
+#define RExC_nestroot (pRExC_state->nestroot)
+#define RExC_extralen (pRExC_state->extralen)
+#define RExC_seen_zerolen (pRExC_state->seen_zerolen)
+#define RExC_seen_evals (pRExC_state->seen_evals)
+#define RExC_utf8 (pRExC_state->utf8)
+#define RExC_uni_semantics (pRExC_state->uni_semantics)
+#define RExC_orig_utf8 (pRExC_state->orig_utf8)
+#define RExC_open_parens (pRExC_state->open_parens)
+#define RExC_close_parens (pRExC_state->close_parens)
+#define RExC_opend (pRExC_state->opend)
+#define RExC_paren_names (pRExC_state->paren_names)
+#define RExC_recurse (pRExC_state->recurse)
+#define RExC_recurse_count (pRExC_state->recurse_count)
+#define RExC_in_lookbehind (pRExC_state->in_lookbehind)
+#define RExC_contains_locale (pRExC_state->contains_locale)
+#define RExC_override_recoding (pRExC_state->override_recoding)
+
+
+#define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
+#define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
+ ((*s) == '{' && regcurly(s)))
+
+#ifdef SPSTART
+#undef SPSTART /* dratted cpp namespace... */
+#endif
+/*
+ * Flags to be passed up and down.
+ */
+#define WORST 0 /* Worst case. */
+#define HASWIDTH 0x01 /* Known to match non-null strings. */
+
+/* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
+ * character, and if utf8, must be invariant. Note that this is not the same
+ * thing as REGNODE_SIMPLE */
+#define SIMPLE 0x02
+#define SPSTART 0x04 /* Starts with * or +. */
+#define TRYAGAIN 0x08 /* Weeded out a declaration. */
+#define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
+
+/* whether trie related optimizations are enabled */
+#if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
+#define TRIE_STUDY_OPT
+#define FULL_TRIE_STUDY
+#define TRIE_STCLASS
+#endif
+
+
+
+#define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
+#define PBITVAL(paren) (1 << ((paren) & 7))
+#define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
+#define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
+#define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
+
+/* If not already in utf8, do a longjmp back to the beginning */
+#define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
+#define REQUIRE_UTF8 STMT_START { \
+ if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
+ } STMT_END
+
+/* About scan_data_t.
+
+ During optimisation we recurse through the regexp program performing
+ various inplace (keyhole style) optimisations. In addition study_chunk
+ and scan_commit populate this data structure with information about
+ what strings MUST appear in the pattern. We look for the longest
+ string that must appear at a fixed location, and we look for the
+ longest string that may appear at a floating location. So for instance
+ in the pattern:
+
+ /FOO[xX]A.*B[xX]BAR/
+
+ Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
+ strings (because they follow a .* construct). study_chunk will identify
+ both FOO and BAR as being the longest fixed and floating strings respectively.
+
+ The strings can be composites, for instance
+
+ /(f)(o)(o)/
+
+ will result in a composite fixed substring 'foo'.
+
+ For each string some basic information is maintained:
+
+ - offset or min_offset
+ This is the position the string must appear at, or not before.
+ It also implicitly (when combined with minlenp) tells us how many
+ characters must match before the string we are searching for.
+ Likewise when combined with minlenp and the length of the string it
+ tells us how many characters must appear after the string we have
+ found.
+
+ - max_offset
+ Only used for floating strings. This is the rightmost point that
+ the string can appear at. If set to I32 max it indicates that the
+ string can occur infinitely far to the right.
+
+ - minlenp
+ A pointer to the minimum length of the pattern that the string
+ was found inside. This is important as in the case of positive
+ lookahead or positive lookbehind we can have multiple patterns
+ involved. Consider
+
+ /(?=FOO).*F/
+
+ The minimum length of the pattern overall is 3, the minimum length
+ of the lookahead part is 3, but the minimum length of the part that
+ will actually match is 1. So 'FOO's minimum length is 3, but the
+ minimum length for the F is 1. This is important as the minimum length
+ is used to determine offsets in front of and behind the string being
+ looked for. Since strings can be composites this is the length of the
+ pattern at the time it was committed with a scan_commit. Note that
+ the length is calculated by study_chunk, so that the minimum lengths
+ are not known until the full pattern has been compiled, thus the
+ pointer to the value.
+
+ - lookbehind
+
+ In the case of lookbehind the string being searched for can be
+ offset past the start point of the final matching string.
+ If this value was just blithely removed from the min_offset it would
+ invalidate some of the calculations for how many chars must match
+ before or after (as they are derived from min_offset and minlen and
+ the length of the string being searched for).
+ When the final pattern is compiled and the data is moved from the
+ scan_data_t structure into the regexp structure the information
+ about lookbehind is factored in, with the information that would
+ have been lost precalculated in the end_shift field for the
+ associated string.
+
+ The fields pos_min and pos_delta are used to store the minimum offset
+ and the delta to the maximum offset at the current point in the pattern.
+
+*/
+
+typedef struct scan_data_t {
+ /*I32 len_min; unused */
+ /*I32 len_delta; unused */
+ I32 pos_min;
+ I32 pos_delta;
+ SV *last_found;
+ I32 last_end; /* min value, <0 unless valid. */
+ I32 last_start_min;
+ I32 last_start_max;
+ SV **longest; /* Either &l_fixed, or &l_float. */
+ SV *longest_fixed; /* longest fixed string found in pattern */
+ I32 offset_fixed; /* offset where it starts */
+ I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_fixed; /* is the position of the string modfied by LB */
+ SV *longest_float; /* longest floating string found in pattern */
+ I32 offset_float_min; /* earliest point in string it can appear */
+ I32 offset_float_max; /* latest point in string it can appear */
+ I32 *minlen_float; /* pointer to the minlen relevant to the string */
+ I32 lookbehind_float; /* is the position of the string modified by LB */
+ I32 flags;
+ I32 whilem_c;
+ I32 *last_closep;
+ struct regnode_charclass_class *start_class;
+} scan_data_t;
+
+/*
+ * Forward declarations for pregcomp()'s friends.
+ */
+
+static const scan_data_t zero_scan_data =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
+
+#define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
+#define SF_BEFORE_SEOL 0x0001
+#define SF_BEFORE_MEOL 0x0002
+#define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
+#define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
+
+#ifdef NO_UNARY_PLUS
+# define SF_FIX_SHIFT_EOL (0+2)
+# define SF_FL_SHIFT_EOL (0+4)
+#else
+# define SF_FIX_SHIFT_EOL (+2)
+# define SF_FL_SHIFT_EOL (+4)
+#endif
+
+#define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
+#define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
+
+#define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
+#define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
+#define SF_IS_INF 0x0040
+#define SF_HAS_PAR 0x0080
+#define SF_IN_PAR 0x0100
+#define SF_HAS_EVAL 0x0200
+#define SCF_DO_SUBSTR 0x0400
+#define SCF_DO_STCLASS_AND 0x0800
+#define SCF_DO_STCLASS_OR 0x1000
+#define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
+#define SCF_WHILEM_VISITED_POS 0x2000
+
+#define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
+#define SCF_SEEN_ACCEPT 0x8000
+
+#define UTF cBOOL(RExC_utf8)
+
+/* The enums for all these are ordered so things work out correctly */
+#define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
+#define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
+#define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
+#define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
+#define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
+#define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+#define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
+
+#define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
+
+#define OOB_UNICODE 12345678
+#define OOB_NAMEDCLASS -1
+
+#define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
+
+
+/* length of regex to show in messages that don't mark a position within */
+#define RegexLengthToShowInErrorMessages 127
+
+/*
+ * If MARKER[12] are adjusted, be sure to adjust the constants at the top
+ * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
+ * op/pragma/warn/regcomp.
+ */
+#define MARKER1 "<-- HERE" /* marker as it appears in the description */
+#define MARKER2 " <-- HERE " /* marker as it appears within the regex */
+
+#define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
+ * arg. Show regex, up to a maximum length. If it's too long, chop and add
+ * "...".
+ */
+#define _FAIL(code) STMT_START { \
+ const char *ellipses = ""; \
+ IV len = RExC_end - RExC_precomp; \
+ \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ if (len > RegexLengthToShowInErrorMessages) { \
+ /* chop 10 shorter than the max, to ensure meaning of "..." */ \
+ len = RegexLengthToShowInErrorMessages - 10; \
+ ellipses = "..."; \
+ } \
+ code; \
+} STMT_END
+
+#define FAIL(msg) _FAIL( \
+ Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
+ msg, (int)len, RExC_precomp, ellipses))
+
+#define FAIL2(msg,arg) _FAIL( \
+ Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
+ arg, (int)len, RExC_precomp, ellipses))
+
+/*
+ * Simple_vFAIL -- like FAIL, but marks the current location in the scan
+ */
+#define Simple_vFAIL(m) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
+ m, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
+ */
+#define vFAIL(m) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL(m); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts two arguments.
+ */
+#define Simple_vFAIL2(m,a1) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
+ */
+#define vFAIL2(m,a1) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL2(m, a1); \
+} STMT_END
+
+
+/*
+ * Like Simple_vFAIL(), but accepts three arguments.
+ */
+#define Simple_vFAIL3(m, a1, a2) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+/*
+ * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
+ */
+#define vFAIL3(m,a1,a2) STMT_START { \
+ if (!SIZE_ONLY) \
+ SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
+ Simple_vFAIL3(m, a1, a2); \
+} STMT_END
+
+/*
+ * Like Simple_vFAIL(), but accepts four arguments.
+ */
+#define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
+ const IV offset = RExC_parse - RExC_precomp; \
+ S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNreg(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARNregdep(loc,m) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2regdep(loc,m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
+ m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN2reg(loc, m, a1) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN3(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN3reg(loc, m, a1, a2) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN4(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+#define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
+ const IV offset = loc - RExC_precomp; \
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
+ a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
+} STMT_END
+
+
+/* Allow for side effects in s */
+#define REGC(c,s) STMT_START { \
+ if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
+} STMT_END
+
+/* Macros for recording node offsets. 20001227 mjd@plover.com
+ * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
+ * element 2*n-1 of the array. Element #2n holds the byte length node #n.
+ * Element 0 holds the number n.
+ * Position is 1 indexed.
+ */
+#ifndef RE_TRACK_PATTERN_OFFSETS
+#define Set_Node_Offset_To_R(node,byte)
+#define Set_Node_Offset(node,byte)
+#define Set_Cur_Node_Offset
+#define Set_Node_Length_To_R(node,len)
+#define Set_Node_Length(node,len)
+#define Set_Node_Cur_Length(node)
+#define Node_Offset(n)
+#define Node_Length(n)
+#define Set_Node_Offset_Length(node,offset,len)
+#define ProgLen(ri) ri->u.proglen
+#define SetProgLen(ri,x) ri->u.proglen = x
+#else
+#define ProgLen(ri) ri->u.offsets[0]
+#define SetProgLen(ri,x) ri->u.offsets[0] = x
+#define Set_Node_Offset_To_R(node,byte) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(byte))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)-1] = (byte); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Offset(node,byte) \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
+#define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
+
+#define Set_Node_Length_To_R(node,len) STMT_START { \
+ if (! SIZE_ONLY) { \
+ MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
+ __LINE__, (int)(node), (int)(len))); \
+ if((node) < 0) { \
+ Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
+ } else { \
+ RExC_offsets[2*(node)] = (len); \
+ } \
+ } \
+} STMT_END
+
+#define Set_Node_Length(node,len) \
+ Set_Node_Length_To_R((node)-RExC_emit_start, len)
+#define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
+#define Set_Node_Cur_Length(node) \
+ Set_Node_Length(node, RExC_parse - parse_start)
+
+/* Get offsets and lengths */
+#define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
+#define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
+
+#define Set_Node_Offset_Length(node,offset,len) STMT_START { \
+ Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
+ Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
+} STMT_END
+#endif
+
+#if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
+#define EXPERIMENTAL_INPLACESCAN
+#endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
+
+#define DEBUG_STUDYDATA(str,data,depth) \
+DEBUG_OPTIMISE_MORE_r(if(data){ \
+ PerlIO_printf(Perl_debug_log, \
+ "%*s" str "Pos:%"IVdf"/%"IVdf \
+ " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
+ (int)(depth)*2, "", \
+ (IV)((data)->pos_min), \
+ (IV)((data)->pos_delta), \
+ (UV)((data)->flags), \
+ (IV)((data)->whilem_c), \
+ (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
+ is_inf ? "INF " : "" \
+ ); \
+ if ((data)->last_found) \
+ PerlIO_printf(Perl_debug_log, \
+ "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
+ " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
+ SvPVX_const((data)->last_found), \
+ (IV)((data)->last_end), \
+ (IV)((data)->last_start_min), \
+ (IV)((data)->last_start_max), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
+ SvPVX_const((data)->longest_fixed), \
+ (IV)((data)->offset_fixed), \
+ ((data)->longest && \
+ (data)->longest==&((data)->longest_float)) ? "*" : "", \
+ SvPVX_const((data)->longest_float), \
+ (IV)((data)->offset_float_min), \
+ (IV)((data)->offset_float_max) \
+ ); \
+ PerlIO_printf(Perl_debug_log,"\n"); \
+});
+
+static void clear_re(pTHX_ void *r);
+
+/* Mark that we cannot extend a found fixed substring at this point.
+ Update the longest found anchored substring and the longest found
+ floating substrings if needed. */
+
+STATIC void
+S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
+{
+ const STRLEN l = CHR_SVLEN(data->last_found);
+ const STRLEN old_l = CHR_SVLEN(*data->longest);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_SCAN_COMMIT;
+
+ if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
+ SvSetMagicSV(*data->longest, data->last_found);
+ if (*data->longest == data->longest_fixed) {
+ data->offset_fixed = l ? data->last_start_min : data->pos_min;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FIX_BEFORE_EOL;
+ data->minlen_fixed=minlenp;
+ data->lookbehind_fixed=0;
+ }
+ else { /* *data->longest == data->longest_float */
+ data->offset_float_min = l ? data->last_start_min : data->pos_min;
+ data->offset_float_max = (l
+ ? data->last_start_max
+ : data->pos_min + data->pos_delta);
+ if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
+ data->offset_float_max = I32_MAX;
+ if (data->flags & SF_BEFORE_EOL)
+ data->flags
+ |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
+ else
+ data->flags &= ~SF_FL_BEFORE_EOL;
+ data->minlen_float=minlenp;
+ data->lookbehind_float=0;
+ }
+ }
+ SvCUR_set(data->last_found, 0);
+ {
+ SV * const sv = data->last_found;
+ if (SvUTF8(sv) && SvMAGICAL(sv)) {
+ MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
+ if (mg)
+ mg->mg_len = 0;
+ }
+ }
+ data->last_end = -1;
+ data->flags &= ~SF_BEFORE_EOL;
+ DEBUG_STUDYDATA("commit: ",data,0);
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_ANYTHING;
+
+ ANYOF_BITMAP_SETALL(cl);
+ cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
+ |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
+
+ /* If any portion of the regex is to operate under locale rules,
+ * initialization includes it. The reason this isn't done for all regexes
+ * is that the optimizer was written under the assumption that locale was
+ * all-or-nothing. Given the complexity and lack of documentation in the
+ * optimizer, and that there are inadequate test cases for locale, so many
+ * parts of it may not work properly, it is safest to avoid locale unless
+ * necessary. */
+ if (RExC_contains_locale) {
+ ANYOF_CLASS_SETALL(cl); /* /l uses class */
+ cl->flags |= ANYOF_LOCALE;
+ }
+ else {
+ ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
+ }
+}
+
+/* Can match anything (initialization) */
+STATIC int
+S_cl_is_anything(const struct regnode_charclass_class *cl)
+{
+ int value;
+
+ PERL_ARGS_ASSERT_CL_IS_ANYTHING;
+
+ for (value = 0; value <= ANYOF_MAX; value += 2)
+ if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
+ return 1;
+ if (!(cl->flags & ANYOF_UNICODE_ALL))
+ return 0;
+ if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
+ return 0;
+ return 1;
+}
+
+/* Can match anything (initialization) */
+STATIC void
+S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
+{
+ PERL_ARGS_ASSERT_CL_INIT;
+
+ Zero(cl, 1, struct regnode_charclass_class);
+ cl->type = ANYOF;
+ cl_anything(pRExC_state, cl);
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+}
+
+/* These two functions currently do the exact same thing */
+#define cl_init_zero S_cl_init
+
+/* 'AND' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
+ * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_and(struct regnode_charclass_class *cl,
+ const struct regnode_charclass_class *and_with)
+{
+ PERL_ARGS_ASSERT_CL_AND;
+
+ assert(and_with->type == ANYOF);
+
+ /* I (khw) am not sure all these restrictions are necessary XXX */
+ if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
+ && !(ANYOF_CLASS_TEST_ANY_SET(cl))
+ && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
+ int i;
+
+ if (and_with->flags & ANYOF_INVERT)
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= ~and_with->bitmap[i];
+ else
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] &= and_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
+
+ if (and_with->flags & ANYOF_INVERT) {
+
+ /* Here, the and'ed node is inverted. Get the AND of the flags that
+ * aren't affected by the inversion. Those that are affected are
+ * handled individually below */
+ U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
+ cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
+ cl->flags |= affected_flags;
+
+ /* We currently don't know how to deal with things that aren't in the
+ * bitmap, but we know that the intersection is no greater than what
+ * is already in cl, so let there be false positives that get sorted
+ * out after the synthetic start class succeeds, and the node is
+ * matched for real. */
+
+ /* The inversion of these two flags indicate that the resulting
+ * intersection doesn't have them */
+ if (and_with->flags & ANYOF_UNICODE_ALL) {
+ cl->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ else { /* and'd node is not inverted */
+ U8 outside_bitmap_but_not_utf8; /* Temp variable */
+
+ if (! ANYOF_NONBITMAP(and_with)) {
+
+ /* Here 'and_with' doesn't match anything outside the bitmap
+ * (except possibly ANYOF_UNICODE_ALL), which means the
+ * intersection can't either, except for ANYOF_UNICODE_ALL, in
+ * which case we don't know what the intersection is, but it's no
+ * greater than what cl already has, so can just leave it alone,
+ * with possible false positives */
+ if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
+ ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
+ cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else if (! ANYOF_NONBITMAP(cl)) {
+
+ /* Here, 'and_with' does match something outside the bitmap, and cl
+ * doesn't have a list of things to match outside the bitmap. If
+ * cl can match all code points above 255, the intersection will
+ * be those above-255 code points that 'and_with' matches. If cl
+ * can't match all Unicode code points, it means that it can't
+ * match anything outside the bitmap (since the 'if' that got us
+ * into this block tested for that), so we leave the bitmap empty.
+ */
+ if (cl->flags & ANYOF_UNICODE_ALL) {
+ ARG_SET(cl, ARG(and_with));
+
+ /* and_with's ARG may match things that don't require UTF8.
+ * And now cl's will too, in spite of this being an 'and'. See
+ * the comments below about the kludge */
+ cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ else {
+ /* Here, both 'and_with' and cl match something outside the
+ * bitmap. Currently we do not do the intersection, so just match
+ * whatever cl had at the beginning. */
+ }
+
+
+ /* Take the intersection of the two sets of flags. However, the
+ * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
+ * kludge around the fact that this flag is not treated like the others
+ * which are initialized in cl_anything(). The way the optimizer works
+ * is that the synthetic start class (SSC) is initialized to match
+ * anything, and then the first time a real node is encountered, its
+ * values are AND'd with the SSC's with the result being the values of
+ * the real node. However, there are paths through the optimizer where
+ * the AND never gets called, so those initialized bits are set
+ * inappropriately, which is not usually a big deal, as they just cause
+ * false positives in the SSC, which will just mean a probably
+ * imperceptible slow down in execution. However this bit has a
+ * higher false positive consequence in that it can cause utf8.pm,
+ * utf8_heavy.pl ... to be loaded when not necessary, which is a much
+ * bigger slowdown and also causes significant extra memory to be used.
+ * In order to prevent this, the code now takes a different tack. The
+ * bit isn't set unless some part of the regular expression needs it,
+ * but once set it won't get cleared. This means that these extra
+ * modules won't get loaded unless there was some path through the
+ * pattern that would have required them anyway, and so any false
+ * positives that occur by not ANDing them out when they could be
+ * aren't as severe as they would be if we treated this bit like all
+ * the others */
+ outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
+ & ANYOF_NONBITMAP_NON_UTF8;
+ cl->flags &= and_with->flags;
+ cl->flags |= outside_bitmap_but_not_utf8;
+ }
+}
+
+/* 'OR' a given class with another one. Can create false positives. 'cl'
+ * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
+ * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
+STATIC void
+S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
+{
+ PERL_ARGS_ASSERT_CL_OR;
+
+ if (or_with->flags & ANYOF_INVERT) {
+
+ /* Here, the or'd node is to be inverted. This means we take the
+ * complement of everything not in the bitmap, but currently we don't
+ * know what that is, so give up and match anything */
+ if (ANYOF_NONBITMAP(or_with)) {
+ cl_anything(pRExC_state, cl);
+ }
+ /* We do not use
+ * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
+ * <= (B1 | !B2) | (CL1 | !CL2)
+ * which is wasteful if CL2 is small, but we ignore CL2:
+ * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
+ * XXXX Can we handle case-fold? Unclear:
+ * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
+ * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
+ */
+ else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
+ int i;
+
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= ~or_with->bitmap[i];
+ } /* XXXX: logic is complicated otherwise */
+ else {
+ cl_anything(pRExC_state, cl);
+ }
+
+ /* And, we can just take the union of the flags that aren't affected
+ * by the inversion */
+ cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
+
+ /* For the remaining flags:
+ ANYOF_UNICODE_ALL and inverted means to not match anything above
+ 255, which means that the union with cl should just be
+ what cl has in it, so can ignore this flag
+ ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
+ is 127-255 to match them, but then invert that, so the
+ union with cl should just be what cl has in it, so can
+ ignore this flag
+ */
+ } else { /* 'or_with' is not inverted */
+ /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
+ if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
+ && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
+ int i;
+
+ /* OR char bitmap and class bitmap separately */
+ for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
+ cl->bitmap[i] |= or_with->bitmap[i];
+ if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
+ for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
+ cl->classflags[i] |= or_with->classflags[i];
+ cl->flags |= ANYOF_CLASS;
+ }
+ }
+ else { /* XXXX: logic is complicated, leave it along for a moment. */
+ cl_anything(pRExC_state, cl);
+ }
+
+ if (ANYOF_NONBITMAP(or_with)) {
+
+ /* Use the added node's outside-the-bit-map match if there isn't a
+ * conflict. If there is a conflict (both nodes match something
+ * outside the bitmap, but what they match outside is not the same
+ * pointer, and hence not easily compared until XXX we extend
+ * inversion lists this far), give up and allow the start class to
+ * match everything outside the bitmap. If that stuff is all above
+ * 255, can just set UNICODE_ALL, otherwise caould be anything. */
+ if (! ANYOF_NONBITMAP(cl)) {
+ ARG_SET(cl, ARG(or_with));
+ }
+ else if (ARG(cl) != ARG(or_with)) {
+
+ if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
+ cl_anything(pRExC_state, cl);
+ }
+ else {
+ cl->flags |= ANYOF_UNICODE_ALL;
+ }
+ }
+ }
+
+ /* Take the union */
+ cl->flags |= or_with->flags;
+ }
+}
+
+#define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
+#define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
+#define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
+#define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
+
+
+#ifdef DEBUGGING
+/*
+ dump_trie(trie,widecharmap,revcharmap)
+ dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
+ dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
+
+ These routines dump out a trie in a somewhat readable format.
+ The _interim_ variants are used for debugging the interim
+ tables that are used to generate the final compressed
+ representation which is what dump_trie expects.
+
+ Part of the reason for their existence is to provide a form
+ of documentation as to how the different representations function.
+
+*/
+
+/*
+ Dumps the final compressed table form of the trie to Perl_debug_log.
+ Used for debugging make_trie().
+*/
+
+STATIC void
+S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
+ AV *revcharmap, U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ U16 word;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE;
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
+ (int)depth * 2 + 2,"",
+ "Match","Base","Ofs" );
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
+ SV ** const tmp = av_fetch( revcharmap, state, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
+ (int)depth * 2 + 2,"");
+
+ for( state = 0 ; state < trie->uniquecharcount ; state++ )
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
+ PerlIO_printf( Perl_debug_log, "\n");
+
+ for( state = 1 ; state < trie->statecount ; state++ ) {
+ const U32 base = trie->states[ state ].trans.base;
+
+ PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
+
+ if ( trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%6s", "" );
+ }
+
+ PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
+
+ if ( base ) {
+ U32 ofs = 0;
+
+ while( ( base + ofs < trie->uniquecharcount ) ||
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans
+ && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
+ ofs++;
+
+ PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ PerlIO_printf( Perl_debug_log, "%*"UVXf,
+ colwidth,
+ (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
+ } else {
+ PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "]");
+
+ }
+ PerlIO_printf( Perl_debug_log, "\n" );
+ }
+ PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
+ for (word=1; word <= trie->wordcount; word++) {
+ PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
+ (int)word, (int)(trie->wordinfo[word].prev),
+ (int)(trie->wordinfo[word].len));
+ }
+ PerlIO_printf(Perl_debug_log, "\n" );
+}
+/*
+ Dumps a fully constructed but uncompressed trie in list form.
+ List tries normally only are used for construction when the number of
+ possible chars (trie->uniquecharcount) is very high.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
+
+ /* print out the table precompression. */
+ PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
+ (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
+ "------:-----+-----------------\n" );
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U16 charid;
+
+ PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
+ (int)depth * 2 + 2,"", (UV)state );
+ if ( ! trie->states[ state ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, "%5s| ","");
+ } else {
+ PerlIO_printf( Perl_debug_log, "W%4x| ",
+ trie->states[ state ].wordnum
+ );
+ }
+ for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ ) ,
+ TRIE_LIST_ITEM(state,charid).forid,
+ (UV)TRIE_LIST_ITEM(state,charid).newstate
+ );
+ if (!(charid % 10))
+ PerlIO_printf(Perl_debug_log, "\n%*s| ",
+ (int)((depth * 2) + 14), "");
+ }
+ }
+ PerlIO_printf( Perl_debug_log, "\n");
+ }
+}
+
+/*
+ Dumps a fully constructed but uncompressed trie in table form.
+ This is the normal DFA style state transition table, with a few
+ twists to facilitate compression later.
+ Used for debugging make_trie().
+*/
+STATIC void
+S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
+ HV *widecharmap, AV *revcharmap, U32 next_alloc,
+ U32 depth)
+{
+ U32 state;
+ U16 charid;
+ SV *sv=sv_newmortal();
+ int colwidth= widecharmap ? 6 : 4;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
+
+ /*
+ print out the table precompression so that we can do a visual check
+ that they are identical.
+ */
+
+ PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ SV ** const tmp = av_fetch( revcharmap, charid, 0);
+ if ( tmp ) {
+ PerlIO_printf( Perl_debug_log, "%*s",
+ colwidth,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ }
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
+
+ for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
+ PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
+ }
+
+ PerlIO_printf( Perl_debug_log, "\n" );
+
+ for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
+
+ PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
+ (int)depth * 2 + 2,"",
+ (UV)TRIE_NODENUM( state ) );
+
+ for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
+ UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
+ if (v)
+ PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
+ else
+ PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
+ }
+ if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
+ } else {
+ PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
+ trie->states[ TRIE_NODENUM( state ) ].wordnum );
+ }
+ }
+}
+
+#endif
+
+
+/* make_trie(startbranch,first,last,tail,word_count,flags,depth)
+ startbranch: the first branch in the whole branch sequence
+ first : start branch of sequence of branch-exact nodes.
+ May be the same as startbranch
+ last : Thing following the last branch.
+ May be the same as tail.
+ tail : item following the branch sequence
+ count : words in the sequence
+ flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
+ depth : indent depth
+
+Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
+
+A trie is an N'ary tree where the branches are determined by digital
+decomposition of the key. IE, at the root node you look up the 1st character and
+follow that branch repeat until you find the end of the branches. Nodes can be
+marked as "accepting" meaning they represent a complete word. Eg:
+
+ /he|she|his|hers/
+
+would convert into the following structure. Numbers represent states, letters
+following numbers represent valid transitions on the letter from that state, if
+the number is in square brackets it represents an accepting state, otherwise it
+will be in parenthesis.
+
+ +-h->+-e->[3]-+-r->(8)-+-s->[9]
+ | |
+ | (2)
+ | |
+ (1) +-i->(6)-+-s->[7]
+ |
+ +-s->(3)-+-h->(4)-+-e->[5]
+
+ Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
+
+This shows that when matching against the string 'hers' we will begin at state 1
+read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
+then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
+is also accepting. Thus we know that we can match both 'he' and 'hers' with a
+single traverse. We store a mapping from accepting to state to which word was
+matched, and then when we have multiple possibilities we try to complete the
+rest of the regex in the order in which they occured in the alternation.
+
+The only prior NFA like behaviour that would be changed by the TRIE support is
+the silent ignoring of duplicate alternations which are of the form:
+
+ / (DUPE|DUPE) X? (?{ ... }) Y /x
+
+Thus EVAL blocks following a trie may be called a different number of times with
+and without the optimisation. With the optimisations dupes will be silently
+ignored. This inconsistent behaviour of EVAL type nodes is well established as
+the following demonstrates:
+
+ 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
+
+which prints out 'word' three times, but
+
+ 'words'=~/(word|word|word)(?{ print $1 })S/
+
+which doesnt print it out at all. This is due to other optimisations kicking in.
+
+Example of what happens on a structural level:
+
+The regexp /(ac|ad|ab)+/ will produce the following debug output:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: BRANCH(8)
+ 6: EXACT <ac>(16)
+ 8: BRANCH(11)
+ 9: EXACT <ad>(16)
+ 11: BRANCH(14)
+ 12: EXACT <ab>(16)
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+This would be optimizable with startbranch=5, first=5, last=16, tail=16
+and should turn into:
+
+ 1: CURLYM[1] {1,32767}(18)
+ 5: TRIE(16)
+ [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
+ <ac>
+ <ad>
+ <ab>
+ 16: SUCCEED(0)
+ 17: NOTHING(18)
+ 18: END(0)
+
+Cases where tail != last would be like /(?foo|bar)baz/:
+
+ 1: BRANCH(4)
+ 2: EXACT <foo>(8)
+ 4: BRANCH(7)
+ 5: EXACT <bar>(8)
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+which would be optimizable with startbranch=1, first=1, last=7, tail=8
+and would end up looking like:
+
+ 1: TRIE(8)
+ [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
+ <foo>
+ <bar>
+ 7: TAIL(8)
+ 8: EXACT <baz>(10)
+ 10: END(0)
+
+ d = uvuni_to_utf8_flags(d, uv, 0);
+
+is the recommended Unicode-aware way of saying
+
+ *(d++) = uv;
+*/
+
+#define TRIE_STORE_REVCHAR(val) \
+ STMT_START { \
+ if (UTF) { \
+ SV *zlopp = newSV(7); /* XXX: optimize me */ \
+ unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
+ unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
+ SvCUR_set(zlopp, kapow - flrbbbbb); \
+ SvPOK_on(zlopp); \
+ SvUTF8_on(zlopp); \
+ av_push(revcharmap, zlopp); \
+ } else { \
+ char ooooff = (char)val; \
+ av_push(revcharmap, newSVpvn(&ooooff, 1)); \
+ } \
+ } STMT_END
+
+#define TRIE_READ_CHAR STMT_START { \
+ wordlen++; \
+ if ( UTF ) { \
+ /* if it is UTF then it is either already folded, or does not need folding */ \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
+ } \
+ else if (folder == PL_fold_latin1) { \
+ /* if we use this folder we have to obey unicode rules on latin-1 data */ \
+ if ( foldlen > 0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ scan += len; \
+ len = 0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP(uvc); \
+ foldlen -= skiplen; \
+ scan = foldbuf + skiplen; \
+ } \
+ } else { \
+ /* raw data, will be folded later if needed */ \
+ uvc = (U32)*uc; \
+ len = 1; \
+ } \
+} STMT_END
+
+
+
+#define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
+ if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
+ U32 ging = TRIE_LIST_LEN( state ) *= 2; \
+ Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
+ } \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
+ TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
+ TRIE_LIST_CUR( state )++; \
+} STMT_END
+
+#define TRIE_LIST_NEW(state) STMT_START { \
+ Newxz( trie->states[ state ].trans.list, \
+ 4, reg_trie_trans_le ); \
+ TRIE_LIST_CUR( state ) = 1; \
+ TRIE_LIST_LEN( state ) = 4; \
+} STMT_END
+
+#define TRIE_HANDLE_WORD(state) STMT_START { \
+ U16 dupe= trie->states[ state ].wordnum; \
+ regnode * const noper_next = regnext( noper ); \
+ \
+ DEBUG_r({ \
+ /* store the word for dumping */ \
+ SV* tmp; \
+ if (OP(noper) != NOTHING) \
+ tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
+ else \
+ tmp = newSVpvn_utf8( "", 0, UTF ); \
+ av_push( trie_words, tmp ); \
+ }); \
+ \
+ curword++; \
+ trie->wordinfo[curword].prev = 0; \
+ trie->wordinfo[curword].len = wordlen; \
+ trie->wordinfo[curword].accept = state; \
+ \
+ if ( noper_next < tail ) { \
+ if (!trie->jump) \
+ trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
+ trie->jump[curword] = (U16)(noper_next - convert); \
+ if (!jumper) \
+ jumper = noper_next; \
+ if (!nextbranch) \
+ nextbranch= regnext(cur); \
+ } \
+ \
+ if ( dupe ) { \
+ /* It's a dupe. Pre-insert into the wordinfo[].prev */\
+ /* chain, so that when the bits of chain are later */\
+ /* linked together, the dups appear in the chain */\
+ trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
+ trie->wordinfo[dupe].prev = curword; \
+ } else { \
+ /* we haven't inserted this word yet. */ \
+ trie->states[ state ].wordnum = curword; \
+ } \
+} STMT_END
+
+
+#define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
+ ( ( base + charid >= ucharcount \
+ && base + charid < ubound \
+ && state == trie->trans[ base - ucharcount + charid ].check \
+ && trie->trans[ base - ucharcount + charid ].next ) \
+ ? trie->trans[ base - ucharcount + charid ].next \
+ : ( state==1 ? special : 0 ) \
+ )
+
+#define MADE_TRIE 1
+#define MADE_JUMP_TRIE 2
+#define MADE_EXACT_TRIE 4
+
+STATIC I32
+S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
+{
+ dVAR;
+ /* first pass, loop through and scan words */
+ reg_trie_data *trie;
+ HV *widecharmap = NULL;
+ AV *revcharmap = newAV();
+ regnode *cur;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ STRLEN len = 0;
+ UV uvc = 0;
+ U16 curword = 0;
+ U32 next_alloc = 0;
+ regnode *jumper = NULL;
+ regnode *nextbranch = NULL;
+ regnode *convert = NULL;
+ U32 *prev_states; /* temp array mapping each state to previous one */
+ /* we just use folder as a flag in utf8 */
+ const U8 * folder = NULL;
+
+#ifdef DEBUGGING
+ const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
+ AV *trie_words = NULL;
+ /* along with revcharmap, this only used during construction but both are
+ * useful during debugging so we store them in the struct when debugging.
+ */
+#else
+ const U32 data_slot = add_data( pRExC_state, 2, "tu" );
+ STRLEN trie_charcount=0;
+#endif
+ SV *re_trie_maxbuff;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ switch (flags) {
+ case EXACT: break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folder = PL_fold_latin1; break;
+ case EXACTF: folder = PL_fold; break;
+ case EXACTFL: folder = PL_fold_locale; break;
+ default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
+ }
+
+ trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
+ trie->refcount = 1;
+ trie->startstate = 1;
+ trie->wordcount = word_count;
+ RExC_rxi->data->data[ data_slot ] = (void*)trie;
+ trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
+ if (flags == EXACT)
+ trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
+ trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
+ trie->wordcount+1, sizeof(reg_trie_wordinfo));
+
+ DEBUG_r({
+ trie_words = newAV();
+ });
+
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff)) {
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
+ (int)depth * 2 + 2, "",
+ REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
+ REG_NODE_NUM(last), REG_NODE_NUM(tail),
+ (int)depth);
+ });
+
+ /* Find the node we are going to overwrite */
+ if ( first == startbranch && OP( last ) != BRANCH ) {
+ /* whole branch chain */
+ convert = first;
+ } else {
+ /* branch sub-chain */
+ convert = NEXTOPER( first );
+ }
+
+ /* -- First loop and Setup --
+
+ We first traverse the branches and scan each word to determine if it
+ contains widechars, and how many unique chars there are, this is
+ important as we have to build a table with at least as many columns as we
+ have unique chars.
+
+ We use an array of integers to represent the character codes 0..255
+ (trie->charmap) and we use a an HV* to store Unicode characters. We use the
+ native representation of the character value as the key and IV's for the
+ coded index.
+
+ *TODO* If we keep track of how many times each character is used we can
+ remap the columns so that the table compression later on is more
+ efficient in terms of memory by ensuring the most common value is in the
+ middle and the least common are on the outside. IMO this would be better
+ than a most to least common mapping as theres a decent chance the most
+ common letter will share a node with the least common, meaning the node
+ will not be compressible. With a middle is most common approach the worst
+ case is when we have the least common nodes twice.
+
+ */
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ STRLEN foldlen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+ const U8 *scan = (U8*)NULL;
+ U32 wordlen = 0; /* required init */
+ STRLEN chars = 0;
+ bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
+
+ if (OP(noper) == NOTHING) {
+ trie->minlen= 0;
+ continue;
+ }
+ if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
+ TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
+ regardless of encoding */
+ if (OP( noper ) == EXACTFU_SS) {
+ /* false positives are ok, so just set this */
+ TRIE_BITMAP_SET(trie,0xDF);
+ }
+ }
+ for ( ; uc < e ; uc += len ) {
+ TRIE_CHARCOUNT(trie)++;
+ TRIE_READ_CHAR;
+ chars++;
+ if ( uvc < 256 ) {
+ if ( folder ) {
+ U8 folded= folder[ (U8) uvc ];
+ if ( !trie->charmap[ folded ] ) {
+ trie->charmap[ folded ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( folded );
+ }
+ }
+ if ( !trie->charmap[ uvc ] ) {
+ trie->charmap[ uvc ]=( ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR( uvc );
+ }
+ if ( set_bit ) {
+ /* store the codepoint in the bitmap, and its folded
+ * equivalent. */
+ TRIE_BITMAP_SET(trie, uvc);
+
+ /* store the folded codepoint */
+ if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
+
+ if ( !UTF ) {
+ /* store first byte of utf8 representation of
+ variant codepoints */
+ if (! UNI_IS_INVARIANT(uvc)) {
+ TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
+ }
+ }
+ set_bit = 0; /* We've done our bit :-) */
+ }
+ } else {
+ SV** svpp;
+ if ( !widecharmap )
+ widecharmap = newHV();
+
+ svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
+
+ if ( !svpp )
+ Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
+
+ if ( !SvTRUE( *svpp ) ) {
+ sv_setiv( *svpp, ++trie->uniquecharcount );
+ TRIE_STORE_REVCHAR(uvc);
+ }
+ }
+ }
+ if( cur == first ) {
+ trie->minlen = chars;
+ trie->maxlen = chars;
+ } else if (chars < trie->minlen) {
+ trie->minlen = chars;
+ } else if (chars > trie->maxlen) {
+ trie->maxlen = chars;
+ }
+ if (OP( noper ) == EXACTFU_SS) {
+ /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
+ if (trie->minlen > 1)
+ trie->minlen= 1;
+ }
+ if (OP( noper ) == EXACTFU_TRICKYFOLD) {
+ /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
+ * - We assume that any such sequence might match a 2 byte string */
+ if (trie->minlen > 2 )
+ trie->minlen= 2;
+ }
+
+ } /* end first pass */
+ DEBUG_TRIE_COMPILE_r(
+ PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
+ (int)depth * 2 + 2,"",
+ ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
+ (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
+ (int)trie->minlen, (int)trie->maxlen )
+ );
+
+ /*
+ We now know what we are dealing with in terms of unique chars and
+ string sizes so we can calculate how much memory a naive
+ representation using a flat table will take. If it's over a reasonable
+ limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
+ conservative but potentially much slower representation using an array
+ of lists.
+
+ At the end we convert both representations into the same compressed
+ form that will be used in regexec.c for matching with. The latter
+ is a form that cannot be used to construct with but has memory
+ properties similar to the list form and access properties similar
+ to the table form making it both suitable for fast searches and
+ small enough that its feasable to store for the duration of a program.
+
+ See the comment in the code where the compressed table is produced
+ inplace from the flat tabe representation for an explanation of how
+ the compression works.
+
+ */
+
+
+ Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
+ prev_states[1] = 0;
+
+ if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
+ /*
+ Second Pass -- Array Of Lists Representation
+
+ Each state will be represented by a list of charid:state records
+ (reg_trie_trans_le) the first such element holds the CUR and LEN
+ points of the allocated array. (See defines above).
+
+ We build the initial structure using the lists, and then convert
+ it into the compressed table form which allows faster lookups
+ (but cant be modified once converted).
+ */
+
+ STRLEN transcount = 1;
+
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using list compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ TRIE_LIST_NEW(1);
+ next_alloc = 2;
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+ U32 state = 1; /* required init */
+ U16 charid = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ STRLEN skiplen = 0;
+
+ if (OP(noper) != NOTHING) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ if ( !svpp ) {
+ charid = 0;
+ } else {
+ charid=(U16)SvIV( *svpp );
+ }
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ if ( charid ) {
+
+ U16 check;
+ U32 newstate = 0;
+
+ charid--;
+ if ( !trie->states[ state ].trans.list ) {
+ TRIE_LIST_NEW( state );
+ }
+ for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
+ if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
+ newstate = TRIE_LIST_ITEM( state, check ).newstate;
+ break;
+ }
+ }
+ if ( ! newstate ) {
+ newstate = next_alloc++;
+ prev_states[newstate] = state;
+ TRIE_LIST_PUSH( state, charid, newstate );
+ transcount++;
+ }
+ state = newstate;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ }
+ }
+ TRIE_HANDLE_WORD(state);
+
+ } /* end second pass */
+
+ /* next alloc is the NEXT state to be allocated */
+ trie->statecount = next_alloc;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states,
+ next_alloc
+ * sizeof(reg_trie_state) );
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
+ revcharmap, next_alloc,
+ depth+1)
+ );
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
+ {
+ U32 state;
+ U32 tp = 0;
+ U32 zp = 0;
+
+
+ for( state=1 ; state < next_alloc ; state ++ ) {
+ U32 base=0;
+
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
+ );
+ */
+
+ if (trie->states[state].trans.list) {
+ U16 minid=TRIE_LIST_ITEM( state, 1).forid;
+ U16 maxid=minid;
+ U16 idx;
+
+ for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
+ if ( forid < minid ) {
+ minid=forid;
+ } else if ( forid > maxid ) {
+ maxid=forid;
+ }
+ }
+ if ( transcount < tp + maxid - minid + 1) {
+ transcount *= 2;
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans,
+ transcount
+ * sizeof(reg_trie_trans) );
+ Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
+ }
+ base = trie->uniquecharcount + tp - minid;
+ if ( maxid == minid ) {
+ U32 set = 0;
+ for ( ; zp < tp ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ base = trie->uniquecharcount + zp - minid;
+ trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ zp ].check = state;
+ set = 1;
+ break;
+ }
+ }
+ if ( !set ) {
+ trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
+ trie->trans[ tp ].check = state;
+ tp++;
+ zp = tp;
+ }
+ } else {
+ for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
+ const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
+ trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
+ trie->trans[ tid ].check = state;
+ }
+ tp += ( maxid - minid + 1 );
+ }
+ Safefree(trie->states[ state ].trans.list);
+ }
+ /*
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log, " base: %d\n",base);
+ );
+ */
+ trie->states[ state ].trans.base=base;
+ }
+ trie->lasttrans = tp + 1;
+ }
+ } else {
+ /*
+ Second Pass -- Flat Table Representation.
+
+ we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
+ We know that we will need Charcount+1 trans at most to store the data
+ (one row per char at worst case) So we preallocate both structures
+ assuming worst case.
+
+ We then construct the trie using only the .next slots of the entry
+ structs.
+
+ We use the .check field of the first entry of the node temporarily to
+ make compression both faster and easier by keeping track of how many non
+ zero fields are in the node.
+
+ Since trans are numbered from 1 any 0 pointer in the table is a FAIL
+ transition.
+
+ There are two terms at use here: state as a TRIE_NODEIDX() which is a
+ number representing the first entry of the node, and state as a
+ TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
+ TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
+ are 2 entrys per node. eg:
+
+ A B A B
+ 1. 2 4 1. 3 7
+ 2. 0 3 3. 0 5
+ 3. 0 0 5. 0 0
+ 4. 0 0 7. 0 0
+
+ The table is internally in the right hand, idx form. However as we also
+ have to deal with the states array which is indexed by nodenum we have to
+ use TRIE_NODENUM() to convert.
+
+ */
+ DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
+ "%*sCompiling trie using table compiler\n",
+ (int)depth * 2 + 2, ""));
+
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
+ * trie->uniquecharcount + 1,
+ sizeof(reg_trie_trans) );
+ trie->states = (reg_trie_state *)
+ PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
+ sizeof(reg_trie_state) );
+ next_alloc = trie->uniquecharcount + 1;
+
+
+ for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
+
+ regnode * const noper = NEXTOPER( cur );
+ const U8 *uc = (U8*)STRING( noper );
+ const U8 * const e = uc + STR_LEN( noper );
+
+ U32 state = 1; /* required init */
+
+ U16 charid = 0; /* sanity init */
+ U32 accept_state = 0; /* sanity init */
+ U8 *scan = (U8*)NULL; /* sanity init */
+
+ STRLEN foldlen = 0; /* required init */
+ U32 wordlen = 0; /* required init */
+ STRLEN skiplen = 0;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+
+
+ if ( OP(noper) != NOTHING ) {
+ for ( ; uc < e ; uc += len ) {
+
+ TRIE_READ_CHAR;
+
+ if ( uvc < 256 ) {
+ charid = trie->charmap[ uvc ];
+ } else {
+ SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
+ charid = svpp ? (U16)SvIV(*svpp) : 0;
+ }
+ if ( charid ) {
+ charid--;
+ if ( !trie->trans[ state + charid ].next ) {
+ trie->trans[ state + charid ].next = next_alloc;
+ trie->trans[ state ].check++;
+ prev_states[TRIE_NODENUM(next_alloc)]
+ = TRIE_NODENUM(state);
+ next_alloc += trie->uniquecharcount;
+ }
+ state = trie->trans[ state + charid ].next;
+ } else {
+ Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
+ }
+ /* charid is now 0 if we dont know the char read, or nonzero if we do */
+ }
+ }
+ accept_state = TRIE_NODENUM( state );
+ TRIE_HANDLE_WORD(accept_state);
+
+ } /* end second pass */
+
+ /* and now dump it out before we compress it */
+ DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
+ revcharmap,
+ next_alloc, depth+1));
+
+ {
+ /*
+ * Inplace compress the table.*
+
+ For sparse data sets the table constructed by the trie algorithm will
+ be mostly 0/FAIL transitions or to put it another way mostly empty.
+ (Note that leaf nodes will not contain any transitions.)
+
+ This algorithm compresses the tables by eliminating most such
+ transitions, at the cost of a modest bit of extra work during lookup:
+
+ - Each states[] entry contains a .base field which indicates the
+ index in the state[] array wheres its transition data is stored.
+
+ - If .base is 0 there are no valid transitions from that node.
+
+ - If .base is nonzero then charid is added to it to find an entry in
+ the trans array.
+
+ -If trans[states[state].base+charid].check!=state then the
+ transition is taken to be a 0/Fail transition. Thus if there are fail
+ transitions at the front of the node then the .base offset will point
+ somewhere inside the previous nodes data (or maybe even into a node
+ even earlier), but the .check field determines if the transition is
+ valid.
+
+ XXX - wrong maybe?
+ The following process inplace converts the table to the compressed
+ table: We first do not compress the root node 1,and mark all its
+ .check pointers as 1 and set its .base pointer as 1 as well. This
+ allows us to do a DFA construction from the compressed table later,
+ and ensures that any .base pointers we calculate later are greater
+ than 0.
+
+ - We set 'pos' to indicate the first entry of the second node.
+
+ - We then iterate over the columns of the node, finding the first and
+ last used entry at l and m. We then copy l..m into pos..(pos+m-l),
+ and set the .check pointers accordingly, and advance pos
+ appropriately and repreat for the next node. Note that when we copy
+ the next pointers we have to convert them from the original
+ NODEIDX form to NODENUM form as the former is not valid post
+ compression.
+
+ - If a node has no transitions used we mark its base as 0 and do not
+ advance the pos pointer.
+
+ - If a node only has one transition we use a second pointer into the
+ structure to fill in allocated fail transitions from other states.
+ This pointer is independent of the main pointer and scans forward
+ looking for null transitions that are allocated to a state. When it
+ finds one it writes the single transition into the "hole". If the
+ pointer doesnt find one the single transition is appended as normal.
+
+ - Once compressed we can Renew/realloc the structures to release the
+ excess space.
+
+ See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
+ specifically Fig 3.47 and the associated pseudocode.
+
+ demq
+ */
+ const U32 laststate = TRIE_NODENUM( next_alloc );
+ U32 state, charid;
+ U32 pos = 0, zp=0;
+ trie->statecount = laststate;
+
+ for ( state = 1 ; state < laststate ; state++ ) {
+ U8 flag = 0;
+ const U32 stateidx = TRIE_NODEIDX( state );
+ const U32 o_used = trie->trans[ stateidx ].check;
+ U32 used = trie->trans[ stateidx ].check;
+ trie->trans[ stateidx ].check = 0;
+
+ for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
+ if ( flag || trie->trans[ stateidx + charid ].next ) {
+ if ( trie->trans[ stateidx + charid ].next ) {
+ if (o_used == 1) {
+ for ( ; zp < pos ; zp++ ) {
+ if ( ! trie->trans[ zp ].next ) {
+ break;
+ }
+ }
+ trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
+ trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ zp ].check = state;
+ if ( ++zp > pos ) pos = zp;
+ break;
+ }
+ used--;
+ }
+ if ( !flag ) {
+ flag = 1;
+ trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
+ }
+ trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
+ trie->trans[ pos ].check = state;
+ pos++;
+ }
+ }
+ }
+ trie->lasttrans = pos + 1;
+ trie->states = (reg_trie_state *)
+ PerlMemShared_realloc( trie->states, laststate
+ * sizeof(reg_trie_state) );
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
+ (int)depth * 2 + 2,"",
+ (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
+ (IV)next_alloc,
+ (IV)pos,
+ ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
+ );
+
+ } /* end table compress */
+ }
+ DEBUG_TRIE_COMPILE_MORE_r(
+ PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)trie->statecount,
+ (UV)trie->lasttrans)
+ );
+ /* resize the trans array to remove unused space */
+ trie->trans = (reg_trie_trans *)
+ PerlMemShared_realloc( trie->trans, trie->lasttrans
+ * sizeof(reg_trie_trans) );
+
+ { /* Modify the program and insert the new TRIE node */
+ U8 nodetype =(U8)(flags & 0xFF);
+ char *str=NULL;
+
+#ifdef DEBUGGING
+ regnode *optimize = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+
+ U32 mjd_offset = 0;
+ U32 mjd_nodelen = 0;
+#endif /* RE_TRACK_PATTERN_OFFSETS */
+#endif /* DEBUGGING */
+ /*
+ This means we convert either the first branch or the first Exact,
+ depending on whether the thing following (in 'last') is a branch
+ or not and whther first is the startbranch (ie is it a sub part of
+ the alternation or is it the whole thing.)
+ Assuming its a sub part we convert the EXACT otherwise we convert
+ the whole branch sequence, including the first.
+ */
+ /* Find the node we are going to overwrite */
+ if ( first != startbranch || OP( last ) == BRANCH ) {
+ /* branch sub-chain */
+ NEXT_OFF( first ) = (U16)(last - first);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_r({
+ mjd_offset= Node_Offset((convert));
+ mjd_nodelen= Node_Length((convert));
+ });
+#endif
+ /* whole branch chain */
+ }
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ else {
+ DEBUG_r({
+ const regnode *nop = NEXTOPER( convert );
+ mjd_offset= Node_Offset((nop));
+ mjd_nodelen= Node_Length((nop));
+ });
+ }
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
+ (int)depth * 2 + 2, "",
+ (UV)mjd_offset, (UV)mjd_nodelen)
+ );
+#endif
+ /* But first we check to see if there is a common prefix we can
+ split out as an EXACT and put in front of the TRIE node. */
+ trie->startstate= 1;
+ if ( trie->bitmap && !widecharmap && !trie->jump ) {
+ U32 state;
+ for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
+ U32 ofs = 0;
+ I32 idx = -1;
+ U32 count = 0;
+ const U32 base = trie->states[ state ].trans.base;
+
+ if ( trie->states[state].wordnum )
+ count = 1;
+
+ for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
+ if ( ( base + ofs >= trie->uniquecharcount ) &&
+ ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
+ trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
+ {
+ if ( ++count > 1 ) {
+ SV **tmp = av_fetch( revcharmap, ofs, 0);
+ const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
+ if ( state == 1 ) break;
+ if ( count == 2 ) {
+ Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*sNew Start State=%"UVuf" Class: [",
+ (int)depth * 2 + 2, "",
+ (UV)state));
+ if (idx >= 0) {
+ SV ** const tmp = av_fetch( revcharmap, idx, 0);
+ const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
+
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie, folder[ *ch ]);
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
+ );
+ }
+ }
+ TRIE_BITMAP_SET(trie,*ch);
+ if ( folder )
+ TRIE_BITMAP_SET(trie,folder[ *ch ]);
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
+ }
+ idx = ofs;
+ }
+ }
+ if ( count == 1 ) {
+ SV **tmp = av_fetch( revcharmap, idx, 0);
+ STRLEN len;
+ char *ch = SvPV( *tmp, len );
+ DEBUG_OPTIMISE_r({
+ SV *sv=sv_newmortal();
+ PerlIO_printf( Perl_debug_log,
+ "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
+ (int)depth * 2 + 2, "",
+ (UV)state, (UV)idx,
+ pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_ESCAPE_FIRSTCHAR
+ )
+ );
+ });
+ if ( state==1 ) {
+ OP( convert ) = nodetype;
+ str=STRING(convert);
+ STR_LEN(convert)=0;
+ }
+ STR_LEN(convert) += len;
+ while (len--)
+ *str++ = *ch++;
+ } else {
+#ifdef DEBUGGING
+ if (state>1)
+ DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
+#endif
+ break;
+ }
+ }
+ trie->prefixlen = (state-1);
+ if (str) {
+ regnode *n = convert+NODE_SZ_STR(convert);
+ NEXT_OFF(convert) = NODE_SZ_STR(convert);
+ trie->startstate = state;
+ trie->minlen -= (state - 1);
+ trie->maxlen -= (state - 1);
+#ifdef DEBUGGING
+ /* At least the UNICOS C compiler choked on this
+ * being argument to DEBUG_r(), so let's just have
+ * it right here. */
+ if (
+#ifdef PERL_EXT_RE_BUILD
+ 1
+#else
+ DEBUG_r_TEST
+#endif
+ ) {
+ regnode *fix = convert;
+ U32 word = trie->wordcount;
+ mjd_nodelen++;
+ Set_Node_Offset_Length(convert, mjd_offset, state - 1);
+ while( ++fix < n ) {
+ Set_Node_Offset_Length(fix, 0, 0);
+ }
+ while (word--) {
+ SV ** const tmp = av_fetch( trie_words, word, 0 );
+ if (tmp) {
+ if ( STR_LEN(convert) <= SvCUR(*tmp) )
+ sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
+ else
+ sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
+ }
+ }
+ }
+#endif
+ if (trie->maxlen) {
+ convert = n;
+ } else {
+ NEXT_OFF(convert) = (U16)(tail - convert);
+ DEBUG_r(optimize= n);
+ }
+ }
+ }
+ if (!jumper)
+ jumper = last;
+ if ( trie->maxlen ) {
+ NEXT_OFF( convert ) = (U16)(tail - convert);
+ ARG_SET( convert, data_slot );
+ /* Store the offset to the first unabsorbed branch in
+ jump[0], which is otherwise unused by the jump logic.
+ We use this when dumping a trie and during optimisation. */
+ if (trie->jump)
+ trie->jump[0] = (U16)(nextbranch - convert);
+
+ /* If the start state is not accepting (meaning there is no empty string/NOTHING)
+ * and there is a bitmap
+ * and the first "jump target" node we found leaves enough room
+ * then convert the TRIE node into a TRIEC node, with the bitmap
+ * embedded inline in the opcode - this is hypothetically faster.
+ */
+ if ( !trie->states[trie->startstate].wordnum
+ && trie->bitmap
+ && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
+ {
+ OP( convert ) = TRIEC;
+ Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
+ PerlMemShared_free(trie->bitmap);
+ trie->bitmap= NULL;
+ } else
+ OP( convert ) = TRIE;
+
+ /* store the type in the flags */
+ convert->flags = nodetype;
+ DEBUG_r({
+ optimize = convert
+ + NODE_STEP_REGNODE
+ + regarglen[ OP( convert ) ];
+ });
+ /* XXX We really should free up the resource in trie now,
+ as we won't use them - (which resources?) dmq */
+ }
+ /* needed for dumping*/
+ DEBUG_r(if (optimize) {
+ regnode *opt = convert;
+
+ while ( ++opt < optimize) {
+ Set_Node_Offset_Length(opt,0,0);
+ }
+ /*
+ Try to clean up some of the debris left after the
+ optimisation.
+ */
+ while( optimize < jumper ) {
+ mjd_nodelen += Node_Length((optimize));
+ OP( optimize ) = OPTIMIZED;
+ Set_Node_Offset_Length(optimize,0,0);
+ optimize++;
+ }
+ Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
+ });
+ } /* end node insert */
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
+
+ /* Finish populating the prev field of the wordinfo array. Walk back
+ * from each accept state until we find another accept state, and if
+ * so, point the first word's .prev field at the second word. If the
+ * second already has a .prev field set, stop now. This will be the
+ * case either if we've already processed that word's accept state,
+ * or that state had multiple words, and the overspill words were
+ * already linked up earlier.
+ */
+ {
+ U16 word;
+ U32 state;
+ U16 prev;
+
+ for (word=1; word <= trie->wordcount; word++) {
+ prev = 0;
+ if (trie->wordinfo[word].prev)
+ continue;
+ state = trie->wordinfo[word].accept;
+ while (state) {
+ state = prev_states[state];
+ if (!state)
+ break;
+ prev = trie->states[state].wordnum;
+ if (prev)
+ break;
+ }
+ trie->wordinfo[word].prev = prev;
+ }
+ Safefree(prev_states);
+ }
+
+
+ /* and now dump out the compressed format */
+ DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
+
+ RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
+#ifdef DEBUGGING
+ RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
+ RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
+#else
+ SvREFCNT_dec(revcharmap);
+#endif
+ return trie->jump
+ ? MADE_JUMP_TRIE
+ : trie->startstate>1
+ ? MADE_EXACT_TRIE
+ : MADE_TRIE;
+}
+
+STATIC void
+S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
+{
+/* The Trie is constructed and compressed now so we can build a fail array if it's needed
+
+ This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
+ "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
+ ISBN 0-201-10088-6
+
+ We find the fail state for each state in the trie, this state is the longest proper
+ suffix of the current state's 'word' that is also a proper prefix of another word in our
+ trie. State 1 represents the word '' and is thus the default fail state. This allows
+ the DFA not to have to restart after its tried and failed a word at a given point, it
+ simply continues as though it had been matching the other word in the first place.
+ Consider
+ 'abcdgu'=~/abcdefg|cdgu/
+ When we get to 'd' we are still matching the first word, we would encounter 'g' which would
+ fail, which would bring us to the state representing 'd' in the second word where we would
+ try 'g' and succeed, proceeding to match 'cdgu'.
+ */
+ /* add a fail transition */
+ const U32 trie_offset = ARG(source);
+ reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
+ U32 *q;
+ const U32 ucharcount = trie->uniquecharcount;
+ const U32 numstates = trie->statecount;
+ const U32 ubound = trie->lasttrans + ucharcount;
+ U32 q_read = 0;
+ U32 q_write = 0;
+ U32 charid;
+ U32 base = trie->states[ 1 ].trans.base;
+ U32 *fail;
+ reg_ac_data *aho;
+ const U32 data_slot = add_data( pRExC_state, 1, "T" );
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+
+ ARG_SET( stclass, data_slot );
+ aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
+ RExC_rxi->data->data[ data_slot ] = (void*)aho;
+ aho->trie=trie_offset;
+ aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
+ Copy( trie->states, aho->states, numstates, reg_trie_state );
+ Newxz( q, numstates, U32);
+ aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
+ aho->refcount = 1;
+ fail = aho->fail;
+ /* initialize fail[0..1] to be 1 so that we always have
+ a valid final fail state */
+ fail[ 0 ] = fail[ 1 ] = 1;
+
+ for ( charid = 0; charid < ucharcount ; charid++ ) {
+ const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
+ if ( newstate ) {
+ q[ q_write ] = newstate;
+ /* set to point at the root */
+ fail[ q[ q_write++ ] ]=1;
+ }
+ }
+ while ( q_read < q_write) {
+ const U32 cur = q[ q_read++ % numstates ];
+ base = trie->states[ cur ].trans.base;
+
+ for ( charid = 0 ; charid < ucharcount ; charid++ ) {
+ const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
+ if (ch_state) {
+ U32 fail_state = cur;
+ U32 fail_base;
+ do {
+ fail_state = fail[ fail_state ];
+ fail_base = aho->states[ fail_state ].trans.base;
+ } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
+
+ fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
+ fail[ ch_state ] = fail_state;
+ if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
+ {
+ aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
+ }
+ q[ q_write++ % numstates] = ch_state;
+ }
+ }
+ }
+ /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
+ when we fail in state 1, this allows us to use the
+ charclass scan to find a valid start char. This is based on the principle
+ that theres a good chance the string being searched contains lots of stuff
+ that cant be a start char.
+ */
+ fail[ 0 ] = fail[ 1 ] = 0;
+ DEBUG_TRIE_COMPILE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*sStclass Failtable (%"UVuf" states): 0",
+ (int)(depth * 2), "", (UV)numstates
+ );
+ for( q_read=1; q_read<numstates; q_read++ ) {
+ PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+ Safefree(q);
+ /*RExC_seen |= REG_SEEN_TRIEDFA;*/
+}
+
+
+/*
+ * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
+ * These need to be revisited when a newer toolchain becomes available.
+ */
+#if defined(__sparc64__) && defined(__GNUC__)
+# if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
+# undef SPARC64_GCC_WORKAROUND
+# define SPARC64_GCC_WORKAROUND 1
+# endif
+#endif
+
+#define DEBUG_PEEP(str,scan,depth) \
+ DEBUG_OPTIMISE_r({if (scan){ \
+ SV * const mysv=sv_newmortal(); \
+ regnode *Next = regnext(scan); \
+ regprop(RExC_rx, mysv, scan); \
+ PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
+ (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
+ Next ? (REG_NODE_NUM(Next)) : 0 ); \
+ }});
+
+
+/* The below joins as many adjacent EXACTish nodes as possible into a single
+ * one, and looks for problematic sequences of characters whose folds vs.
+ * non-folds have sufficiently different lengths, that the optimizer would be
+ * fooled into rejecting legitimate matches of them, and the trie construction
+ * code can't cope with them. The joining is only done if:
+ * 1) there is room in the current conglomerated node to entirely contain the
+ * next one.
+ * 2) they are the exact same node type
+ *
+ * The adjacent nodes actually may be separated by NOTHING kind nodes, and
+ * these get optimized out
+ *
+ * If there are problematic code sequences, *min_subtract is set to the delta
+ * that the minimum size of the node can be less than its actual size. And,
+ * the node type of the result is changed to reflect that it contains these
+ * sequences.
+ *
+ * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
+ * and contains LATIN SMALL LETTER SHARP S
+ *
+ * This is as good a place as any to discuss the design of handling these
+ * problematic sequences. It's been wrong in Perl for a very long time. There
+ * are three code points in Unicode whose folded lengths differ so much from
+ * the un-folded lengths that it causes problems for the optimizer and trie
+ * construction. Why only these are problematic, and not others where lengths
+ * also differ is something I (khw) do not understand. New versions of Unicode
+ * might add more such code points. Hopefully the logic in fold_grind.t that
+ * figures out what to test (in part by verifying that each size-combination
+ * gets tested) will catch any that do come along, so they can be added to the
+ * special handling below. The chances of new ones are actually rather small,
+ * as most, if not all, of the world's scripts that have casefolding have
+ * already been encoded by Unicode. Also, a number of Unicode's decisions were
+ * made to allow compatibility with pre-existing standards, and almost all of
+ * those have already been dealt with. These would otherwise be the most
+ * likely candidates for generating further tricky sequences. In other words,
+ * Unicode by itself is unlikely to add new ones unless it is for compatibility
+ * with pre-existing standards, and there aren't many of those left.
+ *
+ * The previous designs for dealing with these involved assigning a special
+ * node for them. This approach doesn't work, as evidenced by this example:
+ * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
+ * Both these fold to "sss", but if the pattern is parsed to create a node of
+ * that would match just the \xDF, it won't be able to handle the case where a
+ * successful match would have to cross the node's boundary. The new approach
+ * that hopefully generally solves the problem generates an EXACTFU_SS node
+ * that is "sss".
+ *
+ * There are a number of components to the approach (a lot of work for just
+ * three code points!):
+ * 1) This routine examines each EXACTFish node that could contain the
+ * problematic sequences. It returns in *min_subtract how much to
+ * subtract from the the actual length of the string to get a real minimum
+ * for one that could match it. This number is usually 0 except for the
+ * problematic sequences. This delta is used by the caller to adjust the
+ * min length of the match, and the delta between min and max, so that the
+ * optimizer doesn't reject these possibilities based on size constraints.
+ * 2) These sequences are not currently correctly handled by the trie code
+ * either, so it changes the joined node type to ops that are not handled
+ * by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
+ * 3) This is sufficient for the two Greek sequences (described below), but
+ * the one involving the Sharp s (\xDF) needs more. The node type
+ * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
+ * sequence in it. For non-UTF-8 patterns and strings, this is the only
+ * case where there is a possible fold length change. That means that a
+ * regular EXACTFU node without UTF-8 involvement doesn't have to concern
+ * itself with length changes, and so can be processed faster. regexec.c
+ * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
+ * is pre-folded by regcomp.c. This saves effort in regex matching.
+ * However, probably mostly for historical reasons, the pre-folding isn't
+ * done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
+ * nodes, as what they fold to isn't known until runtime.) The fold
+ * possibilities for the non-UTF8 patterns are quite simple, except for
+ * the sharp s. All the ones that don't involve a UTF-8 target string
+ * are members of a fold-pair, and arrays are set up for all of them
+ * that quickly find the other member of the pair. It might actually
+ * be faster to pre-fold these, but it isn't currently done, except for
+ * the sharp s. Code elsewhere in this file makes sure that it gets
+ * folded to 'ss', even if the pattern isn't UTF-8. This avoids the
+ * issues described in the next item.
+ * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
+ * 'ss' or not is not knowable at compile time. It will match iff the
+ * target string is in UTF-8, unlike the EXACTFU nodes, where it always
+ * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
+ * it can't be folded to "ss" at compile time, unlike EXACTFU does as
+ * described in item 3). An assumption that the optimizer part of
+ * regexec.c (probably unwittingly) makes is that a character in the
+ * pattern corresponds to at most a single character in the target string.
+ * (And I do mean character, and not byte here, unlike other parts of the
+ * documentation that have never been updated to account for multibyte
+ * Unicode.) This assumption is wrong only in this case, as all other
+ * cases are either 1-1 folds when no UTF-8 is involved; or is true by
+ * virtue of having this file pre-fold UTF-8 patterns. I'm
+ * reluctant to try to change this assumption, so instead the code punts.
+ * This routine examines EXACTF nodes for the sharp s, and returns a
+ * boolean indicating whether or not the node is an EXACTF node that
+ * contains a sharp s. When it is true, the caller sets a flag that later
+ * causes the optimizer in this file to not set values for the floating
+ * and fixed string lengths, and thus avoids the optimizer code in
+ * regexec.c that makes the invalid assumption. Thus, there is no
+ * optimization based on string lengths for EXACTF nodes that contain the
+ * sharp s. This only happens for /id rules (which means the pattern
+ * isn't in UTF-8).
+ */
+
+#define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
+ if (PL_regkind[OP(scan)] == EXACT) \
+ join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
+
+STATIC U32
+S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
+ /* Merge several consecutive EXACTish nodes into one. */
+ regnode *n = regnext(scan);
+ U32 stringok = 1;
+ regnode *next = scan + NODE_SZ_STR(scan);
+ U32 merged = 0;
+ U32 stopnow = 0;
+#ifdef DEBUGGING
+ regnode *stop = scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+#else
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_JOIN_EXACT;
+#ifndef EXPERIMENTAL_INPLACESCAN
+ PERL_UNUSED_ARG(flags);
+ PERL_UNUSED_ARG(val);
+#endif
+ DEBUG_PEEP("join",scan,depth);
+
+ /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
+ * EXACT ones that are mergeable to the current one. */
+ while (n
+ && (PL_regkind[OP(n)] == NOTHING
+ || (stringok && OP(n) == OP(scan)))
+ && NEXT_OFF(n)
+ && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
+ {
+
+ if (OP(n) == TAIL || n > next)
+ stringok = 0;
+ if (PL_regkind[OP(n)] == NOTHING) {
+ DEBUG_PEEP("skip:",n,depth);
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ next = n + NODE_STEP_REGNODE;
+#ifdef DEBUGGING
+ if (stringok)
+ stop = n;
+#endif
+ n = regnext(n);
+ }
+ else if (stringok) {
+ const unsigned int oldl = STR_LEN(scan);
+ regnode * const nnext = regnext(n);
+
+ if (oldl + STR_LEN(n) > U8_MAX)
+ break;
+
+ DEBUG_PEEP("merg",n,depth);
+ merged++;
+
+ NEXT_OFF(scan) += NEXT_OFF(n);
+ STR_LEN(scan) += STR_LEN(n);
+ next = n + NODE_SZ_STR(n);
+ /* Now we can overwrite *n : */
+ Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
+#ifdef DEBUGGING
+ stop = next - 1;
+#endif
+ n = nnext;
+ if (stopnow) break;
+ }
+
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (flags && !NEXT_OFF(n)) {
+ DEBUG_PEEP("atch", val, depth);
+ if (reg_off_by_arg[OP(n)]) {
+ ARG_SET(n, val - n);
+ }
+ else {
+ NEXT_OFF(n) = val - n;
+ }
+ stopnow = 1;
+ }
+#endif
+ }
+
+ *min_subtract = 0;
+ *has_exactf_sharp_s = FALSE;
+
+ /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
+ * can now analyze for sequences of problematic code points. (Prior to
+ * this final joining, sequences could have been split over boundaries, and
+ * hence missed). The sequences only happen in folding, hence for any
+ * non-EXACT EXACTish node */
+ if (OP(scan) != EXACT) {
+ U8 *s;
+ U8 * s0 = (U8*) STRING(scan);
+ U8 * const s_end = s0 + STR_LEN(scan);
+
+ /* The below is perhaps overboard, but this allows us to save a test
+ * each time through the loop at the expense of a mask. This is
+ * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
+ * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
+ * This uses an exclusive 'or' to find that bit and then inverts it to
+ * form a mask, with just a single 0, in the bit position where 'S' and
+ * 's' differ. */
+ const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
+ const U8 s_masked = 's' & S_or_s_mask;
+
+ /* One pass is made over the node's string looking for all the
+ * possibilities. to avoid some tests in the loop, there are two main
+ * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
+ * non-UTF-8 */
+ if (UTF) {
+
+ /* There are two problematic Greek code points in Unicode
+ * casefolding
+ *
+ * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
+ * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
+ *
+ * which casefold to
+ *
+ * Unicode UTF-8
+ *
+ * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
+ * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
+ *
+ * This means that in case-insensitive matching (or "loose
+ * matching", as Unicode calls it), an EXACTF of length six (the
+ * UTF-8 encoded byte length of the above casefolded versions) can
+ * match a target string of length two (the byte length of UTF-8
+ * encoded U+0390 or U+03B0). This would rather mess up the
+ * minimum length computation. (there are other code points that
+ * also fold to these two sequences, but the delta is smaller)
+ *
+ * If these sequences are found, the minimum length is decreased by
+ * four (six minus two).
+ *
+ * Similarly, 'ss' may match the single char and byte LATIN SMALL
+ * LETTER SHARP S. We decrease the min length by 1 for each
+ * occurrence of 'ss' found */
+
+#ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
+# define U390_first_byte 0xb4
+ const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
+# define U3B0_first_byte 0xb5
+ const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
+#else
+# define U390_first_byte 0xce
+ const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
+# define U3B0_first_byte 0xcf
+ const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
+#endif
+ const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
+ yields a net of 0 */
+ /* Examine the string for one of the problematic sequences */
+ for (s = s0;
+ s < s_end - 1; /* Can stop 1 before the end, as minimum length
+ * sequence we are looking for is 2 */
+ s += UTF8SKIP(s))
+ {
+
+ /* Look for the first byte in each problematic sequence */
+ switch (*s) {
+ /* We don't have to worry about other things that fold to
+ * 's' (such as the long s, U+017F), as all above-latin1
+ * code points have been pre-folded */
+ case 's':
+ case 'S':
+
+ /* Current character is an 's' or 'S'. If next one is
+ * as well, we have the dreaded sequence */
+ if (((*(s+1) & S_or_s_mask) == s_masked)
+ /* These two node types don't have special handling
+ * for 'ss' */
+ && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
+ {
+ *min_subtract += 1;
+ OP(scan) = EXACTFU_SS;
+ s++; /* No need to look at this character again */
+ }
+ break;
+
+ case U390_first_byte:
+ if (s_end - s >= len
+
+ /* The 1's are because are skipping comparing the
+ * first byte */
+ && memEQ(s + 1, U390_tail, len - 1))
+ {
+ goto greek_sequence;
+ }
+ break;
+
+ case U3B0_first_byte:
+ if (! (s_end - s >= len
+ && memEQ(s + 1, U3B0_tail, len - 1)))
+ {
+ break;
+ }
+ greek_sequence:
+ *min_subtract += 4;
+
+ /* This can't currently be handled by trie's, so change
+ * the node type to indicate this. If EXACTFA and
+ * EXACTFL were ever to be handled by trie's, this
+ * would have to be changed. If this node has already
+ * been changed to EXACTFU_SS in this loop, leave it as
+ * is. (I (khw) think it doesn't matter in regexec.c
+ * for UTF patterns, but no need to change it */
+ if (OP(scan) == EXACTFU) {
+ OP(scan) = EXACTFU_TRICKYFOLD;
+ }
+ s += 6; /* We already know what this sequence is. Skip
+ the rest of it */
+ break;
+ }
+ }
+ }
+ else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
+
+ /* Here, the pattern is not UTF-8. We need to look only for the
+ * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
+ * in the final position. Otherwise we can stop looking 1 byte
+ * earlier because have to find both the first and second 's' */
+ const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
+
+ for (s = s0; s < upper; s++) {
+ switch (*s) {
+ case 'S':
+ case 's':
+ if (s_end - s > 1
+ && ((*(s+1) & S_or_s_mask) == s_masked))
+ {
+ *min_subtract += 1;
+
+ /* EXACTF nodes need to know that the minimum
+ * length changed so that a sharp s in the string
+ * can match this ss in the pattern, but they
+ * remain EXACTF nodes, as they are not trie'able,
+ * so don't have to invent a new node type to
+ * exclude them from the trie code */
+ if (OP(scan) != EXACTF) {
+ OP(scan) = EXACTFU_SS;
+ }
+ s++;
+ }
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ if (OP(scan) == EXACTF) {
+ *has_exactf_sharp_s = TRUE;
+ }
+ break;
+ }
+ }
+ }
+ }
+
+#ifdef DEBUGGING
+ /* Allow dumping but overwriting the collection of skipped
+ * ops and/or strings with fake optimized ops */
+ n = scan + NODE_SZ_STR(scan);
+ while (n <= stop) {
+ OP(n) = OPTIMIZED;
+ FLAGS(n) = 0;
+ NEXT_OFF(n) = 0;
+ n++;
+ }
+#endif
+ DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
+ return stopnow;
+}
+
+/* REx optimizer. Converts nodes into quicker variants "in place".
+ Finds fixed substrings. */
+
+/* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
+ to the position after last scanned or to NULL. */
+
+#define INIT_AND_WITHP \
+ assert(!and_withp); \
+ Newx(and_withp,1,struct regnode_charclass_class); \
+ SAVEFREEPV(and_withp)
+
+/* this is a chain of data about sub patterns we are processing that
+ need to be handled separately/specially in study_chunk. Its so
+ we can simulate recursion without losing state. */
+struct scan_frame;
+typedef struct scan_frame {
+ regnode *last; /* last node to process in this frame */
+ regnode *next; /* next node to process when last is reached */
+ struct scan_frame *prev; /*previous frame*/
+ I32 stop; /* what stopparen do we use */
+} scan_frame;
+
+
+#define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
+
+#define CASE_SYNST_FNC(nAmE) \
+case nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break; \
+case N ## nAmE: \
+ if (flags & SCF_DO_STCLASS_AND) { \
+ for (value = 0; value < 256; value++) \
+ if (is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_CLEAR(data->start_class, value); \
+ } \
+ else { \
+ for (value = 0; value < 256; value++) \
+ if (!is_ ## nAmE ## _cp(value)) \
+ ANYOF_BITMAP_SET(data->start_class, value); \
+ } \
+ break
+
+
+
+STATIC I32
+S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
+ I32 *minlenp, I32 *deltap,
+ regnode *last,
+ scan_data_t *data,
+ I32 stopparen,
+ U8* recursed,
+ struct regnode_charclass_class *and_withp,
+ U32 flags, U32 depth)
+ /* scanp: Start here (read-write). */
+ /* deltap: Write maxlen-minlen here. */
+ /* last: Stop before this one. */
+ /* data: string data about the pattern */
+ /* stopparen: treat close N as END */
+ /* recursed: which subroutines have we recursed into */
+ /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
+{
+ dVAR;
+ I32 min = 0, pars = 0, code;
+ regnode *scan = *scanp, *next;
+ I32 delta = 0;
+ int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
+ int is_inf_internal = 0; /* The studied chunk is infinite */
+ I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
+ scan_data_t data_fake;
+ SV *re_trie_maxbuff = NULL;
+ regnode *first_non_open = scan;
+ I32 stopmin = I32_MAX;
+ scan_frame *frame = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_STUDY_CHUNK;
+
+#ifdef DEBUGGING
+ StructCopy(&zero_scan_data, &data_fake, scan_data_t);
+#endif
+
+ if ( depth == 0 ) {
+ while (first_non_open && OP(first_non_open) == OPEN)
+ first_non_open=regnext(first_non_open);
+ }
+
+
+ fake_study_recurse:
+ while ( scan && OP(scan) != END && scan < last ){
+ UV min_subtract = 0; /* How much to subtract from the minimum node
+ length to get a real minimum (because the
+ folded version may be shorter) */
+ bool has_exactf_sharp_s = FALSE;
+ /* Peephole optimizer: */
+ DEBUG_STUDYDATA("Peep:", data,depth);
+ DEBUG_PEEP("Peep",scan,depth);
+
+ /* Its not clear to khw or hv why this is done here, and not in the
+ * clauses that deal with EXACT nodes. khw's guess is that it's
+ * because of a previous design */
+ JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
+
+ /* Follow the next-chain of the current node and optimize
+ away all the NOTHINGs from it. */
+ if (OP(scan) != CURLYX) {
+ const int max = (reg_off_by_arg[OP(scan)]
+ ? I32_MAX
+ /* I32 may be smaller than U16 on CRAYs! */
+ : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
+ int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
+ int noff;
+ regnode *n = scan;
+
+ /* Skip NOTHING and LONGJMP. */
+ while ((n = regnext(n))
+ && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
+ || ((OP(n) == LONGJMP) && (noff = ARG(n))))
+ && off + noff < max)
+ off += noff;
+ if (reg_off_by_arg[OP(scan)])
+ ARG(scan) = off;
+ else
+ NEXT_OFF(scan) = off;
+ }
+
+
+
+ /* The principal pseudo-switch. Cannot be a switch, since we
+ look into several different things. */
+ if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
+ || OP(scan) == IFTHEN) {
+ next = regnext(scan);
+ code = OP(scan);
+ /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
+
+ if (OP(next) == code || code == IFTHEN) {
+ /* NOTE - There is similar code to this block below for handling
+ TRIE nodes on a re-study. If you change stuff here check there
+ too. */
+ I32 max1 = 0, min1 = I32_MAX, num = 0;
+ struct regnode_charclass_class accum;
+ regnode * const startbranch=scan;
+
+ if (flags & SCF_DO_SUBSTR)
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ while (OP(scan) == code) {
+ I32 deltanext, minnext, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ num++;
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+
+ data_fake.pos_delta = delta;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ if (code != BRANCH)
+ scan = NEXTOPER(scan);
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ /* we suppose the run is continuous, last=next...*/
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ next, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ if (min1 > minnext)
+ min1 = minnext;
+ if (max1 < minnext + deltanext)
+ max1 = minnext + deltanext;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+ scan = next;
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > minnext)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ if (code == IFTHEN && num < 2) /* Empty ELSE branch */
+ min1 = 0;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+
+ if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
+ /* demq.
+
+ Assuming this was/is a branch we are dealing with: 'scan' now
+ points at the item that follows the branch sequence, whatever
+ it is. We now start at the beginning of the sequence and look
+ for subsequences of
+
+ BRANCH->EXACT=>x1
+ BRANCH->EXACT=>x2
+ tail
+
+ which would be constructed from a pattern like /A|LIST|OF|WORDS/
+
+ If we can find such a subsequence we need to turn the first
+ element into a trie and then add the subsequent branch exact
+ strings to the trie.
+
+ We have two cases
+
+ 1. patterns where the whole set of branches can be converted.
+
+ 2. patterns where only a subset can be converted.
+
+ In case 1 we can replace the whole set with a single regop
+ for the trie. In case 2 we need to keep the start and end
+ branches so
+
+ 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
+ becomes BRANCH TRIE; BRANCH X;
+
+ There is an additional case, that being where there is a
+ common prefix, which gets split out into an EXACT like node
+ preceding the TRIE node.
+
+ If x(1..n)==tail then we can do a simple trie, if not we make
+ a "jump" trie, such that when we match the appropriate word
+ we "jump" to the appropriate tail node. Essentially we turn
+ a nested if into a case structure of sorts.
+
+ */
+
+ int made=0;
+ if (!re_trie_maxbuff) {
+ re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
+ if (!SvIOK(re_trie_maxbuff))
+ sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
+ }
+ if ( SvIV(re_trie_maxbuff)>=0 ) {
+ regnode *cur;
+ regnode *first = (regnode *)NULL;
+ regnode *last = (regnode *)NULL;
+ regnode *tail = scan;
+ U8 trietype = 0;
+ U32 count=0;
+
+#ifdef DEBUGGING
+ SV * const mysv = sv_newmortal(); /* for dumping */
+#endif
+ /* var tail is used because there may be a TAIL
+ regop in the way. Ie, the exacts will point to the
+ thing following the TAIL, but the last branch will
+ point at the TAIL. So we advance tail. If we
+ have nested (?:) we may have to move through several
+ tails.
+ */
+
+ while ( OP( tail ) == TAIL ) {
+ /* this is the TAIL generated by (?:) */
+ tail = regnext( tail );
+ }
+
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, tail );
+ PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
+ (int)depth * 2 + 2, "",
+ "Looking for TRIE'able sequences. Tail node is: ",
+ SvPV_nolen_const( mysv )
+ );
+ });
+
+ /*
+
+ Step through the branches
+ cur represents each branch,
+ noper is the first thing to be matched as part of that branch
+ noper_next is the regnext() of that node.
+
+ We normally handle a case like this /FOO[xyz]|BAR[pqr]/
+ via a "jump trie" but we also support building with NOJUMPTRIE,
+ which restricts the trie logic to structures like /FOO|BAR/.
+
+ If noper is a trieable nodetype then the branch is a possible optimization
+ target. If we are building under NOJUMPTRIE then we require that noper_next
+ is the same as scan (our current position in the regex program).
+
+ Once we have two or more consecutive such branches we can create a
+ trie of the EXACT's contents and stitch it in place into the program.
+
+ If the sequence represents all of the branches in the alternation we
+ replace the entire thing with a single TRIE node.
+
+ Otherwise when it is a subsequence we need to stitch it in place and
+ replace only the relevant branches. This means the first branch has
+ to remain as it is used by the alternation logic, and its next pointer,
+ and needs to be repointed at the item on the branch chain following
+ the last branch we have optimized away.
+
+ This could be either a BRANCH, in which case the subsequence is internal,
+ or it could be the item following the branch sequence in which case the
+ subsequence is at the end (which does not necessarily mean the first node
+ is the start of the alternation).
+
+ TRIE_TYPE(X) is a define which maps the optype to a trietype.
+
+ optype | trietype
+ ----------------+-----------
+ NOTHING | NOTHING
+ EXACT | EXACT
+ EXACTFU | EXACTFU
+ EXACTFU_SS | EXACTFU
+ EXACTFU_TRICKYFOLD | EXACTFU
+ EXACTFA | 0
+
+
+ */
+#define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
+ ( EXACT == (X) ) ? EXACT : \
+ ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
+ 0 )
+
+ /* dont use tail as the end marker for this traverse */
+ for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
+ regnode * const noper = NEXTOPER( cur );
+ U8 noper_type = OP( noper );
+ U8 noper_trietype = TRIE_TYPE( noper_type );
+#if defined(DEBUGGING) || defined(NOJUMPTRIE)
+ regnode * const noper_next = regnext( noper );
+#endif
+
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
+ (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
+
+ regprop(RExC_rx, mysv, noper);
+ PerlIO_printf( Perl_debug_log, " -> %s",
+ SvPV_nolen_const(mysv));
+
+ if ( noper_next ) {
+ regprop(RExC_rx, mysv, noper_next );
+ PerlIO_printf( Perl_debug_log,"\t=> %s\t",
+ SvPV_nolen_const(mysv));
+ }
+ PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
+ REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
+ });
+
+ /* Is noper a trieable nodetype that can be merged with the
+ * current trie (if there is one)? */
+ if ( noper_trietype
+ &&
+ (
+ /* XXX: Currently we cannot allow a NOTHING node to be the first element
+ * of a TRIEABLE sequence, Otherwise we will overwrite the regop following
+ * the NOTHING with the TRIE regop later on. This is because a NOTHING node
+ * is only one regnode wide, and a TRIE is two regnodes. An example of a
+ * problematic pattern is: "x" =~ /\A(?>(?:(?:)A|B|C?x))\z/
+ * At a later point of time we can somewhat workaround this by handling
+ * NOTHING -> EXACT sequences as generated by /(?:)A|(?:)B/ type patterns,
+ * as we can effectively ignore the NOTHING regop in that case.
+ * This clause, which allows NOTHING to start a sequence is left commented
+ * out as a reference.
+ * - Yves
+
+ ( noper_trietype == NOTHING)
+ || ( trietype == NOTHING )
+ */
+ ( noper_trietype == NOTHING && trietype )
+ || ( trietype == noper_trietype )
+ )
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ && count < U16_MAX)
+ {
+ /* Handle mergable triable node
+ * Either we are the first node in a new trieable sequence,
+ * in which case we do some bookkeeping, otherwise we update
+ * the end pointer. */
+ count++;
+ if ( !first ) {
+ first = cur;
+ trietype = noper_trietype;
+ } else {
+ if ( trietype == NOTHING )
+ trietype = noper_trietype;
+ last = cur;
+ }
+ } /* end handle mergable triable node */
+ else {
+ /* handle unmergable node -
+ * noper may either be a triable node which can not be tried
+ * together with the current trie, or a non triable node */
+ if ( last ) {
+ /* If last is set and trietype is not NOTHING then we have found
+ * at least two triable branch sequences in a row of a similar
+ * trietype so we can turn them into a trie. If/when we
+ * allow NOTHING to start a trie sequence this condition will be
+ * required, and it isn't expensive so we leave it in for now. */
+ if ( trietype != NOTHING )
+ make_trie( pRExC_state,
+ startbranch, first, cur, tail, count,
+ trietype, depth+1 );
+ last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
+ }
+ if ( noper_trietype
+#ifdef NOJUMPTRIE
+ && noper_next == tail
+#endif
+ ){
+ /* noper is triable, so we can start a new trie sequence */
+ count = 1;
+ first = cur;
+ trietype = noper_trietype;
+ } else if (first) {
+ /* if we already saw a first but the current node is not triable then we have
+ * to reset the first information. */
+ count = 0;
+ first = NULL;
+ trietype = 0;
+ }
+ } /* end handle unmergable node */
+ } /* loop over branches */
+ DEBUG_OPTIMISE_r({
+ regprop(RExC_rx, mysv, cur);
+ PerlIO_printf( Perl_debug_log,
+ "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
+ "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
+
+ });
+ if ( last && trietype != NOTHING ) {
+ /* the last branch of the sequence was part of a trie,
+ * so we have to construct it here outside of the loop
+ */
+ made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
+#ifdef TRIE_STUDY_OPT
+ if ( ((made == MADE_EXACT_TRIE &&
+ startbranch == first)
+ || ( first_non_open == first )) &&
+ depth==0 ) {
+ flags |= SCF_TRIE_RESTUDY;
+ if ( startbranch == first
+ && scan == tail )
+ {
+ RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
+ }
+ }
+#endif
+ } /* end if ( last) */
+ } /* TRIE_MAXBUF is non zero */
+
+ } /* do trie */
+
+ }
+ else if ( code == BRANCHJ ) { /* single branch is optimized. */
+ scan = NEXTOPER(NEXTOPER(scan));
+ } else /* single branch is optimized. */
+ scan = NEXTOPER(scan);
+ continue;
+ } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
+ scan_frame *newframe = NULL;
+ I32 paren;
+ regnode *start;
+ regnode *end;
+
+ if (OP(scan) != SUSPEND) {
+ /* set the pointer */
+ if (OP(scan) == GOSUB) {
+ paren = ARG(scan);
+ RExC_recurse[ARG2L(scan)] = scan;
+ start = RExC_open_parens[paren-1];
+ end = RExC_close_parens[paren-1];
+ } else {
+ paren = 0;
+ start = RExC_rxi->program + 1;
+ end = RExC_opend;
+ }
+ if (!recursed) {
+ Newxz(recursed, (((RExC_npar)>>3) +1), U8);
+ SAVEFREEPV(recursed);
+ }
+ if (!PAREN_TEST(recursed,paren+1)) {
+ PAREN_SET(recursed,paren+1);
+ Newx(newframe,1,scan_frame);
+ } else {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ } else {
+ Newx(newframe,1,scan_frame);
+ paren = stopparen;
+ start = scan+2;
+ end = regnext(scan);
+ }
+ if (newframe) {
+ assert(start);
+ assert(end);
+ SAVEFREEPV(newframe);
+ newframe->next = regnext(scan);
+ newframe->last = last;
+ newframe->stop = stopparen;
+ newframe->prev = frame;
+
+ frame = newframe;
+ scan = start;
+ stopparen = paren;
+ last = end;
+
+ continue;
+ }
+ }
+ else if (OP(scan) == EXACT) {
+ I32 l = STR_LEN(scan);
+ UV uc;
+ if (UTF) {
+ const U8 * const s = (U8*)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ } else {
+ uc = *((U8*)STRING(scan));
+ }
+ min += l;
+ if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
+ /* The code below prefers earlier match for fixed
+ offset, later match for variable offset. */
+ if (data->last_end == -1) { /* Update the start info. */
+ data->last_start_min = data->pos_min;
+ data->last_start_max = is_inf
+ ? I32_MAX : data->pos_min + data->pos_delta;
+ }
+ sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
+ if (UTF)
+ SvUTF8_on(data->last_found);
+ {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += utf8_length((U8*)STRING(scan),
+ (U8*)STRING(scan)+STR_LEN(scan));
+ }
+ data->last_end = data->pos_min + l;
+ data->pos_min += l; /* As in the first entry. */
+ data->flags &= ~SF_BEFORE_EOL;
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+
+
+ /* If compatible, we or it in below. It is compatible if is
+ * in the bitmp and either 1) its bit or its fold is set, or 2)
+ * it's for a locale. Even if there isn't unicode semantics
+ * here, at runtime there may be because of matching against a
+ * utf8 string, so accept a possible false positive for
+ * latin1-range folds */
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
+ || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ )
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else if (uc >= 0x100) {
+ int i;
+
+ /* Some Unicode code points fold to the Latin1 range; as
+ * XXX temporary code, instead of figuring out if this is
+ * one, just assume it is and set all the start class bits
+ * that could be some such above 255 code point's fold
+ * which will generate fals positives. As the code
+ * elsewhere that does compute the fold settles down, it
+ * can be extracted out and re-used here */
+ for (i = 0; i < 256; i++){
+ if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ if (uc < 0x100)
+ data->start_class->flags &= ~ANYOF_UNICODE_ALL;
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ /* false positive possible if the class is case-folded */
+ if (uc < 0x100)
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ else
+ data->start_class->flags |= ANYOF_UNICODE_ALL;
+ data->start_class->flags &= ~ANYOF_EOS;
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
+ I32 l = STR_LEN(scan);
+ UV uc = *((U8*)STRING(scan));
+
+ /* Search for fixed substrings supports EXACT only. */
+ if (flags & SCF_DO_SUBSTR) {
+ assert(data);
+ SCAN_COMMIT(pRExC_state, data, minlenp);
+ }
+ if (UTF) {
+ const U8 * const s = (U8 *)STRING(scan);
+ uc = utf8_to_uvchr_buf(s, s + l, NULL);
+ l = utf8_length(s, s + l);
+ }
+ else if (has_exactf_sharp_s) {
+ RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
+ }
+ min += l - min_subtract;
+ if (min < 0) {
+ min = 0;
+ }
+ delta += min_subtract;
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += l - min_subtract;
+ if (data->pos_min < 0) {
+ data->pos_min = 0;
+ }
+ data->pos_delta += min_subtract;
+ if (min_subtract) {
+ data->longest = &(data->longest_float);
+ }
+ }
+ if (flags & SCF_DO_STCLASS_AND) {
+ /* Check whether it is compatible with what we know already! */
+ int compat = 1;
+ if (uc >= 0x100 ||
+ (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
+ && !ANYOF_BITMAP_TEST(data->start_class, uc)
+ && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
+ {
+ compat = 0;
+ }
+ ANYOF_CLASS_ZERO(data->start_class);
+ ANYOF_BITMAP_ZERO(data->start_class);
+ if (compat) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ data->start_class->flags &= ~ANYOF_EOS;
+ data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
+ if (OP(scan) == EXACTFL) {
+ /* XXX This set is probably no longer necessary, and
+ * probably wrong as LOCALE now is on in the initial
+ * state */
+ data->start_class->flags |= ANYOF_LOCALE;
+ }
+ else {
+
+ /* Also set the other member of the fold pair. In case
+ * that unicode semantics is called for at runtime, use
+ * the full latin1 fold. (Can't do this for locale,
+ * because not known until runtime) */
+ ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
+
+ /* All other (EXACTFL handled above) folds except under
+ * /iaa that include s, S, and sharp_s also may include
+ * the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ else if (uc >= 0x100) {
+ int i;
+ for (i = 0; i < 256; i++){
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
+ ANYOF_BITMAP_SET(data->start_class, i);
+ }
+ }
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_OR) {
+ if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
+ /* false positive possible if the class is case-folded.
+ Assume that the locale settings are the same... */
+ if (uc < 0x100) {
+ ANYOF_BITMAP_SET(data->start_class, uc);
+ if (OP(scan) != EXACTFL) {
+
+ /* And set the other member of the fold pair, but
+ * can't do that in locale because not known until
+ * run-time */
+ ANYOF_BITMAP_SET(data->start_class,
+ PL_fold_latin1[uc]);
+
+ /* All folds except under /iaa that include s, S,
+ * and sharp_s also may include the others */
+ if (OP(scan) != EXACTFA) {
+ if (uc == 's' || uc == 'S') {
+ ANYOF_BITMAP_SET(data->start_class,
+ LATIN_SMALL_LETTER_SHARP_S);
+ }
+ else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
+ ANYOF_BITMAP_SET(data->start_class, 's');
+ ANYOF_BITMAP_SET(data->start_class, 'S');
+ }
+ }
+ }
+ }
+ data->start_class->flags &= ~ANYOF_EOS;
+ }
+ cl_and(data->start_class, and_withp);
+ }
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (REGNODE_VARIES(OP(scan))) {
+ I32 mincount, maxcount, minnext, deltanext, fl = 0;
+ I32 f = flags, pos_before = 0;
+ regnode * const oscan = scan;
+ struct regnode_charclass_class this_class;
+ struct regnode_charclass_class *oclass = NULL;
+ I32 next_is_eval = 0;
+
+ switch (PL_regkind[OP(scan)]) {
+ case WHILEM: /* End of (?:...)* . */
+ scan = NEXTOPER(scan);
+ goto finish;
+ case PLUS:
+ if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
+ next = NEXTOPER(scan);
+ if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
+ mincount = 1;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ }
+ if (flags & SCF_DO_SUBSTR)
+ data->pos_min++;
+ min++;
+ /* Fall through. */
+ case STAR:
+ if (flags & SCF_DO_STCLASS) {
+ mincount = 0;
+ maxcount = REG_INFTY;
+ next = regnext(scan);
+ scan = NEXTOPER(scan);
+ goto do_curly;
+ }
+ is_inf = is_inf_internal = 1;
+ scan = regnext(scan);
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
+ data->longest = &(data->longest_float);
+ }
+ goto optimize_curly_tail;
+ case CURLY:
+ if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
+ && (scan->flags == stopparen))
+ {
+ mincount = 1;
+ maxcount = 1;
+ } else {
+ mincount = ARG1(scan);
+ maxcount = ARG2(scan);
+ }
+ next = regnext(scan);
+ if (OP(scan) == CURLYX) {
+ I32 lp = (data ? *(data->last_closep) : 0);
+ scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
+ }
+ scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
+ next_is_eval = (OP(scan) == EVAL);
+ do_curly:
+ if (flags & SCF_DO_SUBSTR) {
+ if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
+ pos_before = data->pos_min;
+ }
+ if (data) {
+ fl = data->flags;
+ data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
+ if (is_inf)
+ data->flags |= SF_IS_INF;
+ }
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ oclass = data->start_class;
+ data->start_class = &this_class;
+ f |= SCF_DO_STCLASS_AND;
+ f &= ~SCF_DO_STCLASS_OR;
+ }
+ /* Exclude from super-linear cache processing any {n,m}
+ regops for which the combination of input pos and regex
+ pos is not enough information to determine if a match
+ will be possible.
+
+ For example, in the regex /foo(bar\s*){4,8}baz/ with the
+ regex pos at the \s*, the prospects for a match depend not
+ only on the input position but also on how many (bar\s*)
+ repeats into the {4,8} we are. */
+ if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
+ f &= ~SCF_WHILEM_VISITED_POS;
+
+ /* This will finish on WHILEM, setting scan, or on NULL: */
+ minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
+ last, data, stopparen, recursed, NULL,
+ (mincount == 0
+ ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
+
+ if (flags & SCF_DO_STCLASS)
+ data->start_class = oclass;
+ if (mincount == 0 || minnext == 0) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&this_class, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ } else { /* Non-zero len */
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &this_class);
+ cl_and(data->start_class, and_withp);
+ }
+ else if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class, &this_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ if (!scan) /* It was not CURLYX, but CURLY. */
+ scan = next;
+ if ( /* ? quantifier ok, except for (?{ ... }) */
+ (next_is_eval || !(mincount == 0 && maxcount == 1))
+ && (minnext == 0) && (deltanext == 0)
+ && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
+ && maxcount <= REG_INFTY/3) /* Complement check for big count */
+ {
+ ckWARNreg(RExC_parse,
+ "Quantifier unexpected on zero-length expression");
+ }
+
+ min += minnext * mincount;
+ is_inf_internal |= ((maxcount == REG_INFTY
+ && (minnext + deltanext) > 0)
+ || deltanext == I32_MAX);
+ is_inf |= is_inf_internal;
+ delta += (minnext + deltanext) * maxcount - minnext * mincount;
+
+ /* Try powerful optimization CURLYX => CURLYN. */
+ if ( OP(oscan) == CURLYX && data
+ && data->flags & SF_IN_PAR
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext && minnext == 1 ) {
+ /* Try to optimize to CURLYN. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
+ regnode * const nxt1 = nxt;
+#ifdef DEBUGGING
+ regnode *nxt2;
+#endif
+
+ /* Skip open. */
+ nxt = regnext(nxt);
+ if (!REGNODE_SIMPLE(OP(nxt))
+ && !(PL_regkind[OP(nxt)] == EXACT
+ && STR_LEN(nxt) == 1))
+ goto nogo;
+#ifdef DEBUGGING
+ nxt2 = nxt;
+#endif
+ nxt = regnext(nxt);
+ if (OP(nxt) != CLOSE)
+ goto nogo;
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
+ }
+ /* Now we know that nxt2 is the only contents: */
+ oscan->flags = (U8)ARG(nxt);
+ OP(oscan) = CURLYN;
+ OP(nxt1) = NOTHING; /* was OPEN. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
+#endif
+ }
+ nogo:
+
+ /* Try optimization CURLYX => CURLYM. */
+ if ( OP(oscan) == CURLYX && data
+ && !(data->flags & SF_HAS_PAR)
+ && !(data->flags & SF_HAS_EVAL)
+ && !deltanext /* atom is fixed width */
+ && minnext != 0 /* CURLYM can't handle zero width */
+ ) {
+ /* XXXX How to optimize if data == 0? */
+ /* Optimize to a simpler form. */
+ regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
+ regnode *nxt2;
+
+ OP(oscan) = CURLYM;
+ while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
+ && (OP(nxt2) != WHILEM))
+ nxt = nxt2;
+ OP(nxt2) = SUCCEED; /* Whas WHILEM */
+ /* Need to optimize away parenths. */
+ if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
+ /* Set the parenth number. */
+ regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
+
+ oscan->flags = (U8)ARG(nxt);
+ if (RExC_open_parens) {
+ RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
+ RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
+ }
+ OP(nxt1) = OPTIMIZED; /* was OPEN. */
+ OP(nxt) = OPTIMIZED; /* was CLOSE. */
+
+#ifdef DEBUGGING
+ OP(nxt1 + 1) = OPTIMIZED; /* was count. */
+ OP(nxt + 1) = OPTIMIZED; /* was count. */
+ NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
+ NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
+#endif
+#if 0
+ while ( nxt1 && (OP(nxt1) != WHILEM)) {
+ regnode *nnxt = regnext(nxt1);
+ if (nnxt == nxt) {
+ if (reg_off_by_arg[OP(nxt1)])
+ ARG_SET(nxt1, nxt2 - nxt1);
+ else if (nxt2 - nxt1 < U16_MAX)
+ NEXT_OFF(nxt1) = nxt2 - nxt1;
+ else
+ OP(nxt) = NOTHING; /* Cannot beautify */
+ }
+ nxt1 = nnxt;
+ }
+#endif
+ /* Optimize again: */
+ study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
+ NULL, stopparen, recursed, NULL, 0,depth+1);
+ }
+ else
+ oscan->flags = 0;
+ }
+ else if ((OP(oscan) == CURLYX)
+ && (flags & SCF_WHILEM_VISITED_POS)
+ /* See the comment on a similar expression above.
+ However, this time it's not a subexpression
+ we care about, but the expression itself. */
+ && (maxcount == REG_INFTY)
+ && data && ++data->whilem_c < 16) {
+ /* This stays as CURLYX, we can put the count/of pair. */
+ /* Find WHILEM (as in regexec.c) */
+ regnode *nxt = oscan + NEXT_OFF(oscan);
+
+ if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
+ nxt += ARG(nxt);
+ PREVOPER(nxt)->flags = (U8)(data->whilem_c
+ | (RExC_whilem_seen << 4)); /* On WHILEM */
+ }
+ if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (flags & SCF_DO_SUBSTR) {
+ SV *last_str = NULL;
+ int counted = mincount != 0;
+
+ if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
+#if defined(SPARC64_GCC_WORKAROUND)
+ I32 b = 0;
+ STRLEN l = 0;
+ const char *s = NULL;
+ I32 old = 0;
+
+ if (pos_before >= data->last_start_min)
+ b = pos_before;
+ else
+ b = data->last_start_min;
+
+ l = 0;
+ s = SvPV_const(data->last_found, l);
+ old = b - data->last_start_min;
+
+#else
+ I32 b = pos_before >= data->last_start_min
+ ? pos_before : data->last_start_min;
+ STRLEN l;
+ const char * const s = SvPV_const(data->last_found, l);
+ I32 old = b - data->last_start_min;
+#endif
+
+ if (UTF)
+ old = utf8_hop((U8*)s, old) - (U8*)s;
+ l -= old;
+ /* Get the added string: */
+ last_str = newSVpvn_utf8(s + old, l, UTF);
+ if (deltanext == 0 && pos_before == b) {
+ /* What was added is a constant string */
+ if (mincount > 1) {
+ SvGROW(last_str, (mincount * l) + 1);
+ repeatcpy(SvPVX(last_str) + l,
+ SvPVX_const(last_str), l, mincount - 1);
+ SvCUR_set(last_str, SvCUR(last_str) * mincount);
+ /* Add additional parts. */
+ SvCUR_set(data->last_found,
+ SvCUR(data->last_found) - l);
+ sv_catsv(data->last_found, last_str);
+ {
+ SV * sv = data->last_found;
+ MAGIC *mg =
+ SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+ if (mg && mg->mg_len >= 0)
+ mg->mg_len += CHR_SVLEN(last_str) - l;
+ }
+ data->last_end += l * (mincount - 1);
+ }
+ } else {
+ /* start offset must point into the last copy */
+ data->last_start_min += minnext * (mincount - 1);
+ data->last_start_max += is_inf ? I32_MAX
+ : (maxcount - 1) * (minnext + data->pos_delta);
+ }
+ }
+ /* It is counted once already... */
+ data->pos_min += minnext * (mincount - counted);
+ data->pos_delta += - counted * deltanext +
+ (minnext + deltanext) * maxcount - minnext * mincount;
+ if (mincount != maxcount) {
+ /* Cannot extend fixed substrings found inside
+ the group. */
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ if (mincount && last_str) {
+ SV * const sv = data->last_found;
+ MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
+ mg_find(sv, PERL_MAGIC_utf8) : NULL;
+
+ if (mg)
+ mg->mg_len = -1;
+ sv_setsv(sv, last_str);
+ data->last_end = data->pos_min;
+ data->last_start_min =
+ data->pos_min - CHR_SVLEN(last_str);
+ data->last_start_max = is_inf
+ ? I32_MAX
+ : data->pos_min + data->pos_delta
+ - CHR_SVLEN(last_str);
+ }
+ data->longest = &(data->longest_float);
+ }
+ SvREFCNT_dec(last_str);
+ }
+ if (data && (fl & SF_HAS_EVAL))
+ data->flags |= SF_HAS_EVAL;
+ optimize_curly_tail:
+ if (OP(oscan) != CURLYX) {
+ while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
+ && NEXT_OFF(next))
+ NEXT_OFF(oscan) += NEXT_OFF(next);
+ }
+ continue;
+ default: /* REF, ANYOFV, and CLUMP only? */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ break;
+ }
+ }
+ else if (OP(scan) == LNBREAK) {
+ if (flags & SCF_DO_STCLASS) {
+ int value = 0;
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+ if (flags & SCF_DO_STCLASS_AND) {
+ for (value = 0; value < 256; value++)
+ if (!is_VERTWS_cp(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ for (value = 0; value < 256; value++)
+ if (is_VERTWS_cp(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ min += 1;
+ delta += 1;
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += 1;
+ data->pos_delta += 1;
+ data->longest = &(data->longest_float);
+ }
+ }
+ else if (REGNODE_SIMPLE(OP(scan))) {
+ int value = 0;
+
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->pos_min++;
+ }
+ min++;
+ if (flags & SCF_DO_STCLASS) {
+ data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
+
+ /* Some of the logic below assumes that switching
+ locale on will only add false positives. */
+ switch (PL_regkind[OP(scan)]) {
+ case SANY:
+ default:
+ do_default:
+ /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ break;
+ case REG_ANY:
+ if (OP(scan) == SANY)
+ goto do_default;
+ if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
+ value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
+ || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
+ cl_anything(pRExC_state, data->start_class);
+ }
+ if (flags & SCF_DO_STCLASS_AND || !value)
+ ANYOF_BITMAP_CLEAR(data->start_class,'\n');
+ break;
+ case ANYOF:
+ if (flags & SCF_DO_STCLASS_AND)
+ cl_and(data->start_class,
+ (struct regnode_charclass_class*)scan);
+ else
+ cl_or(pRExC_state, data->start_class,
+ (struct regnode_charclass_class*)scan);
+ break;
+ case ALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (!isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
+
+ /* Even if under locale, set the bits for non-locale
+ * in case it isn't a true locale-node. This will
+ * create false positives if it truly is locale */
+ if (OP(scan) == ALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NALNUM:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isALNUM(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
+
+ /* Even if under locale, set the bits for non-locale in
+ * case it isn't a true locale-node. This will create
+ * false positives if it truly is locale */
+ if (OP(scan) == NALNUMU) {
+ for (value = 0; value < 256; value++) {
+ if (! isWORDCHAR_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (! isALNUM(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case SPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE) {
+ ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
+ }
+ if (OP(scan) == SPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case NSPACE:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE_L1(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ } else {
+ for (value = 0; value < 256; value++) {
+ if (isSPACE(value)) {
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ }
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
+ if (OP(scan) == NSPACEU) {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE_L1(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ else {
+ for (value = 0; value < 256; value++) {
+ if (!isSPACE(value)) {
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ }
+ }
+ }
+ break;
+ case DIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE)) {
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ case NDIGIT:
+ if (flags & SCF_DO_STCLASS_AND) {
+ if (!(data->start_class->flags & ANYOF_LOCALE))
+ ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
+ for (value = 0; value < 256; value++)
+ if (isDIGIT(value))
+ ANYOF_BITMAP_CLEAR(data->start_class, value);
+ }
+ else {
+ if (data->start_class->flags & ANYOF_LOCALE)
+ ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
+ for (value = 0; value < 256; value++)
+ if (!isDIGIT(value))
+ ANYOF_BITMAP_SET(data->start_class, value);
+ }
+ break;
+ CASE_SYNST_FNC(VERTWS);
+ CASE_SYNST_FNC(HORIZWS);
+
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
+ data->flags |= (OP(scan) == MEOL
+ ? SF_BEFORE_MEOL
+ : SF_BEFORE_SEOL);
+ }
+ else if ( PL_regkind[OP(scan)] == BRANCHJ
+ /* Lookbehind, or need to calculate parens/evals/stclass: */
+ && (scan->flags || data || (flags & SCF_DO_STCLASS))
+ && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
+ if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ || OP(scan) == UNLESSM )
+ {
+ /* Negative Lookahead/lookbehind
+ In this case we can't do fixed string optimisation.
+ */
+
+ I32 deltanext, minnext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+ minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f, depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (minnext > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)minnext;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (f & SCF_DO_STCLASS_AND) {
+ if (flags & SCF_DO_STCLASS_OR) {
+ /* OR before, AND after: ideally we would recurse with
+ * data_fake to get the AND applied by study of the
+ * remainder of the pattern, and then derecurse;
+ * *** HACK *** for now just treat as "no information".
+ * See [perl #56690].
+ */
+ cl_init(pRExC_state, data->start_class);
+ } else {
+ /* AND before and after: combine and continue */
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ }
+#if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
+ else {
+ /* Positive Lookahead/lookbehind
+ In this case we can do fixed string optimisation,
+ but we must be careful about it. Note in the case of
+ lookbehind the positions will be offset by the minimum
+ length of the pattern, something we won't know about
+ until after the recurse.
+ */
+ I32 deltanext, fake = 0;
+ regnode *nscan;
+ struct regnode_charclass_class intrnl;
+ int f = 0;
+ /* We use SAVEFREEPV so that when the full compile
+ is finished perl will clean up the allocated
+ minlens when it's all done. This way we don't
+ have to worry about freeing them when we know
+ they wont be used, which would be a pain.
+ */
+ I32 *minnextp;
+ Newx( minnextp, 1, I32 );
+ SAVEFREEPV(minnextp);
+
+ if (data) {
+ StructCopy(data, &data_fake, scan_data_t);
+ if ((flags & SCF_DO_SUBSTR) && data->last_found) {
+ f |= SCF_DO_SUBSTR;
+ if (scan->flags)
+ SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
+ data_fake.last_found=newSVsv(data->last_found);
+ }
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.flags = 0;
+ data_fake.pos_delta = delta;
+ if (is_inf)
+ data_fake.flags |= SF_IS_INF;
+ if ( flags & SCF_DO_STCLASS && !scan->flags
+ && OP(scan) == IFMATCH ) { /* Lookahead */
+ cl_init(pRExC_state, &intrnl);
+ data_fake.start_class = &intrnl;
+ f |= SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+ next = regnext(scan);
+ nscan = NEXTOPER(NEXTOPER(scan));
+
+ *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
+ last, &data_fake, stopparen, recursed, NULL, f,depth+1);
+ if (scan->flags) {
+ if (deltanext) {
+ FAIL("Variable length lookbehind not implemented");
+ }
+ else if (*minnextp > (I32)U8_MAX) {
+ FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
+ }
+ scan->flags = (U8)*minnextp;
+ }
+
+ *minnextp += min;
+
+ if (f & SCF_DO_STCLASS_AND) {
+ const int was = (data->start_class->flags & ANYOF_EOS);
+
+ cl_and(data->start_class, &intrnl);
+ if (was)
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ if (data) {
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
+ if (RExC_rx->minlen<*minnextp)
+ RExC_rx->minlen=*minnextp;
+ SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
+ SvREFCNT_dec(data_fake.last_found);
+
+ if ( data_fake.minlen_fixed != minlenp )
+ {
+ data->offset_fixed= data_fake.offset_fixed;
+ data->minlen_fixed= data_fake.minlen_fixed;
+ data->lookbehind_fixed+= scan->flags;
+ }
+ if ( data_fake.minlen_float != minlenp )
+ {
+ data->minlen_float= data_fake.minlen_float;
+ data->offset_float_min=data_fake.offset_float_min;
+ data->offset_float_max=data_fake.offset_float_max;
+ data->lookbehind_float+= scan->flags;
+ }
+ }
+ }
+
+
+ }
+#endif
+ }
+ else if (OP(scan) == OPEN) {
+ if (stopparen != (I32)ARG(scan))
+ pars++;
+ }
+ else if (OP(scan) == CLOSE) {
+ if (stopparen == (I32)ARG(scan)) {
+ break;
+ }
+ if ((I32)ARG(scan) == is_par) {
+ next = regnext(scan);
+
+ if ( next && (OP(next) != WHILEM) && next < last)
+ is_par = 0; /* Disable optimization */
+ }
+ if (data)
+ *(data->last_closep) = ARG(scan);
+ }
+ else if (OP(scan) == EVAL) {
+ if (data)
+ data->flags |= SF_HAS_EVAL;
+ }
+ else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ flags &= ~SCF_DO_SUBSTR;
+ }
+ if (data && OP(scan)==ACCEPT) {
+ data->flags |= SCF_SEEN_ACCEPT;
+ if (stopmin > min)
+ stopmin = min;
+ }
+ }
+ else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
+ {
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp);
+ data->longest = &(data->longest_float);
+ }
+ is_inf = is_inf_internal = 1;
+ if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
+ cl_anything(pRExC_state, data->start_class);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else if (OP(scan) == GPOS) {
+ if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
+ !(delta || is_inf || (data && data->pos_delta)))
+ {
+ if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
+ RExC_rx->extflags |= RXf_ANCH_GPOS;
+ if (RExC_rx->gofs < (U32)min)
+ RExC_rx->gofs = min;
+ } else {
+ RExC_rx->extflags |= RXf_GPOS_FLOAT;
+ RExC_rx->gofs = 0;
+ }
+ }
+#ifdef TRIE_STUDY_OPT
+#ifdef FULL_TRIE_STUDY
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ /* NOTE - There is similar code to this block above for handling
+ BRANCH nodes on the initial study. If you change stuff here
+ check there too. */
+ regnode *trie_node= scan;
+ regnode *tail= regnext(scan);
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ I32 max1 = 0, min1 = I32_MAX;
+ struct regnode_charclass_class accum;
+
+ if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
+ SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
+ if (flags & SCF_DO_STCLASS)
+ cl_init_zero(pRExC_state, &accum);
+
+ if (!trie->jump) {
+ min1= trie->minlen;
+ max1= trie->maxlen;
+ } else {
+ const regnode *nextbranch= NULL;
+ U32 word;
+
+ for ( word=1 ; word <= trie->wordcount ; word++)
+ {
+ I32 deltanext=0, minnext=0, f = 0, fake;
+ struct regnode_charclass_class this_class;
+
+ data_fake.flags = 0;
+ if (data) {
+ data_fake.whilem_c = data->whilem_c;
+ data_fake.last_closep = data->last_closep;
+ }
+ else
+ data_fake.last_closep = &fake;
+ data_fake.pos_delta = delta;
+ if (flags & SCF_DO_STCLASS) {
+ cl_init(pRExC_state, &this_class);
+ data_fake.start_class = &this_class;
+ f = SCF_DO_STCLASS_AND;
+ }
+ if (flags & SCF_WHILEM_VISITED_POS)
+ f |= SCF_WHILEM_VISITED_POS;
+
+ if (trie->jump[word]) {
+ if (!nextbranch)
+ nextbranch = trie_node + trie->jump[0];
+ scan= trie_node + trie->jump[word];
+ /* We go from the jump point to the branch that follows
+ it. Note this means we need the vestigal unused branches
+ even though they arent otherwise used.
+ */
+ minnext = study_chunk(pRExC_state, &scan, minlenp,
+ &deltanext, (regnode *)nextbranch, &data_fake,
+ stopparen, recursed, NULL, f,depth+1);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode*)nextbranch);
+
+ if (min1 > (I32)(minnext + trie->minlen))
+ min1 = minnext + trie->minlen;
+ if (max1 < (I32)(minnext + deltanext + trie->maxlen))
+ max1 = minnext + deltanext + trie->maxlen;
+ if (deltanext == I32_MAX)
+ is_inf = is_inf_internal = 1;
+
+ if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
+ pars++;
+ if (data_fake.flags & SCF_SEEN_ACCEPT) {
+ if ( stopmin > min + min1)
+ stopmin = min + min1;
+ flags &= ~SCF_DO_SUBSTR;
+ if (data)
+ data->flags |= SCF_SEEN_ACCEPT;
+ }
+ if (data) {
+ if (data_fake.flags & SF_HAS_EVAL)
+ data->flags |= SF_HAS_EVAL;
+ data->whilem_c = data_fake.whilem_c;
+ }
+ if (flags & SCF_DO_STCLASS)
+ cl_or(pRExC_state, &accum, &this_class);
+ }
+ }
+ if (flags & SCF_DO_SUBSTR) {
+ data->pos_min += min1;
+ data->pos_delta += max1 - min1;
+ if (max1 != min1 || is_inf)
+ data->longest = &(data->longest_float);
+ }
+ min += min1;
+ delta += max1 - min1;
+ if (flags & SCF_DO_STCLASS_OR) {
+ cl_or(pRExC_state, data->start_class, &accum);
+ if (min1) {
+ cl_and(data->start_class, and_withp);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ }
+ else if (flags & SCF_DO_STCLASS_AND) {
+ if (min1) {
+ cl_and(data->start_class, &accum);
+ flags &= ~SCF_DO_STCLASS;
+ }
+ else {
+ /* Switch to OR mode: cache the old value of
+ * data->start_class */
+ INIT_AND_WITHP;
+ StructCopy(data->start_class, and_withp,
+ struct regnode_charclass_class);
+ flags &= ~SCF_DO_STCLASS_AND;
+ StructCopy(&accum, data->start_class,
+ struct regnode_charclass_class);
+ flags |= SCF_DO_STCLASS_OR;
+ data->start_class->flags |= ANYOF_EOS;
+ }
+ }
+ scan= tail;
+ continue;
+ }
+#else
+ else if (PL_regkind[OP(scan)] == TRIE) {
+ reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
+ U8*bang=NULL;
+
+ min += trie->minlen;
+ delta += (trie->maxlen - trie->minlen);
+ flags &= ~SCF_DO_STCLASS; /* xxx */
+ if (flags & SCF_DO_SUBSTR) {
+ SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
+ data->pos_min += trie->minlen;
+ data->pos_delta += (trie->maxlen - trie->minlen);
+ if (trie->maxlen != trie->minlen)
+ data->longest = &(data->longest_float);
+ }
+ if (trie->jump) /* no more substrings -- for now /grr*/
+ flags &= ~SCF_DO_SUBSTR;
+ }
+#endif /* old or new */
+#endif /* TRIE_STUDY_OPT */
+
+ /* Else: zero-length, ignore. */
+ scan = regnext(scan);
+ }
+ if (frame) {
+ last = frame->last;
+ scan = frame->next;
+ stopparen = frame->stop;
+ frame = frame->prev;
+ goto fake_study_recurse;
+ }
+
+ finish:
+ assert(!frame);
+ DEBUG_STUDYDATA("pre-fin:",data,depth);
+
+ *scanp = scan;
+ *deltap = is_inf_internal ? I32_MAX : delta;
+ if (flags & SCF_DO_SUBSTR && is_inf)
+ data->pos_delta = I32_MAX - data->pos_min;
+ if (is_par > (I32)U8_MAX)
+ is_par = 0;
+ if (is_par && pars==1 && data) {
+ data->flags |= SF_IN_PAR;
+ data->flags &= ~SF_HAS_PAR;
+ }
+ else if (pars && data) {
+ data->flags |= SF_HAS_PAR;
+ data->flags &= ~SF_IN_PAR;
+ }
+ if (flags & SCF_DO_STCLASS_OR)
+ cl_and(data->start_class, and_withp);
+ if (flags & SCF_TRIE_RESTUDY)
+ data->flags |= SCF_TRIE_RESTUDY;
+
+ DEBUG_STUDYDATA("post-fin:",data,depth);
+
+ return min < stopmin ? min : stopmin;
+}
+
+STATIC U32
+S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
+{
+ U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
+
+ PERL_ARGS_ASSERT_ADD_DATA;
+
+ Renewc(RExC_rxi->data,
+ sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
+ char, struct reg_data);
+ if(count)
+ Renew(RExC_rxi->data->what, count + n, U8);
+ else
+ Newx(RExC_rxi->data->what, n, U8);
+ RExC_rxi->data->count = count + n;
+ Copy(s, RExC_rxi->data->what + count, n, U8);
+ return count;
+}
+
+/*XXX: todo make this not included in a non debugging perl */
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_reginitcolors(pTHX)
+{
+ dVAR;
+ const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
+ if (s) {
+ char *t = savepv(s);
+ int i = 0;
+ PL_colors[0] = t;
+ while (++i < 6) {
+ t = strchr(t, '\t');
+ if (t) {
+ *t = '\0';
+ PL_colors[i] = ++t;
+ }
+ else
+ PL_colors[i] = t = (char *)"";
+ }
+ } else {
+ int i = 0;
+ while (i < 6)
+ PL_colors[i++] = (char *)"";
+ }
+ PL_colorset = 1;
+}
+#endif
+
+
+#ifdef TRIE_STUDY_OPT
+#define CHECK_RESTUDY_GOTO \
+ if ( \
+ (data.flags & SCF_TRIE_RESTUDY) \
+ && ! restudied++ \
+ ) goto reStudy
+#else
+#define CHECK_RESTUDY_GOTO
+#endif
+
+/*
+ - pregcomp - compile a regular expression into internal code
+ *
+ * We can't allocate space until we know how big the compiled form will be,
+ * but we can't compile it (and thus know how big it is) until we've got a
+ * place to put the code. So we cheat: we compile it twice, once with code
+ * generation turned off and size counting turned on, and once "for real".
+ * This also means that we don't allocate space until we are sure that the
+ * thing really will compile successfully, and we never have to move the
+ * code and thus invalidate pointers into it. (Note that it has to be in
+ * one piece because free() must be able to free it all.) [NB: not true in perl]
+ *
+ * Beware that the optimization-preparation code in here knows about some
+ * of the structure of the compiled regexp. [I'll say.]
+ */
+
+
+
+#ifndef PERL_IN_XSUB_RE
+#define RE_ENGINE_PTR &PL_core_reg_engine
+#else
+extern const struct regexp_engine my_reg_engine;
+#define RE_ENGINE_PTR &my_reg_engine
+#endif
+
+#ifndef PERL_IN_XSUB_RE
+REGEXP *
+Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
+{
+ dVAR;
+ HV * const table = GvHV(PL_hintgv);
+
+ PERL_ARGS_ASSERT_PREGCOMP;
+
+ /* Dispatch a request to compile a regexp to correct
+ regexp engine. */
+ if (table) {
+ SV **ptr= hv_fetchs(table, "regcomp", FALSE);
+ GET_RE_DEBUG_FLAGS_DECL;
+ if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
+ const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
+ DEBUG_COMPILE_r({
+ PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
+ SvIV(*ptr));
+ });
+ return CALLREGCOMP_ENG(eng, pattern, flags);
+ }
+ }
+ return Perl_re_compile(aTHX_ pattern, flags);
+}
+#endif
+
+REGEXP *
+Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
+{
+ dVAR;
+ REGEXP *rx;
+ struct regexp *r;
+ register regexp_internal *ri;
+ STRLEN plen;
+ char* VOL exp;
+ char* xend;
+ regnode *scan;
+ I32 flags;
+ I32 minlen = 0;
+ U32 pm_flags;
+
+ /* these are all flags - maybe they should be turned
+ * into a single int with different bit masks */
+ I32 sawlookahead = 0;
+ I32 sawplus = 0;
+ I32 sawopen = 0;
+ bool used_setjump = FALSE;
+ regex_charset initial_charset = get_regex_charset(orig_pm_flags);
+
+ U8 jump_ret = 0;
+ dJMPENV;
+ scan_data_t data;
+ RExC_state_t RExC_state;
+ RExC_state_t * const pRExC_state = &RExC_state;
+#ifdef TRIE_STUDY_OPT
+ int restudied;
+ RExC_state_t copyRExC_state;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_COMPILE;
+
+ DEBUG_r(if (!PL_colorset) reginitcolors());
+
+#ifndef PERL_IN_XSUB_RE
+ /* Initialize these here instead of as-needed, as is quick and avoids
+ * having to test them each time otherwise */
+ if (! PL_AboveLatin1) {
+ PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
+ PL_ASCII = _new_invlist_C_array(ASCII_invlist);
+ PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
+ PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
+
+ PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
+ PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
+
+ PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
+
+ PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
+ PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
+
+ PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
+
+ PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
+ PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
+
+ PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
+ PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
+
+ PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
+ PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
+
+ PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
+ PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
+
+ PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
+ PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
+
+ PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
+ PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
+
+ PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
+ PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
+
+ PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
+ PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
+
+ PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
+
+ PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
+ PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
+
+ PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
+ PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
+ }
+#endif
+
+ exp = SvPV(pattern, plen);
+
+ if (plen == 0) { /* ignore the utf8ness if the pattern is 0 length */
+ RExC_utf8 = RExC_orig_utf8 = 0;
+ }
+ else {
+ RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
+ }
+ RExC_uni_semantics = 0;
+ RExC_contains_locale = 0;
+
+ /****************** LONG JUMP TARGET HERE***********************/
+ /* Longjmp back to here if have to switch in midstream to utf8 */
+ if (! RExC_orig_utf8) {
+ JMPENV_PUSH(jump_ret);
+ used_setjump = TRUE;
+ }
+
+ if (jump_ret == 0) { /* First time through */
+ xend = exp + plen;
+
+ DEBUG_COMPILE_r({
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RExC_utf8,
+ dsv, exp, plen, 60);
+ PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ });
+ }
+ else { /* longjumped back */
+ STRLEN len = plen;
+
+ /* If the cause for the longjmp was other than changing to utf8, pop
+ * our own setjmp, and longjmp to the correct handler */
+ if (jump_ret != UTF8_LONGJMP) {
+ JMPENV_POP;
+ JMPENV_JUMP(jump_ret);
+ }
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* It's possible to write a regexp in ascii that represents Unicode
+ codepoints outside of the byte range, such as via \x{100}. If we
+ detect such a sequence we have to convert the entire pattern to utf8
+ and then recompile, as our sizing calculation will have been based
+ on 1 byte == 1 character, but we will need to use utf8 to encode
+ at least some part of the pattern, and therefore must convert the whole
+ thing.
+ -- dmq */
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
+ "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
+ exp = (char*)Perl_bytes_to_utf8(aTHX_
+ (U8*)SvPV_nomg(pattern, plen),
+ &len);
+ xend = exp + len;
+ RExC_orig_utf8 = RExC_utf8 = 1;
+ SAVEFREEPV(exp);
+ }
+
+#ifdef TRIE_STUDY_OPT
+ restudied = 0;
+#endif
+
+ pm_flags = orig_pm_flags;
+
+ if (initial_charset == REGEX_LOCALE_CHARSET) {
+ RExC_contains_locale = 1;
+ }
+ else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
+
+ /* Set to use unicode semantics if the pattern is in utf8 and has the
+ * 'depends' charset specified, as it means unicode when utf8 */
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ RExC_precomp = exp;
+ RExC_flags = pm_flags;
+ RExC_sawback = 0;
+
+ RExC_seen = 0;
+ RExC_in_lookbehind = 0;
+ RExC_seen_zerolen = *exp == '^' ? -1 : 0;
+ RExC_seen_evals = 0;
+ RExC_extralen = 0;
+ RExC_override_recoding = 0;
+
+ /* First pass: determine size, legality. */
+ RExC_parse = exp;
+ RExC_start = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_nestroot = 0;
+ RExC_size = 0L;
+ RExC_emit = &PL_regdummy;
+ RExC_whilem_seen = 0;
+ RExC_open_parens = NULL;
+ RExC_close_parens = NULL;
+ RExC_opend = NULL;
+ RExC_paren_names = NULL;
+#ifdef DEBUGGING
+ RExC_paren_name_list = NULL;
+#endif
+ RExC_recurse = NULL;
+ RExC_recurse_count = 0;
+
+#if 0 /* REGC() is (currently) a NOP at the first pass.
+ * Clever compilers notice this and complain. --jhi */
+ REGC((U8)REG_MAGIC, (char*)RExC_emit);
+#endif
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ );
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ RExC_precomp = NULL;
+ return(NULL);
+ }
+
+ /* Here, finished first pass. Get rid of any added setjmp */
+ if (used_setjump) {
+ JMPENV_POP;
+ }
+
+ DEBUG_PARSE_r({
+ PerlIO_printf(Perl_debug_log,
+ "Required size %"IVdf" nodes\n"
+ "Starting second pass (creation)\n",
+ (IV)RExC_size);
+ RExC_lastnum=0;
+ RExC_lastparse=NULL;
+ });
+
+ /* The first pass could have found things that force Unicode semantics */
+ if ((RExC_utf8 || RExC_uni_semantics)
+ && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
+ {
+ set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
+ }
+
+ /* Small enough for pointer-storage convention?
+ If extralen==0, this means that we will not need long jumps. */
+ if (RExC_size >= 0x10000L && RExC_extralen)
+ RExC_size += RExC_extralen;
+ else
+ RExC_extralen = 0;
+ if (RExC_whilem_seen > 15)
+ RExC_whilem_seen = 15;
+
+ /* Allocate space and zero-initialize. Note, the two step process
+ of zeroing when in debug mode, thus anything assigned has to
+ happen after that */
+ rx = (REGEXP*) newSV_type(SVt_REGEXP);
+ r = (struct regexp*)SvANY(rx);
+ Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
+ char, regexp_internal);
+ if ( r == NULL || ri == NULL )
+ FAIL("Regexp out of space");
+#ifdef DEBUGGING
+ /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
+ Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
+#else
+ /* bulk initialize base fields with 0. */
+ Zero(ri, sizeof(regexp_internal), char);
+#endif
+
+ /* non-zero initialization begins here */
+ RXi_SET( r, ri );
+ r->engine= RE_ENGINE_PTR;
+ r->extflags = pm_flags;
+ {
+ bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
+ bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
+
+ /* The caret is output if there are any defaults: if not all the STD
+ * flags are set, or if no character set specifier is needed */
+ bool has_default =
+ (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
+ || ! has_charset);
+ bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
+ U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
+ >> RXf_PMf_STD_PMMOD_SHIFT);
+ const char *fptr = STD_PAT_MODS; /*"msix"*/
+ char *p;
+ /* Allocate for the worst case, which is all the std flags are turned
+ * on. If more precision is desired, we could do a population count of
+ * the flags set. This could be done with a small lookup table, or by
+ * shifting, masking and adding, or even, when available, assembly
+ * language for a machine-language population count.
+ * We never output a minus, as all those are defaults, so are
+ * covered by the caret */
+ const STRLEN wraplen = plen + has_p + has_runon
+ + has_default /* If needs a caret */
+
+ /* If needs a character set specifier */
+ + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
+ + (sizeof(STD_PAT_MODS) - 1)
+ + (sizeof("(?:)") - 1);
+
+ p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
+ SvPOK_on(rx);
+ SvFLAGS(rx) |= SvUTF8(pattern);
+ *p++='('; *p++='?';
+
+ /* If a default, cover it using the caret */
+ if (has_default) {
+ *p++= DEFAULT_PAT_MOD;
+ }
+ if (has_charset) {
+ STRLEN len;
+ const char* const name = get_regex_charset_name(r->extflags, &len);
+ Copy(name, p, len, char);
+ p += len;
+ }
+ if (has_p)
+ *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
+ {
+ char ch;
+ while((ch = *fptr++)) {
+ if(reganch & 1)
+ *p++ = ch;
+ reganch >>= 1;
+ }
+ }
+
+ *p++ = ':';
+ Copy(RExC_precomp, p, plen, char);
+ assert ((RX_WRAPPED(rx) - p) < 16);
+ r->pre_prefix = p - RX_WRAPPED(rx);
+ p += plen;
+ if (has_runon)
+ *p++ = '\n';
+ *p++ = ')';
+ *p = 0;
+ SvCUR_set(rx, p - SvPVX_const(rx));
+ }
+
+ r->intflags = 0;
+ r->nparens = RExC_npar - 1; /* set early to validate backrefs */
+
+ if (RExC_seen & REG_SEEN_RECURSE) {
+ Newxz(RExC_open_parens, RExC_npar,regnode *);
+ SAVEFREEPV(RExC_open_parens);
+ Newxz(RExC_close_parens,RExC_npar,regnode *);
+ SAVEFREEPV(RExC_close_parens);
+ }
+
+ /* Useful during FAIL. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
+ DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
+ "%s %"UVuf" bytes for offset annotations.\n",
+ ri->u.offsets ? "Got" : "Couldn't get",
+ (UV)((2*RExC_size+1) * sizeof(U32))));
+#endif
+ SetProgLen(ri,RExC_size);
+ RExC_rx_sv = rx;
+ RExC_rx = r;
+ RExC_rxi = ri;
+ REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
+
+ /* Second pass: emit code. */
+ RExC_flags = pm_flags; /* don't let top level (?i) bleed */
+ RExC_parse = exp;
+ RExC_end = xend;
+ RExC_naughty = 0;
+ RExC_npar = 1;
+ RExC_emit_start = ri->program;
+ RExC_emit = ri->program;
+ RExC_emit_bound = ri->program + RExC_size + 1;
+
+ /* Store the count of eval-groups for security checks: */
+ RExC_rx->seen_evals = RExC_seen_evals;
+ REGC((U8)REG_MAGIC, (char*) RExC_emit++);
+ if (reg(pRExC_state, 0, &flags,1) == NULL) {
+ ReREFCNT_dec(rx);
+ return(NULL);
+ }
+ /* XXXX To minimize changes to RE engine we always allocate
+ 3-units-long substrs field. */
+ Newx(r->substrs, 1, struct reg_substr_data);
+ if (RExC_recurse_count) {
+ Newxz(RExC_recurse,RExC_recurse_count,regnode *);
+ SAVEFREEPV(RExC_recurse);
+ }
+
+reStudy:
+ r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
+ Zero(r->substrs, 1, struct reg_substr_data);
+
+#ifdef TRIE_STUDY_OPT
+ if (!restudied) {
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ copyRExC_state = RExC_state;
+ } else {
+ U32 seen=RExC_seen;
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
+
+ RExC_state = copyRExC_state;
+ if (seen & REG_TOP_LEVEL_BRANCHES)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+ else
+ RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
+ if (data.last_found) {
+ SvREFCNT_dec(data.longest_fixed);
+ SvREFCNT_dec(data.longest_float);
+ SvREFCNT_dec(data.last_found);
+ }
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+ }
+#else
+ StructCopy(&zero_scan_data, &data, scan_data_t);
+#endif
+
+ /* Dig out information for optimizations. */
+ r->extflags = RExC_flags; /* was pm_op */
+ /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
+
+ if (UTF)
+ SvUTF8_on(rx); /* Unicode in it? */
+ ri->regstclass = NULL;
+ if (RExC_naughty >= 10) /* Probably an expensive pattern. */
+ r->intflags |= PREGf_NAUGHTY;
+ scan = ri->program + 1; /* First BRANCH. */
+
+ /* testing for BRANCH here tells us whether there is "must appear"
+ data in the pattern. If there is then we can use it for optimisations */
+ if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
+ I32 fake;
+ STRLEN longest_float_length, longest_fixed_length;
+ struct regnode_charclass_class ch_class; /* pointed to by data */
+ int stclass_flag;
+ I32 last_close = 0; /* pointed to by data */
+ regnode *first= scan;
+ regnode *first_next= regnext(first);
+ /*
+ * Skip introductions and multiplicators >= 1
+ * so that we can extract the 'meat' of the pattern that must
+ * match in the large if() sequence following.
+ * NOTE that EXACT is NOT covered here, as it is normally
+ * picked up by the optimiser separately.
+ *
+ * This is unfortunate as the optimiser isnt handling lookahead
+ * properly currently.
+ *
+ */
+ while ((OP(first) == OPEN && (sawopen = 1)) ||
+ /* An OR of *one* alternative - should not happen now. */
+ (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
+ /* for now we can't handle lookbehind IFMATCH*/
+ (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
+ (OP(first) == PLUS) ||
+ (OP(first) == MINMOD) ||
+ /* An {n,m} with n>0 */
+ (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
+ (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
+ {
+ /*
+ * the only op that could be a regnode is PLUS, all the rest
+ * will be regnode_1 or regnode_2.
+ *
+ */
+ if (OP(first) == PLUS)
+ sawplus = 1;
+ else
+ first += regarglen[OP(first)];
+
+ first = NEXTOPER(first);
+ first_next= regnext(first);
+ }
+
+ /* Starting-point info. */
+ again:
+ DEBUG_PEEP("first:",first,0);
+ /* Ignore EXACT as we deal with it later. */
+ if (PL_regkind[OP(first)] == EXACT) {
+ if (OP(first) == EXACT)
+ NOOP; /* Empty, get anchored substr later. */
+ else
+ ri->regstclass = first;
+ }
+#ifdef TRIE_STCLASS
+ else if (PL_regkind[OP(first)] == TRIE &&
+ ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
+ {
+ regnode *trie_op;
+ /* this can happen only on restudy */
+ if ( OP(first) == TRIE ) {
+ struct regnode_1 *trieop = (struct regnode_1 *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_1));
+ StructCopy(first,trieop,struct regnode_1);
+ trie_op=(regnode *)trieop;
+ } else {
+ struct regnode_charclass *trieop = (struct regnode_charclass *)
+ PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
+ StructCopy(first,trieop,struct regnode_charclass);
+ trie_op=(regnode *)trieop;
+ }
+ OP(trie_op)+=2;
+ make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
+ ri->regstclass = trie_op;
+ }
+#endif
+ else if (REGNODE_SIMPLE(OP(first)))
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOUND ||
+ PL_regkind[OP(first)] == NBOUND)
+ ri->regstclass = first;
+ else if (PL_regkind[OP(first)] == BOL) {
+ r->extflags |= (OP(first) == MBOL
+ ? RXf_ANCH_MBOL
+ : (OP(first) == SBOL
+ ? RXf_ANCH_SBOL
+ : RXf_ANCH_BOL));
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if (OP(first) == GPOS) {
+ r->extflags |= RXf_ANCH_GPOS;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ else if ((!sawopen || !RExC_sawback) &&
+ (OP(first) == STAR &&
+ PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
+ !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
+ {
+ /* turn .* into ^.* with an implied $*=1 */
+ const int type =
+ (OP(NEXTOPER(first)) == REG_ANY)
+ ? RXf_ANCH_MBOL
+ : RXf_ANCH_SBOL;
+ r->extflags |= type;
+ r->intflags |= PREGf_IMPLICIT;
+ first = NEXTOPER(first);
+ goto again;
+ }
+ if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
+ && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
+ /* x+ must match at the 1st pos of run of x's */
+ r->intflags |= PREGf_SKIP;
+
+ /* Scan is after the zeroth branch, first is atomic matcher. */
+#ifdef TRIE_STUDY_OPT
+ DEBUG_PARSE_r(
+ if (!restudied)
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#else
+ DEBUG_PARSE_r(
+ PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
+ (IV)(first - scan + 1))
+ );
+#endif
+
+
+ /*
+ * If there's something expensive in the r.e., find the
+ * longest literal string that must appear and make it the
+ * regmust. Resolve ties in favor of later strings, since
+ * the regstart check works with the beginning of the r.e.
+ * and avoiding duplication strengthens checking. Not a
+ * strong reason, but sufficient in the absence of others.
+ * [Now we resolve ties in favor of the earlier string if
+ * it happens that c_offset_min has been invalidated, since the
+ * earlier string may buy us something the later one won't.]
+ */
+
+ data.longest_fixed = newSVpvs("");
+ data.longest_float = newSVpvs("");
+ data.last_found = newSVpvs("");
+ data.longest = &(data.longest_fixed);
+ first = scan;
+ if (!ri->regstclass) {
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ stclass_flag = SCF_DO_STCLASS_AND;
+ } else /* XXXX Check for BOUND? */
+ stclass_flag = 0;
+ data.last_closep = &last_close;
+
+ minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
+ &data, -1, NULL, NULL,
+ SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
+
+
+ CHECK_RESTUDY_GOTO;
+
+
+ if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
+ && data.last_start_min == 0 && data.last_end > 0
+ && !RExC_seen_zerolen
+ && !(RExC_seen & REG_SEEN_VERBARG)
+ && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
+ r->extflags |= RXf_CHECK_ALL;
+ scan_commit(pRExC_state, &data,&minlen,0);
+ SvREFCNT_dec(data.last_found);
+
+ /* Note that code very similar to this but for anchored string
+ follows immediately below, changes may need to be made to both.
+ Be careful.
+ */
+ longest_float_length = CHR_SVLEN(data.longest_float);
+ if (longest_float_length
+ || (data.flags & SF_FL_BEFORE_EOL
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE))))
+ {
+ I32 t,ml;
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ || (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
+ && data.offset_fixed == data.offset_float_min
+ && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
+ goto remove_float; /* As in (a)+. */
+
+ /* copy the information about the longest float from the reg_scan_data
+ over to the program. */
+ if (SvUTF8(data.longest_float)) {
+ r->float_utf8 = data.longest_float;
+ r->float_substr = NULL;
+ } else {
+ r->float_substr = data.longest_float;
+ r->float_utf8 = NULL;
+ }
+ /* float_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_float ? *(data.minlen_float)
+ : (I32)longest_float_length;
+ r->float_end_shift = ml - data.offset_float_min
+ - longest_float_length + (SvTAIL(data.longest_float) != 0)
+ + data.lookbehind_float;
+ r->float_min_offset = data.offset_float_min - data.lookbehind_float;
+ r->float_max_offset = data.offset_float_max;
+ if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
+ r->float_max_offset -= data.lookbehind_float;
+
+ t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FL_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ remove_float:
+ r->float_substr = r->float_utf8 = NULL;
+ SvREFCNT_dec(data.longest_float);
+ longest_float_length = 0;
+ }
+
+ /* Note that code very similar to this but for floating string
+ is immediately above, changes may need to be made to both.
+ Be careful.
+ */
+ longest_fixed_length = CHR_SVLEN(data.longest_fixed);
+
+ /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
+ if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
+ && (longest_fixed_length
+ || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)))) )
+ {
+ I32 t,ml;
+
+ /* copy the information about the longest fixed
+ from the reg_scan_data over to the program. */
+ if (SvUTF8(data.longest_fixed)) {
+ r->anchored_utf8 = data.longest_fixed;
+ r->anchored_substr = NULL;
+ } else {
+ r->anchored_substr = data.longest_fixed;
+ r->anchored_utf8 = NULL;
+ }
+ /* fixed_end_shift is how many chars that must be matched that
+ follow this item. We calculate it ahead of time as once the
+ lookbehind offset is added in we lose the ability to correctly
+ calculate it.*/
+ ml = data.minlen_fixed ? *(data.minlen_fixed)
+ : (I32)longest_fixed_length;
+ r->anchored_end_shift = ml - data.offset_fixed
+ - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
+ + data.lookbehind_fixed;
+ r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
+
+ t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
+ && (!(data.flags & SF_FIX_BEFORE_MEOL)
+ || (RExC_flags & RXf_PMf_MULTILINE)));
+ fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
+ }
+ else {
+ r->anchored_substr = r->anchored_utf8 = NULL;
+ SvREFCNT_dec(data.longest_fixed);
+ longest_fixed_length = 0;
+ }
+ if (ri->regstclass
+ && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
+ ri->regstclass = NULL;
+
+ if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
+ && stclass_flag
+ && !(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+
+ /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
+ if (longest_fixed_length > longest_float_length) {
+ r->check_end_shift = r->anchored_end_shift;
+ r->check_substr = r->anchored_substr;
+ r->check_utf8 = r->anchored_utf8;
+ r->check_offset_min = r->check_offset_max = r->anchored_offset;
+ if (r->extflags & RXf_ANCH_SINGLE)
+ r->extflags |= RXf_NOSCAN;
+ }
+ else {
+ r->check_end_shift = r->float_end_shift;
+ r->check_substr = r->float_substr;
+ r->check_utf8 = r->float_utf8;
+ r->check_offset_min = r->float_min_offset;
+ r->check_offset_max = r->float_max_offset;
+ }
+ /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
+ This should be changed ASAP! */
+ if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
+ r->extflags |= RXf_USE_INTUIT;
+ if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
+ r->extflags |= RXf_INTUIT_TAIL;
+ }
+ /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
+ if ( (STRLEN)minlen < longest_float_length )
+ minlen= longest_float_length;
+ if ( (STRLEN)minlen < longest_fixed_length )
+ minlen= longest_fixed_length;
+ */
+ }
+ else {
+ /* Several toplevels. Best we can is to set minlen. */
+ I32 fake;
+ struct regnode_charclass_class ch_class;
+ I32 last_close = 0;
+
+ DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
+
+ scan = ri->program + 1;
+ cl_init(pRExC_state, &ch_class);
+ data.start_class = &ch_class;
+ data.last_closep = &last_close;
+
+
+ minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
+ &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
+
+ CHECK_RESTUDY_GOTO;
+
+ r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
+ = r->float_substr = r->float_utf8 = NULL;
+
+ if (!(data.start_class->flags & ANYOF_EOS)
+ && !cl_is_anything(data.start_class))
+ {
+ const U32 n = add_data(pRExC_state, 1, "f");
+ data.start_class->flags |= ANYOF_IS_SYNTHETIC;
+
+ Newx(RExC_rxi->data->data[n], 1,
+ struct regnode_charclass_class);
+ StructCopy(data.start_class,
+ (struct regnode_charclass_class*)RExC_rxi->data->data[n],
+ struct regnode_charclass_class);
+ ri->regstclass = (regnode*)RExC_rxi->data->data[n];
+ r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
+ DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
+ regprop(r, sv, (regnode*)data.start_class);
+ PerlIO_printf(Perl_debug_log,
+ "synthetic stclass \"%s\".\n",
+ SvPVX_const(sv));});
+ }
+ }
+
+ /* Guard against an embedded (?=) or (?<=) with a longer minlen than
+ the "real" pattern. */
+ DEBUG_OPTIMISE_r({
+ PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
+ (IV)minlen, (IV)r->minlen);
+ });
+ r->minlenret = minlen;
+ if (r->minlen < minlen)
+ r->minlen = minlen;
+
+ if (RExC_seen & REG_SEEN_GPOS)
+ r->extflags |= RXf_GPOS_SEEN;
+ if (RExC_seen & REG_SEEN_LOOKBEHIND)
+ r->extflags |= RXf_LOOKBEHIND_SEEN;
+ if (RExC_seen & REG_SEEN_EVAL)
+ r->extflags |= RXf_EVAL_SEEN;
+ if (RExC_seen & REG_SEEN_CANY)
+ r->extflags |= RXf_CANY_SEEN;
+ if (RExC_seen & REG_SEEN_VERBARG)
+ r->intflags |= PREGf_VERBARG_SEEN;
+ if (RExC_seen & REG_SEEN_CUTGROUP)
+ r->intflags |= PREGf_CUTGROUP_SEEN;
+ if (RExC_paren_names)
+ RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
+ else
+ RXp_PAREN_NAMES(r) = NULL;
+
+#ifdef STUPID_PATTERN_CHECKS
+ if (RX_PRELEN(rx) == 0)
+ r->extflags |= RXf_NULL;
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
+ r->extflags |= RXf_WHITE;
+ else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
+ r->extflags |= RXf_START_ONLY;
+#else
+ if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
+ /* XXX: this should happen BEFORE we compile */
+ r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
+ else {
+ regnode *first = ri->program + 1;
+ U8 fop = OP(first);
+
+ if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_NULL;
+ else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
+ r->extflags |= RXf_START_ONLY;
+ else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
+ && OP(regnext(first)) == END)
+ r->extflags |= RXf_WHITE;
+ }
+#endif
+#ifdef DEBUGGING
+ if (RExC_paren_names) {
+ ri->name_list_idx = add_data( pRExC_state, 1, "a" );
+ ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
+ } else
+#endif
+ ri->name_list_idx = 0;
+
+ if (RExC_recurse_count) {
+ for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
+ const regnode *scan = RExC_recurse[RExC_recurse_count-1];
+ ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
+ }
+ }
+ Newxz(r->offs, RExC_npar, regexp_paren_pair);
+ /* assume we don't need to swap parens around before we match */
+
+ DEBUG_DUMP_r({
+ PerlIO_printf(Perl_debug_log,"Final program:\n");
+ regdump(r);
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ DEBUG_OFFSETS_r(if (ri->u.offsets) {
+ const U32 len = ri->u.offsets[0];
+ U32 i;
+ GET_RE_DEBUG_FLAGS_DECL;
+ PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
+ for (i = 1; i <= len; i++) {
+ if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
+ PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
+ (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
+ }
+ PerlIO_printf(Perl_debug_log, "\n");
+ });
+#endif
+ return rx;
+}
+
+#undef RE_ENGINE_PTR
+
+
+SV*
+Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF;
+
+ PERL_UNUSED_ARG(value);
+
+ if (flags & RXapif_FETCH) {
+ return reg_named_buff_fetch(rx, key, flags);
+ } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
+ Perl_croak_no_modify(aTHX);
+ return NULL;
+ } else if (flags & RXapif_EXISTS) {
+ return reg_named_buff_exists(rx, key, flags)
+ ? &PL_sv_yes
+ : &PL_sv_no;
+ } else if (flags & RXapif_REGNAMES) {
+ return reg_named_buff_all(rx, flags);
+ } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
+ return reg_named_buff_scalar(rx, flags);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
+ const U32 flags)
+{
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
+ PERL_UNUSED_ARG(lastkey);
+
+ if (flags & RXapif_FIRSTKEY)
+ return reg_named_buff_firstkey(rx, flags);
+ else if (flags & RXapif_NEXTKEY)
+ return reg_named_buff_nextkey(rx, flags);
+ else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
+ return NULL;
+ }
+}
+
+SV*
+Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
+ const U32 flags)
+{
+ AV *retarray = NULL;
+ SV *ret;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
+
+ if (flags & RXapif_ALL)
+ retarray=newAV();
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
+ if (he_str) {
+ IV i;
+ SV* sv_dat=HeVAL(he_str);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ for ( i=0; i<SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->nparens) >= nums[i]
+ && rx->offs[nums[i]].start != -1
+ && rx->offs[nums[i]].end != -1)
+ {
+ ret = newSVpvs("");
+ CALLREG_NUMBUF_FETCH(r,nums[i],ret);
+ if (!retarray)
+ return ret;
+ } else {
+ if (retarray)
+ ret = newSVsv(&PL_sv_undef);
+ }
+ if (retarray)
+ av_push(retarray, ret);
+ }
+ if (retarray)
+ return newRV_noinc(MUTABLE_SV(retarray));
+ }
+ }
+ return NULL;
+}
+
+bool
+Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
+ const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & RXapif_ALL) {
+ return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
+ } else {
+ SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
+ if (sv) {
+ SvREFCNT_dec(sv);
+ return TRUE;
+ } else {
+ return FALSE;
+ }
+ }
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
+
+ if ( rx && RXp_PAREN_NAMES(rx) ) {
+ (void)hv_iterinit(RXp_PAREN_NAMES(rx));
+
+ return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
+ } else {
+ return FALSE;
+ }
+}
+
+SV*
+Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv = RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ return newSVhek(HeKEY_hek(temphe));
+ }
+ }
+ }
+ return NULL;
+}
+
+SV*
+Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
+{
+ SV *ret;
+ AV *av;
+ I32 length;
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
+ return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
+ } else if (flags & RXapif_ONE) {
+ ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
+ av = MUTABLE_AV(SvRV(ret));
+ length = av_len(av);
+ SvREFCNT_dec(ret);
+ return newSViv(length + 1);
+ } else {
+ Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
+ return NULL;
+ }
+ }
+ return &PL_sv_undef;
+}
+
+SV*
+Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ AV *av = newAV();
+
+ PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
+
+ if (rx && RXp_PAREN_NAMES(rx)) {
+ HV *hv= RXp_PAREN_NAMES(rx);
+ HE *temphe;
+ (void)hv_iterinit(hv);
+ while ( (temphe = hv_iternext_flags(hv,0)) ) {
+ IV i;
+ IV parno = 0;
+ SV* sv_dat = HeVAL(temphe);
+ I32 *nums = (I32*)SvPVX(sv_dat);
+ for ( i = 0; i < SvIVX(sv_dat); i++ ) {
+ if ((I32)(rx->lastparen) >= nums[i] &&
+ rx->offs[nums[i]].start != -1 &&
+ rx->offs[nums[i]].end != -1)
+ {
+ parno = nums[i];
+ break;
+ }
+ }
+ if (parno || flags & RXapif_ALL) {
+ av_push(av, newSVhek(HeKEY_hek(temphe)));
+ }
+ }
+ }
+
+ return newRV_noinc(MUTABLE_SV(av));
+}
+
+void
+Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
+ SV * const sv)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ char *s = NULL;
+ I32 i = 0;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
+
+ if (!rx->subbeg) {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ else
+ if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
+ /* $` */
+ i = rx->offs[0].start;
+ s = rx->subbeg;
+ }
+ else
+ if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
+ /* $' */
+ s = rx->subbeg + rx->offs[0].end;
+ i = rx->sublen - rx->offs[0].end;
+ }
+ else
+ if ( 0 <= paren && paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ /* $& $1 ... */
+ i = t1 - s1;
+ s = rx->subbeg + s1;
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+ assert(rx->sublen >= (s - rx->subbeg) + i );
+ if (i >= 0) {
+ const int oldtainted = PL_tainted;
+ TAINT_NOT;
+ sv_setpvn(sv, s, i);
+ PL_tainted = oldtainted;
+ if ( (rx->extflags & RXf_CANY_SEEN)
+ ? (RXp_MATCH_UTF8(rx)
+ && (!i || is_utf8_string((U8*)s, i)))
+ : (RXp_MATCH_UTF8(rx)) )
+ {
+ SvUTF8_on(sv);
+ }
+ else
+ SvUTF8_off(sv);
+ if (PL_tainting) {
+ if (RXp_MATCH_TAINTED(rx)) {
+ if (SvTYPE(sv) >= SVt_PVMG) {
+ MAGIC* const mg = SvMAGIC(sv);
+ MAGIC* mgt;
+ PL_tainted = 1;
+ SvMAGIC_set(sv, mg->mg_moremagic);
+ SvTAINT(sv);
+ if ((mgt = SvMAGIC(sv))) {
+ mg->mg_moremagic = mgt;
+ SvMAGIC_set(sv, mg);
+ }
+ } else {
+ PL_tainted = 1;
+ SvTAINT(sv);
+ }
+ } else
+ SvTAINTED_off(sv);
+ }
+ } else {
+ sv_setsv(sv,&PL_sv_undef);
+ return;
+ }
+}
+
+void
+Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
+ SV const * const value)
+{
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
+
+ PERL_UNUSED_ARG(rx);
+ PERL_UNUSED_ARG(paren);
+ PERL_UNUSED_ARG(value);
+
+ if (!PL_localizing)
+ Perl_croak_no_modify(aTHX);
+}
+
+I32
+Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
+ const I32 paren)
+{
+ struct regexp *const rx = (struct regexp *)SvANY(r);
+ I32 i;
+ I32 s1, t1;
+
+ PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
+
+ /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
+ switch (paren) {
+ /* $` / ${^PREMATCH} */
+ case RX_BUFF_IDX_PREMATCH:
+ if (rx->offs[0].start != -1) {
+ i = rx->offs[0].start;
+ if (i > 0) {
+ s1 = 0;
+ t1 = i;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $' / ${^POSTMATCH} */
+ case RX_BUFF_IDX_POSTMATCH:
+ if (rx->offs[0].end != -1) {
+ i = rx->sublen - rx->offs[0].end;
+ if (i > 0) {
+ s1 = rx->offs[0].end;
+ t1 = rx->sublen;
+ goto getlen;
+ }
+ }
+ return 0;
+ /* $& / ${^MATCH}, $1, $2, ... */
+ default:
+ if (paren <= (I32)rx->nparens &&
+ (s1 = rx->offs[paren].start) != -1 &&
+ (t1 = rx->offs[paren].end) != -1)
+ {
+ i = t1 - s1;
+ goto getlen;
+ } else {
+ if (ckWARN(WARN_UNINITIALIZED))
+ report_uninit((const SV *)sv);
+ return 0;
+ }
+ }
+ getlen:
+ if (i > 0 && RXp_MATCH_UTF8(rx)) {
+ const char * const s = rx->subbeg + s1;
+ const U8 *ep;
+ STRLEN el;
+
+ i = t1 - s1;
+ if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
+ i = el;
+ }
+ return i;
+}
+
+SV*
+Perl_reg_qr_package(pTHX_ REGEXP * const rx)
+{
+ PERL_ARGS_ASSERT_REG_QR_PACKAGE;
+ PERL_UNUSED_ARG(rx);
+ if (0)
+ return NULL;
+ else
+ return newSVpvs("Regexp");
+}
+
+/* Scans the name of a named buffer from the pattern.
+ * If flags is REG_RSN_RETURN_NULL returns null.
+ * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
+ * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
+ * to the parsed name as looked up in the RExC_paren_names hash.
+ * If there is an error throws a vFAIL().. type exception.
+ */
+
+#define REG_RSN_RETURN_NULL 0
+#define REG_RSN_RETURN_NAME 1
+#define REG_RSN_RETURN_DATA 2
+
+STATIC SV*
+S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
+{
+ char *name_start = RExC_parse;
+
+ PERL_ARGS_ASSERT_REG_SCAN_NAME;
+
+ if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
+ /* skip IDFIRST by using do...while */
+ if (UTF)
+ do {
+ RExC_parse += UTF8SKIP(RExC_parse);
+ } while (isALNUM_utf8((U8*)RExC_parse));
+ else
+ do {
+ RExC_parse++;
+ } while (isALNUM(*RExC_parse));
+ }
+
+ if ( flags ) {
+ SV* sv_name
+ = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
+ SVs_TEMP | (UTF ? SVf_UTF8 : 0));
+ if ( flags == REG_RSN_RETURN_NAME)
+ return sv_name;
+ else if (flags==REG_RSN_RETURN_DATA) {
+ HE *he_str = NULL;
+ SV *sv_dat = NULL;
+ if ( ! sv_name ) /* should not happen*/
+ Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
+ if (RExC_paren_names)
+ he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat )
+ vFAIL("Reference to nonexistent named group");
+ return sv_dat;
+ }
+ else {
+ Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
+ (unsigned long) flags);
+ }
+ /* NOT REACHED */
+ }
+ return NULL;
+}
+
+#define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
+ int rem=(int)(RExC_end - RExC_parse); \
+ int cut; \
+ int num; \
+ int iscut=0; \
+ if (rem>10) { \
+ rem=10; \
+ iscut=1; \
+ } \
+ cut=10-rem; \
+ if (RExC_lastparse!=RExC_parse) \
+ PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
+ rem, RExC_parse, \
+ cut + 4, \
+ iscut ? "..." : "<" \
+ ); \
+ else \
+ PerlIO_printf(Perl_debug_log,"%16s",""); \
+ \
+ if (SIZE_ONLY) \
+ num = RExC_size + 1; \
+ else \
+ num=REG_NODE_NUM(RExC_emit); \
+ if (RExC_lastnum!=num) \
+ PerlIO_printf(Perl_debug_log,"|%4d",num); \
+ else \
+ PerlIO_printf(Perl_debug_log,"|%4s",""); \
+ PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
+ (int)((depth*2)), "", \
+ (funcname) \
+ ); \
+ RExC_lastnum=num; \
+ RExC_lastparse=RExC_parse; \
+})
+
+
+
+#define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,"%4s","\n"); \
+})
+#define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
+ DEBUG_PARSE_MSG((funcname)); \
+ PerlIO_printf(Perl_debug_log,fmt "\n",args); \
+})
+
+/* This section of code defines the inversion list object and its methods. The
+ * interfaces are highly subject to change, so as much as possible is static to
+ * this file. An inversion list is here implemented as a malloc'd C UV array
+ * with some added info that is placed as UVs at the beginning in a header
+ * portion. An inversion list for Unicode is an array of code points, sorted
+ * by ordinal number. The zeroth element is the first code point in the list.
+ * The 1th element is the first element beyond that not in the list. In other
+ * words, the first range is
+ * invlist[0]..(invlist[1]-1)
+ * The other ranges follow. Thus every element whose index is divisible by two
+ * marks the beginning of a range that is in the list, and every element not
+ * divisible by two marks the beginning of a range not in the list. A single
+ * element inversion list that contains the single code point N generally
+ * consists of two elements
+ * invlist[0] == N
+ * invlist[1] == N+1
+ * (The exception is when N is the highest representable value on the
+ * machine, in which case the list containing just it would be a single
+ * element, itself. By extension, if the last range in the list extends to
+ * infinity, then the first element of that range will be in the inversion list
+ * at a position that is divisible by two, and is the final element in the
+ * list.)
+ * Taking the complement (inverting) an inversion list is quite simple, if the
+ * first element is 0, remove it; otherwise add a 0 element at the beginning.
+ * This implementation reserves an element at the beginning of each inversion list
+ * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
+ * beginning of the list is either that element if 0, or the next one if 1.
+ *
+ * More about inversion lists can be found in "Unicode Demystified"
+ * Chapter 13 by Richard Gillam, published by Addison-Wesley.
+ * More will be coming when functionality is added later.
+ *
+ * The inversion list data structure is currently implemented as an SV pointing
+ * to an array of UVs that the SV thinks are bytes. This allows us to have an
+ * array of UV whose memory management is automatically handled by the existing
+ * facilities for SV's.
+ *
+ * Some of the methods should always be private to the implementation, and some
+ * should eventually be made public */
+
+#define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
+#define INVLIST_ITER_OFFSET 1 /* Current iteration position */
+
+/* This is a combination of a version and data structure type, so that one
+ * being passed in can be validated to be an inversion list of the correct
+ * vintage. When the structure of the header is changed, a new random number
+ * in the range 2**31-1 should be generated and the new() method changed to
+ * insert that at this location. Then, if an auxiliary program doesn't change
+ * correspondingly, it will be discovered immediately */
+#define INVLIST_VERSION_ID_OFFSET 2
+#define INVLIST_VERSION_ID 1064334010
+
+/* For safety, when adding new elements, remember to #undef them at the end of
+ * the inversion list code section */
+
+#define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
+/* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
+ * contains the code point U+00000, and begins here. If 1, the inversion list
+ * doesn't contain U+0000, and it begins at the next UV in the array.
+ * Inverting an inversion list consists of adding or removing the 0 at the
+ * beginning of it. By reserving a space for that 0, inversion can be made
+ * very fast */
+
+#define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
+
+/* Internally things are UVs */
+#define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
+#define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
+
+#define INVLIST_INITIAL_LEN 10
+
+PERL_STATIC_INLINE UV*
+S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
+{
+ /* Returns a pointer to the first element in the inversion list's array.
+ * This is called upon initialization of an inversion list. Where the
+ * array begins depends on whether the list has the code point U+0000
+ * in it or not. The other parameter tells it whether the code that
+ * follows this call is about to put a 0 in the inversion list or not.
+ * The first element is either the element with 0, if 0, or the next one,
+ * if 1 */
+
+ UV* zero = get_invlist_zero_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
+
+ /* Must be empty */
+ assert(! *get_invlist_len_addr(invlist));
+
+ /* 1^1 = 0; 1^0 = 1 */
+ *zero = 1 ^ will_have_0;
+ return zero + *zero;
+}
+
+PERL_STATIC_INLINE UV*
+S_invlist_array(pTHX_ SV* const invlist)
+{
+ /* Returns the pointer to the inversion list's array. Every time the
+ * length changes, this needs to be called in case malloc or realloc moved
+ * it */
+
+ PERL_ARGS_ASSERT_INVLIST_ARRAY;
+
+ /* Must not be empty. If these fail, you probably didn't check for <len>
+ * being non-zero before trying to get the array */
+ assert(*get_invlist_len_addr(invlist));
+ assert(*get_invlist_zero_addr(invlist) == 0
+ || *get_invlist_zero_addr(invlist) == 1);
+
+ /* The array begins either at the element reserved for zero if the
+ * list contains 0 (that element will be set to 0), or otherwise the next
+ * element (in which case the reserved element will be set to 1). */
+ return (UV *) (get_invlist_zero_addr(invlist)
+ + *get_invlist_zero_addr(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_len_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current number
+ * of used elements in the inversion list */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_len(pTHX_ SV* const invlist)
+{
+ /* Returns the current number of elements stored in the inversion list's
+ * array */
+
+ PERL_ARGS_ASSERT_INVLIST_LEN;
+
+ return *get_invlist_len_addr(invlist);
+}
+
+PERL_STATIC_INLINE void
+S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
+{
+ /* Sets the current number of elements stored in the inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_SET_LEN;
+
+ *get_invlist_len_addr(invlist) = len;
+
+ assert(len <= SvLEN(invlist));
+
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
+ /* If the list contains U+0000, that element is part of the header,
+ * and should not be counted as part of the array. It will contain
+ * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
+ * subtract:
+ * SvCUR_set(invlist,
+ * TO_INTERNAL_SIZE(len
+ * - (*get_invlist_zero_addr(inv_list) ^ 1)));
+ * But, this is only valid if len is not 0. The consequences of not doing
+ * this is that the memory allocation code may think that 1 more UV is
+ * being used than actually is, and so might do an unnecessary grow. That
+ * seems worth not bothering to make this the precise amount.
+ *
+ * Note that when inverting, SvCUR shouldn't change */
+}
+
+PERL_STATIC_INLINE UV
+S_invlist_max(pTHX_ SV* const invlist)
+{
+ /* Returns the maximum number of elements storable in the inversion list's
+ * array, without having to realloc() */
+
+ PERL_ARGS_ASSERT_INVLIST_MAX;
+
+ return FROM_INTERNAL_SIZE(SvLEN(invlist));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_zero_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that is reserved to hold 0 if the inversion
+ * list contains 0. This has to be the last element of the heading, as the
+ * list proper starts with either it if 0, or the next element if not.
+ * (But we force it to contain either 0 or 1) */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV*
+Perl__new_invlist(pTHX_ IV initial_size)
+{
+
+ /* Return a pointer to a newly constructed inversion list, with enough
+ * space to store 'initial_size' elements. If that number is negative, a
+ * system default is used instead */
+
+ SV* new_list;
+
+ if (initial_size < 0) {
+ initial_size = INVLIST_INITIAL_LEN;
+ }
+
+ /* Allocate the initial space */
+ new_list = newSV(TO_INTERNAL_SIZE(initial_size));
+ invlist_set_len(new_list, 0);
+
+ /* Force iterinit() to be used to get iteration to work */
+ *get_invlist_iter_addr(new_list) = UV_MAX;
+
+ /* This should force a segfault if a method doesn't initialize this
+ * properly */
+ *get_invlist_zero_addr(new_list) = UV_MAX;
+
+ *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
+#if HEADER_LENGTH != 4
+# error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
+#endif
+
+ return new_list;
+}
+#endif
+
+STATIC SV*
+S__new_invlist_C_array(pTHX_ UV* list)
+{
+ /* Return a pointer to a newly constructed inversion list, initialized to
+ * point to <list>, which has to be in the exact correct inversion list
+ * form, including internal fields. Thus this is a dangerous routine that
+ * should not be used in the wrong hands */
+
+ SV* invlist = newSV_type(SVt_PV);
+
+ PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
+
+ SvPV_set(invlist, (char *) list);
+ SvLEN_set(invlist, 0); /* Means we own the contents, and the system
+ shouldn't touch it */
+ SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
+
+ if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
+ Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
+ }
+
+ return invlist;
+}
+
+STATIC void
+S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
+{
+ /* Grow the maximum size of an inversion list */
+
+ PERL_ARGS_ASSERT_INVLIST_EXTEND;
+
+ SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_trim(pTHX_ SV* const invlist)
+{
+ PERL_ARGS_ASSERT_INVLIST_TRIM;
+
+ /* Change the length of the inversion list to how many entries it currently
+ * has */
+
+ SvPV_shrink_to_cur((SV *) invlist);
+}
+
+/* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
+ * etc */
+#define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
+#define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
+
+#define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
+
+STATIC void
+S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
+{
+ /* Subject to change or removal. Append the range from 'start' to 'end' at
+ * the end of the inversion list. The range must be above any existing
+ * ones. */
+
+ UV* array;
+ UV max = invlist_max(invlist);
+ UV len = invlist_len(invlist);
+
+ PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
+
+ if (len == 0) { /* Empty lists must be initialized */
+ array = _invlist_array_init(invlist, start == 0);
+ }
+ else {
+ /* Here, the existing list is non-empty. The current max entry in the
+ * list is generally the first value not in the set, except when the
+ * set extends to the end of permissible values, in which case it is
+ * the first entry in that final set, and so this call is an attempt to
+ * append out-of-order */
+
+ UV final_element = len - 1;
+ array = invlist_array(invlist);
+ if (array[final_element] > start
+ || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
+ {
+ Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
+ array[final_element], start,
+ ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
+ }
+
+ /* Here, it is a legal append. If the new range begins with the first
+ * value not in the set, it is extending the set, so the new first
+ * value not in the set is one greater than the newly extended range.
+ * */
+ if (array[final_element] == start) {
+ if (end != UV_MAX) {
+ array[final_element] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine,
+ * just let the range that this would extend to have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+ return;
+ }
+ }
+
+ /* Here the new range doesn't extend any existing set. Add it */
+
+ len += 2; /* Includes an element each for the start and end of range */
+
+ /* If overflows the existing space, extend, which may cause the array to be
+ * moved */
+ if (max < len) {
+ invlist_extend(invlist, len);
+ invlist_set_len(invlist, len); /* Have to set len here to avoid assert
+ failure in invlist_array() */
+ array = invlist_array(invlist);
+ }
+ else {
+ invlist_set_len(invlist, len);
+ }
+
+ /* The next item on the list starts the range, the one after that is
+ * one past the new range. */
+ array[len - 2] = start;
+ if (end != UV_MAX) {
+ array[len - 1] = end + 1;
+ }
+ else {
+ /* But if the end is the maximum representable on the machine, just let
+ * the range have no end */
+ invlist_set_len(invlist, len - 1);
+ }
+}
+
+#ifndef PERL_IN_XSUB_RE
+
+STATIC IV
+S_invlist_search(pTHX_ SV* const invlist, const UV cp)
+{
+ /* Searches the inversion list for the entry that contains the input code
+ * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
+ * return value is the index into the list's array of the range that
+ * contains <cp> */
+
+ IV low = 0;
+ IV high = invlist_len(invlist);
+ const UV * const array = invlist_array(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_SEARCH;
+
+ /* If list is empty or the code point is before the first element, return
+ * failure. */
+ if (high == 0 || cp < array[0]) {
+ return -1;
+ }
+
+ /* Binary search. What we are looking for is <i> such that
+ * array[i] <= cp < array[i+1]
+ * The loop below converges on the i+1. */
+ while (low < high) {
+ IV mid = (low + high) / 2;
+ if (array[mid] <= cp) {
+ low = mid + 1;
+
+ /* We could do this extra test to exit the loop early.
+ if (cp < array[low]) {
+ return mid;
+ }
+ */
+ }
+ else { /* cp < array[mid] */
+ high = mid;
+ }
+ }
+
+ return high - 1;
+}
+
+void
+Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
+{
+ /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
+ * but is used when the swash has an inversion list. This makes this much
+ * faster, as it uses a binary search instead of a linear one. This is
+ * intimately tied to that function, and perhaps should be in utf8.c,
+ * except it is intimately tied to inversion lists as well. It assumes
+ * that <swatch> is all 0's on input */
+
+ UV current = start;
+ const IV len = invlist_len(invlist);
+ IV i;
+ const UV * array;
+
+ PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
+
+ if (len == 0) { /* Empty inversion list */
+ return;
+ }
+
+ array = invlist_array(invlist);
+
+ /* Find which element it is */
+ i = invlist_search(invlist, start);
+
+ /* We populate from <start> to <end> */
+ while (current < end) {
+ UV upper;
+
+ /* The inversion list gives the results for every possible code point
+ * after the first one in the list. Only those ranges whose index is
+ * even are ones that the inversion list matches. For the odd ones,
+ * and if the initial code point is not in the list, we have to skip
+ * forward to the next element */
+ if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
+ i++;
+ if (i >= len) { /* Finished if beyond the end of the array */
+ return;
+ }
+ current = array[i];
+ if (current >= end) { /* Finished if beyond the end of what we
+ are populating */
+ return;
+ }
+ }
+ assert(current >= start);
+
+ /* The current range ends one below the next one, except don't go past
+ * <end> */
+ i++;
+ upper = (i < len && array[i] < end) ? array[i] : end;
+
+ /* Here we are in a range that matches. Populate a bit in the 3-bit U8
+ * for each code point in it */
+ for (; current < upper; current++) {
+ const STRLEN offset = (STRLEN)(current - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+
+ /* Quit if at the end of the list */
+ if (i >= len) {
+
+ /* But first, have to deal with the highest possible code point on
+ * the platform. The previous code assumes that <end> is one
+ * beyond where we want to populate, but that is impossible at the
+ * platform's infinity, so have to handle it specially */
+ if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
+ {
+ const STRLEN offset = (STRLEN)(end - start);
+ swatch[offset >> 3] |= 1 << (offset & 7);
+ }
+ return;
+ }
+
+ /* Advance to the next range, which will be for code points not in the
+ * inversion list */
+ current = array[i];
+ }
+
+ return;
+}
+
+
+void
+Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
+{
+ /* Take the union of two inversion lists and point <output> to it. *output
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented. The first list,
+ * <a>, may be NULL, in which case a copy of the second list is returned.
+ * If <complement_b> is TRUE, the union is taken of the complement
+ * (inversion) of <b> instead of b itself.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk.
+ *
+ * The algorithm is like a merge sort.
+ *
+ * XXX A potential performance improvement is to keep track as we go along
+ * if only one of the inputs contributes to the result, meaning the other
+ * is a subset of that one. In that case, we can skip the final copy and
+ * return the larger of the input lists, but then outside code might need
+ * to keep track of whether to free the input list or not */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* u; /* the resulting union */
+ UV* array_u;
+ UV len_u;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_u = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 0.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is zero is something not in the set.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* If either one is empty, the union is the other one */
+ if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
+ if (*output == a) {
+ if (a != NULL) {
+ SvREFCNT_dec(a);
+ }
+ }
+ if (*output != b) {
+ *output = invlist_clone(b);
+ if (complement_b) {
+ _invlist_invert(*output);
+ }
+ } /* else *output already = b; */
+ return;
+ }
+ else if ((len_b = invlist_len(b)) == 0) {
+ if (*output == b) {
+ SvREFCNT_dec(b);
+ }
+
+ /* The complement of an empty list is a list that has everything in it,
+ * so the union with <a> includes everything too */
+ if (complement_b) {
+ if (a == *output) {
+ SvREFCNT_dec(a);
+ }
+ *output = _new_invlist(1);
+ _append_range_to_invlist(*output, 0, UV_MAX);
+ }
+ else if (*output != a) {
+ *output = invlist_clone(a);
+ }
+ /* else *output already = a; */
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the union of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the union for the worst case: that the sets are completely
+ * disjoint */
+ u = _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 if either component does */
+ array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
+ || (len_b > 0 && array_b[0] == 0));
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the union's array */
+ bool cp_in_set; /* is it in the the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the union.
+ * Since we are merging two sorted lists, we take the smaller of the
+ * next items. In case of a tie, we take the one that is in its set
+ * first. If we took one not in the set first, it would decrement the
+ * count, possibly to 0 which would cause it to be output as ending the
+ * range, and the next time through we would take the same number, and
+ * output it again as beginning the next range. By doing it the
+ * opposite way, there is no possibility that the count will be
+ * momentarily decremented to 0, and thus the two adjoining ranges will
+ * be seamlessly merged. (In a tie and both are in the set or both not
+ * in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 0, which marks the
+ * beginning/end of a range in that's in the set */
+ if (cp_in_set) {
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ count++;
+ }
+ else {
+ count--;
+ if (count == 0) {
+ array_u[i_u++] = cp;
+ }
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that hasn't been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to the element beyond
+ * the one we care about.) If in the set, we decrement 'count'; if 0, there
+ * is potentially more to output.
+ * There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. What's left
+ * in the union is entirely from the non-exhausted set.
+ * 2) Both were in their sets, count is 2. Nothing further should
+ * be output, as everything that remains will be in the exhausted
+ * list's set, hence in the union; decrementing to 1 but not 0 insures
+ * that
+ * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
+ * Nothing further should be output because the union includes
+ * everything from the exhausted set. Not decrementing ensures that.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
+ * decrementing to 0 insures that we look at the remainder of the
+ * non-exhausted set */
+ if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count--;
+ }
+
+ /* The final length is what we've output so far, plus what else is about to
+ * be output. (If 'count' is non-zero, then the input list we exhausted
+ * has everything remaining up to the machine's limit in its set, and hence
+ * in the union, so there will be no further output. */
+ len_u = i_u;
+ if (count == 0) {
+ /* At most one of the subexpressions will be non-zero */
+ len_u += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_u, so
+ * re-find it */
+ if (len_u != invlist_len(u)) {
+ invlist_set_len(u, len_u);
+ invlist_trim(u);
+ array_u = invlist_array(u);
+ }
+
+ /* When 'count' is 0, the list that was exhausted (if one was shorter than
+ * the other) ended with everything above it not in its set. That means
+ * that the remaining part of the union is precisely the same as the
+ * non-exhausted list, so can just copy it unchanged. (If both list were
+ * exhausted at the same time, then the operations below will be both 0.)
+ */
+ if (count == 0) {
+ IV copy_count; /* At most one will have a non-zero copy count */
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_u + i_u, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_u + i_u, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *output || b == *output) {
+ SvREFCNT_dec(*output);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *output = u;
+ return;
+}
+
+void
+Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
+{
+ /* Take the intersection of two inversion lists and point <i> to it. *i
+ * should be defined upon input, and if it points to one of the two lists,
+ * the reference count to that list will be decremented.
+ * If <complement_b> is TRUE, the result will be the intersection of <a>
+ * and the complement (or inversion) of <b> instead of <b> directly.
+ *
+ * The basis for this comes from "Unicode Demystified" Chapter 13 by
+ * Richard Gillam, published by Addison-Wesley, and explained at some
+ * length there. The preface says to incorporate its examples into your
+ * code at your own risk. In fact, it had bugs
+ *
+ * The algorithm is like a merge sort, and is essentially the same as the
+ * union above
+ */
+
+ UV* array_a; /* a's array */
+ UV* array_b;
+ UV len_a; /* length of a's array */
+ UV len_b;
+
+ SV* r; /* the resulting intersection */
+ UV* array_r;
+ UV len_r;
+
+ UV i_a = 0; /* current index into a's array */
+ UV i_b = 0;
+ UV i_r = 0;
+
+ /* running count, as explained in the algorithm source book; items are
+ * stopped accumulating and are output when the count changes to/from 2.
+ * The count is incremented when we start a range that's in the set, and
+ * decremented when we start a range that's not in the set. So its range
+ * is 0 to 2. Only when the count is 2 is something in the intersection.
+ */
+ UV count = 0;
+
+ PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
+ assert(a != b);
+
+ /* Special case if either one is empty */
+ len_a = invlist_len(a);
+ if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
+
+ if (len_a != 0 && complement_b) {
+
+ /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
+ * be empty. Here, also we are using 'b's complement, which hence
+ * must be every possible code point. Thus the intersection is
+ * simply 'a'. */
+ if (*i != a) {
+ *i = invlist_clone(a);
+
+ if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ }
+ /* else *i is already 'a' */
+ return;
+ }
+
+ /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
+ * intersection must be empty */
+ if (*i == a) {
+ SvREFCNT_dec(a);
+ }
+ else if (*i == b) {
+ SvREFCNT_dec(b);
+ }
+ *i = _new_invlist(0);
+ return;
+ }
+
+ /* Here both lists exist and are non-empty */
+ array_a = invlist_array(a);
+ array_b = invlist_array(b);
+
+ /* If are to take the intersection of 'a' with the complement of b, set it
+ * up so are looking at b's complement. */
+ if (complement_b) {
+
+ /* To complement, we invert: if the first element is 0, remove it. To
+ * do this, we just pretend the array starts one later, and clear the
+ * flag as we don't have to do anything else later */
+ if (array_b[0] == 0) {
+ array_b++;
+ len_b--;
+ complement_b = FALSE;
+ }
+ else {
+
+ /* But if the first element is not zero, we unshift a 0 before the
+ * array. The data structure reserves a space for that 0 (which
+ * should be a '1' right now), so physical shifting is unneeded,
+ * but temporarily change that element to 0. Before exiting the
+ * routine, we must restore the element to '1' */
+ array_b--;
+ len_b++;
+ array_b[0] = 0;
+ }
+ }
+
+ /* Size the intersection for the worst case: that the intersection ends up
+ * fragmenting everything to be completely disjoint */
+ r= _new_invlist(len_a + len_b);
+
+ /* Will contain U+0000 iff both components do */
+ array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
+ && len_b > 0 && array_b[0] == 0);
+
+ /* Go through each list item by item, stopping when exhausted one of
+ * them */
+ while (i_a < len_a && i_b < len_b) {
+ UV cp; /* The element to potentially add to the intersection's
+ array */
+ bool cp_in_set; /* Is it in the input list's set or not */
+
+ /* We need to take one or the other of the two inputs for the
+ * intersection. Since we are merging two sorted lists, we take the
+ * smaller of the next items. In case of a tie, we take the one that
+ * is not in its set first (a difference from the union algorithm). If
+ * we took one in the set first, it would increment the count, possibly
+ * to 2 which would cause it to be output as starting a range in the
+ * intersection, and the next time through we would take that same
+ * number, and output it again as ending the set. By doing it the
+ * opposite of this, there is no possibility that the count will be
+ * momentarily incremented to 2. (In a tie and both are in the set or
+ * both not in the set, it doesn't matter which we take first.) */
+ if (array_a[i_a] < array_b[i_b]
+ || (array_a[i_a] == array_b[i_b]
+ && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
+ {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
+ cp= array_a[i_a++];
+ }
+ else {
+ cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
+ cp= array_b[i_b++];
+ }
+
+ /* Here, have chosen which of the two inputs to look at. Only output
+ * if the running count changes to/from 2, which marks the
+ * beginning/end of a range that's in the intersection */
+ if (cp_in_set) {
+ count++;
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ }
+ else {
+ if (count == 2) {
+ array_r[i_r++] = cp;
+ }
+ count--;
+ }
+ }
+
+ /* Here, we are finished going through at least one of the lists, which
+ * means there is something remaining in at most one. We check if the list
+ * that has been exhausted is positioned such that we are in the middle
+ * of a range in its set or not. (i_a and i_b point to elements 1 beyond
+ * the ones we care about.) There are four cases:
+ * 1) Both weren't in their sets, count is 0, and remains 0. There's
+ * nothing left in the intersection.
+ * 2) Both were in their sets, count is 2 and perhaps is incremented to
+ * above 2. What should be output is exactly that which is in the
+ * non-exhausted set, as everything it has is also in the intersection
+ * set, and everything it doesn't have can't be in the intersection
+ * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
+ * gets incremented to 2. Like the previous case, the intersection is
+ * everything that remains in the non-exhausted set.
+ * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
+ * remains 1. And the intersection has nothing more. */
+ if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
+ || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
+ {
+ count++;
+ }
+
+ /* The final length is what we've output so far plus what else is in the
+ * intersection. At most one of the subexpressions below will be non-zero */
+ len_r = i_r;
+ if (count >= 2) {
+ len_r += (len_a - i_a) + (len_b - i_b);
+ }
+
+ /* Set result to final length, which can change the pointer to array_r, so
+ * re-find it */
+ if (len_r != invlist_len(r)) {
+ invlist_set_len(r, len_r);
+ invlist_trim(r);
+ array_r = invlist_array(r);
+ }
+
+ /* Finish outputting any remaining */
+ if (count >= 2) { /* At most one will have a non-zero copy count */
+ IV copy_count;
+ if ((copy_count = len_a - i_a) > 0) {
+ Copy(array_a + i_a, array_r + i_r, copy_count, UV);
+ }
+ else if ((copy_count = len_b - i_b) > 0) {
+ Copy(array_b + i_b, array_r + i_r, copy_count, UV);
+ }
+ }
+
+ /* We may be removing a reference to one of the inputs */
+ if (a == *i || b == *i) {
+ SvREFCNT_dec(*i);
+ }
+
+ /* If we've changed b, restore it */
+ if (complement_b) {
+ array_b[0] = 1;
+ }
+
+ *i = r;
+ return;
+}
+
+SV*
+Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
+{
+ /* Add the range from 'start' to 'end' inclusive to the inversion list's
+ * set. A pointer to the inversion list is returned. This may actually be
+ * a new list, in which case the passed in one has been destroyed. The
+ * passed in inversion list can be NULL, in which case a new one is created
+ * with just the one range in it */
+
+ SV* range_invlist;
+ UV len;
+
+ if (invlist == NULL) {
+ invlist = _new_invlist(2);
+ len = 0;
+ }
+ else {
+ len = invlist_len(invlist);
+ }
+
+ /* If comes after the final entry, can just append it to the end */
+ if (len == 0
+ || start >= invlist_array(invlist)
+ [invlist_len(invlist) - 1])
+ {
+ _append_range_to_invlist(invlist, start, end);
+ return invlist;
+ }
+
+ /* Here, can't just append things, create and return a new inversion list
+ * which is the union of this range and the existing inversion list */
+ range_invlist = _new_invlist(2);
+ _append_range_to_invlist(range_invlist, start, end);
+
+ _invlist_union(invlist, range_invlist, &invlist);
+
+ /* The temporary can be freed */
+ SvREFCNT_dec(range_invlist);
+
+ return invlist;
+}
+
+#endif
+
+PERL_STATIC_INLINE SV*
+S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
+ return _add_range_to_invlist(invlist, cp, cp);
+}
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl__invlist_invert(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list. This adds a 0 if the list didn't
+ * have a zero; removes it otherwise. As described above, the data
+ * structure is set up so that this is very efficient */
+
+ UV* len_pos = get_invlist_len_addr(invlist);
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT;
+
+ /* The inverse of matching nothing is matching everything */
+ if (*len_pos == 0) {
+ _append_range_to_invlist(invlist, 0, UV_MAX);
+ return;
+ }
+
+ /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
+ * zero element was a 0, so it is being removed, so the length decrements
+ * by 1; and vice-versa. SvCUR is unaffected */
+ if (*get_invlist_zero_addr(invlist) ^= 1) {
+ (*len_pos)--;
+ }
+ else {
+ (*len_pos)++;
+ }
+}
+
+void
+Perl__invlist_invert_prop(pTHX_ SV* const invlist)
+{
+ /* Complement the input inversion list (which must be a Unicode property,
+ * all of which don't match above the Unicode maximum code point.) And
+ * Perl has chosen to not have the inversion match above that either. This
+ * adds a 0x110000 if the list didn't end with it, and removes it if it did
+ */
+
+ UV len;
+ UV* array;
+
+ PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
+
+ _invlist_invert(invlist);
+
+ len = invlist_len(invlist);
+
+ if (len != 0) { /* If empty do nothing */
+ array = invlist_array(invlist);
+ if (array[len - 1] != PERL_UNICODE_MAX + 1) {
+ /* Add 0x110000. First, grow if necessary */
+ len++;
+ if (invlist_max(invlist) < len) {
+ invlist_extend(invlist, len);
+ array = invlist_array(invlist);
+ }
+ invlist_set_len(invlist, len);
+ array[len - 1] = PERL_UNICODE_MAX + 1;
+ }
+ else { /* Remove the 0x110000 */
+ invlist_set_len(invlist, len - 1);
+ }
+ }
+
+ return;
+}
+#endif
+
+PERL_STATIC_INLINE SV*
+S_invlist_clone(pTHX_ SV* const invlist)
+{
+
+ /* Return a new inversion list that is a copy of the input one, which is
+ * unchanged */
+
+ /* Need to allocate extra space to accommodate Perl's addition of a
+ * trailing NUL to SvPV's, since it thinks they are always strings */
+ SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
+ STRLEN length = SvCUR(invlist);
+
+ PERL_ARGS_ASSERT_INVLIST_CLONE;
+
+ SvCUR_set(new_invlist, length); /* This isn't done automatically */
+ Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
+
+ return new_invlist;
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_iter_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the current iteration
+ * position */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE UV*
+S_get_invlist_version_id_addr(pTHX_ SV* invlist)
+{
+ /* Return the address of the UV that contains the version id. */
+
+ PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
+
+ return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
+}
+
+PERL_STATIC_INLINE void
+S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
+{
+ PERL_ARGS_ASSERT_INVLIST_ITERINIT;
+
+ *get_invlist_iter_addr(invlist) = 0;
+}
+
+STATIC bool
+S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
+{
+ /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
+ * This call sets in <*start> and <*end>, the next range in <invlist>.
+ * Returns <TRUE> if successful and the next call will return the next
+ * range; <FALSE> if was already at the end of the list. If the latter,
+ * <*start> and <*end> are unchanged, and the next call to this function
+ * will start over at the beginning of the list */
+
+ UV* pos = get_invlist_iter_addr(invlist);
+ UV len = invlist_len(invlist);
+ UV *array;
+
+ PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
+
+ if (*pos >= len) {
+ *pos = UV_MAX; /* Force iternit() to be required next time */
+ return FALSE;
+ }
+
+ array = invlist_array(invlist);
+
+ *start = array[(*pos)++];
+
+ if (*pos >= len) {
+ *end = UV_MAX;
+ }
+ else {
+ *end = array[(*pos)++] - 1;
+ }
+
+ return TRUE;
+}
+
+#ifndef PERL_IN_XSUB_RE
+SV *
+Perl__invlist_contents(pTHX_ SV* const invlist)
+{
+ /* Get the contents of an inversion list into a string SV so that they can
+ * be printed out. It uses the format traditionally done for debug tracing
+ */
+
+ UV start, end;
+ SV* output = newSVpvs("\n");
+
+ PERL_ARGS_ASSERT__INVLIST_CONTENTS;
+
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
+ }
+ else if (end != start) {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
+ start, end);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
+ }
+ }
+
+ return output;
+}
+#endif
+
+#if 0
+void
+S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
+{
+ /* Dumps out the ranges in an inversion list. The string 'header'
+ * if present is output on a line before the first range */
+
+ UV start, end;
+
+ if (header && strlen(header)) {
+ PerlIO_printf(Perl_debug_log, "%s\n", header);
+ }
+ invlist_iterinit(invlist);
+ while (invlist_iternext(invlist, &start, &end)) {
+ if (end == UV_MAX) {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
+ }
+ else {
+ PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
+ }
+ }
+}
+#endif
+
+#undef HEADER_LENGTH
+#undef INVLIST_INITIAL_LENGTH
+#undef TO_INTERNAL_SIZE
+#undef FROM_INTERNAL_SIZE
+#undef INVLIST_LEN_OFFSET
+#undef INVLIST_ZERO_OFFSET
+#undef INVLIST_ITER_OFFSET
+#undef INVLIST_VERSION_ID
+
+/* End of inversion list object */
+
+/*
+ - reg - regular expression, i.e. main body or parenthesized thing
+ *
+ * Caller must absorb opening parenthesis.
+ *
+ * Combining parenthesis handling with the base level of regular expression
+ * is a trifle forced, but the need to tie the tails of the branches to what
+ * follows makes it hard to avoid.
+ */
+#define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
+#ifdef DEBUGGING
+#define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
+#else
+#define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
+#endif
+
+STATIC regnode *
+S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
+ /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
+{
+ dVAR;
+ register regnode *ret; /* Will be the head of the group. */
+ register regnode *br;
+ register regnode *lastbr;
+ register regnode *ender = NULL;
+ register I32 parno = 0;
+ I32 flags;
+ U32 oregflags = RExC_flags;
+ bool have_branch = 0;
+ bool is_open = 0;
+ I32 freeze_paren = 0;
+ I32 after_freeze = 0;
+
+ /* for (?g), (?gc), and (?o) warnings; warning
+ about (?c) will warn about (?g) -- japhy */
+
+#define WASTED_O 0x01
+#define WASTED_G 0x02
+#define WASTED_C 0x04
+#define WASTED_GC (0x02|0x04)
+ I32 wastedflags = 0x00;
+
+ char * parse_start = RExC_parse; /* MJD */
+ char * const oregcomp_parse = RExC_parse;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG;
+ DEBUG_PARSE("reg ");
+
+ *flagp = 0; /* Tentatively. */
+
+
+ /* Make an OPEN node, if parenthesized. */
+ if (paren) {
+ if ( *RExC_parse == '*') { /* (*VERB:ARG) */
+ char *start_verb = RExC_parse;
+ STRLEN verb_len = 0;
+ char *start_arg = NULL;
+ unsigned char op = 0;
+ int argok = 1;
+ int internal_argval = 0; /* internal_argval is only useful if !argok */
+ while ( *RExC_parse && *RExC_parse != ')' ) {
+ if ( *RExC_parse == ':' ) {
+ start_arg = RExC_parse + 1;
+ break;
+ }
+ RExC_parse++;
+ }
+ ++start_verb;
+ verb_len = RExC_parse - start_verb;
+ if ( start_arg ) {
+ RExC_parse++;
+ while ( *RExC_parse && *RExC_parse != ')' )
+ RExC_parse++;
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern argument");
+ if ( RExC_parse == start_arg )
+ start_arg = NULL;
+ } else {
+ if ( *RExC_parse != ')' )
+ vFAIL("Unterminated verb pattern");
+ }
+
+ switch ( *start_verb ) {
+ case 'A': /* (*ACCEPT) */
+ if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
+ op = ACCEPT;
+ internal_argval = RExC_nestroot;
+ }
+ break;
+ case 'C': /* (*COMMIT) */
+ if ( memEQs(start_verb,verb_len,"COMMIT") )
+ op = COMMIT;
+ break;
+ case 'F': /* (*FAIL) */
+ if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
+ op = OPFAIL;
+ argok = 0;
+ }
+ break;
+ case ':': /* (*:NAME) */
+ case 'M': /* (*MARK:NAME) */
+ if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
+ op = MARKPOINT;
+ argok = -1;
+ }
+ break;
+ case 'P': /* (*PRUNE) */
+ if ( memEQs(start_verb,verb_len,"PRUNE") )
+ op = PRUNE;
+ break;
+ case 'S': /* (*SKIP) */
+ if ( memEQs(start_verb,verb_len,"SKIP") )
+ op = SKIP;
+ break;
+ case 'T': /* (*THEN) */
+ /* [19:06] <TimToady> :: is then */
+ if ( memEQs(start_verb,verb_len,"THEN") ) {
+ op = CUTGROUP;
+ RExC_seen |= REG_SEEN_CUTGROUP;
+ }
+ break;
+ }
+ if ( ! op ) {
+ RExC_parse++;
+ vFAIL3("Unknown verb pattern '%.*s'",
+ verb_len, start_verb);
+ }
+ if ( argok ) {
+ if ( start_arg && internal_argval ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else if ( argok < 0 && !start_arg ) {
+ vFAIL3("Verb pattern '%.*s' has a mandatory argument",
+ verb_len, start_verb);
+ } else {
+ ret = reganode(pRExC_state, op, internal_argval);
+ if ( ! internal_argval && ! SIZE_ONLY ) {
+ if (start_arg) {
+ SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
+ ARG(ret) = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[ARG(ret)]=(void*)sv;
+ ret->flags = 0;
+ } else {
+ ret->flags = 1;
+ }
+ }
+ }
+ if (!internal_argval)
+ RExC_seen |= REG_SEEN_VERBARG;
+ } else if ( start_arg ) {
+ vFAIL3("Verb pattern '%.*s' may not have an argument",
+ verb_len, start_verb);
+ } else {
+ ret = reg_node(pRExC_state, op);
+ }
+ nextchar(pRExC_state);
+ return ret;
+ } else
+ if (*RExC_parse == '?') { /* (?...) */
+ bool is_logical = 0;
+ const char * const seqstart = RExC_parse;
+ bool has_use_defaults = FALSE;
+
+ RExC_parse++;
+ paren = *RExC_parse++;
+ ret = NULL; /* For look-ahead/behind. */
+ switch (paren) {
+
+ case 'P': /* (?P...) variants for those used to PCRE/Python */
+ paren = *RExC_parse++;
+ if ( paren == '<') /* (?P<...>) named capture */
+ goto named_capture;
+ else if (paren == '>') { /* (?P>name) named recursion */
+ goto named_recursion;
+ }
+ else if (paren == '=') { /* (?P=...) named backref */
+ /* this pretty much dupes the code for \k<NAME> in regatom(), if
+ you change this make sure you change that */
+ char* name_start = RExC_parse;
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ')')
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+
+ nextchar(pRExC_state);
+ return ret;
+ }
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ case '<': /* (?<...) */
+ if (*RExC_parse == '!')
+ paren = ',';
+ else if (*RExC_parse != '=')
+ named_capture:
+ { /* (?<...>) */
+ char *name_start;
+ SV *svname;
+ paren= '>';
+ case '\'': /* (?'...') */
+ name_start= RExC_parse;
+ svname = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? /* reverse test from the others */
+ REG_RSN_RETURN_NAME :
+ REG_RSN_RETURN_NULL);
+ if (RExC_parse == name_start) {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ if (*RExC_parse != paren)
+ vFAIL2("Sequence (?%c... not terminated",
+ paren=='>' ? '<' : paren);
+ if (SIZE_ONLY) {
+ HE *he_str;
+ SV *sv_dat = NULL;
+ if (!svname) /* shouldn't happen */
+ Perl_croak(aTHX_
+ "panic: reg_scan_name returned NULL");
+ if (!RExC_paren_names) {
+ RExC_paren_names= newHV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_names));
+#ifdef DEBUGGING
+ RExC_paren_name_list= newAV();
+ sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
+#endif
+ }
+ he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
+ if ( he_str )
+ sv_dat = HeVAL(he_str);
+ if ( ! sv_dat ) {
+ /* croak baby croak */
+ Perl_croak(aTHX_
+ "panic: paren_name hash element allocation failed");
+ } else if ( SvPOK(sv_dat) ) {
+ /* (?|...) can mean we have dupes so scan to check
+ its already been stored. Maybe a flag indicating
+ we are inside such a construct would be useful,
+ but the arrays are likely to be quite small, so
+ for now we punt -- dmq */
+ IV count = SvIV(sv_dat);
+ I32 *pv = (I32*)SvPVX(sv_dat);
+ IV i;
+ for ( i = 0 ; i < count ; i++ ) {
+ if ( pv[i] == RExC_npar ) {
+ count = 0;
+ break;
+ }
+ }
+ if ( count ) {
+ pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
+ SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
+ pv[count] = RExC_npar;
+ SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
+ }
+ } else {
+ (void)SvUPGRADE(sv_dat,SVt_PVNV);
+ sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
+ SvIOK_on(sv_dat);
+ SvIV_set(sv_dat, 1);
+ }
+#ifdef DEBUGGING
+ /* Yes this does cause a memory leak in debugging Perls */
+ if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
+ SvREFCNT_dec(svname);
+#endif
+
+ /*sv_dump(sv_dat);*/
+ }
+ nextchar(pRExC_state);
+ paren = 1;
+ goto capturing_parens;
+ }
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ RExC_in_lookbehind++;
+ RExC_parse++;
+ case '=': /* (?=...) */
+ RExC_seen_zerolen++;
+ break;
+ case '!': /* (?!...) */
+ RExC_seen_zerolen++;
+ if (*RExC_parse == ')') {
+ ret=reg_node(pRExC_state, OPFAIL);
+ nextchar(pRExC_state);
+ return ret;
+ }
+ break;
+ case '|': /* (?|...) */
+ /* branch reset, behave like a (?:...) except that
+ buffers in alternations share the same numbers */
+ paren = ':';
+ after_freeze = freeze_paren = RExC_npar;
+ break;
+ case ':': /* (?:...) */
+ case '>': /* (?>...) */
+ break;
+ case '$': /* (?$...) */
+ case '@': /* (?@...) */
+ vFAIL2("Sequence (?%c...) not implemented", (int)paren);
+ break;
+ case '#': /* (?#...) */
+ while (*RExC_parse && *RExC_parse != ')')
+ RExC_parse++;
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?#... not terminated");
+ nextchar(pRExC_state);
+ *flagp = TRYAGAIN;
+ return NULL;
+ case '0' : /* (?0) */
+ case 'R' : /* (?R) */
+ if (*RExC_parse != ')')
+ FAIL("Sequence (?R) not terminated");
+ ret = reg_node(pRExC_state, GOSTART);
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ /*notreached*/
+ { /* named and numeric backreferences */
+ I32 num;
+ case '&': /* (?&NAME) */
+ parse_start = RExC_parse - 1;
+ named_recursion:
+ {
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ goto gen_recurse_regop;
+ /* NOT REACHED */
+ case '+':
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse++;
+ vFAIL("Illegal pattern");
+ }
+ goto parse_recursion;
+ /* NOT REACHED*/
+ case '-': /* (?-1) */
+ if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
+ RExC_parse--; /* rewind to let it be handled later */
+ goto parse_flags;
+ }
+ /*FALLTHROUGH */
+ case '1': case '2': case '3': case '4': /* (?1) */
+ case '5': case '6': case '7': case '8': case '9':
+ RExC_parse--;
+ parse_recursion:
+ num = atoi(RExC_parse);
+ parse_start = RExC_parse - 1; /* MJD */
+ if (*RExC_parse == '-')
+ RExC_parse++;
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (*RExC_parse!=')')
+ vFAIL("Expecting close bracket");
+
+ gen_recurse_regop:
+ if ( paren == '-' ) {
+ /*
+ Diagram of capture buffer numbering.
+ Top line is the normal capture buffer numbers
+ Bottom line is the negative indexing as from
+ the X (the (?-2))
+
+ + 1 2 3 4 5 X 6 7
+ /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
+ - 5 4 3 2 1 X x x
+
+ */
+ num = RExC_npar + num;
+ if (num < 1) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ } else if ( paren == '+' ) {
+ num = RExC_npar + num - 1;
+ }
+
+ ret = reganode(pRExC_state, GOSUB, num);
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens) {
+ RExC_parse++;
+ vFAIL("Reference to nonexistent group");
+ }
+ ARG2L_SET( ret, RExC_recurse_count++);
+ RExC_emit++;
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
+ } else {
+ RExC_size++;
+ }
+ RExC_seen |= REG_SEEN_RECURSE;
+ Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
+ Set_Node_Offset(ret, parse_start); /* MJD */
+
+ *flagp |= POSTPONED;
+ nextchar(pRExC_state);
+ return ret;
+ } /* named and numeric backreferences */
+ /* NOT REACHED */
+
+ case '?': /* (??...) */
+ is_logical = 1;
+ if (*RExC_parse != '{') {
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ *flagp |= POSTPONED;
+ paren = *RExC_parse++;
+ /* FALL THROUGH */
+ case '{': /* (?{...}) */
+ {
+ I32 count = 1;
+ U32 n = 0;
+ char c;
+ char *s = RExC_parse;
+
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_EVAL;
+ while (count && (c = *RExC_parse)) {
+ if (c == '\\') {
+ if (RExC_parse[1])
+ RExC_parse++;
+ }
+ else if (c == '{')
+ count++;
+ else if (c == '}')
+ count--;
+ RExC_parse++;
+ }
+ if (*RExC_parse != ')') {
+ RExC_parse = s;
+ vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
+ }
+ if (!SIZE_ONLY) {
+ PAD *pad;
+ OP_4tree *sop, *rop;
+ SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
+
+ ENTER;
+ Perl_save_re_context(aTHX);
+ rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
+ sop->op_private |= OPpREFCOUNTED;
+ /* re_dup will OpREFCNT_inc */
+ OpREFCNT_set(sop, 1);
+ LEAVE;
+
+ n = add_data(pRExC_state, 3, "nop");
+ RExC_rxi->data->data[n] = (void*)rop;
+ RExC_rxi->data->data[n+1] = (void*)sop;
+ RExC_rxi->data->data[n+2] = (void*)pad;
+ SvREFCNT_dec(sv);
+ }
+ else { /* First pass */
+ if (PL_reginterp_cnt < ++RExC_seen_evals
+ && IN_PERL_RUNTIME)
+ /* No compiled RE interpolated, has runtime
+ components ===> unsafe. */
+ FAIL("Eval-group not allowed at runtime, use re 'eval'");
+ if (PL_tainting && PL_tainted)
+ FAIL("Eval-group in insecure regular expression");
+#if PERL_VERSION > 8
+ if (IN_PERL_COMPILETIME)
+ PL_cv_has_eval = 1;
+#endif
+ }
+
+ nextchar(pRExC_state);
+ if (is_logical) {
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 2;
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
+ /* deal with the length of this later - MJD */
+ return ret;
+ }
+ ret = reganode(pRExC_state, EVAL, n);
+ Set_Node_Length(ret, RExC_parse - parse_start + 1);
+ Set_Node_Offset(ret, parse_start);
+ return ret;
+ }
+ case '(': /* (?(?{...})...) and (?(?=...)...) */
+ {
+ int is_define= 0;
+ if (RExC_parse[0] == '?') { /* (?(?...)) */
+ if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
+ || RExC_parse[1] == '<'
+ || RExC_parse[1] == '{') { /* Lookahead or eval. */
+ I32 flag;
+
+ ret = reg_node(pRExC_state, LOGICAL);
+ if (!SIZE_ONLY)
+ ret->flags = 1;
+ REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
+ goto insert_if;
+ }
+ }
+ else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
+ || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
+ {
+ char ch = RExC_parse[0] == '<' ? '>' : '\'';
+ char *name_start= RExC_parse++;
+ U32 num = 0;
+ SV *sv_dat=reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence (?(%c... not terminated",
+ (ch == '>' ? '<' : ch));
+ RExC_parse++;
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+ ret = reganode(pRExC_state,NGROUPP,num);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'D' &&
+ RExC_parse[1] == 'E' &&
+ RExC_parse[2] == 'F' &&
+ RExC_parse[3] == 'I' &&
+ RExC_parse[4] == 'N' &&
+ RExC_parse[5] == 'E')
+ {
+ ret = reganode(pRExC_state,DEFINEP,0);
+ RExC_parse +=6 ;
+ is_define = 1;
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] == 'R') {
+ RExC_parse++;
+ parno = 0;
+ if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ parno = atoi(RExC_parse++);
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ } else if (RExC_parse[0] == '&') {
+ SV *sv_dat;
+ RExC_parse++;
+ sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
+ }
+ ret = reganode(pRExC_state,INSUBP,parno);
+ goto insert_if_check_paren;
+ }
+ else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
+ /* (?(1)...) */
+ char c;
+ parno = atoi(RExC_parse++);
+
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ ret = reganode(pRExC_state, GROUPP, parno);
+
+ insert_if_check_paren:
+ if ((c = *nextchar(pRExC_state)) != ')')
+ vFAIL("Switch condition not recognized");
+ insert_if:
+ REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+ if (br == NULL)
+ br = reganode(pRExC_state, LONGJMP, 0);
+ else
+ REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
+ c = *nextchar(pRExC_state);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ if (c == '|') {
+ if (is_define)
+ vFAIL("(?(DEFINE)....) does not allow branches");
+ lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
+ regbranch(pRExC_state, &flags, 1,depth+1);
+ REGTAIL(pRExC_state, ret, lastbr);
+ if (flags&HASWIDTH)
+ *flagp |= HASWIDTH;
+ c = *nextchar(pRExC_state);
+ }
+ else
+ lastbr = NULL;
+ if (c != ')')
+ vFAIL("Switch (?(condition)... contains too many branches");
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, br, ender);
+ if (lastbr) {
+ REGTAIL(pRExC_state, lastbr, ender);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
+ }
+ else
+ REGTAIL(pRExC_state, ret, ender);
+ RExC_size++; /* XXX WHY do we need this?!!
+ For large programs it seems to be required
+ but I can't figure out why. -- dmq*/
+ return ret;
+ }
+ else {
+ vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
+ }
+ }
+ case 0:
+ RExC_parse--; /* for vFAIL to print correctly */
+ vFAIL("Sequence (? incomplete");
+ break;
+ case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
+ that follow */
+ has_use_defaults = TRUE;
+ STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
+ set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET);
+ goto parse_flags;
+ default:
+ --RExC_parse;
+ parse_flags: /* (?i) */
+ {
+ U32 posflags = 0, negflags = 0;
+ U32 *flagsp = &posflags;
+ char has_charset_modifier = '\0';
+ regex_charset cs = get_regex_charset(RExC_flags);
+ if (cs == REGEX_DEPENDS_CHARSET
+ && (RExC_utf8 || RExC_uni_semantics))
+ {
+ cs = REGEX_UNICODE_CHARSET;
+ }
+
+ while (*RExC_parse) {
+ /* && strchr("iogcmsx", *RExC_parse) */
+ /* (?g), (?gc) and (?o) are useless here
+ and must be globally applied -- japhy */
+ switch (*RExC_parse) {
+ CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
+ case LOCALE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_LOCALE_CHARSET;
+ has_charset_modifier = LOCALE_PAT_MOD;
+ RExC_contains_locale = 1;
+ break;
+ case UNICODE_PAT_MOD:
+ if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ cs = REGEX_UNICODE_CHARSET;
+ has_charset_modifier = UNICODE_PAT_MOD;
+ break;
+ case ASCII_RESTRICT_PAT_MOD:
+ if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ if (has_charset_modifier) {
+ if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
+ goto excess_modifier;
+ }
+ /* Doubled modifier implies more restricted */
+ cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
+ }
+ else {
+ cs = REGEX_ASCII_RESTRICTED_CHARSET;
+ }
+ has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
+ break;
+ case DEPENDS_PAT_MOD:
+ if (has_use_defaults) {
+ goto fail_modifiers;
+ }
+ else if (flagsp == &negflags) {
+ goto neg_modifier;
+ }
+ else if (has_charset_modifier) {
+ goto excess_modifier;
+ }
+
+ /* The dual charset means unicode semantics if the
+ * pattern (or target, not known until runtime) are
+ * utf8, or something in the pattern indicates unicode
+ * semantics */
+ cs = (RExC_utf8 || RExC_uni_semantics)
+ ? REGEX_UNICODE_CHARSET
+ : REGEX_DEPENDS_CHARSET;
+ has_charset_modifier = DEPENDS_PAT_MOD;
+ break;
+ excess_modifier:
+ RExC_parse++;
+ if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
+ vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
+ }
+ else if (has_charset_modifier == *(RExC_parse - 1)) {
+ vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
+ }
+ else {
+ vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
+ }
+ /*NOTREACHED*/
+ neg_modifier:
+ RExC_parse++;
+ vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
+ /*NOTREACHED*/
+ case ONCE_PAT_MOD: /* 'o' */
+ case GLOBAL_PAT_MOD: /* 'g' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
+ if (! (wastedflags & wflagbit) ) {
+ wastedflags |= wflagbit;
+ vWARN5(
+ RExC_parse + 1,
+ "Useless (%s%c) - %suse /%c modifier",
+ flagsp == &negflags ? "?-" : "?",
+ *RExC_parse,
+ flagsp == &negflags ? "don't " : "",
+ *RExC_parse
+ );
+ }
+ }
+ break;
+
+ case CONTINUE_PAT_MOD: /* 'c' */
+ if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
+ if (! (wastedflags & WASTED_C) ) {
+ wastedflags |= WASTED_GC;
+ vWARN3(
+ RExC_parse + 1,
+ "Useless (%sc) - %suse /gc modifier",
+ flagsp == &negflags ? "?-" : "?",
+ flagsp == &negflags ? "don't " : ""
+ );
+ }
+ }
+ break;
+ case KEEPCOPY_PAT_MOD: /* 'p' */
+ if (flagsp == &negflags) {
+ if (SIZE_ONLY)
+ ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
+ } else {
+ *flagsp |= RXf_PMf_KEEPCOPY;
+ }
+ break;
+ case '-':
+ /* A flag is a default iff it is following a minus, so
+ * if there is a minus, it means will be trying to
+ * re-specify a default which is an error */
+ if (has_use_defaults || flagsp == &negflags) {
+ fail_modifiers:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ flagsp = &negflags;
+ wastedflags = 0; /* reset so (?g-c) warns twice */
+ break;
+ case ':':
+ paren = ':';
+ /*FALLTHROUGH*/
+ case ')':
+ RExC_flags |= posflags;
+ RExC_flags &= ~negflags;
+ set_regex_charset(&RExC_flags, cs);
+ if (paren != ':') {
+ oregflags |= posflags;
+ oregflags &= ~negflags;
+ set_regex_charset(&oregflags, cs);
+ }
+ nextchar(pRExC_state);
+ if (paren != ':') {
+ *flagp = TRYAGAIN;
+ return NULL;
+ } else {
+ ret = NULL;
+ goto parse_rest;
+ }
+ /*NOTREACHED*/
+ default:
+ RExC_parse++;
+ vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
+ /*NOTREACHED*/
+ }
+ ++RExC_parse;
+ }
+ }} /* one for the default block, one for the switch */
+ }
+ else { /* (...) */
+ capturing_parens:
+ parno = RExC_npar;
+ RExC_npar++;
+
+ ret = reganode(pRExC_state, OPEN, parno);
+ if (!SIZE_ONLY ){
+ if (!RExC_nestroot)
+ RExC_nestroot = parno;
+ if (RExC_seen & REG_SEEN_RECURSE
+ && !RExC_open_parens[parno-1])
+ {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting open paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ret)));
+ RExC_open_parens[parno-1]= ret;
+ }
+ }
+ Set_Node_Length(ret, 1); /* MJD */
+ Set_Node_Offset(ret, RExC_parse); /* MJD */
+ is_open = 1;
+ }
+ }
+ else /* ! paren */
+ ret = NULL;
+
+ parse_rest:
+ /* Pick up the branches, linking them together. */
+ parse_start = RExC_parse; /* MJD */
+ br = regbranch(pRExC_state, &flags, 1,depth+1);
+
+ /* branch_len = (paren != 0); */
+
+ if (br == NULL)
+ return(NULL);
+ if (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, BRANCHJ, br, depth+1);
+ }
+ else { /* MJD */
+ reginsert(pRExC_state, BRANCH, br, depth+1);
+ Set_Node_Length(br, paren != 0);
+ Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
+ }
+ have_branch = 1;
+ if (SIZE_ONLY)
+ RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
+ }
+ else if (paren == ':') {
+ *flagp |= flags&SIMPLE;
+ }
+ if (is_open) { /* Starts with OPEN. */
+ REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
+ }
+ else if (paren != '?') /* Not Conditional */
+ ret = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ lastbr = br;
+ while (*RExC_parse == '|') {
+ if (!SIZE_ONLY && RExC_extralen) {
+ ender = reganode(pRExC_state, LONGJMP,0);
+ REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
+ }
+ if (SIZE_ONLY)
+ RExC_extralen += 2; /* Account for LONGJMP. */
+ nextchar(pRExC_state);
+ if (freeze_paren) {
+ if (RExC_npar > after_freeze)
+ after_freeze = RExC_npar;
+ RExC_npar = freeze_paren;
+ }
+ br = regbranch(pRExC_state, &flags, 0, depth+1);
+
+ if (br == NULL)
+ return(NULL);
+ REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
+ lastbr = br;
+ *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
+ }
+
+ if (have_branch || paren != ':') {
+ /* Make a closing node, and hook it on the end. */
+ switch (paren) {
+ case ':':
+ ender = reg_node(pRExC_state, TAIL);
+ break;
+ case 1:
+ ender = reganode(pRExC_state, CLOSE, parno);
+ if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
+ DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
+ "Setting close paren #%"IVdf" to %d\n",
+ (IV)parno, REG_NODE_NUM(ender)));
+ RExC_close_parens[parno-1]= ender;
+ if (RExC_nestroot == parno)
+ RExC_nestroot = 0;
+ }
+ Set_Node_Offset(ender,RExC_parse+1); /* MJD */
+ Set_Node_Length(ender,1); /* MJD */
+ break;
+ case '<':
+ case ',':
+ case '=':
+ case '!':
+ *flagp &= ~HASWIDTH;
+ /* FALL THROUGH */
+ case '>':
+ ender = reg_node(pRExC_state, SUCCEED);
+ break;
+ case 0:
+ ender = reg_node(pRExC_state, END);
+ if (!SIZE_ONLY) {
+ assert(!RExC_opend); /* there can only be one! */
+ RExC_opend = ender;
+ }
+ break;
+ }
+ REGTAIL(pRExC_state, lastbr, ender);
+
+ if (have_branch && !SIZE_ONLY) {
+ if (depth==1)
+ RExC_seen |= REG_TOP_LEVEL_BRANCHES;
+
+ /* Hook the tails of the branches to the closing node. */
+ for (br = ret; br; br = regnext(br)) {
+ const U8 op = PL_regkind[OP(br)];
+ if (op == BRANCH) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
+ }
+ else if (op == BRANCHJ) {
+ REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
+ }
+ }
+ }
+ }
+
+ {
+ const char *p;
+ static const char parens[] = "=!<,>";
+
+ if (paren && (p = strchr(parens, paren))) {
+ U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
+ int flag = (p - parens) > 1;
+
+ if (paren == '>')
+ node = SUSPEND, flag = 0;
+ reginsert(pRExC_state, node,ret, depth+1);
+ Set_Node_Cur_Length(ret);
+ Set_Node_Offset(ret, parse_start + 1);
+ ret->flags = flag;
+ REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
+ }
+ }
+
+ /* Check for proper termination. */
+ if (paren) {
+ RExC_flags = oregflags;
+ if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched (");
+ }
+ }
+ else if (!paren && RExC_parse < RExC_end) {
+ if (*RExC_parse == ')') {
+ RExC_parse++;
+ vFAIL("Unmatched )");
+ }
+ else
+ FAIL("Junk on end of regexp"); /* "Can't happen". */
+ /* NOTREACHED */
+ }
+
+ if (RExC_in_lookbehind) {
+ RExC_in_lookbehind--;
+ }
+ if (after_freeze > RExC_npar)
+ RExC_npar = after_freeze;
+ return(ret);
+}
+
+/*
+ - regbranch - one alternative of an | operator
+ *
+ * Implements the concatenation operator.
+ */
+STATIC regnode *
+S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register regnode *chain = NULL;
+ register regnode *latest;
+ I32 flags = 0, c = 0;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGBRANCH;
+
+ DEBUG_PARSE("brnc");
+
+ if (first)
+ ret = NULL;
+ else {
+ if (!SIZE_ONLY && RExC_extralen)
+ ret = reganode(pRExC_state, BRANCHJ,0);
+ else {
+ ret = reg_node(pRExC_state, BRANCH);
+ Set_Node_Length(ret, 1);
+ }
+ }
+
+ if (!first && SIZE_ONLY)
+ RExC_extralen += 1; /* BRANCHJ */
+
+ *flagp = WORST; /* Tentatively. */
+
+ RExC_parse--;
+ nextchar(pRExC_state);
+ while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
+ flags &= ~TRYAGAIN;
+ latest = regpiece(pRExC_state, &flags,depth+1);
+ if (latest == NULL) {
+ if (flags & TRYAGAIN)
+ continue;
+ return(NULL);
+ }
+ else if (ret == NULL)
+ ret = latest;
+ *flagp |= flags&(HASWIDTH|POSTPONED);
+ if (chain == NULL) /* First piece. */
+ *flagp |= flags&SPSTART;
+ else {
+ RExC_naughty++;
+ REGTAIL(pRExC_state, chain, latest);
+ }
+ chain = latest;
+ c++;
+ }
+ if (chain == NULL) { /* Loop ran zero times. */
+ chain = reg_node(pRExC_state, NOTHING);
+ if (ret == NULL)
+ ret = chain;
+ }
+ if (c == 1) {
+ *flagp |= flags&SIMPLE;
+ }
+
+ return ret;
+}
+
+/*
+ - regpiece - something followed by possible [*+?]
+ *
+ * Note that the branching code sequences used for ? and the general cases
+ * of * and + are somewhat optimized: they use the same NOTHING node as
+ * both the endmarker for their branch list and the body of the last branch.
+ * It might seem that this node could be dispensed with entirely, but the
+ * endmarker role is not redundant.
+ */
+STATIC regnode *
+S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret;
+ register char op;
+ register char *next;
+ I32 flags;
+ const char * const origparse = RExC_parse;
+ I32 min;
+ I32 max = REG_INFTY;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ char *parse_start;
+#endif
+ const char *maxpos = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPIECE;
+
+ DEBUG_PARSE("piec");
+
+ ret = regatom(pRExC_state, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN)
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+
+ op = *RExC_parse;
+
+ if (op == '{' && regcurly(RExC_parse)) {
+ maxpos = NULL;
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse; /* MJD */
+#endif
+ next = RExC_parse + 1;
+ while (isDIGIT(*next) || *next == ',') {
+ if (*next == ',') {
+ if (maxpos)
+ break;
+ else
+ maxpos = next;
+ }
+ next++;
+ }
+ if (*next == '}') { /* got one */
+ if (!maxpos)
+ maxpos = next;
+ RExC_parse++;
+ min = atoi(RExC_parse);
+ if (*maxpos == ',')
+ maxpos++;
+ else
+ maxpos = RExC_parse;
+ max = atoi(maxpos);
+ if (!max && *maxpos != '0')
+ max = REG_INFTY; /* meaning "infinity" */
+ else if (max >= REG_INFTY)
+ vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
+ RExC_parse = next;
+ nextchar(pRExC_state);
+
+ do_curly:
+ if ((flags&SIMPLE)) {
+ RExC_naughty += 2 + RExC_naughty / 2;
+ reginsert(pRExC_state, CURLY, ret, depth+1);
+ Set_Node_Offset(ret, parse_start+1); /* MJD */
+ Set_Node_Cur_Length(ret);
+ }
+ else {
+ regnode * const w = reg_node(pRExC_state, WHILEM);
+
+ w->flags = 0;
+ REGTAIL(pRExC_state, ret, w);
+ if (!SIZE_ONLY && RExC_extralen) {
+ reginsert(pRExC_state, LONGJMP,ret, depth+1);
+ reginsert(pRExC_state, NOTHING,ret, depth+1);
+ NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
+ }
+ reginsert(pRExC_state, CURLYX,ret, depth+1);
+ /* MJD hk */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Length(ret,
+ op == '{' ? (RExC_parse - parse_start) : 1);
+
+ if (!SIZE_ONLY && RExC_extralen)
+ NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
+ REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
+ if (SIZE_ONLY)
+ RExC_whilem_seen++, RExC_extralen += 3;
+ RExC_naughty += 4 + RExC_naughty; /* compound interest */
+ }
+ ret->flags = 0;
+
+ if (min > 0)
+ *flagp = WORST;
+ if (max > 0)
+ *flagp |= HASWIDTH;
+ if (max < min)
+ vFAIL("Can't do {n,m} with n > m");
+ if (!SIZE_ONLY) {
+ ARG1_SET(ret, (U16)min);
+ ARG2_SET(ret, (U16)max);
+ }
+
+ goto nest_check;
+ }
+ }
+
+ if (!ISMULT1(op)) {
+ *flagp = flags;
+ return(ret);
+ }
+
+#if 0 /* Now runtime fix should be reliable. */
+
+ /* if this is reinstated, don't forget to put this back into perldiag:
+
+ =item Regexp *+ operand could be empty at {#} in regex m/%s/
+
+ (F) The part of the regexp subject to either the * or + quantifier
+ could match an empty string. The {#} shows in the regular
+ expression about where the problem was discovered.
+
+ */
+
+ if (!(flags&HASWIDTH) && op != '?')
+ vFAIL("Regexp *+ operand could be empty");
+#endif
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ parse_start = RExC_parse;
+#endif
+ nextchar(pRExC_state);
+
+ *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
+
+ if (op == '*' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, STAR, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 4;
+ }
+ else if (op == '*') {
+ min = 0;
+ goto do_curly;
+ }
+ else if (op == '+' && (flags&SIMPLE)) {
+ reginsert(pRExC_state, PLUS, ret, depth+1);
+ ret->flags = 0;
+ RExC_naughty += 3;
+ }
+ else if (op == '+') {
+ min = 1;
+ goto do_curly;
+ }
+ else if (op == '?') {
+ min = 0; max = 1;
+ goto do_curly;
+ }
+ nest_check:
+ if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
+ ckWARN3reg(RExC_parse,
+ "%.*s matches null string many times",
+ (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
+ origparse);
+ }
+
+ if (RExC_parse < RExC_end && *RExC_parse == '?') {
+ nextchar(pRExC_state);
+ reginsert(pRExC_state, MINMOD, ret, depth+1);
+ REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
+ }
+#ifndef REG_ALLOW_MINMOD_SUSPEND
+ else
+#endif
+ if (RExC_parse < RExC_end && *RExC_parse == '+') {
+ regnode *ender;
+ nextchar(pRExC_state);
+ ender = reg_node(pRExC_state, SUCCEED);
+ REGTAIL(pRExC_state, ret, ender);
+ reginsert(pRExC_state, SUSPEND, ret, depth+1);
+ ret->flags = 0;
+ ender = reg_node(pRExC_state, TAIL);
+ REGTAIL(pRExC_state, ret, ender);
+ /*ret= ender;*/
+ }
+
+ if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
+ RExC_parse++;
+ vFAIL("Nested quantifiers");
+ }
+
+ return(ret);
+}
+
+
+/* reg_namedseq(pRExC_state,UVp, UV depth)
+
+ This is expected to be called by a parser routine that has
+ recognized '\N' and needs to handle the rest. RExC_parse is
+ expected to point at the first char following the N at the time
+ of the call.
+
+ The \N may be inside (indicated by valuep not being NULL) or outside a
+ character class.
+
+ \N may begin either a named sequence, or if outside a character class, mean
+ to match a non-newline. For non single-quoted regexes, the tokenizer has
+ attempted to decide which, and in the case of a named sequence converted it
+ into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
+ where c1... are the characters in the sequence. For single-quoted regexes,
+ the tokenizer passes the \N sequence through unchanged; this code will not
+ attempt to determine this nor expand those. The net effect is that if the
+ beginning of the passed-in pattern isn't '{U+' or there is no '}', it
+ signals that this \N occurrence means to match a non-newline.
+
+ Only the \N{U+...} form should occur in a character class, for the same
+ reason that '.' inside a character class means to just match a period: it
+ just doesn't make sense.
+
+ If valuep is non-null then it is assumed that we are parsing inside
+ of a charclass definition and the first codepoint in the resolved
+ string is returned via *valuep and the routine will return NULL.
+ In this mode if a multichar string is returned from the charnames
+ handler, a warning will be issued, and only the first char in the
+ sequence will be examined. If the string returned is zero length
+ then the value of *valuep is undefined and NON-NULL will
+ be returned to indicate failure. (This will NOT be a valid pointer
+ to a regnode.)
+
+ If valuep is null then it is assumed that we are parsing normal text and a
+ new EXACT node is inserted into the program containing the resolved string,
+ and a pointer to the new node is returned. But if the string is zero length
+ a NOTHING node is emitted instead.
+
+ On success RExC_parse is set to the char following the endbrace.
+ Parsing failures will generate a fatal error via vFAIL(...)
+ */
+STATIC regnode *
+S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
+{
+ char * endbrace; /* '}' following the name */
+ regnode *ret = NULL;
+ char* p;
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NAMEDSEQ;
+
+ GET_RE_DEBUG_FLAGS;
+
+ /* The [^\n] meaning of \N ignores spaces and comments under the /x
+ * modifier. The other meaning does not */
+ p = (RExC_flags & RXf_PMf_EXTENDED)
+ ? regwhite( pRExC_state, RExC_parse )
+ : RExC_parse;
+
+ /* Disambiguate between \N meaning a named character versus \N meaning
+ * [^\n]. The former is assumed when it can't be the latter. */
+ if (*p != '{' || regcurly(p)) {
+ RExC_parse = p;
+ if (valuep) {
+ /* no bare \N in a charclass */
+ vFAIL("\\N in a character class must be a named character: \\N{...}");
+ }
+ nextchar(pRExC_state);
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ RExC_parse--;
+ Set_Node_Length(ret, 1); /* MJD */
+ return ret;
+ }
+
+ /* Here, we have decided it should be a named sequence */
+
+ /* The test above made sure that the next real character is a '{', but
+ * under the /x modifier, it could be separated by space (or a comment and
+ * \n) and this is not allowed (for consistency with \x{...} and the
+ * tokenizer handling of \N{NAME}). */
+ if (*RExC_parse != '{') {
+ vFAIL("Missing braces on \\N{}");
+ }
+
+ RExC_parse++; /* Skip past the '{' */
+
+ if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
+ || ! (endbrace == RExC_parse /* nothing between the {} */
+ || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
+ && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
+ {
+ if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
+ vFAIL("\\N{NAME} must be resolved by the lexer");
+ }
+
+ if (endbrace == RExC_parse) { /* empty: \N{} */
+ if (! valuep) {
+ RExC_parse = endbrace + 1;
+ return reg_node(pRExC_state,NOTHING);
+ }
+
+ if (SIZE_ONLY) {
+ ckWARNreg(RExC_parse,
+ "Ignoring zero length \\N{} in character class"
+ );
+ RExC_parse = endbrace + 1;
+ }
+ *valuep = 0;
+ return (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+
+ REQUIRE_UTF8; /* named sequences imply Unicode semantics */
+ RExC_parse += 2; /* Skip past the 'U+' */
+
+ if (valuep) { /* In a bracketed char class */
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. XXX Solution is to recharacterize as
+ [rest-of-class]|multi1|multi2... */
+
+ STRLEN length_of_hex;
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX
+ | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
+
+ char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
+ if (endchar < endbrace) {
+ ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
+ }
+
+ length_of_hex = (STRLEN)(endchar - RExC_parse);
+ *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
+
+ /* The tokenizer should have guaranteed validity, but it's possible to
+ * bypass it by using single quoting, so check */
+ if (length_of_hex == 0
+ || length_of_hex != (STRLEN)(endchar - RExC_parse) )
+ {
+ RExC_parse += length_of_hex; /* Includes all the valid */
+ RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
+ ? UTF8SKIP(RExC_parse)
+ : 1;
+ /* Guard against malformed utf8 */
+ if (RExC_parse >= endchar) RExC_parse = endchar;
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+
+ RExC_parse = endbrace + 1;
+ if (endchar == endbrace) return NULL;
+
+ ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
+ }
+ else { /* Not a char class */
+
+ /* What is done here is to convert this to a sub-pattern of the form
+ * (?:\x{char1}\x{char2}...)
+ * and then call reg recursively. That way, it retains its atomicness,
+ * while not having to worry about special handling that some code
+ * points may have. toke.c has converted the original Unicode values
+ * to native, so that we can just pass on the hex values unchanged. We
+ * do have to set a flag to keep recoding from happening in the
+ * recursion */
+
+ SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
+ STRLEN len;
+ char *endchar; /* Points to '.' or '}' ending cur char in the input
+ stream */
+ char *orig_end = RExC_end;
+
+ while (RExC_parse < endbrace) {
+
+ /* Code points are separated by dots. If none, there is only one
+ * code point, and is terminated by the brace */
+ endchar = RExC_parse + strcspn(RExC_parse, ".}");
+
+ /* Convert to notation the rest of the code understands */
+ sv_catpv(substitute_parse, "\\x{");
+ sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
+ sv_catpv(substitute_parse, "}");
+
+ /* Point to the beginning of the next character in the sequence. */
+ RExC_parse = endchar + 1;
+ }
+ sv_catpv(substitute_parse, ")");
+
+ RExC_parse = SvPV(substitute_parse, len);
+
+ /* Don't allow empty number */
+ if (len < 8) {
+ vFAIL("Invalid hexadecimal number in \\N{U+...}");
+ }
+ RExC_end = RExC_parse + len;
+
+ /* The values are Unicode, and therefore not subject to recoding */
+ RExC_override_recoding = 1;
+
+ ret = reg(pRExC_state, 1, flagp, depth+1);
+
+ RExC_parse = endbrace;
+ RExC_end = orig_end;
+ RExC_override_recoding = 0;
+
+ nextchar(pRExC_state);
+ }
+
+ return ret;
+}
+
+
+/*
+ * reg_recode
+ *
+ * It returns the code point in utf8 for the value in *encp.
+ * value: a code value in the source encoding
+ * encp: a pointer to an Encode object
+ *
+ * If the result from Encode is not a single character,
+ * it returns U+FFFD (Replacement character) and sets *encp to NULL.
+ */
+STATIC UV
+S_reg_recode(pTHX_ const char value, SV **encp)
+{
+ STRLEN numlen = 1;
+ SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
+ const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
+ const STRLEN newlen = SvCUR(sv);
+ UV uv = UNICODE_REPLACEMENT;
+
+ PERL_ARGS_ASSERT_REG_RECODE;
+
+ if (newlen)
+ uv = SvUTF8(sv)
+ ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
+ : *(U8*)s;
+
+ if (!newlen || numlen != newlen) {
+ uv = UNICODE_REPLACEMENT;
+ *encp = NULL;
+ }
+ return uv;
+}
+
+
+/*
+ - regatom - the lowest level
+
+ Try to identify anything special at the start of the pattern. If there
+ is, then handle it as required. This may involve generating a single regop,
+ such as for an assertion; or it may involve recursing, such as to
+ handle a () structure.
+
+ If the string doesn't start with something special then we gobble up
+ as much literal text as we can.
+
+ Once we have been able to handle whatever type of thing started the
+ sequence, we return.
+
+ Note: we have to be careful with escapes, as they can be both literal
+ and special, and in the case of \10 and friends can either, depending
+ on context. Specifically there are two separate switches for handling
+ escape sequences, with the one for handling literal escapes requiring
+ a dummy entry for all of the special escapes that are actually handled
+ by the other.
+*/
+
+STATIC regnode *
+S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
+{
+ dVAR;
+ register regnode *ret = NULL;
+ I32 flags;
+ char *parse_start = RExC_parse;
+ U8 op;
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_PARSE("atom");
+ *flagp = WORST; /* Tentatively. */
+
+ PERL_ARGS_ASSERT_REGATOM;
+
+tryagain:
+ switch ((U8)*RExC_parse) {
+ case '^':
+ RExC_seen_zerolen++;
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MBOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SBOL);
+ else
+ ret = reg_node(pRExC_state, BOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '$':
+ nextchar(pRExC_state);
+ if (*RExC_parse)
+ RExC_seen_zerolen++;
+ if (RExC_flags & RXf_PMf_MULTILINE)
+ ret = reg_node(pRExC_state, MEOL);
+ else if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SEOL);
+ else
+ ret = reg_node(pRExC_state, EOL);
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '.':
+ nextchar(pRExC_state);
+ if (RExC_flags & RXf_PMf_SINGLELINE)
+ ret = reg_node(pRExC_state, SANY);
+ else
+ ret = reg_node(pRExC_state, REG_ANY);
+ *flagp |= HASWIDTH|SIMPLE;
+ RExC_naughty++;
+ Set_Node_Length(ret, 1); /* MJD */
+ break;
+ case '[':
+ {
+ char * const oregcomp_parse = ++RExC_parse;
+ ret = regclass(pRExC_state,depth+1);
+ if (*RExC_parse != ']') {
+ RExC_parse = oregcomp_parse;
+ vFAIL("Unmatched [");
+ }
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
+ break;
+ }
+ case '(':
+ nextchar(pRExC_state);
+ ret = reg(pRExC_state, 1, &flags,depth+1);
+ if (ret == NULL) {
+ if (flags & TRYAGAIN) {
+ if (RExC_parse == RExC_end) {
+ /* Make parent create an empty node if needed. */
+ *flagp |= TRYAGAIN;
+ return(NULL);
+ }
+ goto tryagain;
+ }
+ return(NULL);
+ }
+ *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
+ break;
+ case '|':
+ case ')':
+ if (flags & TRYAGAIN) {
+ *flagp |= TRYAGAIN;
+ return NULL;
+ }
+ vFAIL("Internal urp");
+ /* Supposed to be caught earlier. */
+ break;
+ case '?':
+ case '+':
+ case '*':
+ RExC_parse++;
+ vFAIL("Quantifier follows nothing");
+ break;
+ case '\\':
+ /* Special Escapes
+
+ This switch handles escape sequences that resolve to some kind
+ of special regop and not to literal text. Escape sequnces that
+ resolve to literal text are handled below in the switch marked
+ "Literal Escapes".
+
+ Every entry in this switch *must* have a corresponding entry
+ in the literal escape switch. However, the opposite is not
+ required, as the default for this switch is to jump to the
+ literal text handling code.
+ */
+ switch ((U8)*++RExC_parse) {
+ /* Special Escapes */
+ case 'A':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, SBOL);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'G':
+ ret = reg_node(pRExC_state, GPOS);
+ RExC_seen |= REG_SEEN_GPOS;
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'K':
+ RExC_seen_zerolen++;
+ ret = reg_node(pRExC_state, KEEPS);
+ *flagp |= SIMPLE;
+ /* XXX:dmq : disabling in-place substitution seems to
+ * be necessary here to avoid cases of memory corruption, as
+ * with: C<$_="x" x 80; s/x\K/y/> -- rgs
+ */
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ goto finish_meta_pat;
+ case 'Z':
+ ret = reg_node(pRExC_state, SEOL);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'z':
+ ret = reg_node(pRExC_state, EOS);
+ *flagp |= SIMPLE;
+ RExC_seen_zerolen++; /* Do not optimize RE away */
+ goto finish_meta_pat;
+ case 'C':
+ ret = reg_node(pRExC_state, CANY);
+ RExC_seen |= REG_SEEN_CANY;
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'X':
+ ret = reg_node(pRExC_state, CLUMP);
+ *flagp |= HASWIDTH;
+ goto finish_meta_pat;
+ case 'w':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = ALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = ALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = ALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = ALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'W':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NALNUML;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NALNUMU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NALNUMA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NALNUM;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'b':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = BOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = BOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = BOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = BOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 'B':
+ RExC_seen_zerolen++;
+ RExC_seen |= REG_SEEN_LOOKBEHIND;
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NBOUNDL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NBOUNDU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NBOUNDA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NBOUND;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ FLAGS(ret) = get_regex_charset(RExC_flags);
+ *flagp |= SIMPLE;
+ goto finish_meta_pat;
+ case 's':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = SPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = SPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = SPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = SPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'S':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NSPACEL;
+ break;
+ case REGEX_UNICODE_CHARSET:
+ op = NSPACEU;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NSPACEA;
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ op = NSPACE;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'd':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = DIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = DIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = DIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'D':
+ switch (get_regex_charset(RExC_flags)) {
+ case REGEX_LOCALE_CHARSET:
+ op = NDIGITL;
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ op = NDIGITA;
+ break;
+ case REGEX_DEPENDS_CHARSET: /* No difference between these */
+ case REGEX_UNICODE_CHARSET:
+ op = NDIGIT;
+ break;
+ default:
+ goto bad_charset;
+ }
+ ret = reg_node(pRExC_state, op);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'R':
+ ret = reg_node(pRExC_state, LNBREAK);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'h':
+ ret = reg_node(pRExC_state, HORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'H':
+ ret = reg_node(pRExC_state, NHORIZWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'v':
+ ret = reg_node(pRExC_state, VERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ goto finish_meta_pat;
+ case 'V':
+ ret = reg_node(pRExC_state, NVERTWS);
+ *flagp |= HASWIDTH|SIMPLE;
+ finish_meta_pat:
+ nextchar(pRExC_state);
+ Set_Node_Length(ret, 2); /* MJD */
+ break;
+ case 'p':
+ case 'P':
+ {
+ char* const oldregxend = RExC_end;
+#ifdef DEBUGGING
+ char* parse_start = RExC_parse - 2;
+#endif
+
+ if (RExC_parse[1] == '{') {
+ /* a lovely hack--pretend we saw [\pX] instead */
+ RExC_end = strchr(RExC_parse, '}');
+ if (!RExC_end) {
+ const U8 c = (U8)*RExC_parse;
+ RExC_parse += 2;
+ RExC_end = oldregxend;
+ vFAIL2("Missing right brace on \\%c{}", c);
+ }
+ RExC_end++;
+ }
+ else {
+ RExC_end = RExC_parse + 2;
+ if (RExC_end > oldregxend)
+ RExC_end = oldregxend;
+ }
+ RExC_parse--;
+
+ ret = regclass(pRExC_state,depth+1);
+
+ RExC_end = oldregxend;
+ RExC_parse--;
+
+ Set_Node_Offset(ret, parse_start + 2);
+ Set_Node_Cur_Length(ret);
+ nextchar(pRExC_state);
+ *flagp |= HASWIDTH|SIMPLE;
+ }
+ break;
+ case 'N':
+ /* Handle \N and \N{NAME} here and not below because it can be
+ multicharacter. join_exact() will join them up later on.
+ Also this makes sure that things like /\N{BLAH}+/ and
+ \N{BLAH} being multi char Just Happen. dmq*/
+ ++RExC_parse;
+ ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
+ break;
+ case 'k': /* Handle \k<NAME> and \k'NAME' */
+ parse_named_seq:
+ {
+ char ch= RExC_parse[1];
+ if (ch != '<' && ch != '\'' && ch != '{') {
+ RExC_parse++;
+ vFAIL2("Sequence %.2s... not terminated",parse_start);
+ } else {
+ /* this pretty much dupes the code for (?P=...) in reg(), if
+ you change this make sure you change that */
+ char* name_start = (RExC_parse += 2);
+ U32 num = 0;
+ SV *sv_dat = reg_scan_name(pRExC_state,
+ SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
+ ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
+ if (RExC_parse == name_start || *RExC_parse != ch)
+ vFAIL2("Sequence %.3s... not terminated",parse_start);
+
+ if (!SIZE_ONLY) {
+ num = add_data( pRExC_state, 1, "S" );
+ RExC_rxi->data->data[num]=(void*)sv_dat;
+ SvREFCNT_inc_simple_void(sv_dat);
+ }
+
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? NREF
+ : (MORE_ASCII_RESTRICTED)
+ ? NREFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? NREFFU
+ : (LOC)
+ ? NREFFL
+ : NREFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+
+ }
+ break;
+ }
+ case 'g':
+ case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ I32 num;
+ bool isg = *RExC_parse == 'g';
+ bool isrel = 0;
+ bool hasbrace = 0;
+ if (isg) {
+ RExC_parse++;
+ if (*RExC_parse == '{') {
+ RExC_parse++;
+ hasbrace = 1;
+ }
+ if (*RExC_parse == '-') {
+ RExC_parse++;
+ isrel = 1;
+ }
+ if (hasbrace && !isDIGIT(*RExC_parse)) {
+ if (isrel) RExC_parse--;
+ RExC_parse -= 2;
+ goto parse_named_seq;
+ } }
+ num = atoi(RExC_parse);
+ if (isg && num == 0)
+ vFAIL("Reference to invalid group 0");
+ if (isrel) {
+ num = RExC_npar - num;
+ if (num < 1)
+ vFAIL("Reference to nonexistent or unclosed group");
+ }
+ if (!isg && num > 9 && num >= RExC_npar)
+ goto defchar;
+ else {
+ char * const parse_start = RExC_parse - 1; /* MJD */
+ while (isDIGIT(*RExC_parse))
+ RExC_parse++;
+ if (parse_start == RExC_parse - 1)
+ vFAIL("Unterminated \\g... pattern");
+ if (hasbrace) {
+ if (*RExC_parse != '}')
+ vFAIL("Unterminated \\g{...} pattern");
+ RExC_parse++;
+ }
+ if (!SIZE_ONLY) {
+ if (num > (I32)RExC_rx->nparens)
+ vFAIL("Reference to nonexistent group");
+ }
+ RExC_sawback = 1;
+ ret = reganode(pRExC_state,
+ ((! FOLD)
+ ? REF
+ : (MORE_ASCII_RESTRICTED)
+ ? REFFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? REFFU
+ : (LOC)
+ ? REFFL
+ : REFF),
+ num);
+ *flagp |= HASWIDTH;
+
+ /* override incorrect value set in reganode MJD */
+ Set_Node_Offset(ret, parse_start+1);
+ Set_Node_Cur_Length(ret); /* MJD */
+ RExC_parse--;
+ nextchar(pRExC_state);
+ }
+ }
+ break;
+ case '\0':
+ if (RExC_parse >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ /* Do not generate "unrecognized" warnings here, we fall
+ back into the quick-grab loop below */
+ parse_start--;
+ goto defchar;
+ }
+ break;
+
+ case '#':
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if ( reg_skipcomment( pRExC_state ) )
+ goto tryagain;
+ }
+ /* FALL THROUGH */
+
+ default:
+
+ parse_start = RExC_parse - 1;
+
+ RExC_parse++;
+
+ defchar: {
+ register STRLEN len;
+ register UV ender;
+ register char *p;
+ char *s;
+ STRLEN foldlen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
+ U8 node_type;
+
+ /* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
+ * it is folded to 'ss' even if not utf8 */
+ bool is_exactfu_sharp_s;
+
+ ender = 0;
+ node_type = ((! FOLD) ? EXACT
+ : (LOC)
+ ? EXACTFL
+ : (MORE_ASCII_RESTRICTED)
+ ? EXACTFA
+ : (AT_LEAST_UNI_SEMANTICS)
+ ? EXACTFU
+ : EXACTF);
+ ret = reg_node(pRExC_state, node_type);
+ s = STRING(ret);
+
+ /* XXX The node can hold up to 255 bytes, yet this only goes to
+ * 127. I (khw) do not know why. Keeping it somewhat less than
+ * 255 allows us to not have to worry about overflow due to
+ * converting to utf8 and fold expansion, but that value is
+ * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
+ * split up by this limit into a single one using the real max of
+ * 255. Even at 127, this breaks under rare circumstances. If
+ * folding, we do not want to split a node at a character that is a
+ * non-final in a multi-char fold, as an input string could just
+ * happen to want to match across the node boundary. The join
+ * would solve that problem if the join actually happens. But a
+ * series of more than two nodes in a row each of 127 would cause
+ * the first join to succeed to get to 254, but then there wouldn't
+ * be room for the next one, which could at be one of those split
+ * multi-char folds. I don't know of any fool-proof solution. One
+ * could back off to end with only a code point that isn't such a
+ * non-final, but it is possible for there not to be any in the
+ * entire node. */
+ for (len = 0, p = RExC_parse - 1;
+ len < 127 && p < RExC_end;
+ len++)
+ {
+ char * const oldp = p;
+
+ if (RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ switch ((U8)*p) {
+ case '^':
+ case '$':
+ case '.':
+ case '[':
+ case '(':
+ case ')':
+ case '|':
+ goto loopdone;
+ case '\\':
+ /* Literal Escapes Switch
+
+ This switch is meant to handle escape sequences that
+ resolve to a literal character.
+
+ Every escape sequence that represents something
+ else, like an assertion or a char class, is handled
+ in the switch marked 'Special Escapes' above in this
+ routine, but also has an entry here as anything that
+ isn't explicitly mentioned here will be treated as
+ an unescaped equivalent literal.
+ */
+
+ switch ((U8)*++p) {
+ /* These are all the special escapes. */
+ case 'A': /* Start assertion */
+ case 'b': case 'B': /* Word-boundary assertion*/
+ case 'C': /* Single char !DANGEROUS! */
+ case 'd': case 'D': /* digit class */
+ case 'g': case 'G': /* generic-backref, pos assertion */
+ case 'h': case 'H': /* HORIZWS */
+ case 'k': case 'K': /* named backref, keep marker */
+ case 'N': /* named char sequence */
+ case 'p': case 'P': /* Unicode property */
+ case 'R': /* LNBREAK */
+ case 's': case 'S': /* space class */
+ case 'v': case 'V': /* VERTWS */
+ case 'w': case 'W': /* word class */
+ case 'X': /* eXtended Unicode "combining character sequence" */
+ case 'z': case 'Z': /* End of line/string assertion */
+ --p;
+ goto loopdone;
+
+ /* Anything after here is an escape that resolves to a
+ literal. (Except digits, which may or may not)
+ */
+ case 'n':
+ ender = '\n';
+ p++;
+ break;
+ case 'r':
+ ender = '\r';
+ p++;
+ break;
+ case 't':
+ ender = '\t';
+ p++;
+ break;
+ case 'f':
+ ender = '\f';
+ p++;
+ break;
+ case 'e':
+ ender = ASCII_TO_NATIVE('\033');
+ p++;
+ break;
+ case 'a':
+ ender = ASCII_TO_NATIVE('\007');
+ p++;
+ break;
+ case 'o':
+ {
+ STRLEN brace_len = len;
+ UV result;
+ const char* error_msg;
+
+ bool valid = grok_bslash_o(p,
+ &result,
+ &brace_len,
+ &error_msg,
+ 1);
+ p += brace_len;
+ if (! valid) {
+ RExC_parse = p; /* going to die anyway; point
+ to exact spot of failure */
+ vFAIL(error_msg);
+ }
+ else
+ {
+ ender = result;
+ }
+ if (PL_encoding && ender < 0x100) {
+ goto recode_encoding;
+ }
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ break;
+ }
+ case 'x':
+ if (*++p == '{') {
+ char* const e = strchr(p, '}');
+
+ if (!e) {
+ RExC_parse = p + 1;
+ vFAIL("Missing right brace on \\x{}");
+ }
+ else {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = e - p - 1;
+ ender = grok_hex(p + 1, &numlen, &flags, NULL);
+ if (ender > 0xff)
+ REQUIRE_UTF8;
+ p = e + 1;
+ }
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ STRLEN numlen = 2;
+ ender = grok_hex(p, &numlen, &flags, NULL);
+ p += numlen;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ p++;
+ ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3':case '4':
+ case '5': case '6': case '7': case '8':case '9':
+ if (*p == '0' ||
+ (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
+ {
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ STRLEN numlen = 3;
+ ender = grok_oct(p, &numlen, &flags, NULL);
+ if (ender > 0xff) {
+ REQUIRE_UTF8;
+ }
+ p += numlen;
+ }
+ else {
+ --p;
+ goto loopdone;
+ }
+ if (PL_encoding && ender < 0x100)
+ goto recode_encoding;
+ break;
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ ender = reg_recode((const char)(U8)ender, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(p, "Invalid escape in the specified encoding");
+ REQUIRE_UTF8;
+ }
+ break;
+ case '\0':
+ if (p >= RExC_end)
+ FAIL("Trailing \\");
+ /* FALL THROUGH */
+ default:
+ if (!SIZE_ONLY&& isALPHA(*p)) {
+ ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p);
+ }
+ goto normal_default;
+ }
+ break;
+ case '{':
+ /* Currently we don't warn when the lbrace is at the start
+ * of a construct. This catches it in the middle of a
+ * literal string, or when its the first thing after
+ * something like "\b" */
+ if (! SIZE_ONLY
+ && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
+ {
+ ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
+ }
+ /*FALLTHROUGH*/
+ default:
+ normal_default:
+ if (UTF8_IS_START(*p) && UTF) {
+ STRLEN numlen;
+ ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ p += numlen;
+ }
+ else
+ ender = (U8) *p++;
+ break;
+ } /* End of switch on the literal */
+
+ is_exactfu_sharp_s = (node_type == EXACTFU
+ && ender == LATIN_SMALL_LETTER_SHARP_S);
+ if ( RExC_flags & RXf_PMf_EXTENDED)
+ p = regwhite( pRExC_state, p );
+ if ((UTF && FOLD) || is_exactfu_sharp_s) {
+ /* Prime the casefolded buffer. Locale rules, which apply
+ * only to code points < 256, aren't known until execution,
+ * so for them, just output the original character using
+ * utf8. If we start to fold non-UTF patterns, be sure to
+ * update join_exact() */
+ if (LOC && ender < 256) {
+ if (UNI_IS_INVARIANT(ender)) {
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ } else {
+ *tmpbuf = UTF8_TWO_BYTE_HI(ender);
+ *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
+ foldlen = 2;
+ }
+ }
+ else if (isASCII(ender)) { /* Note: Here can't also be LOC
+ */
+ ender = toLOWER(ender);
+ *tmpbuf = (U8) ender;
+ foldlen = 1;
+ }
+ else if (! MORE_ASCII_RESTRICTED && ! LOC) {
+
+ /* Locale and /aa require more selectivity about the
+ * fold, so are handled below. Otherwise, here, just
+ * use the fold */
+ ender = toFOLD_uni(ender, tmpbuf, &foldlen);
+ }
+ else {
+ /* Under locale rules or /aa we are not to mix,
+ * respectively, ords < 256 or ASCII with non-. So
+ * reject folds that mix them, using only the
+ * non-folded code point. So do the fold to a
+ * temporary, and inspect each character in it. */
+ U8 trialbuf[UTF8_MAXBYTES_CASE+1];
+ U8* s = trialbuf;
+ UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
+ U8* e = s + foldlen;
+ bool fold_ok = TRUE;
+
+ while (s < e) {
+ if (isASCII(*s)
+ || (LOC && (UTF8_IS_INVARIANT(*s)
+ || UTF8_IS_DOWNGRADEABLE_START(*s))))
+ {
+ fold_ok = FALSE;
+ break;
+ }
+ s += UTF8SKIP(s);
+ }
+ if (fold_ok) {
+ Copy(trialbuf, tmpbuf, foldlen, U8);
+ ender = tmpender;
+ }
+ else {
+ uvuni_to_utf8(tmpbuf, ender);
+ foldlen = UNISKIP(ender);
+ }
+ }
+ }
+ if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
+ if (len)
+ p = oldp;
+ else if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+
+ /* tmpbuf has been constructed by us, so we
+ * know it is valid utf8 */
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ s += unilen;
+ len += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break; /* "Can't happen." */
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ }
+ else {
+ len++;
+ REGC((char)ender, s++);
+ }
+ break;
+ }
+ if (UTF || is_exactfu_sharp_s) {
+ if (FOLD) {
+ /* Emit all the Unicode characters. */
+ STRLEN numlen;
+ for (foldbuf = tmpbuf;
+ foldlen;
+ foldlen -= numlen) {
+ ender = valid_utf8_to_uvchr(foldbuf, &numlen);
+ if (numlen > 0) {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ len += unilen;
+ s += unilen;
+ /* In EBCDIC the numlen
+ * and unilen can differ. */
+ foldbuf += numlen;
+ if (numlen >= foldlen)
+ break;
+ }
+ else
+ break;
+ }
+ }
+ else {
+ const STRLEN unilen = reguni(pRExC_state, ender, s);
+ if (unilen > 0) {
+ s += unilen;
+ len += unilen;
+ }
+ }
+ len--;
+ }
+ else {
+ REGC((char)ender, s++);
+ }
+ }
+ loopdone: /* Jumped to when encounters something that shouldn't be in
+ the node */
+ RExC_parse = p - 1;
+ Set_Node_Cur_Length(ret); /* MJD */
+ nextchar(pRExC_state);
+ {
+ /* len is STRLEN which is unsigned, need to copy to signed */
+ IV iv = len;
+ if (iv < 0)
+ vFAIL("Internal disaster");
+ }
+ if (len > 0)
+ *flagp |= HASWIDTH;
+ if (len == 1 && UNI_IS_INVARIANT(ender))
+ *flagp |= SIMPLE;
+
+ if (SIZE_ONLY)
+ RExC_size += STR_SZ(len);
+ else {
+ STR_LEN(ret) = len;
+ RExC_emit += STR_SZ(len);
+ }
+ }
+ break;
+ }
+
+ return(ret);
+
+/* Jumped to when an unrecognized character set is encountered */
+bad_charset:
+ Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
+ return(NULL);
+}
+
+STATIC char *
+S_regwhite( RExC_state_t *pRExC_state, char *p )
+{
+ const char *e = RExC_end;
+
+ PERL_ARGS_ASSERT_REGWHITE;
+
+ while (p < e) {
+ if (isSPACE(*p))
+ ++p;
+ else if (*p == '#') {
+ bool ended = 0;
+ do {
+ if (*p++ == '\n') {
+ ended = 1;
+ break;
+ }
+ } while (p < e);
+ if (!ended)
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ }
+ else
+ break;
+ }
+ return p;
+}
+
+/* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
+ Character classes ([:foo:]) can also be negated ([:^foo:]).
+ Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
+ Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
+ but trigger failures because they are currently unimplemented. */
+
+#define POSIXCC_DONE(c) ((c) == ':')
+#define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
+#define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
+
+STATIC I32
+S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
+{
+ dVAR;
+ I32 namedclass = OOB_NAMEDCLASS;
+
+ PERL_ARGS_ASSERT_REGPPOSIXCC;
+
+ if (value == '[' && RExC_parse + 1 < RExC_end &&
+ /* I smell either [: or [= or [. -- POSIX has been here, right? */
+ POSIXCC(UCHARAT(RExC_parse))) {
+ const char c = UCHARAT(RExC_parse);
+ char* const s = RExC_parse++;
+
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
+ RExC_parse++;
+ if (RExC_parse == RExC_end)
+ /* Grandfather lone [:, [=, [. */
+ RExC_parse = s;
+ else {
+ const char* const t = RExC_parse++; /* skip over the c */
+ assert(*t == c);
+
+ if (UCHARAT(RExC_parse) == ']') {
+ const char *posixcc = s + 1;
+ RExC_parse++; /* skip over the ending ] */
+
+ if (*s == ':') {
+ const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
+ const I32 skip = t - posixcc;
+
+ /* Initially switch on the length of the name. */
+ switch (skip) {
+ case 4:
+ if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
+ namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
+ break;
+ case 5:
+ /* Names all of length 5. */
+ /* alnum alpha ascii blank cntrl digit graph lower
+ print punct space upper */
+ /* Offset 4 gives the best switch position. */
+ switch (posixcc[4]) {
+ case 'a':
+ if (memEQ(posixcc, "alph", 4)) /* alpha */
+ namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
+ break;
+ case 'e':
+ if (memEQ(posixcc, "spac", 4)) /* space */
+ namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
+ break;
+ case 'h':
+ if (memEQ(posixcc, "grap", 4)) /* graph */
+ namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
+ break;
+ case 'i':
+ if (memEQ(posixcc, "asci", 4)) /* ascii */
+ namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
+ break;
+ case 'k':
+ if (memEQ(posixcc, "blan", 4)) /* blank */
+ namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
+ break;
+ case 'l':
+ if (memEQ(posixcc, "cntr", 4)) /* cntrl */
+ namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
+ break;
+ case 'm':
+ if (memEQ(posixcc, "alnu", 4)) /* alnum */
+ namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
+ break;
+ case 'r':
+ if (memEQ(posixcc, "lowe", 4)) /* lower */
+ namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
+ else if (memEQ(posixcc, "uppe", 4)) /* upper */
+ namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
+ break;
+ case 't':
+ if (memEQ(posixcc, "digi", 4)) /* digit */
+ namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
+ else if (memEQ(posixcc, "prin", 4)) /* print */
+ namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
+ else if (memEQ(posixcc, "punc", 4)) /* punct */
+ namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
+ break;
+ }
+ break;
+ case 6:
+ if (memEQ(posixcc, "xdigit", 6))
+ namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
+ break;
+ }
+
+ if (namedclass == OOB_NAMEDCLASS)
+ Simple_vFAIL3("POSIX class [:%.*s:] unknown",
+ t - s - 1, s + 1);
+ assert (posixcc[skip] == ':');
+ assert (posixcc[skip+1] == ']');
+ } else if (!SIZE_ONLY) {
+ /* [[=foo=]] and [[.foo.]] are still future. */
+
+ /* adjust RExC_parse so the warning shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
+ RExC_parse++;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ } else {
+ /* Maternal grandfather:
+ * "[:" ending in ":" but not in ":]" */
+ RExC_parse = s;
+ }
+ }
+ }
+
+ return namedclass;
+}
+
+STATIC void
+S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_CHECKPOSIXCC;
+
+ if (POSIXCC(UCHARAT(RExC_parse))) {
+ const char *s = RExC_parse;
+ const char c = *s++;
+
+ while (isALNUM(*s))
+ s++;
+ if (*s && c == *s && s[1] == ']') {
+ ckWARN3reg(s+2,
+ "POSIX syntax [%c %c] belongs inside character classes",
+ c, c);
+
+ /* [[=foo=]] and [[.foo.]] are still future. */
+ if (POSIXCC_NOTYET(c)) {
+ /* adjust RExC_parse so the error shows after
+ the class closes */
+ while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
+ NOOP;
+ Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
+ }
+ }
+ }
+}
+
+/* Generate the code to add a full posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * Xsourcelist is the full Unicode range list to use otherwise. */
+#define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ \
+ /* Set this class in the node for runtime matching */ \
+ ANYOF_CLASS_SET(node, class); \
+ \
+ /* For above Latin1 code points, we use the full Unicode range */ \
+ _invlist_intersection(PL_AboveLatin1, \
+ Xsourcelist, \
+ &scratch_list); \
+ /* And set the output to it, adding instead if there already is an \
+ * output. Checking if <destlist> is NULL first saves an extra \
+ * clone. Its reference count will be decremented at the next \
+ * union, etc, or if this is the only instance, at the end of the \
+ * routine */ \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ /* For non-locale, just add it to any existing list */ \
+ _invlist_union(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ }
+
+/* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
+ */
+#define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
+ if (LOC) { \
+ SV* scratch_list = NULL; \
+ ANYOF_CLASS_SET(node, class); \
+ _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ } \
+ else { \
+ _invlist_union_complement_2nd(destlist, \
+ (AT_LEAST_ASCII_RESTRICTED) \
+ ? sourcelist \
+ : Xsourcelist, \
+ &destlist); \
+ /* Under /d, everything in the upper half of the Latin1 range \
+ * matches this complement */ \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ }
+
+/* Generate the code to add a posix character <class> to the bracketed
+ * character class given by <node>. (<node> is needed only under locale rules)
+ * destlist is the inversion list for non-locale rules that this class is
+ * to be added to
+ * sourcelist is the ASCII-range inversion list to add under /a rules
+ * l1_sourcelist is the Latin1 range list to use otherwise.
+ * Xpropertyname is the name to add to <run_time_list> of the property to
+ * specify the code points above Latin1 that will have to be
+ * determined at run-time
+ * run_time_list is a SV* that contains text names of properties that are to
+ * be computed at run time. This concatenates <Xpropertyname>
+ * to it, apppropriately
+ * This is essentially DO_POSIX, but we know only the Latin1 values at compile
+ * time */
+#define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ /* First, resolve whether to use the ASCII-only list or the L1 \
+ * list */ \
+ DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \
+ ((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\
+ Xpropertyname, run_time_list)
+
+#define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \
+ Xpropertyname, run_time_list) \
+ /* If not /a matching, there are going to be code points we will have \
+ * to defer to runtime to look-up */ \
+ if (! AT_LEAST_ASCII_RESTRICTED) { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
+ } \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, class); \
+ } \
+ else { \
+ _invlist_union(destlist, sourcelist, &destlist); \
+ }
+
+/* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
+ * this and DO_N_POSIX */
+#define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
+ l1_sourcelist, Xpropertyname, run_time_list) \
+ if (AT_LEAST_ASCII_RESTRICTED) { \
+ _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
+ } \
+ else { \
+ Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
+ if (LOC) { \
+ ANYOF_CLASS_SET(node, namedclass); \
+ } \
+ else { \
+ SV* scratch_list = NULL; \
+ _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
+ if (! destlist) { \
+ destlist = scratch_list; \
+ } \
+ else { \
+ _invlist_union(destlist, scratch_list, &destlist); \
+ SvREFCNT_dec(scratch_list); \
+ } \
+ if (DEPENDS_SEMANTICS) { \
+ ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
+ } \
+ } \
+ }
+
+STATIC U8
+S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+
+ /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
+ * Locale folding is done at run-time, so this function should not be
+ * called for nodes that are for locales.
+ *
+ * This function sets the bit corresponding to the fold of the input
+ * 'value', if not already set. The fold of 'f' is 'F', and the fold of
+ * 'F' is 'f'.
+ *
+ * It also knows about the characters that are in the bitmap that have
+ * folds that are matchable only outside it, and sets the appropriate lists
+ * and flags.
+ *
+ * It returns the number of bits that actually changed from 0 to 1 */
+
+ U8 stored = 0;
+ U8 fold;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
+
+ fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
+ : PL_fold[value];
+
+ /* It assumes the bit for 'value' has already been set */
+ if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
+ ANYOF_BITMAP_SET(node, fold);
+ stored++;
+ }
+ if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
+ /* Certain Latin1 characters have matches outside the bitmap. To get
+ * here, 'value' is one of those characters. None of these matches is
+ * valid for ASCII characters under /aa, which have been excluded by
+ * the 'if' above. The matches fall into three categories:
+ * 1) They are singly folded-to or -from an above 255 character, as
+ * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
+ * WITH DIAERESIS;
+ * 2) They are part of a multi-char fold with another character in the
+ * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
+ * 3) They are part of a multi-char fold with a character not in the
+ * bitmap, such as various ligatures.
+ * We aren't dealing fully with multi-char folds, except we do deal
+ * with the pattern containing a character that has a multi-char fold
+ * (not so much the inverse).
+ * For types 1) and 3), the matches only happen when the target string
+ * is utf8; that's not true for 2), and we set a flag for it.
+ *
+ * The code below adds to the passed in inversion list the single fold
+ * closures for 'value'. The values are hard-coded here so that an
+ * innocent-looking character class, like /[ks]/i won't have to go out
+ * to disk to find the possible matches. XXX It would be better to
+ * generate these via regen, in case a new version of the Unicode
+ * standard adds new mappings, though that is not really likely. */
+ switch (value) {
+ case 'k':
+ case 'K':
+ /* KELVIN SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
+ break;
+ case 's':
+ case 'S':
+ /* LATIN SMALL LETTER LONG S */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
+ break;
+ case MICRO_SIGN:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_SMALL_LETTER_MU);
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ GREEK_CAPITAL_LETTER_MU);
+ break;
+ case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
+ case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
+ /* ANGSTROM SIGN */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
+ if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ PL_fold_latin1[value]);
+ }
+ break;
+ case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
+ break;
+ case LATIN_SMALL_LETTER_SHARP_S:
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
+ LATIN_CAPITAL_LETTER_SHARP_S);
+
+ /* Under /a, /d, and /u, this can match the two chars "ss" */
+ if (! MORE_ASCII_RESTRICTED) {
+ add_alternate(alternate_ptr, (U8 *) "ss", 2);
+
+ /* And under /u or /a, it can match even if the target is
+ * not utf8 */
+ if (AT_LEAST_UNI_SEMANTICS) {
+ ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ }
+ break;
+ case 'F': case 'f':
+ case 'I': case 'i':
+ case 'L': case 'l':
+ case 'T': case 't':
+ case 'A': case 'a':
+ case 'H': case 'h':
+ case 'J': case 'j':
+ case 'N': case 'n':
+ case 'W': case 'w':
+ case 'Y': case 'y':
+ /* These all are targets of multi-character folds from code
+ * points that require UTF8 to express, so they can't match
+ * unless the target string is in UTF-8, so no action here is
+ * necessary, as regexec.c properly handles the general case
+ * for UTF-8 matching */
+ break;
+ default:
+ /* Use deprecated warning to increase the chances of this
+ * being output */
+ ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
+ break;
+ }
+ }
+ else if (DEPENDS_SEMANTICS
+ && ! isASCII(value)
+ && PL_fold_latin1[value] != value)
+ {
+ /* Under DEPENDS rules, non-ASCII Latin1 characters match their
+ * folds only when the target string is in UTF-8. We add the fold
+ * here to the list of things to match outside the bitmap, which
+ * won't be looked at unless it is UTF8 (or else if something else
+ * says to look even if not utf8, but those things better not happen
+ * under DEPENDS semantics. */
+ *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
+ }
+
+ return stored;
+}
+
+
+PERL_STATIC_INLINE U8
+S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
+{
+ /* This inline function sets a bit in the bitmap if not already set, and if
+ * appropriate, its fold, returning the number of bits that actually
+ * changed from 0 to 1 */
+
+ U8 stored;
+
+ PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
+
+ if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
+ return 0;
+ }
+
+ ANYOF_BITMAP_SET(node, value);
+ stored = 1;
+
+ if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
+ stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
+ }
+
+ return stored;
+}
+
+STATIC void
+S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
+{
+ /* Adds input 'string' with length 'len' to the ANYOF node's unicode
+ * alternate list, pointed to by 'alternate_ptr'. This is an array of
+ * the multi-character folds of characters in the node */
+ SV *sv;
+
+ PERL_ARGS_ASSERT_ADD_ALTERNATE;
+
+ if (! *alternate_ptr) {
+ *alternate_ptr = newAV();
+ }
+ sv = newSVpvn_utf8((char*)string, len, TRUE);
+ av_push(*alternate_ptr, sv);
+ return;
+}
+
+/*
+ parse a class specification and produce either an ANYOF node that
+ matches the pattern or perhaps will be optimized into an EXACTish node
+ instead. The node contains a bit map for the first 256 characters, with the
+ corresponding bit set if that character is in the list. For characters
+ above 255, a range list is used */
+
+STATIC regnode *
+S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
+{
+ dVAR;
+ register UV nextvalue;
+ register IV prevvalue = OOB_UNICODE;
+ register IV range = 0;
+ UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
+ register regnode *ret;
+ STRLEN numlen;
+ IV namedclass;
+ char *rangebegin = NULL;
+ bool need_class = 0;
+ bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
+ SV *listsv = NULL;
+ STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
+ than just initialized. */
+ SV* properties = NULL; /* Code points that match \p{} \P{} */
+ UV element_count = 0; /* Number of distinct elements in the class.
+ Optimizations may be possible if this is tiny */
+ UV n;
+
+ /* Unicode properties are stored in a swash; this holds the current one
+ * being parsed. If this swash is the only above-latin1 component of the
+ * character class, an optimization is to pass it directly on to the
+ * execution engine. Otherwise, it is set to NULL to indicate that there
+ * are other things in the class that have to be dealt with at execution
+ * time */
+ SV* swash = NULL; /* Code points that match \p{} \P{} */
+
+ /* Set if a component of this character class is user-defined; just passed
+ * on to the engine */
+ UV has_user_defined_property = 0;
+
+ /* code points this node matches that can't be stored in the bitmap */
+ SV* nonbitmap = NULL;
+
+ /* The items that are to match that aren't stored in the bitmap, but are a
+ * result of things that are stored there. This is the fold closure of
+ * such a character, either because it has DEPENDS semantics and shouldn't
+ * be matched unless the target string is utf8, or is a code point that is
+ * too large for the bit map, as for example, the fold of the MICRO SIGN is
+ * above 255. This all is solely for performance reasons. By having this
+ * code know the outside-the-bitmap folds that the bitmapped characters are
+ * involved with, we don't have to go out to disk to find the list of
+ * matches, unless the character class includes code points that aren't
+ * storable in the bit map. That means that a character class with an 's'
+ * in it, for example, doesn't need to go out to disk to find everything
+ * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
+ * empty unless there is something whose fold we don't know about, and will
+ * have to go out to the disk to find. */
+ SV* l1_fold_invlist = NULL;
+
+ /* List of multi-character folds that are matched by this node */
+ AV* unicode_alternate = NULL;
+#ifdef EBCDIC
+ UV literal_endpoint = 0;
+#endif
+ UV stored = 0; /* how many chars stored in the bitmap */
+
+ regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
+ case we need to change the emitted regop to an EXACT. */
+ const char * orig_parse = RExC_parse;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCLASS;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ DEBUG_PARSE("clas");
+
+ /* Assume we are going to generate an ANYOF node. */
+ ret = reganode(pRExC_state, ANYOF, 0);
+
+
+ if (!SIZE_ONLY) {
+ ANYOF_FLAGS(ret) = 0;
+ }
+
+ if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
+ RExC_naughty++;
+ RExC_parse++;
+ if (!SIZE_ONLY)
+ ANYOF_FLAGS(ret) |= ANYOF_INVERT;
+
+ /* We have decided to not allow multi-char folds in inverted character
+ * classes, due to the confusion that can happen, especially with
+ * classes that are designed for a non-Unicode world: You have the
+ * peculiar case that:
+ "s s" =~ /^[^\xDF]+$/i => Y
+ "ss" =~ /^[^\xDF]+$/i => N
+ *
+ * See [perl #89750] */
+ allow_full_fold = FALSE;
+ }
+
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_SKIP;
+ listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
+ }
+ else {
+ RExC_emit += ANYOF_SKIP;
+ if (LOC) {
+ ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
+ }
+ ANYOF_BITMAP_ZERO(ret);
+ listsv = newSVpvs("# comment\n");
+ initial_listsv_len = SvCUR(listsv);
+ }
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+
+ if (!SIZE_ONLY && POSIXCC(nextvalue))
+ checkposixcc(pRExC_state);
+
+ /* allow 1st char to be ] (allowing it to be - is dealt with later) */
+ if (UCHARAT(RExC_parse) == ']')
+ goto charclassloop;
+
+parseit:
+ while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
+
+ charclassloop:
+
+ namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
+
+ if (!range) {
+ rangebegin = RExC_parse;
+ element_count++;
+ }
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+
+ nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
+ if (value == '[' && POSIXCC(nextvalue))
+ namedclass = regpposixcc(pRExC_state, value);
+ else if (value == '\\') {
+ if (UTF) {
+ value = utf8n_to_uvchr((U8*)RExC_parse,
+ RExC_end - RExC_parse,
+ &numlen, UTF8_ALLOW_DEFAULT);
+ RExC_parse += numlen;
+ }
+ else
+ value = UCHARAT(RExC_parse++);
+ /* Some compilers cannot handle switching on 64-bit integer
+ * values, therefore value cannot be an UV. Yes, this will
+ * be a problem later if we want switch on Unicode.
+ * A similar issue a little bit later when switching on
+ * namedclass. --jhi */
+ switch ((I32)value) {
+ case 'w': namedclass = ANYOF_ALNUM; break;
+ case 'W': namedclass = ANYOF_NALNUM; break;
+ case 's': namedclass = ANYOF_SPACE; break;
+ case 'S': namedclass = ANYOF_NSPACE; break;
+ case 'd': namedclass = ANYOF_DIGIT; break;
+ case 'D': namedclass = ANYOF_NDIGIT; break;
+ case 'v': namedclass = ANYOF_VERTWS; break;
+ case 'V': namedclass = ANYOF_NVERTWS; break;
+ case 'h': namedclass = ANYOF_HORIZWS; break;
+ case 'H': namedclass = ANYOF_NHORIZWS; break;
+ case 'N': /* Handle \N{NAME} in class */
+ {
+ /* We only pay attention to the first char of
+ multichar strings being returned. I kinda wonder
+ if this makes sense as it does change the behaviour
+ from earlier versions, OTOH that behaviour was broken
+ as well. */
+ UV v; /* value is register so we cant & it /grrr */
+ if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
+ goto parseit;
+ }
+ value= v;
+ }
+ break;
+ case 'p':
+ case 'P':
+ {
+ char *e;
+ if (RExC_parse >= RExC_end)
+ vFAIL2("Empty \\%c{}", (U8)value);
+ if (*RExC_parse == '{') {
+ const U8 c = (U8)value;
+ e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL2("Missing right brace on \\%c{}", c);
+ while (isSPACE(UCHARAT(RExC_parse)))
+ RExC_parse++;
+ if (e == RExC_parse)
+ vFAIL2("Empty \\%c{}", c);
+ n = e - RExC_parse;
+ while (isSPACE(UCHARAT(RExC_parse + n - 1)))
+ n--;
+ }
+ else {
+ e = RExC_parse;
+ n = 1;
+ }
+ if (!SIZE_ONLY) {
+ SV** invlistsvp;
+ SV* invlist;
+ char* name;
+ if (UCHARAT(RExC_parse) == '^') {
+ RExC_parse++;
+ n--;
+ value = value == 'p' ? 'P' : 'p'; /* toggle */
+ while (isSPACE(UCHARAT(RExC_parse))) {
+ RExC_parse++;
+ n--;
+ }
+ }
+ /* Try to get the definition of the property into
+ * <invlist>. If /i is in effect, the effective property
+ * will have its name be <__NAME_i>. The design is
+ * discussed in commit
+ * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
+ Newx(name, n + sizeof("_i__\n"), char);
+
+ sprintf(name, "%s%.*s%s\n",
+ (FOLD) ? "__" : "",
+ (int)n,
+ RExC_parse,
+ (FOLD) ? "_i" : ""
+ );
+
+ /* Look up the property name, and get its swash and
+ * inversion list, if the property is found */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ }
+ swash = _core_swash_init("utf8", name, &PL_sv_undef,
+ 1, /* binary */
+ 0, /* not tr/// */
+ TRUE, /* this routine will handle
+ undefined properties */
+ NULL, FALSE /* No inversion list */
+ );
+ if ( ! swash
+ || ! SvROK(swash)
+ || ! SvTYPE(SvRV(swash)) == SVt_PVHV
+ || ! (invlistsvp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "INVLIST", FALSE))
+ || ! (invlist = *invlistsvp))
+ {
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ /* Here didn't find it. It could be a user-defined
+ * property that will be available at run-time. Add it
+ * to the list to look up then */
+ Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
+ (value == 'p' ? '+' : '!'),
+ name);
+ has_user_defined_property = 1;
+
+ /* We don't know yet, so have to assume that the
+ * property could match something in the Latin1 range,
+ * hence something that isn't utf8 */
+ ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
+ }
+ else {
+
+ /* Here, did get the swash and its inversion list. If
+ * the swash is from a user-defined property, then this
+ * whole character class should be regarded as such */
+ SV** user_defined_svp =
+ hv_fetchs(MUTABLE_HV(SvRV(swash)),
+ "USER_DEFINED", FALSE);
+ if (user_defined_svp) {
+ has_user_defined_property
+ |= SvUV(*user_defined_svp);
+ }
+
+ /* Invert if asking for the complement */
+ if (value == 'P') {
+ _invlist_union_complement_2nd(properties, invlist, &properties);
+
+ /* The swash can't be used as-is, because we've
+ * inverted things; delay removing it to here after
+ * have copied its invlist above */
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ else {
+ _invlist_union(properties, invlist, &properties);
+ }
+ }
+ Safefree(name);
+ }
+ RExC_parse = e + 1;
+ namedclass = ANYOF_MAX; /* no official name, but it's named */
+
+ /* \p means they want Unicode semantics */
+ RExC_uni_semantics = 1;
+ }
+ break;
+ case 'n': value = '\n'; break;
+ case 'r': value = '\r'; break;
+ case 't': value = '\t'; break;
+ case 'f': value = '\f'; break;
+ case 'b': value = '\b'; break;
+ case 'e': value = ASCII_TO_NATIVE('\033');break;
+ case 'a': value = ASCII_TO_NATIVE('\007');break;
+ case 'o':
+ RExC_parse--; /* function expects to be pointed at the 'o' */
+ {
+ const char* error_msg;
+ bool valid = grok_bslash_o(RExC_parse,
+ &value,
+ &numlen,
+ &error_msg,
+ SIZE_ONLY);
+ RExC_parse += numlen;
+ if (! valid) {
+ vFAIL(error_msg);
+ }
+ }
+ if (PL_encoding && value < 0x100) {
+ goto recode_encoding;
+ }
+ break;
+ case 'x':
+ if (*RExC_parse == '{') {
+ I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
+ | PERL_SCAN_DISALLOW_PREFIX;
+ char * const e = strchr(RExC_parse++, '}');
+ if (!e)
+ vFAIL("Missing right brace on \\x{}");
+
+ numlen = e - RExC_parse;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse = e + 1;
+ }
+ else {
+ I32 flags = PERL_SCAN_DISALLOW_PREFIX;
+ numlen = 2;
+ value = grok_hex(RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ }
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ case 'c':
+ value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
+ break;
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7':
+ {
+ /* Take 1-3 octal digits */
+ I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
+ numlen = 3;
+ value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
+ RExC_parse += numlen;
+ if (PL_encoding && value < 0x100)
+ goto recode_encoding;
+ break;
+ }
+ recode_encoding:
+ if (! RExC_override_recoding) {
+ SV* enc = PL_encoding;
+ value = reg_recode((const char)(U8)value, &enc);
+ if (!enc && SIZE_ONLY)
+ ckWARNreg(RExC_parse,
+ "Invalid escape in the specified encoding");
+ break;
+ }
+ default:
+ /* Allow \_ to not give an error */
+ if (!SIZE_ONLY && isALNUM(value) && value != '_') {
+ ckWARN2reg(RExC_parse,
+ "Unrecognized escape \\%c in character class passed through",
+ (int)value);
+ }
+ break;
+ }
+ } /* end of \blah */
+#ifdef EBCDIC
+ else
+ literal_endpoint++;
+#endif
+
+ if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
+
+ /* What matches in a locale is not known until runtime, so need to
+ * (one time per class) allocate extra space to pass to regexec.
+ * The space will contain a bit for each named class that is to be
+ * matched against. This isn't needed for \p{} and pseudo-classes,
+ * as they are not affected by locale, and hence are dealt with
+ * separately */
+ if (LOC && namedclass < ANYOF_MAX && ! need_class) {
+ need_class = 1;
+ if (SIZE_ONLY) {
+ RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ }
+ else {
+ RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
+ ANYOF_CLASS_ZERO(ret);
+ }
+ ANYOF_FLAGS(ret) |= ANYOF_CLASS;
+ }
+
+ /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
+ * literal, as is the character that began the false range, i.e.
+ * the 'a' in the examples */
+ if (range) {
+ if (!SIZE_ONLY) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ ckWARN4reg(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ if (prevvalue < 256) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
+ }
+ else {
+ nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
+ }
+ }
+
+ range = 0; /* this was not a true range */
+ }
+
+ if (!SIZE_ONLY) {
+
+ /* Possible truncation here but in some 64-bit environments
+ * the compiler gets heartburn about switch on 64-bit values.
+ * A similar issue a little earlier when switching on value.
+ * --jhi */
+ switch ((I32)namedclass) {
+
+ case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_NALNUMC:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
+ break;
+ case ANYOF_ALPHA:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_NALPHA:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
+ break;
+ case ANYOF_ASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union(properties, PL_ASCII, &properties);
+ }
+ break;
+ case ANYOF_NASCII:
+ if (LOC) {
+ ANYOF_CLASS_SET(ret, namedclass);
+ }
+ else {
+ _invlist_union_complement_2nd(properties,
+ PL_ASCII, &properties);
+ if (DEPENDS_SEMANTICS) {
+ ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
+ }
+ }
+ break;
+ case ANYOF_BLANK:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_NBLANK:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixBlank, PL_XPosixBlank);
+ break;
+ case ANYOF_CNTRL:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_NCNTRL:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixCntrl, PL_XPosixCntrl);
+ break;
+ case ANYOF_DIGIT:
+ /* There are no digits in the Latin1 range outside of
+ * ASCII, so call the macro that doesn't have to resolve
+ * them */
+ DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, properties,
+ PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_NDIGIT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
+ break;
+ case ANYOF_GRAPH:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_NGRAPH:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
+ break;
+ case ANYOF_HORIZWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding. It turns out that \h
+ * is just a synonym for XPosixBlank */
+ _invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_NHORIZWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_XPosixBlank, &nonbitmap);
+ break;
+ case ANYOF_LOWER:
+ case ANYOF_NLOWER:
+ { /* These require special handling, as they differ under
+ folding, matching Cased there (which in the ASCII range
+ is the same as Alpha */
+
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixLower;
+ l1_source = PL_L1PosixLower;
+ Xname = "XPosixLower";
+ }
+ if (namedclass == ANYOF_LOWER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_PRINT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_NPRINT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
+ break;
+ case ANYOF_PUNCT:
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_NPUNCT:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
+ break;
+ case ANYOF_PSXSPC:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_NPSXSPC:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixSpace, PL_XPosixSpace);
+ break;
+ case ANYOF_SPACE:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_NSPACE:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PerlSpace, PL_XPerlSpace);
+ break;
+ case ANYOF_UPPER: /* Same as LOWER, above */
+ case ANYOF_NUPPER:
+ {
+ SV* ascii_source;
+ SV* l1_source;
+ const char *Xname;
+
+ if (FOLD && ! LOC) {
+ ascii_source = PL_PosixAlpha;
+ l1_source = PL_L1Cased;
+ Xname = "Cased";
+ }
+ else {
+ ascii_source = PL_PosixUpper;
+ l1_source = PL_L1PosixUpper;
+ Xname = "XPosixUpper";
+ }
+ if (namedclass == ANYOF_UPPER) {
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ ascii_source, l1_source, Xname, listsv);
+ }
+ else {
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
+ properties, ascii_source, l1_source, Xname, listsv);
+ }
+ break;
+ }
+ case ANYOF_ALNUM: /* Really is 'Word' */
+ DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_NALNUM:
+ DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
+ PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
+ break;
+ case ANYOF_VERTWS:
+ /* For these, we use the nonbitmap, as /d doesn't make a
+ * difference in what these match. There would be problems
+ * if these characters had folds other than themselves, as
+ * nonbitmap is subject to folding */
+ _invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_NVERTWS:
+ _invlist_union_complement_2nd(nonbitmap,
+ PL_VertSpace, &nonbitmap);
+ break;
+ case ANYOF_XDIGIT:
+ DO_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_NXDIGIT:
+ DO_N_POSIX(ret, namedclass, properties,
+ PL_PosixXDigit, PL_XPosixXDigit);
+ break;
+ case ANYOF_MAX:
+ /* this is to handle \p and \P */
+ break;
+ default:
+ vFAIL("Invalid [::] class");
+ break;
+ }
+
+ continue;
+ }
+ } /* end of namedclass \blah */
+
+ if (range) {
+ if (prevvalue > (IV)value) /* b-a */ {
+ const int w = RExC_parse - rangebegin;
+ Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
+ range = 0; /* not a valid range */
+ }
+ }
+ else {
+ prevvalue = value; /* save the beginning of the range */
+ if (RExC_parse+1 < RExC_end
+ && *RExC_parse == '-'
+ && RExC_parse[1] != ']')
+ {
+ RExC_parse++;
+
+ /* a bad range like \w-, [:word:]- ? */
+ if (namedclass > OOB_NAMEDCLASS) {
+ if (ckWARN(WARN_REGEXP)) {
+ const int w =
+ RExC_parse >= rangebegin ?
+ RExC_parse - rangebegin : 0;
+ vWARN4(RExC_parse,
+ "False [] range \"%*.*s\"",
+ w, w, rangebegin);
+ }
+ if (!SIZE_ONLY)
+ stored +=
+ set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
+ } else
+ range = 1; /* yeah, it's a range! */
+ continue; /* but do it the next time */
+ }
+ }
+
+ /* non-Latin1 code point implies unicode semantics. Must be set in
+ * pass1 so is there for the whole of pass 2 */
+ if (value > 255) {
+ RExC_uni_semantics = 1;
+ }
+
+ /* now is the next time */
+ if (!SIZE_ONLY) {
+ if (prevvalue < 256) {
+ const IV ceilvalue = value < 256 ? value : 255;
+ IV i;
+#ifdef EBCDIC
+ /* In EBCDIC [\x89-\x91] should include
+ * the \x8e but [i-j] should not. */
+ if (literal_endpoint == 2 &&
+ ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
+ (isUPPER(prevvalue) && isUPPER(ceilvalue))))
+ {
+ if (isLOWER(prevvalue)) {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ } else {
+ for (i = prevvalue; i <= ceilvalue; i++)
+ if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
+ stored +=
+ set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ }
+ else
+#endif
+ for (i = prevvalue; i <= ceilvalue; i++) {
+ stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ if (value > 255) {
+ const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
+ const UV natvalue = NATIVE_TO_UNI(value);
+ nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
+ }
+#ifdef EBCDIC
+ literal_endpoint = 0;
+#endif
+ }
+
+ range = 0; /* this range (if it was one) is done now */
+ }
+
+
+
+ if (SIZE_ONLY)
+ return ret;
+ /****** !SIZE_ONLY AFTER HERE *********/
+
+ /* If folding and there are code points above 255, we calculate all
+ * characters that could fold to or from the ones already on the list */
+ if (FOLD && nonbitmap) {
+ UV start, end; /* End points of code point ranges */
+
+ SV* fold_intersection = NULL;
+
+ /* This is a list of all the characters that participate in folds
+ * (except marks, etc in multi-char folds */
+ if (! PL_utf8_foldable) {
+ SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
+ PL_utf8_foldable = _swash_to_invlist(swash);
+ SvREFCNT_dec(swash);
+ }
+
+ /* This is a hash that for a particular fold gives all characters
+ * that are involved in it */
+ if (! PL_utf8_foldclosures) {
+
+ /* If we were unable to find any folds, then we likely won't be
+ * able to find the closures. So just create an empty list.
+ * Folding will effectively be restricted to the non-Unicode rules
+ * hard-coded into Perl. (This case happens legitimately during
+ * compilation of Perl itself before the Unicode tables are
+ * generated) */
+ if (invlist_len(PL_utf8_foldable) == 0) {
+ PL_utf8_foldclosures = newHV();
+ } else {
+ /* If the folds haven't been read in, call a fold function
+ * to force that */
+ if (! PL_utf8_tofold) {
+ U8 dummy[UTF8_MAXBYTES+1];
+ STRLEN dummy_len;
+
+ /* This particular string is above \xff in both UTF-8 and
+ * UTFEBCDIC */
+ to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
+ assert(PL_utf8_tofold); /* Verify that worked */
+ }
+ PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
+ }
+ }
+
+ /* Only the characters in this class that participate in folds need be
+ * checked. Get the intersection of this class and all the possible
+ * characters that are foldable. This can quickly narrow down a large
+ * class */
+ _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
+
+ /* Now look at the foldable characters in this class individually */
+ invlist_iterinit(fold_intersection);
+ while (invlist_iternext(fold_intersection, &start, &end)) {
+ UV j;
+
+ /* Look at every character in the range */
+ for (j = start; j <= end; j++) {
+
+ /* Get its fold */
+ U8 foldbuf[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen;
+ const UV f =
+ _to_uni_fold_flags(j, foldbuf, &foldlen,
+ (allow_full_fold) ? FOLD_FLAGS_FULL : 0);
+
+ if (foldlen > (STRLEN)UNISKIP(f)) {
+
+ /* Any multicharacter foldings (disallowed in lookbehind
+ * patterns) require the following transform: [ABCDEF] ->
+ * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
+ * folds into "rst", all other characters fold to single
+ * characters. We save away these multicharacter foldings,
+ * to be later saved as part of the additional "s" data. */
+ if (! RExC_in_lookbehind) {
+ U8* loc = foldbuf;
+ U8* e = foldbuf + foldlen;
+
+ /* If any of the folded characters of this are in the
+ * Latin1 range, tell the regex engine that this can
+ * match a non-utf8 target string. The only multi-byte
+ * fold whose source is in the Latin1 range (U+00DF)
+ * applies only when the target string is utf8, or
+ * under unicode rules */
+ if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
+ while (loc < e) {
+
+ /* Can't mix ascii with non- under /aa */
+ if (MORE_ASCII_RESTRICTED
+ && (isASCII(*loc) != isASCII(j)))
+ {
+ goto end_multi_fold;
+ }
+ if (UTF8_IS_INVARIANT(*loc)
+ || UTF8_IS_DOWNGRADEABLE_START(*loc))
+ {
+ /* Can't mix above and below 256 under LOC
+ */
+ if (LOC) {
+ goto end_multi_fold;
+ }
+ ANYOF_FLAGS(ret)
+ |= ANYOF_NONBITMAP_NON_UTF8;
+ break;
+ }
+ loc += UTF8SKIP(loc);
+ }
+ }
+
+ add_alternate(&unicode_alternate, foldbuf, foldlen);
+ end_multi_fold: ;
+ }
+
+ /* This is special-cased, as it is the only letter which
+ * has both a multi-fold and single-fold in Latin1. All
+ * the other chars that have single and multi-folds are
+ * always in utf8, and the utf8 folding algorithm catches
+ * them */
+ if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ LATIN_SMALL_LETTER_SHARP_S,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ }
+ else {
+ /* Single character fold. Add everything in its fold
+ * closure to the list that this node should match */
+ SV** listp;
+
+ /* The fold closures data structure is a hash with the keys
+ * being every character that is folded to, like 'k', and
+ * the values each an array of everything that folds to its
+ * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
+ if ((listp = hv_fetch(PL_utf8_foldclosures,
+ (char *) foldbuf, foldlen, FALSE)))
+ {
+ AV* list = (AV*) *listp;
+ IV k;
+ for (k = 0; k <= av_len(list); k++) {
+ SV** c_p = av_fetch(list, k, FALSE);
+ UV c;
+ if (c_p == NULL) {
+ Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
+ }
+ c = SvUV(*c_p);
+
+ /* /aa doesn't allow folds between ASCII and non-;
+ * /l doesn't allow them between above and below
+ * 256 */
+ if ((MORE_ASCII_RESTRICTED
+ && (isASCII(c) != isASCII(j)))
+ || (LOC && ((c < 256) != (j < 256))))
+ {
+ continue;
+ }
+
+ if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
+ stored += set_regclass_bit(pRExC_state,
+ ret,
+ (U8) c,
+ &l1_fold_invlist, &unicode_alternate);
+ }
+ /* It may be that the code point is already in
+ * this range or already in the bitmap, in
+ * which case we need do nothing */
+ else if ((c < start || c > end)
+ && (c > 255
+ || ! ANYOF_BITMAP_TEST(ret, c)))
+ {
+ nonbitmap = add_cp_to_invlist(nonbitmap, c);
+ }
+ }
+ }
+ }
+ }
+ }
+ SvREFCNT_dec(fold_intersection);
+ }
+
+ /* Combine the two lists into one. */
+ if (l1_fold_invlist) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
+ SvREFCNT_dec(l1_fold_invlist);
+ }
+ else {
+ nonbitmap = l1_fold_invlist;
+ }
+ }
+
+ /* And combine the result (if any) with any inversion list from properties.
+ * The lists are kept separate up to now because we don't want to fold the
+ * properties */
+ if (properties) {
+ if (nonbitmap) {
+ _invlist_union(nonbitmap, properties, &nonbitmap);
+ SvREFCNT_dec(properties);
+ }
+ else {
+ nonbitmap = properties;
+ }
+ }
+
+ /* Here, <nonbitmap> contains all the code points we can determine at
+ * compile time that we haven't put into the bitmap. Go through it, and
+ * for things that belong in the bitmap, put them there, and delete from
+ * <nonbitmap> */
+ if (nonbitmap) {
+
+ /* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
+ * possibly only should match when the target string is UTF-8 */
+ UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
+
+ /* This gets set if we actually need to modify things */
+ bool change_invlist = FALSE;
+
+ UV start, end;
+
+ /* Start looking through <nonbitmap> */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ UV high;
+ int i;
+
+ /* Quit if are above what we should change */
+ if (start > max_cp_to_set) {
+ break;
+ }
+
+ change_invlist = TRUE;
+
+ /* Set all the bits in the range, up to the max that we are doing */
+ high = (end < max_cp_to_set) ? end : max_cp_to_set;
+ for (i = start; i <= (int) high; i++) {
+ if (! ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_SET(ret, i);
+ stored++;
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Done with loop; remove any code points that are in the bitmap from
+ * <nonbitmap> */
+ if (change_invlist) {
+ _invlist_subtract(nonbitmap,
+ (DEPENDS_SEMANTICS)
+ ? PL_ASCII
+ : PL_Latin1,
+ &nonbitmap);
+ }
+
+ /* If have completely emptied it, remove it completely */
+ if (invlist_len(nonbitmap) == 0) {
+ SvREFCNT_dec(nonbitmap);
+ nonbitmap = NULL;
+ }
+ }
+
+ /* Here, we have calculated what code points should be in the character
+ * class. <nonbitmap> does not overlap the bitmap except possibly in the
+ * case of DEPENDS rules.
+ *
+ * Now we can see about various optimizations. Fold calculation (which we
+ * did above) needs to take place before inversion. Otherwise /[^k]/i
+ * would invert to include K, which under /i would match k, which it
+ * shouldn't. */
+
+ /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
+ * set the FOLD flag yet, so this does optimize those. It doesn't
+ * optimize locale. Doing so perhaps could be done as long as there is
+ * nothing like \w in it; some thought also would have to be given to the
+ * interaction with above 0x100 chars */
+ if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
+ && ! LOC
+ && ! unicode_alternate
+ /* In case of /d, there are some things that should match only when in
+ * not in the bitmap, i.e., they require UTF8 to match. These are
+ * listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
+ * case, they don't require UTF8, so can invert here */
+ && (! nonbitmap
+ || ! DEPENDS_SEMANTICS
+ || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ && SvCUR(listsv) == initial_listsv_len)
+ {
+ int i;
+ if (! nonbitmap) {
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ /* The inversion means that everything above 255 is matched */
+ ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
+ }
+ else {
+ /* Here, also has things outside the bitmap that may overlap with
+ * the bitmap. We have to sync them up, so that they get inverted
+ * in both places. Earlier, we removed all overlaps except in the
+ * case of /d rules, so no syncing is needed except for this case
+ */
+ SV *remove_list = NULL;
+
+ if (DEPENDS_SEMANTICS) {
+ UV start, end;
+
+ /* Set the bits that correspond to the ones that aren't in the
+ * bitmap. Otherwise, when we invert, we'll miss these.
+ * Earlier, we removed from the nonbitmap all code points
+ * < 128, so there is no extra work here */
+ invlist_iterinit(nonbitmap);
+ while (invlist_iternext(nonbitmap, &start, &end)) {
+ if (start > 255) { /* The bit map goes to 255 */
+ break;
+ }
+ if (end > 255) {
+ end = 255;
+ }
+ for (i = start; i <= (int) end; ++i) {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+ }
+
+ /* Now invert both the bitmap and the nonbitmap. Anything in the
+ * bitmap has to also be removed from the non-bitmap, but again,
+ * there should not be overlap unless is /d rules. */
+ _invlist_invert(nonbitmap);
+
+ /* Any swash can't be used as-is, because we've inverted things */
+ if (swash) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+
+ for (i = 0; i < 256; ++i) {
+ if (ANYOF_BITMAP_TEST(ret, i)) {
+ ANYOF_BITMAP_CLEAR(ret, i);
+ if (DEPENDS_SEMANTICS) {
+ if (! remove_list) {
+ remove_list = _new_invlist(2);
+ }
+ remove_list = add_cp_to_invlist(remove_list, i);
+ }
+ }
+ else {
+ ANYOF_BITMAP_SET(ret, i);
+ prevvalue = value;
+ value = i;
+ }
+ }
+
+ /* And do the removal */
+ if (DEPENDS_SEMANTICS) {
+ if (remove_list) {
+ _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
+ SvREFCNT_dec(remove_list);
+ }
+ }
+ else {
+ /* There is no overlap for non-/d, so just delete anything
+ * below 256 */
+ _invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
+ }
+ }
+
+ stored = 256 - stored;
+
+ /* Clear the invert flag since have just done it here */
+ ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
+ }
+
+ /* Folding in the bitmap is taken care of above, but not for locale (for
+ * which we have to wait to see what folding is in effect at runtime), and
+ * for some things not in the bitmap (only the upper latin folds in this
+ * case, as all other single-char folding has been set above). Set
+ * run-time fold flag for these */
+ if (FOLD && (LOC
+ || (DEPENDS_SEMANTICS
+ && nonbitmap
+ && ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
+ || unicode_alternate))
+ {
+ ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
+ }
+
+ /* A single character class can be "optimized" into an EXACTish node.
+ * Note that since we don't currently count how many characters there are
+ * outside the bitmap, we are XXX missing optimization possibilities for
+ * them. This optimization can't happen unless this is a truly single
+ * character class, which means that it can't be an inversion into a
+ * many-character class, and there must be no possibility of there being
+ * things outside the bitmap. 'stored' (only) for locales doesn't include
+ * \w, etc, so have to make a special test that they aren't present
+ *
+ * Similarly A 2-character class of the very special form like [bB] can be
+ * optimized into an EXACTFish node, but only for non-locales, and for
+ * characters which only have the two folds; so things like 'fF' and 'Ii'
+ * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
+ * FI'. */
+ if (! nonbitmap
+ && ! unicode_alternate
+ && SvCUR(listsv) == initial_listsv_len
+ && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
+ && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
+ || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
+ && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
+ /* If the latest code point has a fold whose
+ * bit is set, it must be the only other one */
+ && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
+ && ANYOF_BITMAP_TEST(ret, prevvalue)))))
+ {
+ /* Note that the information needed to decide to do this optimization
+ * is not currently available until the 2nd pass, and that the actually
+ * used EXACTish node takes less space than the calculated ANYOF node,
+ * and hence the amount of space calculated in the first pass is larger
+ * than actually used, so this optimization doesn't gain us any space.
+ * But an EXACT node is faster than an ANYOF node, and can be combined
+ * with any adjacent EXACT nodes later by the optimizer for further
+ * gains. The speed of executing an EXACTF is similar to an ANYOF
+ * node, so the optimization advantage comes from the ability to join
+ * it to adjacent EXACT nodes */
+
+ const char * cur_parse= RExC_parse;
+ U8 op;
+ RExC_emit = (regnode *)orig_emit;
+ RExC_parse = (char *)orig_parse;
+
+ if (stored == 1) {
+
+ /* A locale node with one point can be folded; all the other cases
+ * with folding will have two points, since we calculate them above
+ */
+ if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
+ op = EXACTFL;
+ }
+ else {
+ op = EXACT;
+ }
+ }
+ else { /* else 2 chars in the bit map: the folds of each other */
+
+ /* Use the folded value, which for the cases where we get here,
+ * is just the lower case of the current one (which may resolve to
+ * itself, or to the other one */
+ value = toLOWER_LATIN1(value);
+
+ /* To join adjacent nodes, they must be the exact EXACTish type.
+ * Try to use the most likely type, by using EXACTFA if possible,
+ * then EXACTFU if the regex calls for it, or is required because
+ * the character is non-ASCII. (If <value> is ASCII, its fold is
+ * also ASCII for the cases where we get here.) */
+ if (MORE_ASCII_RESTRICTED && isASCII(value)) {
+ op = EXACTFA;
+ }
+ else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
+ op = EXACTFU;
+ }
+ else { /* Otherwise, more likely to be EXACTF type */
+ op = EXACTF;
+ }
+ }
+
+ ret = reg_node(pRExC_state, op);
+ RExC_parse = (char *)cur_parse;
+ if (UTF && ! NATIVE_IS_INVARIANT(value)) {
+ *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
+ *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
+ STR_LEN(ret)= 2;
+ RExC_emit += STR_SZ(2);
+ }
+ else {
+ *STRING(ret)= (char)value;
+ STR_LEN(ret)= 1;
+ RExC_emit += STR_SZ(1);
+ }
+ SvREFCNT_dec(listsv);
+ return ret;
+ }
+
+ /* If there is a swash and more than one element, we can't use the swash in
+ * the optimization below. */
+ if (swash && element_count > 1) {
+ SvREFCNT_dec(swash);
+ swash = NULL;
+ }
+ if (! nonbitmap
+ && SvCUR(listsv) == initial_listsv_len
+ && ! unicode_alternate)
+ {
+ ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
+ SvREFCNT_dec(listsv);
+ SvREFCNT_dec(unicode_alternate);
+ }
+ else {
+ /* av[0] stores the character class description in its textual form:
+ * used later (regexec.c:Perl_regclass_swash()) to initialize the
+ * appropriate swash, and is also useful for dumping the regnode.
+ * av[1] if NULL, is a placeholder to later contain the swash computed
+ * from av[0]. But if no further computation need be done, the
+ * swash is stored there now.
+ * av[2] stores the multicharacter foldings, used later in
+ * regexec.c:S_reginclass().
+ * av[3] stores the nonbitmap inversion list for use in addition or
+ * instead of av[0]; not used if av[1] isn't NULL
+ * av[4] is set if any component of the class is from a user-defined
+ * property; not used if av[1] isn't NULL */
+ AV * const av = newAV();
+ SV *rv;
+
+ av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
+ ? &PL_sv_undef
+ : listsv);
+ if (swash) {
+ av_store(av, 1, swash);
+ SvREFCNT_dec(nonbitmap);
+ }
+ else {
+ av_store(av, 1, NULL);
+ if (nonbitmap) {
+ av_store(av, 3, nonbitmap);
+ av_store(av, 4, newSVuv(has_user_defined_property));
+ }
+ }
+
+ /* Store any computed multi-char folds only if we are allowing
+ * them */
+ if (allow_full_fold) {
+ av_store(av, 2, MUTABLE_SV(unicode_alternate));
+ if (unicode_alternate) { /* This node is variable length */
+ OP(ret) = ANYOFV;
+ }
+ }
+ else {
+ av_store(av, 2, NULL);
+ }
+ rv = newRV_noinc(MUTABLE_SV(av));
+ n = add_data(pRExC_state, 1, "s");
+ RExC_rxi->data->data[n] = (void*)rv;
+ ARG_SET(ret, n);
+ }
+ return ret;
+}
+
+
+/* reg_skipcomment()
+
+ Absorbs an /x style # comments from the input stream.
+ Returns true if there is more text remaining in the stream.
+ Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
+ terminates the pattern without including a newline.
+
+ Note its the callers responsibility to ensure that we are
+ actually in /x mode
+
+*/
+
+STATIC bool
+S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
+{
+ bool ended = 0;
+
+ PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
+
+ while (RExC_parse < RExC_end)
+ if (*RExC_parse++ == '\n') {
+ ended = 1;
+ break;
+ }
+ if (!ended) {
+ /* we ran off the end of the pattern without ending
+ the comment, so we have to add an \n when wrapping */
+ RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
+ return 0;
+ } else
+ return 1;
+}
+
+/* nextchar()
+
+ Advances the parse position, and optionally absorbs
+ "whitespace" from the inputstream.
+
+ Without /x "whitespace" means (?#...) style comments only,
+ with /x this means (?#...) and # comments and whitespace proper.
+
+ Returns the RExC_parse point from BEFORE the scan occurs.
+
+ This is the /x friendly way of saying RExC_parse++.
+*/
+
+STATIC char*
+S_nextchar(pTHX_ RExC_state_t *pRExC_state)
+{
+ char* const retval = RExC_parse++;
+
+ PERL_ARGS_ASSERT_NEXTCHAR;
+
+ for (;;) {
+ if (RExC_end - RExC_parse >= 3
+ && *RExC_parse == '('
+ && RExC_parse[1] == '?'
+ && RExC_parse[2] == '#')
+ {
+ while (*RExC_parse != ')') {
+ if (RExC_parse == RExC_end)
+ FAIL("Sequence (?#... not terminated");
+ RExC_parse++;
+ }
+ RExC_parse++;
+ continue;
+ }
+ if (RExC_flags & RXf_PMf_EXTENDED) {
+ if (isSPACE(*RExC_parse)) {
+ RExC_parse++;
+ continue;
+ }
+ else if (*RExC_parse == '#') {
+ if ( reg_skipcomment( pRExC_state ) )
+ continue;
+ }
+ }
+ return retval;
+ }
+}
+
+/*
+- reg_node - emit a node
+*/
+STATIC regnode * /* Location. */
+S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REG_NODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 1;
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE(ptr, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
+ "reg_node", __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reganode - emit a node with an argument
+*/
+STATIC regnode * /* Location. */
+S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
+{
+ dVAR;
+ register regnode *ptr;
+ regnode * const ret = RExC_emit;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGANODE;
+
+ if (SIZE_ONLY) {
+ SIZE_ALIGN(RExC_size);
+ RExC_size += 2;
+ /*
+ We can't do this:
+
+ assert(2==regarglen[op]+1);
+
+ Anything larger than this has to allocate the extra amount.
+ If we changed this to be:
+
+ RExC_size += (1 + regarglen[op]);
+
+ then it wouldn't matter. Its not clear what side effect
+ might come from that so its not done so far.
+ -- dmq
+ */
+ return(ret);
+ }
+ if (RExC_emit >= RExC_emit_bound)
+ Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
+ op, RExC_emit, RExC_emit_bound);
+
+ NODE_ALIGN_FILL(ret);
+ ptr = ret;
+ FILL_ADVANCE_NODE_ARG(ptr, op, arg);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reganode",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
+ "Overwriting end of array!\n" : "OK",
+ (UV)(RExC_emit - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Cur_Node_Offset;
+ }
+#endif
+ RExC_emit = ptr;
+ return(ret);
+}
+
+/*
+- reguni - emit (if appropriate) a Unicode character
+*/
+STATIC STRLEN
+S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGUNI;
+
+ return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
+}
+
+/*
+- reginsert - insert an operator in front of already-emitted operand
+*
+* Means relocating the operand.
+*/
+STATIC void
+S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
+{
+ dVAR;
+ register regnode *src;
+ register regnode *dst;
+ register regnode *place;
+ const int offset = regarglen[(U8)op];
+ const int size = NODE_STEP_REGNODE + offset;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGINSERT;
+ PERL_UNUSED_ARG(depth);
+/* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
+ DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
+ if (SIZE_ONLY) {
+ RExC_size += size;
+ return;
+ }
+
+ src = RExC_emit;
+ RExC_emit += size;
+ dst = RExC_emit;
+ if (RExC_open_parens) {
+ int paren;
+ /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
+ for ( paren=0 ; paren < RExC_npar ; paren++ ) {
+ if ( RExC_open_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("open"," - %d",size);*/
+ RExC_open_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
+ }
+ if ( RExC_close_parens[paren] >= opnd ) {
+ /*DEBUG_PARSE_FMT("close"," - %d",size);*/
+ RExC_close_parens[paren] += size;
+ } else {
+ /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
+ }
+ }
+ }
+
+ while (src > opnd) {
+ StructCopy(--src, --dst, regnode);
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD 20010112 */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
+ "reg_insert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(dst - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(src - RExC_emit_start),
+ (UV)(dst - RExC_emit_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
+ Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
+ }
+#endif
+ }
+
+
+ place = opnd; /* Op node, where operand used to be. */
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (RExC_offsets) { /* MJD */
+ MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
+ "reginsert",
+ __LINE__,
+ PL_reg_name[op],
+ (UV)(place - RExC_emit_start) > RExC_offsets[0]
+ ? "Overwriting end of array!\n" : "OK",
+ (UV)(place - RExC_emit_start),
+ (UV)(RExC_parse - RExC_start),
+ (UV)RExC_offsets[0]));
+ Set_Node_Offset(place, RExC_parse);
+ Set_Node_Length(place, 1);
+ }
+#endif
+ src = NEXTOPER(place);
+ FILL_ADVANCE_NODE(place, op);
+ REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
+ Zero(src, offset, regnode);
+}
+
+/*
+- regtail - set the next-pointer at the end of a node chain of p to val.
+- SEE ALSO: regtail_study
+*/
+/* TODO: All three parms should be const */
+STATIC void
+S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ if (SIZE_ONLY)
+ return;
+
+ /* Find last node. */
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
+ SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
+ (temp == NULL ? "->" : ""),
+ (temp == NULL ? PL_reg_name[OP(val)] : "")
+ );
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+}
+
+#ifdef DEBUGGING
+/*
+- regtail_study - set the next-pointer at the end of a node chain of p to val.
+- Look for optimizable sequences at the same time.
+- currently only looks for EXACT chains.
+
+This is experimental code. The idea is to use this routine to perform
+in place optimizations on branches and groups as they are constructed,
+with the long term intention of removing optimization from study_chunk so
+that it is purely analytical.
+
+Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
+to control which is which.
+
+*/
+/* TODO: All four parms should be const */
+
+STATIC U8
+S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
+{
+ dVAR;
+ register regnode *scan;
+ U8 exact = PSEUDO;
+#ifdef EXPERIMENTAL_INPLACESCAN
+ I32 min = 0;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTAIL_STUDY;
+
+
+ if (SIZE_ONLY)
+ return exact;
+
+ /* Find last node. */
+
+ scan = p;
+ for (;;) {
+ regnode * const temp = regnext(scan);
+#ifdef EXPERIMENTAL_INPLACESCAN
+ if (PL_regkind[OP(scan)] == EXACT) {
+ bool has_exactf_sharp_s; /* Unexamined in this routine */
+ if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
+ return EXACT;
+ }
+#endif
+ if ( exact ) {
+ switch (OP(scan)) {
+ case EXACT:
+ case EXACTF:
+ case EXACTFA:
+ case EXACTFU:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFL:
+ if( exact == PSEUDO )
+ exact= OP(scan);
+ else if ( exact != OP(scan) )
+ exact= 0;
+ case NOTHING:
+ break;
+ default:
+ exact= 0;
+ }
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv=sv_newmortal();
+ DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
+ regprop(RExC_rx, mysv, scan);
+ PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
+ SvPV_nolen_const(mysv),
+ REG_NODE_NUM(scan),
+ PL_reg_name[exact]);
+ });
+ if (temp == NULL)
+ break;
+ scan = temp;
+ }
+ DEBUG_PARSE_r({
+ SV * const mysv_val=sv_newmortal();
+ DEBUG_PARSE_MSG("");
+ regprop(RExC_rx, mysv_val, val);
+ PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
+ SvPV_nolen_const(mysv_val),
+ (IV)REG_NODE_NUM(val),
+ (IV)(val - scan)
+ );
+ });
+ if (reg_off_by_arg[OP(scan)]) {
+ ARG_SET(scan, val - scan);
+ }
+ else {
+ NEXT_OFF(scan) = val - scan;
+ }
+
+ return exact;
+}
+#endif
+
+/*
+ - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
+ */
+#ifdef DEBUGGING
+static void
+S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
+{
+ int bit;
+ int set=0;
+ regex_charset cs;
+
+ for (bit=0; bit<32; bit++) {
+ if (flags & (1<<bit)) {
+ if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
+ continue;
+ }
+ if (!set++ && lead)
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
+ }
+ }
+ if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
+ if (!set++ && lead) {
+ PerlIO_printf(Perl_debug_log, "%s",lead);
+ }
+ switch (cs) {
+ case REGEX_UNICODE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "UNICODE");
+ break;
+ case REGEX_LOCALE_CHARSET:
+ PerlIO_printf(Perl_debug_log, "LOCALE");
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
+ break;
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
+ break;
+ default:
+ PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
+ break;
+ }
+ }
+ if (lead) {
+ if (set)
+ PerlIO_printf(Perl_debug_log, "\n");
+ else
+ PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
+ }
+}
+#endif
+
+void
+Perl_regdump(pTHX_ const regexp *r)
+{
+#ifdef DEBUGGING
+ dVAR;
+ SV * const sv = sv_newmortal();
+ SV *dsv= sv_newmortal();
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGDUMP;
+
+ (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
+
+ /* Header fields of interest. */
+ if (r->anchored_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
+ RE_SV_DUMPLEN(r->anchored_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_substr),
+ (IV)r->anchored_offset);
+ } else if (r->anchored_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
+ RE_SV_DUMPLEN(r->anchored_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "anchored utf8 %s%s at %"IVdf" ",
+ s, RE_SV_TAIL(r->anchored_utf8),
+ (IV)r->anchored_offset);
+ }
+ if (r->float_substr) {
+ RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
+ RE_SV_DUMPLEN(r->float_substr), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_substr),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ } else if (r->float_utf8) {
+ RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
+ RE_SV_DUMPLEN(r->float_utf8), 30);
+ PerlIO_printf(Perl_debug_log,
+ "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
+ s, RE_SV_TAIL(r->float_utf8),
+ (IV)r->float_min_offset, (UV)r->float_max_offset);
+ }
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log,
+ (const char *)
+ (r->check_substr == r->float_substr
+ && r->check_utf8 == r->float_utf8
+ ? "(checking floating" : "(checking anchored"));
+ if (r->extflags & RXf_NOSCAN)
+ PerlIO_printf(Perl_debug_log, " noscan");
+ if (r->extflags & RXf_CHECK_ALL)
+ PerlIO_printf(Perl_debug_log, " isall");
+ if (r->check_substr || r->check_utf8)
+ PerlIO_printf(Perl_debug_log, ") ");
+
+ if (ri->regstclass) {
+ regprop(r, sv, ri->regstclass);
+ PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
+ }
+ if (r->extflags & RXf_ANCH) {
+ PerlIO_printf(Perl_debug_log, "anchored");
+ if (r->extflags & RXf_ANCH_BOL)
+ PerlIO_printf(Perl_debug_log, "(BOL)");
+ if (r->extflags & RXf_ANCH_MBOL)
+ PerlIO_printf(Perl_debug_log, "(MBOL)");
+ if (r->extflags & RXf_ANCH_SBOL)
+ PerlIO_printf(Perl_debug_log, "(SBOL)");
+ if (r->extflags & RXf_ANCH_GPOS)
+ PerlIO_printf(Perl_debug_log, "(GPOS)");
+ PerlIO_putc(Perl_debug_log, ' ');
+ }
+ if (r->extflags & RXf_GPOS_SEEN)
+ PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
+ if (r->intflags & PREGf_SKIP)
+ PerlIO_printf(Perl_debug_log, "plus ");
+ if (r->intflags & PREGf_IMPLICIT)
+ PerlIO_printf(Perl_debug_log, "implicit ");
+ PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
+ if (r->extflags & RXf_EVAL_SEEN)
+ PerlIO_printf(Perl_debug_log, "with eval ");
+ PerlIO_printf(Perl_debug_log, "\n");
+ DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
+#else
+ PERL_ARGS_ASSERT_REGDUMP;
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(r);
+#endif /* DEBUGGING */
+}
+
+/*
+- regprop - printable representation of opcode
+*/
+#define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
+STMT_START { \
+ if (do_sep) { \
+ Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
+ if (flags & ANYOF_INVERT) \
+ /*make sure the invert info is in each */ \
+ sv_catpvs(sv, "^"); \
+ do_sep = 0; \
+ } \
+} STMT_END
+
+void
+Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
+{
+#ifdef DEBUGGING
+ dVAR;
+ register int k;
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGPROP;
+
+ sv_setpvs(sv, "");
+
+ if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
+ /* It would be nice to FAIL() here, but this may be called from
+ regexec.c, and it would be hard to supply pRExC_state. */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
+ sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
+
+ k = PL_regkind[OP(o)];
+
+ if (k == EXACT) {
+ sv_catpvs(sv, " ");
+ /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
+ * is a crude hack but it may be the best for now since
+ * we have no flag "this EXACTish node was UTF-8"
+ * --jhi */
+ pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
+ PERL_PV_ESCAPE_UNI_DETECT |
+ PERL_PV_ESCAPE_NONASCII |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT |
+ PERL_PV_PRETTY_NOCLEAR
+ );
+ } else if (k == TRIE) {
+ /* print the details of the trie in dumpuntil instead, as
+ * progi->data isn't available here */
+ const char op = OP(o);
+ const U32 n = ARG(o);
+ const reg_ac_data * const ac = IS_TRIE_AC(op) ?
+ (reg_ac_data *)progi->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie
+ = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
+
+ Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
+ DEBUG_TRIE_COMPILE_r(
+ Perl_sv_catpvf(aTHX_ sv,
+ "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
+ (UV)trie->startstate,
+ (IV)trie->statecount-1, /* -1 because of the unused 0 element */
+ (UV)trie->wordcount,
+ (UV)trie->minlen,
+ (UV)trie->maxlen,
+ (UV)TRIE_CHARCOUNT(trie),
+ (UV)trie->uniquecharcount
+ )
+ );
+ if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
+ int i;
+ int rangestart = -1;
+ U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
+ sv_catpvs(sv, "[");
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && BITMAP_TEST(bitmap,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ rangestart = -1;
+ }
+ }
+ sv_catpvs(sv, "]");
+ }
+
+ } else if (k == CURLY) {
+ if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
+ Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
+ }
+ else if (k == WHILEM && o->flags) /* Ordinal/of */
+ Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
+ else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
+ Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
+ if ( RXp_PAREN_NAMES(prog) ) {
+ if ( k != REF || (OP(o) < NREF)) {
+ AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
+ SV **name= av_fetch(list, ARG(o), 0 );
+ if (name)
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ else {
+ AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
+ SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+ SV **name= av_fetch(list, nums[0], 0 );
+ I32 n;
+ if (name) {
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
+ (n ? "," : ""), (IV)nums[n]);
+ }
+ Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
+ }
+ }
+ }
+ } else if (k == GOSUB)
+ Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
+ else if (k == VERB) {
+ if (!o->flags)
+ Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
+ SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
+ } else if (k == LOGICAL)
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
+ else if (k == ANYOF) {
+ int i, rangestart = -1;
+ const U8 flags = ANYOF_FLAGS(o);
+ int do_sep = 0;
+
+ /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
+ static const char * const anyofs[] = {
+ "\\w",
+ "\\W",
+ "\\s",
+ "\\S",
+ "\\d",
+ "\\D",
+ "[:alnum:]",
+ "[:^alnum:]",
+ "[:alpha:]",
+ "[:^alpha:]",
+ "[:ascii:]",
+ "[:^ascii:]",
+ "[:cntrl:]",
+ "[:^cntrl:]",
+ "[:graph:]",
+ "[:^graph:]",
+ "[:lower:]",
+ "[:^lower:]",
+ "[:print:]",
+ "[:^print:]",
+ "[:punct:]",
+ "[:^punct:]",
+ "[:upper:]",
+ "[:^upper:]",
+ "[:xdigit:]",
+ "[:^xdigit:]",
+ "[:space:]",
+ "[:^space:]",
+ "[:blank:]",
+ "[:^blank:]"
+ };
+
+ if (flags & ANYOF_LOCALE)
+ sv_catpvs(sv, "{loc}");
+ if (flags & ANYOF_LOC_NONBITMAP_FOLD)
+ sv_catpvs(sv, "{i}");
+ Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
+ if (flags & ANYOF_INVERT)
+ sv_catpvs(sv, "^");
+
+ /* output what the standard cp 0-255 bitmap matches */
+ for (i = 0; i <= 256; i++) {
+ if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++)
+ put_byte(sv, rangestart);
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i - 1);
+ }
+ do_sep = 1;
+ rangestart = -1;
+ }
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+ /* output any special charclass tests (used entirely under use locale) */
+ if (ANYOF_CLASS_TEST_ANY_SET(o))
+ for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
+ if (ANYOF_CLASS_TEST(o,i)) {
+ sv_catpv(sv, anyofs[i]);
+ do_sep = 1;
+ }
+
+ EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
+
+ if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
+ sv_catpvs(sv, "{non-utf8-latin1-all}");
+ }
+
+ /* output information about the unicode matching */
+ if (flags & ANYOF_UNICODE_ALL)
+ sv_catpvs(sv, "{unicode_all}");
+ else if (ANYOF_NONBITMAP(o))
+ sv_catpvs(sv, "{unicode}");
+ if (flags & ANYOF_NONBITMAP_NON_UTF8)
+ sv_catpvs(sv, "{outside bitmap}");
+
+ if (ANYOF_NONBITMAP(o)) {
+ SV *lv; /* Set if there is something outside the bit map */
+ SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
+ bool byte_output = FALSE; /* If something in the bitmap has been
+ output */
+
+ if (lv && lv != &PL_sv_undef) {
+ if (sw) {
+ U8 s[UTF8_MAXBYTES_CASE+1];
+
+ for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
+ uvchr_to_utf8(s, i);
+
+ if (i < 256
+ && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
+ things already
+ output as part
+ of the bitmap */
+ && swash_fetch(sw, s, TRUE))
+ {
+ if (rangestart == -1)
+ rangestart = i;
+ } else if (rangestart != -1) {
+ byte_output = TRUE;
+ if (i <= rangestart + 3)
+ for (; rangestart < i; rangestart++) {
+ put_byte(sv, rangestart);
+ }
+ else {
+ put_byte(sv, rangestart);
+ sv_catpvs(sv, "-");
+ put_byte(sv, i-1);
+ }
+ rangestart = -1;
+ }
+ }
+ }
+
+ {
+ char *s = savesvpv(lv);
+ char * const origs = s;
+
+ while (*s && *s != '\n')
+ s++;
+
+ if (*s == '\n') {
+ const char * const t = ++s;
+
+ if (byte_output) {
+ sv_catpvs(sv, " ");
+ }
+
+ while (*s) {
+ if (*s == '\n') {
+
+ /* Truncate very long output */
+ if (s - origs > 256) {
+ Perl_sv_catpvf(aTHX_ sv,
+ "%.*s...",
+ (int) (s - origs - 1),
+ t);
+ goto out_dump;
+ }
+ *s = ' ';
+ }
+ else if (*s == '\t') {
+ *s = '-';
+ }
+ s++;
+ }
+ if (s[-1] == ' ')
+ s[-1] = 0;
+
+ sv_catpv(sv, t);
+ }
+
+ out_dump:
+
+ Safefree(origs);
+ }
+ SvREFCNT_dec(lv);
+ }
+ }
+
+ Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
+ }
+ else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
+ Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
+#else
+ PERL_UNUSED_CONTEXT;
+ PERL_UNUSED_ARG(sv);
+ PERL_UNUSED_ARG(o);
+ PERL_UNUSED_ARG(prog);
+#endif /* DEBUGGING */
+}
+
+SV *
+Perl_re_intuit_string(pTHX_ REGEXP * const r)
+{ /* Assume that RE_INTUIT is set */
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(r);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_STRING;
+ PERL_UNUSED_CONTEXT;
+
+ DEBUG_COMPILE_r(
+ {
+ const char * const s = SvPV_nolen_const(prog->check_substr
+ ? prog->check_substr : prog->check_utf8);
+
+ if (!PL_colorset) reginitcolors();
+ PerlIO_printf(Perl_debug_log,
+ "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
+ PL_colors[4],
+ prog->check_substr ? "" : "utf8 ",
+ PL_colors[5],PL_colors[0],
+ s,
+ PL_colors[1],
+ (strlen(s) > 60 ? "..." : ""));
+ } );
+
+ return prog->check_substr ? prog->check_substr : prog->check_utf8;
+}
+
+/*
+ pregfree()
+
+ handles refcounting and freeing the perl core regexp structure. When
+ it is necessary to actually free the structure the first thing it
+ does is call the 'free' method of the regexp_engine associated to
+ the regexp, allowing the handling of the void *pprivate; member
+ first. (This routine is not overridable by extensions, which is why
+ the extensions free is called first.)
+
+ See regdupe and regdupe_internal if you change anything here.
+*/
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_pregfree(pTHX_ REGEXP *r)
+{
+ SvREFCNT_dec(r);
+}
+
+void
+Perl_pregfree2(pTHX_ REGEXP *rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_PREGFREE2;
+
+ if (r->mother_re) {
+ ReREFCNT_dec(r->mother_re);
+ } else {
+ CALLREGFREE_PVT(rx); /* free the private data */
+ SvREFCNT_dec(RXp_PAREN_NAMES(r));
+ }
+ if (r->substrs) {
+ SvREFCNT_dec(r->anchored_substr);
+ SvREFCNT_dec(r->anchored_utf8);
+ SvREFCNT_dec(r->float_substr);
+ SvREFCNT_dec(r->float_utf8);
+ Safefree(r->substrs);
+ }
+ RX_MATCH_COPY_FREE(rx);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ SvREFCNT_dec(r->saved_copy);
+#endif
+ Safefree(r->offs);
+}
+
+/* reg_temp_copy()
+
+ This is a hacky workaround to the structural issue of match results
+ being stored in the regexp structure which is in turn stored in
+ PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
+ could be PL_curpm in multiple contexts, and could require multiple
+ result sets being associated with the pattern simultaneously, such
+ as when doing a recursive match with (??{$qr})
+
+ The solution is to make a lightweight copy of the regexp structure
+ when a qr// is returned from the code executed by (??{$qr}) this
+ lightweight copy doesn't actually own any of its data except for
+ the starp/end and the actual regexp structure itself.
+
+*/
+
+
+REGEXP *
+Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
+{
+ struct regexp *ret;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ register const I32 npar = r->nparens+1;
+
+ PERL_ARGS_ASSERT_REG_TEMP_COPY;
+
+ if (!ret_x)
+ ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
+ ret = (struct regexp *)SvANY(ret_x);
+
+ (void)ReREFCNT_inc(rx);
+ /* We can take advantage of the existing "copied buffer" mechanism in SVs
+ by pointing directly at the buffer, but flagging that the allocated
+ space in the copy is zero. As we've just done a struct copy, it's now
+ a case of zero-ing that, rather than copying the current length. */
+ SvPV_set(ret_x, RX_WRAPPED(rx));
+ SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
+ memcpy(&(ret->xpv_cur), &(r->xpv_cur),
+ sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
+ SvLEN_set(ret_x, 0);
+ SvSTASH_set(ret_x, NULL);
+ SvMAGIC_set(ret_x, NULL);
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if (r->substrs) {
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ SvREFCNT_inc_void(ret->anchored_substr);
+ SvREFCNT_inc_void(ret->anchored_utf8);
+ SvREFCNT_inc_void(ret->float_substr);
+ SvREFCNT_inc_void(ret->float_utf8);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+ }
+ RX_MATCH_COPIED_off(ret_x);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+ ret->mother_re = rx;
+
+ return ret_x;
+}
+#endif
+
+/* regfree_internal()
+
+ Free the private data in a regexp. This is overloadable by
+ extensions. Perl takes care of the regexp structure in pregfree(),
+ this covers the *pprivate pointer which technically perl doesn't
+ know about, however of course we have to handle the
+ regexp_internal structure when no extension is in use.
+
+ Note this is called before freeing anything in the regexp
+ structure.
+ */
+
+void
+Perl_regfree_internal(pTHX_ REGEXP * const rx)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGFREE_INTERNAL;
+
+ DEBUG_COMPILE_r({
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ SV *dsv= sv_newmortal();
+ RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
+ dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
+ PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
+ PL_colors[4],PL_colors[5],s);
+ }
+ });
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets)
+ Safefree(ri->u.offsets); /* 20010421 MJD */
+#endif
+ if (ri->data) {
+ int n = ri->data->count;
+ PAD* new_comppad = NULL;
+ PAD* old_comppad;
+ PADOFFSET refcnt;
+
+ while (--n >= 0) {
+ /* If you add a ->what type here, update the comment in regcomp.h */
+ switch (ri->data->what[n]) {
+ case 'a':
+ case 's':
+ case 'S':
+ case 'u':
+ SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
+ break;
+ case 'f':
+ Safefree(ri->data->data[n]);
+ break;
+ case 'p':
+ new_comppad = MUTABLE_AV(ri->data->data[n]);
+ break;
+ case 'o':
+ if (new_comppad == NULL)
+ Perl_croak(aTHX_ "panic: pregfree comppad");
+ PAD_SAVE_LOCAL(old_comppad,
+ /* Watch out for global destruction's random ordering. */
+ (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
+ );
+ OP_REFCNT_LOCK;
+ refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
+ OP_REFCNT_UNLOCK;
+ if (!refcnt)
+ op_free((OP_4tree*)ri->data->data[n]);
+
+ PAD_RESTORE_LOCAL(old_comppad);
+ SvREFCNT_dec(MUTABLE_SV(new_comppad));
+ new_comppad = NULL;
+ break;
+ case 'n':
+ break;
+ case 'T':
+ { /* Aho Corasick add-on structure for a trie node.
+ Used in stclass optimization only */
+ U32 refcount;
+ reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --aho->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(aho->states);
+ PerlMemShared_free(aho->fail);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ PerlMemShared_free(ri->regstclass);
+ }
+ }
+ break;
+ case 't':
+ {
+ /* trie structure. */
+ U32 refcount;
+ reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
+ OP_REFCNT_LOCK;
+ refcount = --trie->refcount;
+ OP_REFCNT_UNLOCK;
+ if ( !refcount ) {
+ PerlMemShared_free(trie->charmap);
+ PerlMemShared_free(trie->states);
+ PerlMemShared_free(trie->trans);
+ if (trie->bitmap)
+ PerlMemShared_free(trie->bitmap);
+ if (trie->jump)
+ PerlMemShared_free(trie->jump);
+ PerlMemShared_free(trie->wordinfo);
+ /* do this last!!!! */
+ PerlMemShared_free(ri->data->data[n]);
+ }
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
+ }
+ }
+ Safefree(ri->data->what);
+ Safefree(ri->data);
+ }
+
+ Safefree(ri);
+}
+
+#define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
+#define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
+#define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
+
+/*
+ re_dup - duplicate a regexp.
+
+ This routine is expected to clone a given regexp structure. It is only
+ compiled under USE_ITHREADS.
+
+ After all of the core data stored in struct regexp is duplicated
+ the regexp_engine.dupe method is used to copy any private data
+ stored in the *pprivate pointer. This allows extensions to handle
+ any duplication it needs to do.
+
+ See pregfree() and regfree_internal() if you change anything here.
+*/
+#if defined(USE_ITHREADS)
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
+{
+ dVAR;
+ I32 npar;
+ const struct regexp *r = (const struct regexp *)SvANY(sstr);
+ struct regexp *ret = (struct regexp *)SvANY(dstr);
+
+ PERL_ARGS_ASSERT_RE_DUP_GUTS;
+
+ npar = r->nparens+1;
+ Newx(ret->offs, npar, regexp_paren_pair);
+ Copy(r->offs, ret->offs, npar, regexp_paren_pair);
+ if(ret->swap) {
+ /* no need to copy these */
+ Newx(ret->swap, npar, regexp_paren_pair);
+ }
+
+ if (ret->substrs) {
+ /* Do it this way to avoid reading from *r after the StructCopy().
+ That way, if any of the sv_dup_inc()s dislodge *r from the L1
+ cache, it doesn't matter. */
+ const bool anchored = r->check_substr
+ ? r->check_substr == r->anchored_substr
+ : r->check_utf8 == r->anchored_utf8;
+ Newx(ret->substrs, 1, struct reg_substr_data);
+ StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
+
+ ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
+ ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
+ ret->float_substr = sv_dup_inc(ret->float_substr, param);
+ ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
+
+ /* check_substr and check_utf8, if non-NULL, point to either their
+ anchored or float namesakes, and don't hold a second reference. */
+
+ if (ret->check_substr) {
+ if (anchored) {
+ assert(r->check_utf8 == r->anchored_utf8);
+ ret->check_substr = ret->anchored_substr;
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ assert(r->check_substr == r->float_substr);
+ assert(r->check_utf8 == r->float_utf8);
+ ret->check_substr = ret->float_substr;
+ ret->check_utf8 = ret->float_utf8;
+ }
+ } else if (ret->check_utf8) {
+ if (anchored) {
+ ret->check_utf8 = ret->anchored_utf8;
+ } else {
+ ret->check_utf8 = ret->float_utf8;
+ }
+ }
+ }
+
+ RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
+
+ if (ret->pprivate)
+ RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
+
+ if (RX_MATCH_COPIED(dstr))
+ ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
+ else
+ ret->subbeg = NULL;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ ret->saved_copy = NULL;
+#endif
+
+ if (ret->mother_re) {
+ if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
+ /* Our storage points directly to our mother regexp, but that's
+ 1: a buffer in a different thread
+ 2: something we no longer hold a reference on
+ so we need to copy it locally. */
+ /* Note we need to use SvCUR(), rather than
+ SvLEN(), on our mother_re, because it, in
+ turn, may well be pointing to its own mother_re. */
+ SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
+ SvCUR(ret->mother_re)+1));
+ SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
+ }
+ ret->mother_re = NULL;
+ }
+ ret->gofs = 0;
+}
+#endif /* PERL_IN_XSUB_RE */
+
+/*
+ regdupe_internal()
+
+ This is the internal complement to regdupe() which is used to copy
+ the structure pointed to by the *pprivate pointer in the regexp.
+ This is the core version of the extension overridable cloning hook.
+ The regexp structure being duplicated will be copied by perl prior
+ to this and will be provided as the regexp *r argument, however
+ with the /old/ structures pprivate pointer value. Thus this routine
+ may override any copying normally done by perl.
+
+ It returns a pointer to the new regexp_internal structure.
+*/
+
+void *
+Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
+{
+ dVAR;
+ struct regexp *const r = (struct regexp *)SvANY(rx);
+ regexp_internal *reti;
+ int len;
+ RXi_GET_DECL(r,ri);
+
+ PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
+
+ len = ProgLen(ri);
+
+ Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
+ Copy(ri->program, reti->program, len+1, regnode);
+
+
+ reti->regstclass = NULL;
+
+ if (ri->data) {
+ struct reg_data *d;
+ const int count = ri->data->count;
+ int i;
+
+ Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
+ char, struct reg_data);
+ Newx(d->what, count, U8);
+
+ d->count = count;
+ for (i = 0; i < count; i++) {
+ d->what[i] = ri->data->what[i];
+ switch (d->what[i]) {
+ /* legal options are one of: sSfpontTua
+ see also regcomp.h and pregfree() */
+ case 'a': /* actually an AV, but the dup function is identical. */
+ case 's':
+ case 'S':
+ case 'p': /* actually an AV, but the dup function is identical. */
+ case 'u': /* actually an HV, but the dup function is identical. */
+ d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
+ break;
+ case 'f':
+ /* This is cheating. */
+ Newx(d->data[i], 1, struct regnode_charclass_class);
+ StructCopy(ri->data->data[i], d->data[i],
+ struct regnode_charclass_class);
+ reti->regstclass = (regnode*)d->data[i];
+ break;
+ case 'o':
+ /* Compiled op trees are readonly and in shared memory,
+ and can thus be shared without duplication. */
+ OP_REFCNT_LOCK;
+ d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
+ OP_REFCNT_UNLOCK;
+ break;
+ case 'T':
+ /* Trie stclasses are readonly and can thus be shared
+ * without duplication. We free the stclass in pregfree
+ * when the corresponding reg_ac_data struct is freed.
+ */
+ reti->regstclass= ri->regstclass;
+ /* Fall through */
+ case 't':
+ OP_REFCNT_LOCK;
+ ((reg_trie_data*)ri->data->data[i])->refcount++;
+ OP_REFCNT_UNLOCK;
+ /* Fall through */
+ case 'n':
+ d->data[i] = ri->data->data[i];
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
+ }
+ }
+
+ reti->data = d;
+ }
+ else
+ reti->data = NULL;
+
+ reti->name_list_idx = ri->name_list_idx;
+
+#ifdef RE_TRACK_PATTERN_OFFSETS
+ if (ri->u.offsets) {
+ Newx(reti->u.offsets, 2*len+1, U32);
+ Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
+ }
+#else
+ SetProgLen(reti,len);
+#endif
+
+ return (void*)reti;
+}
+
+#endif /* USE_ITHREADS */
+
+#ifndef PERL_IN_XSUB_RE
+
+/*
+ - regnext - dig the "next" pointer out of a node
+ */
+regnode *
+Perl_regnext(pTHX_ register regnode *p)
+{
+ dVAR;
+ register I32 offset;
+
+ if (!p)
+ return(NULL);
+
+ if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
+ Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
+ }
+
+ offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
+ if (offset == 0)
+ return(NULL);
+
+ return(p+offset);
+}
+#endif
+
+STATIC void
+S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
+{
+ va_list args;
+ STRLEN l1 = strlen(pat1);
+ STRLEN l2 = strlen(pat2);
+ char buf[512];
+ SV *msv;
+ const char *message;
+
+ PERL_ARGS_ASSERT_RE_CROAK2;
+
+ if (l1 > 510)
+ l1 = 510;
+ if (l1 + l2 > 510)
+ l2 = 510 - l1;
+ Copy(pat1, buf, l1 , char);
+ Copy(pat2, buf + l1, l2 , char);
+ buf[l1 + l2] = '\n';
+ buf[l1 + l2 + 1] = '\0';
+#ifdef I_STDARG
+ /* ANSI variant takes additional second argument */
+ va_start(args, pat2);
+#else
+ va_start(args);
+#endif
+ msv = vmess(buf, &args);
+ va_end(args);
+ message = SvPV_const(msv,l1);
+ if (l1 > 512)
+ l1 = 512;
+ Copy(message, buf, l1 , char);
+ buf[l1-1] = '\0'; /* Overwrite \n */
+ Perl_croak(aTHX_ "%s", buf);
+}
+
+/* XXX Here's a total kludge. But we need to re-enter for swash routines. */
+
+#ifndef PERL_IN_XSUB_RE
+void
+Perl_save_re_context(pTHX)
+{
+ dVAR;
+
+ struct re_save_state *state;
+
+ SAVEVPTR(PL_curcop);
+ SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
+
+ state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
+ PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
+ SSPUSHUV(SAVEt_RE_STATE);
+
+ Copy(&PL_reg_state, state, 1, struct re_save_state);
+
+ PL_reg_start_tmp = 0;
+ PL_reg_start_tmpl = 0;
+ PL_reg_oldsaved = NULL;
+ PL_reg_oldsavedlen = 0;
+ PL_reg_maxiter = 0;
+ PL_reg_leftiter = 0;
+ PL_reg_poscache = NULL;
+ PL_reg_poscache_size = 0;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = NULL;
+#endif
+
+ /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
+ if (PL_curpm) {
+ const REGEXP * const rx = PM_GETRE(PL_curpm);
+ if (rx) {
+ U32 i;
+ for (i = 1; i <= RX_NPARENS(rx); i++) {
+ char digits[TYPE_CHARS(long)];
+ const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
+ GV *const *const gvp
+ = (GV**)hv_fetch(PL_defstash, digits, len, 0);
+
+ if (gvp) {
+ GV * const gv = *gvp;
+ if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
+ save_scalar(gv);
+ }
+ }
+ }
+ }
+}
+#endif
+
+static void
+clear_re(pTHX_ void *r)
+{
+ dVAR;
+ ReREFCNT_dec((REGEXP *)r);
+}
+
+#ifdef DEBUGGING
+
+STATIC void
+S_put_byte(pTHX_ SV *sv, int c)
+{
+ PERL_ARGS_ASSERT_PUT_BYTE;
+
+ /* Our definition of isPRINT() ignores locales, so only bytes that are
+ not part of UTF-8 are considered printable. I assume that the same
+ holds for UTF-EBCDIC.
+ Also, code point 255 is not printable in either (it's E0 in EBCDIC,
+ which Wikipedia says:
+
+ EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
+ ones (binary 1111 1111, hexadecimal FF). It is similar, but not
+ identical, to the ASCII delete (DEL) or rubout control character.
+ ) So the old condition can be simplified to !isPRINT(c) */
+ if (!isPRINT(c)) {
+ if (c < 256) {
+ Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
+ }
+ else {
+ Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
+ }
+ }
+ else {
+ const char string = c;
+ if (c == '-' || c == ']' || c == '\\' || c == '^')
+ sv_catpvs(sv, "\\");
+ sv_catpvn(sv, &string, 1);
+ }
+}
+
+
+#define CLEAR_OPTSTART \
+ if (optstart) STMT_START { \
+ DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
+ optstart=NULL; \
+ } STMT_END
+
+#define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
+
+STATIC const regnode *
+S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
+ const regnode *last, const regnode *plast,
+ SV* sv, I32 indent, U32 depth)
+{
+ dVAR;
+ register U8 op = PSEUDO; /* Arbitrary non-END op. */
+ register const regnode *next;
+ const regnode *optstart= NULL;
+
+ RXi_GET_DECL(r,ri);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_DUMPUNTIL;
+
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
+ last ? last-start : 0,plast ? plast-start : 0);
+#endif
+
+ if (plast && plast < last)
+ last= plast;
+
+ while (PL_regkind[op] != END && (!last || node < last)) {
+ /* While that wasn't END last time... */
+ NODE_ALIGN(node);
+ op = OP(node);
+ if (op == CLOSE || op == WHILEM)
+ indent--;
+ next = regnext((regnode *)node);
+
+ /* Where, what. */
+ if (OP(node) == OPTIMIZED) {
+ if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
+ optstart = node;
+ else
+ goto after_print;
+ } else
+ CLEAR_OPTSTART;
+
+ regprop(r, sv, node);
+ PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
+ (int)(2*indent + 1), "", SvPVX_const(sv));
+
+ if (OP(node) != OPTIMIZED) {
+ if (next == NULL) /* Next ptr. */
+ PerlIO_printf(Perl_debug_log, " (0)");
+ else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
+ PerlIO_printf(Perl_debug_log, " (FAIL)");
+ else
+ PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
+ (void)PerlIO_putc(Perl_debug_log, '\n');
+ }
+
+ after_print:
+ if (PL_regkind[(U8)op] == BRANCHJ) {
+ assert(next);
+ {
+ register const regnode *nnode = (OP(next) == LONGJMP
+ ? regnext((regnode *)next)
+ : next);
+ if (last && nnode > last)
+ nnode = last;
+ DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
+ }
+ }
+ else if (PL_regkind[(U8)op] == BRANCH) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node), next);
+ }
+ else if ( PL_regkind[(U8)op] == TRIE ) {
+ const regnode *this_trie = node;
+ const char op = OP(node);
+ const U32 n = ARG(node);
+ const reg_ac_data * const ac = op>=AHOCORASICK ?
+ (reg_ac_data *)ri->data->data[n] :
+ NULL;
+ const reg_trie_data * const trie =
+ (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
+#ifdef DEBUGGING
+ AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
+#endif
+ const regnode *nextbranch= NULL;
+ I32 word_idx;
+ sv_setpvs(sv, "");
+ for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
+ SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
+
+ PerlIO_printf(Perl_debug_log, "%*s%s ",
+ (int)(2*(indent+3)), "",
+ elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
+ PERL_PV_PRETTY_ELLIPSES |
+ PERL_PV_PRETTY_LTGT
+ )
+ : "???"
+ );
+ if (trie->jump) {
+ U16 dist= trie->jump[word_idx+1];
+ PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
+ (UV)((dist ? this_trie + dist : next) - start));
+ if (dist) {
+ if (!nextbranch)
+ nextbranch= this_trie + trie->jump[0];
+ DUMPUNTIL(this_trie + dist, nextbranch);
+ }
+ if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
+ nextbranch= regnext((regnode *)nextbranch);
+ } else {
+ PerlIO_printf(Perl_debug_log, "\n");
+ }
+ }
+ if (last && next > last)
+ node= last;
+ else
+ node= next;
+ }
+ else if ( op == CURLY ) { /* "next" might be very big: optimizer */
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
+ NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
+ }
+ else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
+ assert(next);
+ DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
+ }
+ else if ( op == PLUS || op == STAR) {
+ DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
+ }
+ else if (PL_regkind[(U8)op] == ANYOF) {
+ /* arglen 1 + class block */
+ node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
+ ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
+ node = NEXTOPER(node);
+ }
+ else if (PL_regkind[(U8)op] == EXACT) {
+ /* Literal string, where present. */
+ node += NODE_SZ_STR(node) - 1;
+ node = NEXTOPER(node);
+ }
+ else {
+ node = NEXTOPER(node);
+ node += regarglen[(U8)op];
+ }
+ if (op == CURLYX || op == OPEN)
+ indent++;
+ }
+ CLEAR_OPTSTART;
+#ifdef DEBUG_DUMPUNTIL
+ PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
+#endif
+ return node;
+}
+
+#endif /* DEBUGGING */
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */
--- /dev/null
+/* regexec.c
+ */
+
+/*
+ * One Ring to rule them all, One Ring to find them
+ &
+ * [p.v of _The Lord of the Rings_, opening poem]
+ * [p.50 of _The Lord of the Rings_, I/iii: "The Shadow of the Past"]
+ * [p.254 of _The Lord of the Rings_, II/ii: "The Council of Elrond"]
+ */
+
+/* This file contains functions for executing a regular expression. See
+ * also regcomp.c which funnily enough, contains functions for compiling
+ * a regular expression.
+ *
+ * This file is also copied at build time to ext/re/re_exec.c, where
+ * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
+ * This causes the main functions to be compiled under new names and with
+ * debugging support added, which makes "use re 'debug'" work.
+ */
+
+/* NOTE: this is derived from Henry Spencer's regexp code, and should not
+ * confused with the original package (see point 3 below). Thanks, Henry!
+ */
+
+/* Additional note: this code is very heavily munged from Henry's version
+ * in places. In some spots I've traded clarity for efficiency, so don't
+ * blame Henry for some of the lack of readability.
+ */
+
+/* The names of the functions have been changed from regcomp and
+ * regexec to pregcomp and pregexec in order to avoid conflicts
+ * with the POSIX routines of the same names.
+*/
+
+#ifdef PERL_EXT_RE_BUILD
+#include "re_top.h"
+#endif
+
+/*
+ * pregcomp and pregexec -- regsub and regerror are not used in perl
+ *
+ * Copyright (c) 1986 by University of Toronto.
+ * Written by Henry Spencer. Not derived from licensed software.
+ *
+ * Permission is granted to anyone to use this software for any
+ * purpose on any computer system, and to redistribute it freely,
+ * subject to the following restrictions:
+ *
+ * 1. The author is not responsible for the consequences of use of
+ * this software, no matter how awful, even if they arise
+ * from defects in it.
+ *
+ * 2. The origin of this software must not be misrepresented, either
+ * by explicit claim or by omission.
+ *
+ * 3. Altered versions must be plainly marked as such, and must not
+ * be misrepresented as being the original software.
+ *
+ **** Alterations to Henry's code are...
+ ****
+ **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
+ **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
+ **** by Larry Wall and others
+ ****
+ **** You may distribute under the terms of either the GNU General Public
+ **** License or the Artistic License, as specified in the README file.
+ *
+ * Beware that some of this code is subtly aware of the way operator
+ * precedence is structured in regular expressions. Serious changes in
+ * regular-expression syntax might require a total rethink.
+ */
+#include "EXTERN.h"
+#define PERL_IN_REGEXEC_C
+#include "perl.h"
+#include "re_defs.h"
+
+#ifdef PERL_IN_XSUB_RE
+# include "re_comp.h"
+#else
+# include "regcomp.h"
+#endif
+
+#define RF_tainted 1 /* tainted information used? e.g. locale */
+#define RF_warned 2 /* warned about big count? */
+
+#define RF_utf8 8 /* Pattern contains multibyte chars? */
+
+#define UTF_PATTERN ((PL_reg_flags & RF_utf8) != 0)
+
+#define RS_init 1 /* eval environment created */
+#define RS_set 2 /* replsv value is set */
+
+#ifndef STATIC
+#define STATIC static
+#endif
+
+/* Valid for non-utf8 strings, non-ANYOFV nodes only: avoids the reginclass
+ * call if there are no complications: i.e., if everything matchable is
+ * straight forward in the bitmap */
+#define REGINCLASS(prog,p,c) (ANYOF_FLAGS(p) ? reginclass(prog,p,c,0,0) \
+ : ANYOF_BITMAP_TEST(p,*(c)))
+
+/*
+ * Forwards.
+ */
+
+#define CHR_SVLEN(sv) (utf8_target ? sv_len_utf8(sv) : SvCUR(sv))
+#define CHR_DIST(a,b) (PL_reg_match_utf8 ? utf8_distance(a,b) : a - b)
+
+#define HOPc(pos,off) \
+ (char *)(PL_reg_match_utf8 \
+ ? reghop3((U8*)pos, off, (U8*)(off >= 0 ? PL_regeol : PL_bostr)) \
+ : (U8*)(pos + off))
+#define HOPBACKc(pos, off) \
+ (char*)(PL_reg_match_utf8\
+ ? reghopmaybe3((U8*)pos, -off, (U8*)PL_bostr) \
+ : (pos - off >= PL_bostr) \
+ ? (U8*)pos - off \
+ : NULL)
+
+#define HOP3(pos,off,lim) (PL_reg_match_utf8 ? reghop3((U8*)(pos), off, (U8*)(lim)) : (U8*)(pos + off))
+#define HOP3c(pos,off,lim) ((char*)HOP3(pos,off,lim))
+
+/* these are unrolled below in the CCC_TRY_XXX defined */
+#ifdef EBCDIC
+ /* Often 'str' is a hard-coded utf8 string instead of utfebcdic. so just
+ * skip the check on EBCDIC platforms */
+# define LOAD_UTF8_CHARCLASS(class,str) LOAD_UTF8_CHARCLASS_NO_CHECK(class)
+#else
+# define LOAD_UTF8_CHARCLASS(class,str) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool ok; \
+ ENTER; save_re_context(); \
+ ok=CAT2(is_utf8_,class)((const U8*)str); \
+ assert(ok); assert(CAT2(PL_utf8_,class)); LEAVE; } } STMT_END
+#endif
+
+/* Doesn't do an assert to verify that is correct */
+#define LOAD_UTF8_CHARCLASS_NO_CHECK(class) STMT_START { \
+ if (!CAT2(PL_utf8_,class)) { \
+ bool throw_away PERL_UNUSED_DECL; \
+ ENTER; save_re_context(); \
+ throw_away = CAT2(is_utf8_,class)((const U8*)" "); \
+ LEAVE; } } STMT_END
+
+#define LOAD_UTF8_CHARCLASS_ALNUM() LOAD_UTF8_CHARCLASS(alnum,"a")
+#define LOAD_UTF8_CHARCLASS_DIGIT() LOAD_UTF8_CHARCLASS(digit,"0")
+#define LOAD_UTF8_CHARCLASS_SPACE() LOAD_UTF8_CHARCLASS(space," ")
+
+#define LOAD_UTF8_CHARCLASS_GCB() /* Grapheme cluster boundaries */ \
+ LOAD_UTF8_CHARCLASS(X_begin, " "); \
+ LOAD_UTF8_CHARCLASS(X_non_hangul, "A"); \
+ /* These are utf8 constants, and not utf-ebcdic constants, so the \
+ * assert should likely and hopefully fail on an EBCDIC machine */ \
+ LOAD_UTF8_CHARCLASS(X_extend, "\xcc\x80"); /* U+0300 */ \
+ \
+ /* No asserts are done for these, in case called on an early \
+ * Unicode version in which they map to nothing */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_prepend);/* U+0E40 "\xe0\xb9\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_L); /* U+1100 "\xe1\x84\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV); /* U+AC00 "\xea\xb0\x80" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LVT); /* U+AC01 "\xea\xb0\x81" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_LV_LVT_V);/* U+AC01 "\xea\xb0\x81" */\
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_T); /* U+11A8 "\xe1\x86\xa8" */ \
+ LOAD_UTF8_CHARCLASS_NO_CHECK(X_V) /* U+1160 "\xe1\x85\xa0" */
+
+#define PLACEHOLDER /* Something for the preprocessor to grab onto */
+
+/* The actual code for CCC_TRY, which uses several variables from the routine
+ * it's callable from. It is designed to be the bulk of a case statement.
+ * FUNC is the macro or function to call on non-utf8 targets that indicate if
+ * nextchr matches the class.
+ * UTF8_TEST is the whole test string to use for utf8 targets
+ * LOAD is what to use to test, and if not present to load in the swash for the
+ * class
+ * POS_OR_NEG is either empty or ! to complement the results of FUNC or
+ * UTF8_TEST test.
+ * The logic is: Fail if we're at the end-of-string; otherwise if the target is
+ * utf8 and a variant, load the swash if necessary and test using the utf8
+ * test. Advance to the next character if test is ok, otherwise fail; If not
+ * utf8 or an invariant under utf8, use the non-utf8 test, and fail if it
+ * fails, or advance to the next character */
+
+#define _CCC_TRY_CODE(POS_OR_NEG, FUNC, UTF8_TEST, CLASS, STR) \
+ if (locinput >= PL_regeol) { \
+ sayNO; \
+ } \
+ if (utf8_target && UTF8_IS_CONTINUED(nextchr)) { \
+ LOAD_UTF8_CHARCLASS(CLASS, STR); \
+ if (POS_OR_NEG (UTF8_TEST)) { \
+ sayNO; \
+ } \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ break; \
+ } \
+ if (POS_OR_NEG (FUNC(nextchr))) { \
+ sayNO; \
+ } \
+ nextchr = UCHARAT(++locinput); \
+ break;
+
+/* Handle the non-locale cases for a character class and its complement. It
+ * calls _CCC_TRY_CODE with a ! to complement the test for the character class.
+ * This is because that code fails when the test succeeds, so we want to have
+ * the test fail so that the code succeeds. The swash is stored in a
+ * predictable PL_ place */
+#define _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, \
+ CLASS, STR) \
+ case NAME: \
+ _CCC_TRY_CODE( !, FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+ case NNAME: \
+ _CCC_TRY_CODE( PLACEHOLDER , FUNC, \
+ cBOOL(swash_fetch(CAT2(PL_utf8_,CLASS), \
+ (U8*)locinput, TRUE)), \
+ CLASS, STR) \
+
+/* Generate the case statements for both locale and non-locale character
+ * classes in regmatch for classes that don't have special unicode semantics.
+ * Locales don't use an immediate swash, but an intermediary special locale
+ * function that is called on the pointer to the current place in the input
+ * string. That function will resolve to needing the same swash. One might
+ * think that because we don't know what the locale will match, we shouldn't
+ * check with the swash loading function that it loaded properly; ie, that we
+ * should use LOAD_UTF8_CHARCLASS_NO_CHECK for those, but what is passed to the
+ * regular LOAD_UTF8_CHARCLASS is in non-locale terms, and so locale is
+ * irrelevant here */
+#define CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ case NAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( !, LCFUNC, LCFUNC_utf8((U8*)locinput), CLASS, STR) \
+ case NNAMEL: \
+ PL_reg_flags |= RF_tainted; \
+ _CCC_TRY_CODE( PLACEHOLDER, LCFUNC, LCFUNC_utf8((U8*)locinput), \
+ CLASS, STR) \
+ case NAMEA: \
+ if (locinput >= PL_regeol || ! FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ /* Matched a utf8-invariant, so don't have to worry about utf8 */ \
+ nextchr = UCHARAT(++locinput); \
+ break; \
+ case NNAMEA: \
+ if (locinput >= PL_regeol || FUNCA(nextchr)) { \
+ sayNO; \
+ } \
+ if (utf8_target) { \
+ locinput += PL_utf8skip[nextchr]; \
+ nextchr = UCHARAT(locinput); \
+ } \
+ else { \
+ nextchr = UCHARAT(++locinput); \
+ } \
+ break; \
+ /* Generate the non-locale cases */ \
+ _CCC_TRY_NONLOCALE(NAME, NNAME, FUNC, CLASS, STR)
+
+/* This is like CCC_TRY, but has an extra set of parameters for generating case
+ * statements to handle separate Unicode semantics nodes */
+#define CCC_TRY_U(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEU, NNAMEU, FUNCU, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ CCC_TRY(NAME, NNAME, FUNC, \
+ NAMEL, NNAMEL, LCFUNC, LCFUNC_utf8, \
+ NAMEA, NNAMEA, FUNCA, \
+ CLASS, STR) \
+ _CCC_TRY_NONLOCALE(NAMEU, NNAMEU, FUNCU, CLASS, STR)
+
+/* TODO: Combine JUMPABLE and HAS_TEXT to cache OP(rn) */
+
+/* for use after a quantifier and before an EXACT-like node -- japhy */
+/* it would be nice to rework regcomp.sym to generate this stuff. sigh
+ *
+ * NOTE that *nothing* that affects backtracking should be in here, specifically
+ * VERBS must NOT be included. JUMPABLE is used to determine if we can ignore a
+ * node that is in between two EXACT like nodes when ascertaining what the required
+ * "follow" character is. This should probably be moved to regex compile time
+ * although it may be done at run time beause of the REF possibility - more
+ * investigation required. -- demerphq
+*/
+#define JUMPABLE(rn) ( \
+ OP(rn) == OPEN || \
+ (OP(rn) == CLOSE && (!cur_eval || cur_eval->u.eval.close_paren != ARG(rn))) || \
+ OP(rn) == EVAL || \
+ OP(rn) == SUSPEND || OP(rn) == IFMATCH || \
+ OP(rn) == PLUS || OP(rn) == MINMOD || \
+ OP(rn) == KEEPS || \
+ (PL_regkind[OP(rn)] == CURLY && ARG1(rn) > 0) \
+)
+#define IS_EXACT(rn) (PL_regkind[OP(rn)] == EXACT)
+
+#define HAS_TEXT(rn) ( IS_EXACT(rn) || PL_regkind[OP(rn)] == REF )
+
+#if 0
+/* Currently these are only used when PL_regkind[OP(rn)] == EXACT so
+ we don't need this definition. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT || OP(rn)==REF || OP(rn)==NREF )
+#define IS_TEXTF(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn)==EXACTFA || OP(rn)==EXACTF || OP(rn)==REFF || OP(rn)==NREFF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL || OP(rn)==REFFL || OP(rn)==NREFFL )
+
+#else
+/* ... so we use this as its faster. */
+#define IS_TEXT(rn) ( OP(rn)==EXACT )
+#define IS_TEXTFU(rn) ( OP(rn)==EXACTFU || OP(rn)==EXACTFU_SS || OP(rn)==EXACTFU_TRICKYFOLD || OP(rn) == EXACTFA)
+#define IS_TEXTF(rn) ( OP(rn)==EXACTF )
+#define IS_TEXTFL(rn) ( OP(rn)==EXACTFL )
+
+#endif
+
+/*
+ Search for mandatory following text node; for lookahead, the text must
+ follow but for lookbehind (rn->flags != 0) we skip to the next step.
+*/
+#define FIND_NEXT_IMPT(rn) STMT_START { \
+ while (JUMPABLE(rn)) { \
+ const OPCODE type = OP(rn); \
+ if (type == SUSPEND || PL_regkind[type] == CURLY) \
+ rn = NEXTOPER(NEXTOPER(rn)); \
+ else if (type == PLUS) \
+ rn = NEXTOPER(rn); \
+ else if (type == IFMATCH) \
+ rn = (rn->flags == 0) ? NEXTOPER(NEXTOPER(rn)) : rn + ARG(rn); \
+ else rn += NEXT_OFF(rn); \
+ } \
+} STMT_END
+
+
+static void restore_pos(pTHX_ void *arg);
+
+#define REGCP_PAREN_ELEMS 4
+#define REGCP_OTHER_ELEMS 5
+#define REGCP_FRAME_ELEMS 1
+/* REGCP_FRAME_ELEMS are not part of the REGCP_OTHER_ELEMS and
+ * are needed for the regexp context stack bookkeeping. */
+
+STATIC CHECKPOINT
+S_regcppush(pTHX_ I32 parenfloor)
+{
+ dVAR;
+ const int retval = PL_savestack_ix;
+ const int paren_elems_to_push = (PL_regsize - parenfloor) * REGCP_PAREN_ELEMS;
+ const UV total_elems = paren_elems_to_push + REGCP_OTHER_ELEMS;
+ const UV elems_shifted = total_elems << SAVE_TIGHT_SHIFT;
+ int p;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ if (paren_elems_to_push < 0)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push, %i < 0",
+ paren_elems_to_push);
+
+ if ((elems_shifted >> SAVE_TIGHT_SHIFT) != total_elems)
+ Perl_croak(aTHX_ "panic: paren_elems_to_push offset %"UVuf
+ " out of range (%lu-%ld)",
+ total_elems, (unsigned long)PL_regsize, (long)parenfloor);
+
+ SSGROW(total_elems + REGCP_FRAME_ELEMS);
+
+ for (p = PL_regsize; p > parenfloor; p--) {
+/* REGCP_PARENS_ELEMS are pushed per pairs of parentheses. */
+ SSPUSHINT(PL_regoffs[p].end);
+ SSPUSHINT(PL_regoffs[p].start);
+ SSPUSHPTR(PL_reg_start_tmp[p]);
+ SSPUSHINT(p);
+ DEBUG_BUFFERS_r(PerlIO_printf(Perl_debug_log,
+ " saving \\%"UVuf" %"IVdf"(%"IVdf")..%"IVdf"\n",
+ (UV)p, (IV)PL_regoffs[p].start,
+ (IV)(PL_reg_start_tmp[p] - PL_bostr),
+ (IV)PL_regoffs[p].end
+ ));
+ }
+/* REGCP_OTHER_ELEMS are pushed in any case, parentheses or no. */
+ SSPUSHPTR(PL_regoffs);
+ SSPUSHINT(PL_regsize);
+ SSPUSHINT(*PL_reglastparen);
+ SSPUSHINT(*PL_reglastcloseparen);
+ SSPUSHPTR(PL_reginput);
+ SSPUSHUV(SAVEt_REGCONTEXT | elems_shifted); /* Magic cookie. */
+
+ return retval;
+}
+
+/* These are needed since we do not localize EVAL nodes: */
+#define REGCP_SET(cp) \
+ DEBUG_STATE_r( \
+ PerlIO_printf(Perl_debug_log, \
+ " Setting an EVAL scope, savestack=%"IVdf"\n", \
+ (IV)PL_savestack_ix)); \
+ cp = PL_savestack_ix
+
+#define REGCP_UNWIND(cp) \
+ DEBUG_STATE_r( \
+ if (cp != PL_savestack_ix) \
+ PerlIO_printf(Perl_debug_log, \
+ " Clearing an EVAL scope, savestack=%"IVdf"..%"IVdf"\n", \
+ (IV)(cp), (IV)PL_savestack_ix)); \
+ regcpblow(cp)
+
+STATIC char *
+S_regcppop(pTHX_ const regexp *rex)
+{
+ dVAR;
+ UV i;
+ char *input;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGCPPOP;
+
+ /* Pop REGCP_OTHER_ELEMS before the parentheses loop starts. */
+ i = SSPOPUV;
+ assert((i & SAVE_MASK) == SAVEt_REGCONTEXT); /* Check that the magic cookie is there. */
+ i >>= SAVE_TIGHT_SHIFT; /* Parentheses elements to pop. */
+ input = (char *) SSPOPPTR;
+ *PL_reglastcloseparen = SSPOPINT;
+ *PL_reglastparen = SSPOPINT;
+ PL_regsize = SSPOPINT;
+ PL_regoffs=(regexp_paren_pair *) SSPOPPTR;
+
+ i -= REGCP_OTHER_ELEMS;
+ /* Now restore the parentheses context. */
+ for ( ; i > 0; i -= REGCP_PAREN_ELEMS) {
+ I32 tmps;
+ U32 paren = (U32)SSPOPINT;
+ PL_reg_start_tmp[paren] = (char *) SSPOPPTR;
+ PL_regoffs[paren].start = SSPOPINT;
+ tmps = SSPOPINT;
+ if (paren <= *PL_reglastparen)
+ PL_regoffs[paren].end = tmps;
+ DEBUG_BUFFERS_r(
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"UVuf" to %"IVdf"(%"IVdf")..%"IVdf"%s\n",
+ (UV)paren, (IV)PL_regoffs[paren].start,
+ (IV)(PL_reg_start_tmp[paren] - PL_bostr),
+ (IV)PL_regoffs[paren].end,
+ (paren > *PL_reglastparen ? "(no)" : ""));
+ );
+ }
+ DEBUG_BUFFERS_r(
+ if (*PL_reglastparen + 1 <= rex->nparens) {
+ PerlIO_printf(Perl_debug_log,
+ " restoring \\%"IVdf"..\\%"IVdf" to undef\n",
+ (IV)(*PL_reglastparen + 1), (IV)rex->nparens);
+ }
+ );
+#if 1
+ /* It would seem that the similar code in regtry()
+ * already takes care of this, and in fact it is in
+ * a better location to since this code can #if 0-ed out
+ * but the code in regtry() is needed or otherwise tests
+ * requiring null fields (pat.t#187 and split.t#{13,14}
+ * (as of patchlevel 7877) will fail. Then again,
+ * this code seems to be necessary or otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * --jhi updated by dapm */
+ for (i = *PL_reglastparen + 1; i <= rex->nparens; i++) {
+ if (i > PL_regsize)
+ PL_regoffs[i].start = -1;
+ PL_regoffs[i].end = -1;
+ }
+#endif
+ return input;
+}
+
+#define regcpblow(cp) LEAVE_SCOPE(cp) /* Ignores regcppush()ed data. */
+
+/*
+ * pregexec and friends
+ */
+
+#ifndef PERL_IN_XSUB_RE
+/*
+ - pregexec - match a regexp against a string
+ */
+I32
+Perl_pregexec(pTHX_ REGEXP * const prog, char* stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *screamer, U32 nosave)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* nosave: For optimizations. */
+{
+ PERL_ARGS_ASSERT_PREGEXEC;
+
+ return
+ regexec_flags(prog, stringarg, strend, strbeg, minend, screamer, NULL,
+ nosave ? 0 : REXEC_COPY_STR);
+}
+#endif
+
+/*
+ * Need to implement the following flags for reg_anch:
+ *
+ * USE_INTUIT_NOML - Useful to call re_intuit_start() first
+ * USE_INTUIT_ML
+ * INTUIT_AUTORITATIVE_NOML - Can trust a positive answer
+ * INTUIT_AUTORITATIVE_ML
+ * INTUIT_ONCE_NOML - Intuit can match in one location only.
+ * INTUIT_ONCE_ML
+ *
+ * Another flag for this function: SECOND_TIME (so that float substrs
+ * with giant delta may be not rechecked).
+ */
+
+/* Assumptions: if ANCH_GPOS, then strpos is anchored. XXXX Check GPOS logic */
+
+/* If SCREAM, then SvPVX_const(sv) should be compatible with strpos and strend.
+ Otherwise, only SvCUR(sv) is used to get strbeg. */
+
+/* XXXX We assume that strpos is strbeg unless sv. */
+
+/* XXXX Some places assume that there is a fixed substring.
+ An update may be needed if optimizer marks as "INTUITable"
+ RExen without fixed substrings. Similarly, it is assumed that
+ lengths of all the strings are no more than minlen, thus they
+ cannot come from lookahead.
+ (Or minlen should take into account lookahead.)
+ NOTE: Some of this comment is not correct. minlen does now take account
+ of lookahead/behind. Further research is required. -- demerphq
+
+*/
+
+/* A failure to find a constant substring means that there is no need to make
+ an expensive call to REx engine, thus we celebrate a failure. Similarly,
+ finding a substring too deep into the string means that less calls to
+ regtry() should be needed.
+
+ REx compiler's optimizer found 4 possible hints:
+ a) Anchored substring;
+ b) Fixed substring;
+ c) Whether we are anchored (beginning-of-line or \G);
+ d) First node (of those at offset 0) which may distinguish positions;
+ We use a)b)d) and multiline-part of c), and try to find a position in the
+ string which does not contradict any of them.
+ */
+
+/* Most of decisions we do here should have been done at compile time.
+ The nodes of the REx which we used for the search should have been
+ deleted from the finite automaton. */
+
+char *
+Perl_re_intuit_start(pTHX_ REGEXP * const rx, SV *sv, char *strpos,
+ char *strend, const U32 flags, re_scream_pos_data *data)
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ register I32 start_shift = 0;
+ /* Should be nonnegative! */
+ register I32 end_shift = 0;
+ register char *s;
+ register SV *check;
+ char *strbeg;
+ char *t;
+ const bool utf8_target = (sv && SvUTF8(sv)) ? 1 : 0; /* if no sv we have to assume bytes */
+ I32 ml_anch;
+ register char *other_last = NULL; /* other substr checked before this */
+ char *check_at = NULL; /* check substr found at this pos */
+ const I32 multiline = prog->extflags & RXf_PMf_MULTILINE;
+ RXi_GET_DECL(prog,progi);
+#ifdef DEBUGGING
+ const char * const i_strpos = strpos;
+#endif
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_RE_INTUIT_START;
+
+ RX_MATCH_UTF8_set(rx,utf8_target);
+
+ if (RX_UTF8(rx)) {
+ PL_reg_flags |= RF_utf8;
+ }
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, strpos, strend,
+ sv ? "Guessing start of match in sv for"
+ : "Guessing start of match in string for");
+ );
+
+ /* CHR_DIST() would be more correct here but it makes things slow. */
+ if (prog->minlen > strend - strpos) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short... [re_intuit_start]\n"));
+ goto fail;
+ }
+
+ strbeg = (sv && SvPOK(sv)) ? strend - SvCUR(sv) : strpos;
+ PL_regeol = strend;
+ if (utf8_target) {
+ if (!prog->check_utf8 && prog->check_substr)
+ to_utf8_substr(prog);
+ check = prog->check_utf8;
+ } else {
+ if (!prog->check_substr && prog->check_utf8)
+ to_byte_substr(prog);
+ check = prog->check_substr;
+ }
+ if (check == &PL_sv_undef) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Non-utf8 string cannot match utf8 check string\n"));
+ goto fail;
+ }
+ if (prog->extflags & RXf_ANCH) { /* Match at beg-of-str or after \n */
+ ml_anch = !( (prog->extflags & RXf_ANCH_SINGLE)
+ || ( (prog->extflags & RXf_ANCH_BOL)
+ && !multiline ) ); /* Check after \n? */
+
+ if (!ml_anch) {
+ if ( !(prog->extflags & RXf_ANCH_GPOS) /* Checked by the caller */
+ && !(prog->intflags & PREGf_IMPLICIT) /* not a real BOL */
+ /* SvCUR is not set on references: SvRV and SvPVX_const overlap */
+ && sv && !SvROK(sv)
+ && (strpos != strbeg)) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not at start...\n"));
+ goto fail;
+ }
+ if (prog->check_offset_min == prog->check_offset_max &&
+ !(prog->extflags & RXf_CANY_SEEN)) {
+ /* Substring at constant offset from beg-of-str... */
+ I32 slen;
+
+ s = HOP3c(strpos, prog->check_offset_min, strend);
+
+ if (SvTAIL(check)) {
+ slen = SvCUR(check); /* >= 1 */
+
+ if ( strend - s > slen || strend - s < slen - 1
+ || (strend - s == slen && strend[-1] != '\n')) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String too long...\n"));
+ goto fail_finish;
+ }
+ /* Now should match s[0..slen-2] */
+ slen--;
+ if (slen && (*SvPVX_const(check) != *s
+ || (slen > 1
+ && memNE(SvPVX_const(check), s, slen)))) {
+ report_neq:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "String not equal...\n"));
+ goto fail_finish;
+ }
+ }
+ else if (*SvPVX_const(check) != *s
+ || ((slen = SvCUR(check)) > 1
+ && memNE(SvPVX_const(check), s, slen)))
+ goto report_neq;
+ check_at = s;
+ goto success_at_start;
+ }
+ }
+ /* Match is anchored, but substr is not anchored wrt beg-of-str. */
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ if (!ml_anch) {
+ const I32 end = prog->check_offset_max + CHR_SVLEN(check)
+ - (SvTAIL(check) != 0);
+ const I32 eshift = CHR_DIST((U8*)strend, (U8*)s) - end;
+
+ if (end_shift < eshift)
+ end_shift = eshift;
+ }
+ }
+ else { /* Can match at random position */
+ ml_anch = 0;
+ s = strpos;
+ start_shift = prog->check_offset_min; /* okay to underestimate on CC */
+ end_shift = prog->check_end_shift;
+
+ /* end shift should be non negative here */
+ }
+
+#ifdef QDEBUGGING /* 7/99: reports of failure (with the older version) */
+ if (end_shift < 0)
+ Perl_croak(aTHX_ "panic: end_shift: %"IVdf" pattern:\n%s\n ",
+ (IV)end_shift, RX_PRECOMP(prog));
+#endif
+
+ restart:
+ /* Find a possible match in the region s..strend by looking for
+ the "check" substring in the region corrected by start/end_shift. */
+
+ {
+ I32 srch_start_shift = start_shift;
+ I32 srch_end_shift = end_shift;
+ if (srch_start_shift < 0 && strbeg - s > srch_start_shift) {
+ srch_end_shift -= ((strbeg - s) - srch_start_shift);
+ srch_start_shift = strbeg - s;
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "Check offset min: %"IVdf" Start shift: %"IVdf" End shift %"IVdf" Real End Shift: %"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)srch_start_shift,
+ (IV)srch_end_shift,
+ (IV)prog->check_end_shift);
+ });
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ I32 p = -1; /* Internal iterator of scream. */
+ I32 * const pp = data ? data->scream_pos : &p;
+ const MAGIC *mg;
+ bool found = FALSE;
+
+ assert(SvMAGICAL(sv));
+ mg = mg_find(sv, PERL_MAGIC_study);
+ assert(mg);
+
+ if (mg->mg_private == 1) {
+ found = ((U8 *)mg->mg_ptr)[BmRARE(check)] != (U8)~0;
+ } else if (mg->mg_private == 2) {
+ found = ((U16 *)mg->mg_ptr)[BmRARE(check)] != (U16)~0;
+ } else {
+ assert (mg->mg_private == 4);
+ found = ((U32 *)mg->mg_ptr)[BmRARE(check)] != (U32)~0;
+ }
+
+ if (found
+ || ( BmRARE(check) == '\n'
+ && (BmPREVIOUS(check) == SvCUR(check) - 1)
+ && SvTAIL(check) ))
+ s = screaminstr(sv, check,
+ srch_start_shift + (s - strbeg), srch_end_shift, pp, 0);
+ else
+ goto fail_finish;
+ /* we may be pointing at the wrong string */
+ if (s && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ if (data)
+ *data->scream_olds = s;
+ }
+ else {
+ U8* start_point;
+ U8* end_point;
+ if (prog->extflags & RXf_CANY_SEEN) {
+ start_point= (U8*)(s + srch_start_shift);
+ end_point= (U8*)(strend - srch_end_shift);
+ } else {
+ start_point= HOP3(s, srch_start_shift, srch_start_shift < 0 ? strbeg : strend);
+ end_point= HOP3(strend, -srch_end_shift, strbeg);
+ }
+ DEBUG_OPTIMISE_MORE_r({
+ PerlIO_printf(Perl_debug_log, "fbm_instr len=%d str=<%.*s>\n",
+ (int)(end_point - start_point),
+ (int)(end_point - start_point) > 20 ? 20 : (int)(end_point - start_point),
+ start_point);
+ });
+
+ s = fbm_instr( start_point, end_point,
+ check, multiline ? FBMrf_MULTILINE : 0);
+ }
+ }
+ /* Update the count-of-usability, remove useless subpatterns,
+ unshift s. */
+
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(check), RE_SV_DUMPLEN(check), 30);
+ PerlIO_printf(Perl_debug_log, "%s %s substr %s%s%s",
+ (s ? "Found" : "Did not find"),
+ (check == (utf8_target ? prog->anchored_utf8 : prog->anchored_substr)
+ ? "anchored" : "floating"),
+ quoted,
+ RE_SV_TAIL(check),
+ (s ? " at offset " : "...\n") );
+ });
+
+ if (!s)
+ goto fail_finish;
+ /* Finish the diagnostic message */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%ld...\n", (long)(s - i_strpos)) );
+
+ /* XXX dmq: first branch is for positive lookbehind...
+ Our check string is offset from the beginning of the pattern.
+ So we need to do any stclass tests offset forward from that
+ point. I think. :-(
+ */
+
+
+
+ check_at=s;
+
+
+ /* Got a candidate. Check MBOL anchoring, and the *other* substr.
+ Start with the other substr.
+ XXXX no SCREAM optimization yet - and a very coarse implementation
+ XXXX /ttx+/ results in anchored="ttx", floating="x". floating will
+ *always* match. Probably should be marked during compile...
+ Probably it is right to do no SCREAM here...
+ */
+
+ if (utf8_target ? (prog->float_utf8 && prog->anchored_utf8)
+ : (prog->float_substr && prog->anchored_substr))
+ {
+ /* Take into account the "other" substring. */
+ /* XXXX May be hopelessly wrong for UTF... */
+ if (!other_last)
+ other_last = strpos;
+ if (check == (utf8_target ? prog->float_utf8 : prog->float_substr)) {
+ do_other_anchored:
+ {
+ char * const last = HOP3c(s, -start_shift, strbeg);
+ char *last1, *last2;
+ char * const saved_s = s;
+ SV* must;
+
+ t = s - prog->check_offset_max;
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -(prog->check_offset_max), (U8*)strpos))
+ && t > strpos)))
+ NOOP;
+ else
+ t = strpos;
+ t = HOP3c(t, prog->anchored_offset, strend);
+ if (t < other_last) /* These positions already checked */
+ t = other_last;
+ last2 = last1 = HOP3c(strend, -prog->minlen, strbeg);
+ if (last < last1)
+ last1 = last;
+ /* XXXX It is not documented what units *_offsets are in.
+ We assume bytes, but this is clearly wrong.
+ Meaning this code needs to be carefully reviewed for errors.
+ dmq.
+ */
+
+ /* On end-of-str: see comment below. */
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->anchored_utf8); /* for debug */
+ }
+ else
+ s = fbm_instr(
+ (unsigned char*)t,
+ HOP3(HOP3(last1, prog->anchored_offset, strend)
+ + SvCUR(must), -(SvTAIL(must)!=0), strbeg),
+ must,
+ multiline ? FBMrf_MULTILINE : 0
+ );
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s anchored substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+
+
+ if (!s) {
+ if (last1 >= last2) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying floating at offset %ld...\n",
+ (long)(HOP3c(saved_s, 1, strend) - i_strpos)));
+ other_last = HOP3c(last1, prog->anchored_offset+1, strend);
+ s = HOP3c(last, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ t = HOP3c(s, -prog->anchored_offset, strbeg);
+ other_last = HOP3c(s, 1, strend);
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+ else { /* Take into account the floating substring. */
+ char *last, *last1;
+ char * const saved_s = s;
+ SV* must;
+
+ t = HOP3c(s, -start_shift, strbeg);
+ last1 = last =
+ HOP3c(strend, -prog->minlen + prog->float_min_offset, strbeg);
+ if (CHR_DIST((U8*)last, (U8*)t) > prog->float_max_offset)
+ last = HOP3c(t, prog->float_max_offset, strend);
+ s = HOP3c(t, prog->float_min_offset, strend);
+ if (s < other_last)
+ s = other_last;
+ /* XXXX It is not documented what units *_offsets are in. Assume bytes. */
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ /* fbm_instr() takes into account exact value of end-of-str
+ if the check is SvTAIL(ed). Since false positives are OK,
+ and end-of-str is not later than strend we are OK. */
+ if (must == &PL_sv_undef) {
+ s = (char*)NULL;
+ DEBUG_r(must = prog->float_utf8); /* for debug message */
+ }
+ else
+ s = fbm_instr((unsigned char*)s,
+ (unsigned char*)last + SvCUR(must)
+ - (SvTAIL(must)!=0),
+ must, multiline ? FBMrf_MULTILINE : 0);
+ DEBUG_EXECUTE_r({
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "%s floating substr %s%s",
+ (s ? "Found" : "Contradicts"),
+ quoted, RE_SV_TAIL(must));
+ });
+ if (!s) {
+ if (last1 == last) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", giving up...\n"));
+ goto fail_finish;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ ", trying anchored starting at offset %ld...\n",
+ (long)(saved_s + 1 - i_strpos)));
+ other_last = last;
+ s = HOP3c(t, 1, strend);
+ goto restart;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, " at offset %ld...\n",
+ (long)(s - i_strpos)));
+ other_last = s; /* Fix this later. --Hugo */
+ s = saved_s;
+ if (t == strpos)
+ goto try_at_start;
+ goto try_at_offset;
+ }
+ }
+ }
+
+
+ t= (char*)HOP3( s, -prog->check_offset_max, (prog->check_offset_max<0) ? strend : strpos);
+
+ DEBUG_OPTIMISE_MORE_r(
+ PerlIO_printf(Perl_debug_log,
+ "Check offset min:%"IVdf" max:%"IVdf" S:%"IVdf" t:%"IVdf" D:%"IVdf" end:%"IVdf"\n",
+ (IV)prog->check_offset_min,
+ (IV)prog->check_offset_max,
+ (IV)(s-strpos),
+ (IV)(t-strpos),
+ (IV)(t-s),
+ (IV)(strend-strpos)
+ )
+ );
+
+ if (s - strpos > prog->check_offset_max /* signed-corrected t > strpos */
+ && (!utf8_target
+ || ((t = (char*)reghopmaybe3((U8*)s, -prog->check_offset_max, (U8*) ((prog->check_offset_max<0) ? strend : strpos)))
+ && t > strpos)))
+ {
+ /* Fixed substring is found far enough so that the match
+ cannot start at strpos. */
+ try_at_offset:
+ if (ml_anch && t[-1] != '\n') {
+ /* Eventually fbm_*() should handle this, but often
+ anchored_offset is not 0, so this check will not be wasted. */
+ /* XXXX In the code below we prefer to look for "^" even in
+ presence of anchored substrings. And we search even
+ beyond the found float position. These pessimizations
+ are historical artefacts only. */
+ find_anchor:
+ while (t < strend - prog->minlen) {
+ if (*t == '\n') {
+ if (t < check_at - prog->check_offset_min) {
+ if (utf8_target ? prog->anchored_utf8 : prog->anchored_substr) {
+ /* Since we moved from the found position,
+ we definitely contradict the found anchored
+ substr. Due to the above check we do not
+ contradict "check" substr.
+ Thus we can arrive here only if check substr
+ is float. Redo checking for "other"=="fixed".
+ */
+ strpos = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld, rescanning for anchored from offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(strpos - i_strpos), (long)(strpos - i_strpos + prog->anchored_offset)));
+ goto do_other_anchored;
+ }
+ /* We don't contradict the found floating substring. */
+ /* XXXX Why not check for STCLASS? */
+ s = t + 1;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(s - i_strpos)));
+ goto set_useful;
+ }
+ /* Position contradicts check-string */
+ /* XXXX probably better to look for check-string
+ than for "\n", so one should lower the limit for t? */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Found /%s^%s/m, restarting lookup for check-string at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t + 1 - i_strpos)));
+ other_last = strpos = s = t + 1;
+ goto restart;
+ }
+ t++;
+ }
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Did not find /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ goto fail_finish;
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Starting position does not contradict /%s^%s/m...\n",
+ PL_colors[0], PL_colors[1]));
+ }
+ s = t;
+ set_useful:
+ ++BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr); /* hooray/5 */
+ }
+ else {
+ /* The found string does not prohibit matching at strpos,
+ - no optimization of calling REx engine can be performed,
+ unless it was an MBOL and we are not after MBOL,
+ or a future STCLASS check will fail this. */
+ try_at_start:
+ /* Even in this situation we may use MBOL flag if strpos is offset
+ wrt the start of the string. */
+ if (ml_anch && sv && !SvROK(sv) /* See prev comment on SvROK */
+ && (strpos != strbeg) && strpos[-1] != '\n'
+ /* May be due to an implicit anchor of m{.*foo} */
+ && !(prog->intflags & PREGf_IMPLICIT))
+ {
+ t = strpos;
+ goto find_anchor;
+ }
+ DEBUG_EXECUTE_r( if (ml_anch)
+ PerlIO_printf(Perl_debug_log, "Position at offset %ld does not contradict /%s^%s/m...\n",
+ (long)(strpos - i_strpos), PL_colors[0], PL_colors[1]);
+ );
+ success_at_start:
+ if (!(prog->intflags & PREGf_NAUGHTY) /* XXXX If strpos moved? */
+ && (utf8_target ? (
+ prog->check_utf8 /* Could be deleted already */
+ && --BmUSEFUL(prog->check_utf8) < 0
+ && (prog->check_utf8 == prog->float_utf8)
+ ) : (
+ prog->check_substr /* Could be deleted already */
+ && --BmUSEFUL(prog->check_substr) < 0
+ && (prog->check_substr == prog->float_substr)
+ )))
+ {
+ /* If flags & SOMETHING - do not do it many times on the same match */
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "... Disabling check substring...\n"));
+ /* XXX Does the destruction order has to change with utf8_target? */
+ SvREFCNT_dec(utf8_target ? prog->check_utf8 : prog->check_substr);
+ SvREFCNT_dec(utf8_target ? prog->check_substr : prog->check_utf8);
+ prog->check_substr = prog->check_utf8 = NULL; /* disable */
+ prog->float_substr = prog->float_utf8 = NULL; /* clear */
+ check = NULL; /* abort */
+ s = strpos;
+ /* XXXX If the check string was an implicit check MBOL, then we need to unset the relevant flag
+ see http://bugs.activestate.com/show_bug.cgi?id=87173 */
+ if (prog->intflags & PREGf_IMPLICIT)
+ prog->extflags &= ~RXf_ANCH_MBOL;
+ /* XXXX This is a remnant of the old implementation. It
+ looks wasteful, since now INTUIT can use many
+ other heuristics. */
+ prog->extflags &= ~RXf_USE_INTUIT;
+ /* XXXX What other flags might need to be cleared in this branch? */
+ }
+ else
+ s = strpos;
+ }
+
+ /* Last resort... */
+ /* XXXX BmUSEFUL already changed, maybe multiple change is meaningful... */
+ /* trie stclasses are too expensive to use here, we are better off to
+ leave it to regmatch itself */
+ if (progi->regstclass && PL_regkind[OP(progi->regstclass)]!=TRIE) {
+ /* minlen == 0 is possible if regstclass is \b or \B,
+ and the fixed substr is ''$.
+ Since minlen is already taken into account, s+1 is before strend;
+ accidentally, minlen >= 1 guaranties no false positives at s + 1
+ even for \b or \B. But (minlen? 1 : 0) below assumes that
+ regstclass does not come from lookahead... */
+ /* If regstclass takes bytelength more than 1: If charlength==1, OK.
+ This leaves EXACTF-ish only, which are dealt with in find_byclass(). */
+ const U8* const str = (U8*)STRING(progi->regstclass);
+ const int cl_l = (PL_regkind[OP(progi->regstclass)] == EXACT
+ ? CHR_DIST(str+STR_LEN(progi->regstclass), str)
+ : 1);
+ char * endpos;
+ if (prog->anchored_substr || prog->anchored_utf8 || ml_anch)
+ endpos= HOP3c(s, (prog->minlen ? cl_l : 0), strend);
+ else if (prog->float_substr || prog->float_utf8)
+ endpos= HOP3c(HOP3c(check_at, -start_shift, strbeg), cl_l, strend);
+ else
+ endpos= strend;
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "start_shift: %"IVdf" check_at: %"IVdf" s: %"IVdf" endpos: %"IVdf"\n",
+ (IV)start_shift, (IV)(check_at - strbeg), (IV)(s - strbeg), (IV)(endpos - strbeg)));
+
+ t = s;
+ s = find_byclass(prog, progi->regstclass, s, endpos, NULL);
+ if (!s) {
+#ifdef DEBUGGING
+ const char *what = NULL;
+#endif
+ if (endpos == strend) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "This position contradicts STCLASS...\n") );
+ if ((prog->extflags & RXf_ANCH) && !ml_anch)
+ goto fail;
+ /* Contradict one of substrings */
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if ((utf8_target ? prog->anchored_utf8 : prog->anchored_substr) == check) {
+ DEBUG_EXECUTE_r( what = "anchored" );
+ hop_and_restart:
+ s = HOP3c(t, 1, strend);
+ if (s + start_shift + end_shift > strend) {
+ /* XXXX Should be taken into account earlier? */
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Could not match STCLASS...\n") );
+ goto fail;
+ }
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for %s substr starting at offset %ld...\n",
+ what, (long)(s + start_shift - i_strpos)) );
+ goto restart;
+ }
+ /* Have both, check_string is floating */
+ if (t + start_shift >= check_at) /* Contradicts floating=check */
+ goto retry_floating_check;
+ /* Recheck anchored substring, but not floating... */
+ s = check_at;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for anchored substr starting at offset %ld...\n",
+ (long)(other_last - i_strpos)) );
+ goto do_other_anchored;
+ }
+ /* Another way we could have checked stclass at the
+ current position only: */
+ if (ml_anch) {
+ s = t = t + 1;
+ if (!check)
+ goto giveup;
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "Looking for /%s^%s/m starting at offset %ld...\n",
+ PL_colors[0], PL_colors[1], (long)(t - i_strpos)) );
+ goto try_at_offset;
+ }
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr)) /* Could have been deleted */
+ goto fail;
+ /* Check is floating substring. */
+ retry_floating_check:
+ t = check_at - start_shift;
+ DEBUG_EXECUTE_r( what = "floating" );
+ goto hop_and_restart;
+ }
+ if (t != s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "By STCLASS: moving %ld --> %ld\n",
+ (long)(t - i_strpos), (long)(s - i_strpos))
+ );
+ }
+ else {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "Does not contradict STCLASS...\n");
+ );
+ }
+ }
+ giveup:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%s%s:%s match at offset %ld\n",
+ PL_colors[4], (check ? "Guessed" : "Giving up"),
+ PL_colors[5], (long)(s - i_strpos)) );
+ return s;
+
+ fail_finish: /* Substring not found */
+ if (prog->check_substr || prog->check_utf8) /* could be removed already */
+ BmUSEFUL(utf8_target ? prog->check_utf8 : prog->check_substr) += 5; /* hooray */
+ fail:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch rejected by optimizer%s\n",
+ PL_colors[4], PL_colors[5]));
+ return NULL;
+}
+
+#define DECL_TRIE_TYPE(scan) \
+ const enum { trie_plain, trie_utf8, trie_utf8_fold, trie_latin_utf8_fold } \
+ trie_type = ((scan->flags == EXACT) \
+ ? (utf8_target ? trie_utf8 : trie_plain) \
+ : (utf8_target ? trie_utf8_fold : trie_latin_utf8_fold))
+
+#define REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc, uscan, len, \
+uvc, charid, foldlen, foldbuf, uniflags) STMT_START { \
+ STRLEN skiplen; \
+ switch (trie_type) { \
+ case trie_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ uvc = to_utf8_fold( (const U8*) uc, foldbuf, &foldlen ); \
+ len = UTF8SKIP(uc); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_latin_utf8_fold: \
+ if ( foldlen>0 ) { \
+ uvc = utf8n_to_uvuni( (const U8*) uscan, UTF8_MAXLEN, &len, uniflags ); \
+ foldlen -= len; \
+ uscan += len; \
+ len=0; \
+ } else { \
+ len = 1; \
+ uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
+ skiplen = UNISKIP( uvc ); \
+ foldlen -= skiplen; \
+ uscan = foldbuf + skiplen; \
+ } \
+ break; \
+ case trie_utf8: \
+ uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags ); \
+ break; \
+ case trie_plain: \
+ uvc = (UV)*uc; \
+ len = 1; \
+ } \
+ if (uvc < 256) { \
+ charid = trie->charmap[ uvc ]; \
+ } \
+ else { \
+ charid = 0; \
+ if (widecharmap) { \
+ SV** const svpp = hv_fetch(widecharmap, \
+ (char*)&uvc, sizeof(UV), 0); \
+ if (svpp) \
+ charid = (U16)SvIV(*svpp); \
+ } \
+ } \
+} STMT_END
+
+#define REXEC_FBC_EXACTISH_SCAN(CoNd) \
+STMT_START { \
+ while (s <= e) { \
+ if ( (CoNd) \
+ && (ln == 1 || folder(s, pat_string, ln)) \
+ && (!reginfo || regtry(reginfo, &s)) ) \
+ goto got_it; \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_SCAN(CoDe) \
+STMT_START { \
+ while (s + (uskip = UTF8SKIP(s)) <= strend) { \
+ CoDe \
+ s += uskip; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_SCAN(CoDe) \
+STMT_START { \
+ while (s < strend) { \
+ CoDe \
+ s++; \
+ } \
+} STMT_END
+
+#define REXEC_FBC_UTF8_CLASS_SCAN(CoNd) \
+REXEC_FBC_UTF8_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_CLASS_SCAN(CoNd) \
+REXEC_FBC_SCAN( \
+ if (CoNd) { \
+ if (tmp && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it; \
+ else \
+ tmp = doevery; \
+ } \
+ else \
+ tmp = 1; \
+)
+
+#define REXEC_FBC_TRYIT \
+if ((!reginfo || regtry(reginfo, &s))) \
+ goto got_it
+
+#define REXEC_FBC_CSCAN(CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_PRELOAD(UtFpReLoAd,CoNdUtF8,CoNd) \
+ if (utf8_target) { \
+ UtFpReLoAd; \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define REXEC_FBC_CSCAN_TAINT(CoNdUtF8,CoNd) \
+ PL_reg_flags |= RF_tainted; \
+ if (utf8_target) { \
+ REXEC_FBC_UTF8_CLASS_SCAN(CoNdUtF8); \
+ } \
+ else { \
+ REXEC_FBC_CLASS_SCAN(CoNd); \
+ }
+
+#define DUMP_EXEC_POS(li,s,doutf8) \
+ dump_exec_pos(li,s,(PL_regeol),(PL_bostr),(PL_reg_starttry),doutf8)
+
+
+#define UTF8_NOLOAD(TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+#define UTF8_LOAD(TeSt1_UtF8, TeSt2_UtF8, IF_SUCCESS, IF_FAIL) \
+ if (s == PL_bostr) { \
+ tmp = '\n'; \
+ } \
+ else { \
+ U8 * const r = reghop3((U8*)s, -1, (U8*)PL_bostr); \
+ tmp = utf8n_to_uvchr(r, UTF8SKIP(r), 0, UTF8_ALLOW_DEFAULT); \
+ } \
+ tmp = TeSt1_UtF8; \
+ LOAD_UTF8_CHARCLASS_ALNUM(); \
+ REXEC_FBC_UTF8_SCAN( \
+ if (tmp == ! (TeSt2_UtF8)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+
+/* The only difference between the BOUND and NBOUND cases is that
+ * REXEC_FBC_TRYIT is called when matched in BOUND, and when non-matched in
+ * NBOUND. This is accomplished by passing it in either the if or else clause,
+ * with the other one being empty */
+#define FBC_BOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_BOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER), TEST_NON_UTF8, REXEC_FBC_TRYIT, PLACEHOLDER)
+
+#define FBC_NBOUND(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_LOAD(TEST1_UTF8, TEST2_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+#define FBC_NBOUND_NOLOAD(TEST_NON_UTF8, TEST1_UTF8, TEST2_UTF8) \
+ FBC_BOUND_COMMON(UTF8_NOLOAD(TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT), TEST_NON_UTF8, PLACEHOLDER, REXEC_FBC_TRYIT)
+
+
+/* Common to the BOUND and NBOUND cases. Unfortunately the UTF8 tests need to
+ * be passed in completely with the variable name being tested, which isn't
+ * such a clean interface, but this is easier to read than it was before. We
+ * are looking for the boundary (or non-boundary between a word and non-word
+ * character. The utf8 and non-utf8 cases have the same logic, but the details
+ * must be different. Find the "wordness" of the character just prior to this
+ * one, and compare it with the wordness of this one. If they differ, we have
+ * a boundary. At the beginning of the string, pretend that the previous
+ * character was a new-line */
+#define FBC_BOUND_COMMON(UTF8_CODE, TEST_NON_UTF8, IF_SUCCESS, IF_FAIL) \
+ if (utf8_target) { \
+ UTF8_CODE \
+ } \
+ else { /* Not utf8 */ \
+ tmp = (s != PL_bostr) ? UCHARAT(s - 1) : '\n'; \
+ tmp = TEST_NON_UTF8(tmp); \
+ REXEC_FBC_SCAN( \
+ if (tmp == ! TEST_NON_UTF8((U8) *s)) { \
+ tmp = !tmp; \
+ IF_SUCCESS; \
+ } \
+ else { \
+ IF_FAIL; \
+ } \
+ ); \
+ } \
+ if ((!prog->minlen && tmp) && (!reginfo || regtry(reginfo, &s))) \
+ goto got_it;
+
+/* We know what class REx starts with. Try to find this position... */
+/* if reginfo is NULL, its a dryrun */
+/* annoyingly all the vars in this routine have different names from their counterparts
+ in regmatch. /grrr */
+
+STATIC char *
+S_find_byclass(pTHX_ regexp * prog, const regnode *c, char *s,
+ const char *strend, regmatch_info *reginfo)
+{
+ dVAR;
+ const I32 doevery = (prog->intflags & PREGf_SKIP) == 0;
+ char *pat_string; /* The pattern's exactish string */
+ char *pat_end; /* ptr to end char of pat_string */
+ re_fold_t folder; /* Function for computing non-utf8 folds */
+ const U8 *fold_array; /* array for folding ords < 256 */
+ STRLEN ln;
+ STRLEN lnc;
+ register STRLEN uskip;
+ U8 c1;
+ U8 c2;
+ char *e;
+ register I32 tmp = 1; /* Scratch variable? */
+ register const bool utf8_target = PL_reg_match_utf8;
+ UV utf8_fold_flags = 0;
+ RXi_GET_DECL(prog,progi);
+
+ PERL_ARGS_ASSERT_FIND_BYCLASS;
+
+ /* We know what class it must start with. */
+ switch (OP(c)) {
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(c) == ANYOFV) {
+ STRLEN inclasslen = strend - s;
+ REXEC_FBC_UTF8_CLASS_SCAN(
+ reginclass(prog, c, (U8*)s, &inclasslen, utf8_target));
+ }
+ else {
+ REXEC_FBC_CLASS_SCAN(REGINCLASS(prog, c, (U8*)s));
+ }
+ break;
+ case CANY:
+ REXEC_FBC_SCAN(
+ if (tmp && (!reginfo || regtry(reginfo, &s)))
+ goto got_it;
+ else
+ tmp = doevery;
+ );
+ break;
+
+ case EXACTFA:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_latin1; /* Latin1 folds are not affected by */
+ folder = foldEQ_latin1; /* /a, except the sharp s one which */
+ goto do_exactf_non_utf8; /* isn't dealt with by these */
+
+ case EXACTF:
+ if (utf8_target) {
+
+ /* regcomp.c already folded this if pattern is in UTF-8 */
+ utf8_fold_flags = 0;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold;
+ folder = foldEQ;
+ goto do_exactf_non_utf8;
+
+ case EXACTFL:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf_utf8;
+ }
+ fold_array = PL_fold_locale;
+ folder = foldEQ_locale;
+ goto do_exactf_non_utf8;
+
+ case EXACTFU_SS:
+ if (UTF_PATTERN) {
+ utf8_fold_flags = FOLDEQ_S2_ALREADY_FOLDED;
+ }
+ goto do_exactf_utf8;
+
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ if (UTF_PATTERN || utf8_target) {
+ utf8_fold_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+ goto do_exactf_utf8;
+ }
+
+ /* Any 'ss' in the pattern should have been replaced by regcomp,
+ * so we don't have to worry here about this single special case
+ * in the Latin1 range */
+ fold_array = PL_fold_latin1;
+ folder = foldEQ_latin1;
+
+ /* FALL THROUGH */
+
+ do_exactf_non_utf8: /* Neither pattern nor string are UTF8, and there
+ are no glitches with fold-length differences
+ between the target string and pattern */
+
+ /* The idea in the non-utf8 EXACTF* cases is to first find the
+ * first character of the EXACTF* node and then, if necessary,
+ * case-insensitively compare the full text of the node. c1 is the
+ * first character. c2 is its fold. This logic will not work for
+ * Unicode semantics and the german sharp ss, which hence should
+ * not be compiled into a node that gets here. */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+
+ /* We know that we have to match at least 'ln' bytes (which is the
+ * same as characters, since not utf8). If we have to match 3
+ * characters, and there are only 2 availabe, we know without
+ * trying that it will fail; so don't start a match past the
+ * required minimum number from the far end */
+ e = HOP3c(strend, -((I32)ln), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ c1 = *pat_string;
+ c2 = fold_array[c1];
+ if (c1 == c2) { /* If char and fold are the same */
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1);
+ }
+ else {
+ REXEC_FBC_EXACTISH_SCAN(*(U8*)s == c1 || *(U8*)s == c2);
+ }
+ break;
+
+ do_exactf_utf8:
+ {
+ unsigned expansion;
+
+
+ /* If one of the operands is in utf8, we can't use the simpler
+ * folding above, due to the fact that many different characters
+ * can have the same fold, or portion of a fold, or different-
+ * length fold */
+ pat_string = STRING(c);
+ ln = STR_LEN(c); /* length to match in octets/bytes */
+ pat_end = pat_string + ln;
+ lnc = (UTF_PATTERN) /* length to match in characters */
+ ? utf8_length((U8 *) pat_string, (U8 *) pat_end)
+ : ln;
+
+ /* We have 'lnc' characters to match in the pattern, but because of
+ * multi-character folding, each character in the target can match
+ * up to 3 characters (Unicode guarantees it will never exceed
+ * this) if it is utf8-encoded; and up to 2 if not (based on the
+ * fact that the Latin 1 folds are already determined, and the
+ * only multi-char fold in that range is the sharp-s folding to
+ * 'ss'. Thus, a pattern character can match as little as 1/3 of a
+ * string character. Adjust lnc accordingly, rounding up, so that
+ * if we need to match at least 4+1/3 chars, that really is 5. */
+ expansion = (utf8_target) ? UTF8_MAX_FOLD_CHAR_EXPAND : 2;
+ lnc = (lnc + expansion - 1) / expansion;
+
+ /* As in the non-UTF8 case, if we have to match 3 characters, and
+ * only 2 are left, it's guaranteed to fail, so don't start a
+ * match that would require us to go beyond the end of the string
+ */
+ e = HOP3c(strend, -((I32)lnc), s);
+
+ if (!reginfo && e < s) {
+ e = s; /* Due to minlen logic of intuit() */
+ }
+
+ /* XXX Note that we could recalculate e to stop the loop earlier,
+ * as the worst case expansion above will rarely be met, and as we
+ * go along we would usually find that e moves further to the left.
+ * This would happen only after we reached the point in the loop
+ * where if there were no expansion we should fail. Unclear if
+ * worth the expense */
+
+ while (s <= e) {
+ char *my_strend= (char *)strend;
+ if (foldEQ_utf8_flags(s, &my_strend, 0, utf8_target,
+ pat_string, NULL, ln, cBOOL(UTF_PATTERN), utf8_fold_flags)
+ && (!reginfo || regtry(reginfo, &s)) )
+ {
+ goto got_it;
+ }
+ s += (utf8_target) ? UTF8SKIP(s) : 1;
+ }
+ break;
+ }
+ case BOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_BOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ FBC_NBOUND(isALNUM_LC,
+ isALNUM_LC_uvchr(UNI_TO_NATIVE(tmp)),
+ isALNUM_LC_utf8((U8*)s));
+ break;
+ case BOUND:
+ FBC_BOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case BOUNDA:
+ FBC_BOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case NBOUND:
+ FBC_NBOUND(isWORDCHAR,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDA:
+ FBC_NBOUND_NOLOAD(isWORDCHAR_A,
+ isWORDCHAR_A(tmp),
+ isWORDCHAR_A((U8*)s));
+ break;
+ case BOUNDU:
+ FBC_BOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case NBOUNDU:
+ FBC_NBOUND(isWORDCHAR_L1,
+ isALNUM_uni(tmp),
+ cBOOL(swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target)));
+ break;
+ case ALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ isALNUM_LC_utf8((U8*)s),
+ isALNUM_LC(*s)
+ );
+ break;
+ case ALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case ALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ isWORDCHAR((U8) *s)
+ );
+ break;
+ case ALNUMA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isWORDCHAR_A(*s));
+ break;
+ case NALNUMU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum,(U8*)s, utf8_target),
+ ! isWORDCHAR_L1((U8) *s)
+ );
+ break;
+ case NALNUM:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_ALNUM(),
+ !swash_fetch(PL_utf8_alnum, (U8*)s, utf8_target),
+ ! isALNUM(*s)
+ );
+ break;
+ case NALNUMA:
+ REXEC_FBC_CSCAN(
+ !isWORDCHAR_A(*s),
+ !isWORDCHAR_A(*s)
+ );
+ break;
+ case NALNUML:
+ REXEC_FBC_CSCAN_TAINT(
+ !isALNUM_LC_utf8((U8*)s),
+ !isALNUM_LC(*s)
+ );
+ break;
+ case SPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE_L1((U8) *s)
+ );
+ break;
+ case SPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target),
+ isSPACE((U8) *s)
+ );
+ break;
+ case SPACEA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isSPACE_A(*s));
+ break;
+ case SPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ isSPACE_LC_utf8((U8*)s),
+ isSPACE_LC(*s)
+ );
+ break;
+ case NSPACEU:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !( *s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE_L1((U8) *s)
+ );
+ break;
+ case NSPACE:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_SPACE(),
+ !(*s == ' ' || swash_fetch(PL_utf8_space,(U8*)s, utf8_target)),
+ ! isSPACE((U8) *s)
+ );
+ break;
+ case NSPACEA:
+ REXEC_FBC_CSCAN(
+ !isSPACE_A(*s),
+ !isSPACE_A(*s)
+ );
+ break;
+ case NSPACEL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isSPACE_LC_utf8((U8*)s),
+ !isSPACE_LC(*s)
+ );
+ break;
+ case DIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ isDIGIT(*s)
+ );
+ break;
+ case DIGITA:
+ /* Don't need to worry about utf8, as it can match only a single
+ * byte invariant character */
+ REXEC_FBC_CLASS_SCAN( isDIGIT_A(*s));
+ break;
+ case DIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ isDIGIT_LC_utf8((U8*)s),
+ isDIGIT_LC(*s)
+ );
+ break;
+ case NDIGIT:
+ REXEC_FBC_CSCAN_PRELOAD(
+ LOAD_UTF8_CHARCLASS_DIGIT(),
+ !swash_fetch(PL_utf8_digit,(U8*)s, utf8_target),
+ !isDIGIT(*s)
+ );
+ break;
+ case NDIGITA:
+ REXEC_FBC_CSCAN(
+ !isDIGIT_A(*s),
+ !isDIGIT_A(*s)
+ );
+ break;
+ case NDIGITL:
+ REXEC_FBC_CSCAN_TAINT(
+ !isDIGIT_LC_utf8((U8*)s),
+ !isDIGIT_LC(*s)
+ );
+ break;
+ case LNBREAK:
+ REXEC_FBC_CSCAN(
+ is_LNBREAK_utf8(s),
+ is_LNBREAK_latin1(s)
+ );
+ break;
+ case VERTWS:
+ REXEC_FBC_CSCAN(
+ is_VERTWS_utf8(s),
+ is_VERTWS_latin1(s)
+ );
+ break;
+ case NVERTWS:
+ REXEC_FBC_CSCAN(
+ !is_VERTWS_utf8(s),
+ !is_VERTWS_latin1(s)
+ );
+ break;
+ case HORIZWS:
+ REXEC_FBC_CSCAN(
+ is_HORIZWS_utf8(s),
+ is_HORIZWS_latin1(s)
+ );
+ break;
+ case NHORIZWS:
+ REXEC_FBC_CSCAN(
+ !is_HORIZWS_utf8(s),
+ !is_HORIZWS_latin1(s)
+ );
+ break;
+ case AHOCORASICKC:
+ case AHOCORASICK:
+ {
+ DECL_TRIE_TYPE(c);
+ /* what trie are we using right now */
+ reg_ac_data *aho
+ = (reg_ac_data*)progi->data->data[ ARG( c ) ];
+ reg_trie_data *trie
+ = (reg_trie_data*)progi->data->data[ aho->trie ];
+ HV *widecharmap = MUTABLE_HV(progi->data->data[ aho->trie + 1 ]);
+
+ const char *last_start = strend - trie->minlen;
+#ifdef DEBUGGING
+ const char *real_start = s;
+#endif
+ STRLEN maxlen = trie->maxlen;
+ SV *sv_points;
+ U8 **points; /* map of where we were in the input string
+ when reading a given char. For ASCII this
+ is unnecessary overhead as the relationship
+ is always 1:1, but for Unicode, especially
+ case folded Unicode this is not true. */
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U8 *bitmap=NULL;
+
+
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ /* We can't just allocate points here. We need to wrap it in
+ * an SV so it gets freed properly if there is a croak while
+ * running the match */
+ ENTER;
+ SAVETMPS;
+ sv_points=newSV(maxlen * sizeof(U8 *));
+ SvCUR_set(sv_points,
+ maxlen * sizeof(U8 *));
+ SvPOK_on(sv_points);
+ sv_2mortal(sv_points);
+ points=(U8**)SvPV_nolen(sv_points );
+ if ( trie_type != trie_utf8_fold
+ && (trie->bitmap || OP(c)==AHOCORASICKC) )
+ {
+ if (trie->bitmap)
+ bitmap=(U8*)trie->bitmap;
+ else
+ bitmap=(U8*)ANYOF_BITMAP(c);
+ }
+ /* this is the Aho-Corasick algorithm modified a touch
+ to include special handling for long "unknown char"
+ sequences. The basic idea being that we use AC as long
+ as we are dealing with a possible matching char, when
+ we encounter an unknown char (and we have not encountered
+ an accepting state) we scan forward until we find a legal
+ starting char.
+ AC matching is basically that of trie matching, except
+ that when we encounter a failing transition, we fall back
+ to the current states "fail state", and try the current char
+ again, a process we repeat until we reach the root state,
+ state 1, or a legal transition. If we fail on the root state
+ then we can either terminate if we have reached an accepting
+ state previously, or restart the entire process from the beginning
+ if we have not.
+
+ */
+ while (s <= last_start) {
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ U8 *uc = (U8*)s;
+ U16 charid = 0;
+ U32 base = 1;
+ U32 state = 1;
+ UV uvc = 0;
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 *leftmost = NULL;
+#ifdef DEBUGGING
+ U32 accepted_word= 0;
+#endif
+ U32 pointpos = 0;
+
+ while ( state && uc <= (U8*)strend ) {
+ int failed=0;
+ U32 word = aho->states[ state ].wordnum;
+
+ if( state==1 ) {
+ if ( bitmap ) {
+ DEBUG_TRIE_EXECUTE_r(
+ if ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ (char *)uc, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ " Scanning for legal start char...\n");
+ }
+ );
+ if (utf8_target) {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc += UTF8SKIP(uc);
+ }
+ } else {
+ while ( uc <= (U8*)last_start && !BITMAP_TEST(bitmap,*uc) ) {
+ uc++;
+ }
+ }
+ s= (char *)uc;
+ }
+ if (uc >(U8*)last_start) break;
+ }
+
+ if ( word ) {
+ U8 *lpos= points[ (pointpos - trie->wordinfo[word].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=word);
+ leftmost= lpos;
+ }
+ if (base==0) break;
+
+ }
+ points[pointpos++ % maxlen]= uc;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ DEBUG_TRIE_EXECUTE_r({
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf(Perl_debug_log,
+ " Charid:%3u CP:%4"UVxf" ",
+ charid, uvc);
+ });
+
+ do {
+#ifdef DEBUGGING
+ word = aho->states[ state ].wordnum;
+#endif
+ base = aho->states[ state ].trans.base;
+
+ DEBUG_TRIE_EXECUTE_r({
+ if (failed)
+ dump_exec_pos( (char *)uc, c, strend, real_start,
+ s, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%sState: %4"UVxf", word=%"UVxf,
+ failed ? " Fail transition to " : "",
+ (UV)state, (UV)word);
+ });
+ if ( base ) {
+ U32 tmp;
+ I32 offset;
+ if (charid &&
+ ( ((offset = base + charid
+ - 1 - trie->uniquecharcount)) >= 0)
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state
+ && (tmp=trie->trans[offset].next))
+ {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - legal\n"));
+ state = tmp;
+ break;
+ }
+ else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - fail\n"));
+ failed = 1;
+ state = aho->fail[state];
+ }
+ }
+ else {
+ /* we must be accepting here */
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log," - accepting\n"));
+ failed = 1;
+ break;
+ }
+ } while(state);
+ uc += len;
+ if (failed) {
+ if (leftmost)
+ break;
+ if (!state) state = 1;
+ }
+ }
+ if ( aho->states[ state ].wordnum ) {
+ U8 *lpos = points[ (pointpos - trie->wordinfo[aho->states[ state ].wordnum].len) % maxlen ];
+ if (!leftmost || lpos < leftmost) {
+ DEBUG_r(accepted_word=aho->states[ state ].wordnum);
+ leftmost = lpos;
+ }
+ }
+ if (leftmost) {
+ s = (char*)leftmost;
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf(
+ Perl_debug_log,"Matches word #%"UVxf" at position %"IVdf". Trying full pattern...\n",
+ (UV)accepted_word, (IV)(s - real_start)
+ );
+ });
+ if (!reginfo || regtry(reginfo, &s)) {
+ FREETMPS;
+ LEAVE;
+ goto got_it;
+ }
+ s = HOPc(s,1);
+ DEBUG_TRIE_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,"Pattern failed. Looking for new start point...\n");
+ });
+ } else {
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,"No match.\n"));
+ break;
+ }
+ }
+ FREETMPS;
+ LEAVE;
+ }
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: unknown regstclass %d", (int)OP(c));
+ break;
+ }
+ return 0;
+ got_it:
+ return s;
+}
+
+
+/*
+ - regexec_flags - match a regexp against a string
+ */
+I32
+Perl_regexec_flags(pTHX_ REGEXP * const rx, char *stringarg, register char *strend,
+ char *strbeg, I32 minend, SV *sv, void *data, U32 flags)
+/* strend: pointer to null at end of string */
+/* strbeg: real beginning of string */
+/* minend: end of match must be >=minend after stringarg. */
+/* data: May be used for some additional optimizations.
+ Currently its only used, with a U32 cast, for transmitting
+ the ganch offset when doing a /g match. This will change */
+/* nosave: For optimizations. */
+{
+ dVAR;
+ struct regexp *const prog = (struct regexp *)SvANY(rx);
+ /*register*/ char *s;
+ register regnode *c;
+ /*register*/ char *startpos = stringarg;
+ I32 minlen; /* must match at least this many chars */
+ I32 dontbother = 0; /* how many characters not to try at end */
+ I32 end_shift = 0; /* Same for the end. */ /* CC */
+ I32 scream_pos = -1; /* Internal iterator of scream. */
+ char *scream_olds = NULL;
+ const bool utf8_target = cBOOL(DO_UTF8(sv));
+ I32 multiline;
+ RXi_GET_DECL(prog,progi);
+ regmatch_info reginfo; /* create some info to pass to regtry etc */
+ regexp_paren_pair *swap = NULL;
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGEXEC_FLAGS;
+ PERL_UNUSED_ARG(data);
+
+ /* Be paranoid... */
+ if (prog == NULL || startpos == NULL) {
+ Perl_croak(aTHX_ "NULL regexp parameter");
+ return 0;
+ }
+
+ multiline = prog->extflags & RXf_PMf_MULTILINE;
+ reginfo.prog = rx; /* Yes, sorry that this is confusing. */
+
+ RX_MATCH_UTF8_set(rx, utf8_target);
+ DEBUG_EXECUTE_r(
+ debug_start_match(rx, utf8_target, startpos, strend,
+ "Matching");
+ );
+
+ minlen = prog->minlen;
+
+ if (strend - startpos < (minlen+(prog->check_offset_min<0?prog->check_offset_min:0))) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "String too short [regexec_flags]...\n"));
+ goto phooey;
+ }
+
+
+ /* Check validity of program. */
+ if (UCHARAT(progi->program) != REG_MAGIC) {
+ Perl_croak(aTHX_ "corrupted regexp program");
+ }
+
+ PL_reg_flags = 0;
+ PL_reg_eval_set = 0;
+ PL_reg_maxiter = 0;
+
+ if (RX_UTF8(rx))
+ PL_reg_flags |= RF_utf8;
+
+ /* Mark beginning of line for ^ and lookbehind. */
+ reginfo.bol = startpos; /* XXX not used ??? */
+ PL_bostr = strbeg;
+ reginfo.sv = sv;
+
+ /* Mark end of line for $ (and such) */
+ PL_regeol = strend;
+
+ /* see how far we have to get to not match where we matched before */
+ reginfo.till = startpos+minend;
+
+ /* If there is a "must appear" string, look for it. */
+ s = startpos;
+
+ if (prog->extflags & RXf_GPOS_SEEN) { /* Need to set reginfo->ganch */
+ MAGIC *mg;
+ if (flags & REXEC_IGNOREPOS){ /* Means: check only at start */
+ reginfo.ganch = startpos + prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS IGNOREPOS: reginfo.ganch = startpos + %"UVxf"\n",(UV)prog->gofs));
+ } else if (sv && SvTYPE(sv) >= SVt_PVMG
+ && SvMAGIC(sv)
+ && (mg = mg_find(sv, PERL_MAGIC_regex_global))
+ && mg->mg_len >= 0) {
+ reginfo.ganch = strbeg + mg->mg_len; /* Defined pos() */
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS MAGIC: reginfo.ganch = strbeg + %"IVdf"\n",(IV)mg->mg_len));
+
+ if (prog->extflags & RXf_ANCH_GPOS) {
+ if (s > reginfo.ganch)
+ goto phooey;
+ s = reginfo.ganch - prog->gofs;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS ANCH_GPOS: s = ganch - %"UVxf"\n",(UV)prog->gofs));
+ if (s < strbeg)
+ goto phooey;
+ }
+ }
+ else if (data) {
+ reginfo.ganch = strbeg + PTR2UV(data);
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS DATA: reginfo.ganch= strbeg + %"UVxf"\n",PTR2UV(data)));
+
+ } else { /* pos() not defined */
+ reginfo.ganch = strbeg;
+ DEBUG_GPOS_r(PerlIO_printf(Perl_debug_log,
+ "GPOS: reginfo.ganch = strbeg\n"));
+ }
+ }
+ if (PL_curpm && (PM_GETRE(PL_curpm) == rx)) {
+ /* We have to be careful. If the previous successful match
+ was from this regex we don't want a subsequent partially
+ successful match to clobber the old results.
+ So when we detect this possibility we add a swap buffer
+ to the re, and switch the buffer each match. If we fail
+ we switch it back, otherwise we leave it swapped.
+ */
+ swap = prog->offs;
+ /* do we need a save destructor here for eval dies? */
+ Newxz(prog->offs, (prog->nparens + 1), regexp_paren_pair);
+ }
+ if (!(flags & REXEC_CHECKED) && (prog->check_substr != NULL || prog->check_utf8 != NULL)) {
+ re_scream_pos_data d;
+
+ d.scream_olds = &scream_olds;
+ d.scream_pos = &scream_pos;
+ s = re_intuit_start(rx, sv, s, strend, flags, &d);
+ if (!s) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Not present...\n"));
+ goto phooey; /* not present */
+ }
+ }
+
+
+
+ /* Simplest case: anchored match need be tried only once. */
+ /* [unless only anchor is BOL and multiline is set] */
+ if (prog->extflags & (RXf_ANCH & ~RXf_ANCH_GPOS)) {
+ if (s == startpos && regtry(®info, &startpos))
+ goto got_it;
+ else if (multiline || (prog->intflags & PREGf_IMPLICIT)
+ || (prog->extflags & RXf_ANCH_MBOL)) /* XXXX SBOL? */
+ {
+ char *end;
+
+ if (minlen)
+ dontbother = minlen - 1;
+ end = HOP3c(strend, -dontbother, strbeg) - 1;
+ /* for multiline we only have to try after newlines */
+ if (prog->check_substr || prog->check_utf8) {
+ /* because of the goto we can not easily reuse the macros for bifurcating the
+ unicode/non-unicode match modes here like we do elsewhere - demerphq */
+ if (utf8_target) {
+ if (s == startpos)
+ goto after_try_utf8;
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_utf8:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + UTF8SKIP(s), strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s += UTF8SKIP(s);
+ }
+ }
+ } /* end search for check string in unicode */
+ else {
+ if (s == startpos) {
+ goto after_try_latin;
+ }
+ while (1) {
+ if (regtry(®info, &s)) {
+ goto got_it;
+ }
+ after_try_latin:
+ if (s > end) {
+ goto phooey;
+ }
+ if (prog->extflags & RXf_USE_INTUIT) {
+ s = re_intuit_start(rx, sv, s + 1, strend, flags, NULL);
+ if (!s) {
+ goto phooey;
+ }
+ }
+ else {
+ s++;
+ }
+ }
+ } /* end search for check string in latin*/
+ } /* end search for check string */
+ else { /* search for newline */
+ if (s > startpos) {
+ /*XXX: The s-- is almost definitely wrong here under unicode - demeprhq*/
+ s--;
+ }
+ /* We can use a more efficient search as newlines are the same in unicode as they are in latin */
+ while (s <= end) { /* note it could be possible to match at the end of the string */
+ if (*s++ == '\n') { /* don't need PL_utf8skip here */
+ if (regtry(®info, &s))
+ goto got_it;
+ }
+ }
+ } /* end search for newline */
+ } /* end anchored/multiline check string search */
+ goto phooey;
+ } else if (RXf_GPOS_CHECK == (prog->extflags & RXf_GPOS_CHECK))
+ {
+ /* the warning about reginfo.ganch being used without initialization
+ is bogus -- we set it above, when prog->extflags & RXf_GPOS_SEEN
+ and we only enter this block when the same bit is set. */
+ char *tmp_s = reginfo.ganch - prog->gofs;
+
+ if (tmp_s >= strbeg && regtry(®info, &tmp_s))
+ goto got_it;
+ goto phooey;
+ }
+
+ /* Messy cases: unanchored match. */
+ if ((prog->anchored_substr || prog->anchored_utf8) && prog->intflags & PREGf_SKIP) {
+ /* we have /x+whatever/ */
+ /* it must be a one character string (XXXX Except UTF_PATTERN?) */
+ char ch;
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ ch = SvPVX_const(utf8_target ? prog->anchored_utf8 : prog->anchored_substr)[0];
+
+ if (utf8_target) {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s += UTF8SKIP(s);
+ while (s < strend && *s == ch)
+ s += UTF8SKIP(s);
+ }
+ );
+ }
+ else {
+ REXEC_FBC_SCAN(
+ if (*s == ch) {
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (regtry(®info, &s)) goto got_it;
+ s++;
+ while (s < strend && *s == ch)
+ s++;
+ }
+ );
+ }
+ DEBUG_EXECUTE_r(if (!did_match)
+ PerlIO_printf(Perl_debug_log,
+ "Did not find anchored character...\n")
+ );
+ }
+ else if (prog->anchored_substr != NULL
+ || prog->anchored_utf8 != NULL
+ || ((prog->float_substr != NULL || prog->float_utf8 != NULL)
+ && prog->float_max_offset < strend - s)) {
+ SV *must;
+ I32 back_max;
+ I32 back_min;
+ char *last;
+ char *last1; /* Last position checked before */
+#ifdef DEBUGGING
+ int did_match = 0;
+#endif
+ if (prog->anchored_substr || prog->anchored_utf8) {
+ if (!(utf8_target ? prog->anchored_utf8 : prog->anchored_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->anchored_utf8 : prog->anchored_substr;
+ back_max = back_min = prog->anchored_offset;
+ } else {
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ must = utf8_target ? prog->float_utf8 : prog->float_substr;
+ back_max = prog->float_max_offset;
+ back_min = prog->float_min_offset;
+ }
+
+
+ if (must == &PL_sv_undef)
+ /* could not downgrade utf8 check substring, so must fail */
+ goto phooey;
+
+ if (back_min<0) {
+ last = strend;
+ } else {
+ last = HOP3c(strend, /* Cannot start after this */
+ -(I32)(CHR_SVLEN(must)
+ - (SvTAIL(must) != 0) + back_min), strbeg);
+ }
+ if (s > PL_bostr)
+ last1 = HOPc(s, -1);
+ else
+ last1 = s - 1; /* bogus */
+
+ /* XXXX check_substr already used to find "s", can optimize if
+ check_substr==must. */
+ scream_pos = -1;
+ dontbother = end_shift;
+ strend = HOPc(strend, -dontbother);
+ while ( (s <= last) &&
+ ((flags & REXEC_SCREAM) && SvSCREAM(sv)
+ ? (s = screaminstr(sv, must, HOP3c(s, back_min, (back_min<0 ? strbeg : strend)) - strbeg,
+ end_shift, &scream_pos, 0))
+ : (s = fbm_instr((unsigned char*)HOP3(s, back_min, (back_min<0 ? strbeg : strend)),
+ (unsigned char*)strend, must,
+ multiline ? FBMrf_MULTILINE : 0))) ) {
+ /* we may be pointing at the wrong string */
+ if ((flags & REXEC_SCREAM) && RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ DEBUG_EXECUTE_r( did_match = 1 );
+ if (HOPc(s, -back_max) > last1) {
+ last1 = HOPc(s, -back_min);
+ s = HOPc(s, -back_max);
+ }
+ else {
+ char * const t = (last1 >= PL_bostr) ? HOPc(last1, 1) : last1 + 1;
+
+ last1 = HOPc(s, -back_min);
+ s = t;
+ }
+ if (utf8_target) {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (s <= last1) {
+ if (regtry(®info, &s))
+ goto got_it;
+ s++;
+ }
+ }
+ }
+ DEBUG_EXECUTE_r(if (!did_match) {
+ RE_PV_QUOTED_DECL(quoted, utf8_target, PERL_DEBUG_PAD_ZERO(0),
+ SvPVX_const(must), RE_SV_DUMPLEN(must), 30);
+ PerlIO_printf(Perl_debug_log, "Did not find %s substr %s%s...\n",
+ ((must == prog->anchored_substr || must == prog->anchored_utf8)
+ ? "anchored" : "floating"),
+ quoted, RE_SV_TAIL(must));
+ });
+ goto phooey;
+ }
+ else if ( (c = progi->regstclass) ) {
+ if (minlen) {
+ const OPCODE op = OP(progi->regstclass);
+ /* don't bother with what can't match */
+ if (PL_regkind[op] != EXACT && op != CANY && PL_regkind[op] != TRIE)
+ strend = HOPc(strend, -(minlen - 1));
+ }
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, c);
+ {
+ RE_PV_QUOTED_DECL(quoted,utf8_target,PERL_DEBUG_PAD_ZERO(1),
+ s,strend-s,60);
+ PerlIO_printf(Perl_debug_log,
+ "Matching stclass %.*s against %s (%d bytes)\n",
+ (int)SvCUR(prop), SvPVX_const(prop),
+ quoted, (int)(strend - s));
+ }
+ });
+ if (find_byclass(prog, c, s, strend, ®info))
+ goto got_it;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "Contradicts stclass... [regexec_flags]\n"));
+ }
+ else {
+ dontbother = 0;
+ if (prog->float_substr != NULL || prog->float_utf8 != NULL) {
+ /* Trim the end. */
+ char *last= NULL;
+ SV* float_real;
+
+ if (!(utf8_target ? prog->float_utf8 : prog->float_substr))
+ utf8_target ? to_utf8_substr(prog) : to_byte_substr(prog);
+ float_real = utf8_target ? prog->float_utf8 : prog->float_substr;
+
+ if ((flags & REXEC_SCREAM) && SvSCREAM(sv)) {
+ last = screaminstr(sv, float_real, s - strbeg,
+ end_shift, &scream_pos, 1); /* last one */
+ if (!last)
+ last = scream_olds; /* Only one occurrence. */
+ /* we may be pointing at the wrong string */
+ else if (RXp_MATCH_COPIED(prog))
+ s = strbeg + (s - SvPVX_const(sv));
+ }
+ else {
+ STRLEN len;
+ const char * const little = SvPV_const(float_real, len);
+ if (SvTAIL(float_real)) {
+ /* This means that float_real contains an artificial \n on the end
+ * due to the presence of something like this: /foo$/
+ * where we can match both "foo" and "foo\n" at the end of the string.
+ * So we have to compare the end of the string first against the float_real
+ * without the \n and then against the full float_real with the string.
+ * We have to watch out for cases where the string might be smaller
+ * than the float_real or the float_real without the \n.
+ */
+ char *checkpos= strend - len;
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sChecking for float_real.%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (checkpos + 1 < strbeg) {
+ /* can't match, even if we remove the trailing \n string is too short to match */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString shorter than required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (memEQ(checkpos + 1, little, len - 1)) {
+ /* can match, the end of the string matches without the "\n" */
+ last = checkpos + 1;
+ } else if (checkpos < strbeg) {
+ /* cant match, string is too short when the "\n" is included */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ } else if (!multiline) {
+ /* non multiline match, so compare with the "\n" at the end of the string */
+ if (memEQ(checkpos, little, len)) {
+ last= checkpos;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%sString does not contain required trailing substring, cannot match.%s\n",
+ PL_colors[4], PL_colors[5]));
+ goto phooey;
+ }
+ } else {
+ /* multiline match, so we have to search for a place where the full string is located */
+ goto find_last;
+ }
+ } else {
+ find_last:
+ if (len)
+ last = rninstr(s, strend, little, little + len);
+ else
+ last = strend; /* matching "$" */
+ }
+ }
+ if (!last) {
+ /* at one point this block contained a comment which was probably
+ * incorrect, which said that this was a "should not happen" case.
+ * Even if it was true when it was written I am pretty sure it is
+ * not anymore, so I have removed the comment and replaced it with
+ * this one. Yves */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "String does not contain required substring, cannot match.\n"
+ ));
+ goto phooey;
+ }
+ dontbother = strend - last + prog->float_min_offset;
+ }
+ if (minlen && (dontbother < minlen))
+ dontbother = minlen - 1;
+ strend -= dontbother; /* this one's always in bytes! */
+ /* We don't know much -- general case. */
+ if (utf8_target) {
+ for (;;) {
+ if (regtry(®info, &s))
+ goto got_it;
+ if (s >= strend)
+ break;
+ s += UTF8SKIP(s);
+ };
+ }
+ else {
+ do {
+ if (regtry(®info, &s))
+ goto got_it;
+ } while (s++ < strend);
+ }
+ }
+
+ /* Failure. */
+ goto phooey;
+
+got_it:
+ Safefree(swap);
+ RX_MATCH_TAINTED_set(rx, PL_reg_flags & RF_tainted);
+
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (RXp_PAREN_NAMES(prog))
+ (void)hv_iterinit(RXp_PAREN_NAMES(prog));
+
+ /* make sure $`, $&, $', and $digit will work later */
+ if ( !(flags & REXEC_NOT_FIRST) ) {
+ RX_MATCH_COPY_FREE(rx);
+ if (flags & REXEC_COPY_STR) {
+ const I32 i = PL_regeol - startpos + (stringarg - strbeg);
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if ((SvIsCOW(sv)
+ || (SvFLAGS(sv) & CAN_COW_MASK) == CAN_COW_FLAGS)) {
+ if (DEBUG_C_TEST) {
+ PerlIO_printf(Perl_debug_log,
+ "Copy on write: regexp capture, type %d\n",
+ (int) SvTYPE(sv));
+ }
+ prog->saved_copy = sv_setsv_cow(prog->saved_copy, sv);
+ prog->subbeg = (char *)SvPVX_const(prog->saved_copy);
+ assert (SvPOKp(prog->saved_copy));
+ } else
+#endif
+ {
+ RX_MATCH_COPIED_on(rx);
+ s = savepvn(strbeg, i);
+ prog->subbeg = s;
+ }
+ prog->sublen = i;
+ }
+ else {
+ prog->subbeg = strbeg;
+ prog->sublen = PL_regeol - strbeg; /* strend may have been modified */
+ }
+ }
+
+ return 1;
+
+phooey:
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch failed%s\n",
+ PL_colors[4], PL_colors[5]));
+ if (PL_reg_eval_set)
+ restore_pos(aTHX_ prog);
+ if (swap) {
+ /* we failed :-( roll it back */
+ Safefree(prog->offs);
+ prog->offs = swap;
+ }
+
+ return 0;
+}
+
+
+/*
+ - regtry - try match at specific point
+ */
+STATIC I32 /* 0 failure, 1 success */
+S_regtry(pTHX_ regmatch_info *reginfo, char **startpos)
+{
+ dVAR;
+ CHECKPOINT lastcp;
+ REGEXP *const rx = reginfo->prog;
+ regexp *const prog = (struct regexp *)SvANY(rx);
+ RXi_GET_DECL(prog,progi);
+ GET_RE_DEBUG_FLAGS_DECL;
+
+ PERL_ARGS_ASSERT_REGTRY;
+
+ reginfo->cutpoint=NULL;
+
+ if ((prog->extflags & RXf_EVAL_SEEN) && !PL_reg_eval_set) {
+ MAGIC *mg;
+
+ PL_reg_eval_set = RS_init;
+ DEBUG_EXECUTE_r(DEBUG_s(
+ PerlIO_printf(Perl_debug_log, " setting stack tmpbase at %"IVdf"\n",
+ (IV)(PL_stack_sp - PL_stack_base));
+ ));
+ SAVESTACK_CXPOS();
+ cxstack[cxstack_ix].blk_oldsp = PL_stack_sp - PL_stack_base;
+ /* Otherwise OP_NEXTSTATE will free whatever on stack now. */
+ SAVETMPS;
+ /* Apparently this is not needed, judging by wantarray. */
+ /* SAVEI8(cxstack[cxstack_ix].blk_gimme);
+ cxstack[cxstack_ix].blk_gimme = G_SCALAR; */
+
+ if (reginfo->sv) {
+ /* Make $_ available to executed code. */
+ if (reginfo->sv != DEFSV) {
+ SAVE_DEFSV;
+ DEFSV_set(reginfo->sv);
+ }
+
+ if (!(SvTYPE(reginfo->sv) >= SVt_PVMG && SvMAGIC(reginfo->sv)
+ && (mg = mg_find(reginfo->sv, PERL_MAGIC_regex_global)))) {
+ /* prepare for quick setting of pos */
+#ifdef PERL_OLD_COPY_ON_WRITE
+ if (SvIsCOW(reginfo->sv))
+ sv_force_normal_flags(reginfo->sv, 0);
+#endif
+ mg = sv_magicext(reginfo->sv, NULL, PERL_MAGIC_regex_global,
+ &PL_vtbl_mglob, NULL, 0);
+ mg->mg_len = -1;
+ }
+ PL_reg_magic = mg;
+ PL_reg_oldpos = mg->mg_len;
+ SAVEDESTRUCTOR_X(restore_pos, prog);
+ }
+ if (!PL_reg_curpm) {
+ Newxz(PL_reg_curpm, 1, PMOP);
+#ifdef USE_ITHREADS
+ {
+ SV* const repointer = &PL_sv_undef;
+ /* this regexp is also owned by the new PL_reg_curpm, which
+ will try to free it. */
+ av_push(PL_regex_padav, repointer);
+ PL_reg_curpm->op_pmoffset = av_len(PL_regex_padav);
+ PL_regex_pad = AvARRAY(PL_regex_padav);
+ }
+#endif
+ }
+#ifdef USE_ITHREADS
+ /* It seems that non-ithreads works both with and without this code.
+ So for efficiency reasons it seems best not to have the code
+ compiled when it is not needed. */
+ /* This is safe against NULLs: */
+ ReREFCNT_dec(PM_GETRE(PL_reg_curpm));
+ /* PM_reg_curpm owns a reference to this regexp. */
+ (void)ReREFCNT_inc(rx);
+#endif
+ PM_SETRE(PL_reg_curpm, rx);
+ PL_reg_oldcurpm = PL_curpm;
+ PL_curpm = PL_reg_curpm;
+ if (RXp_MATCH_COPIED(prog)) {
+ /* Here is a serious problem: we cannot rewrite subbeg,
+ since it may be needed if this match fails. Thus
+ $` inside (?{}) could fail... */
+ PL_reg_oldsaved = prog->subbeg;
+ PL_reg_oldsavedlen = prog->sublen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ PL_nrs = prog->saved_copy;
+#endif
+ RXp_MATCH_COPIED_off(prog);
+ }
+ else
+ PL_reg_oldsaved = NULL;
+ prog->subbeg = PL_bostr;
+ prog->sublen = PL_regeol - PL_bostr; /* strend may have been modified */
+ }
+ DEBUG_EXECUTE_r(PL_reg_starttry = *startpos);
+ prog->offs[0].start = *startpos - PL_bostr;
+ PL_reginput = *startpos;
+ PL_reglastparen = &prog->lastparen;
+ PL_reglastcloseparen = &prog->lastcloseparen;
+ prog->lastparen = 0;
+ prog->lastcloseparen = 0;
+ PL_regsize = 0;
+ PL_regoffs = prog->offs;
+ if (PL_reg_start_tmpl <= prog->nparens) {
+ PL_reg_start_tmpl = prog->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ /* XXXX What this code is doing here?!!! There should be no need
+ to do this again and again, PL_reglastparen should take care of
+ this! --ilya*/
+
+ /* Tests pat.t#187 and split.t#{13,14} seem to depend on this code.
+ * Actually, the code in regcppop() (which Ilya may be meaning by
+ * PL_reglastparen), is not needed at all by the test suite
+ * (op/regexp, op/pat, op/split), but that code is needed otherwise
+ * this erroneously leaves $1 defined: "1" =~ /^(?:(\d)x)?\d$/
+ * Meanwhile, this code *is* needed for the
+ * above-mentioned test suite tests to succeed. The common theme
+ * on those tests seems to be returning null fields from matches.
+ * --jhi updated by dapm */
+#if 1
+ if (prog->nparens) {
+ regexp_paren_pair *pp = PL_regoffs;
+ register I32 i;
+ for (i = prog->nparens; i > (I32)*PL_reglastparen; i--) {
+ ++pp;
+ pp->start = -1;
+ pp->end = -1;
+ }
+ }
+#endif
+ REGCP_SET(lastcp);
+ if (regmatch(reginfo, progi->program + 1)) {
+ PL_regoffs[0].end = PL_reginput - PL_bostr;
+ return 1;
+ }
+ if (reginfo->cutpoint)
+ *startpos= reginfo->cutpoint;
+ REGCP_UNWIND(lastcp);
+ return 0;
+}
+
+
+#define sayYES goto yes
+#define sayNO goto no
+#define sayNO_SILENT goto no_silent
+
+/* we dont use STMT_START/END here because it leads to
+ "unreachable code" warnings, which are bogus, but distracting. */
+#define CACHEsayNO \
+ if (ST.cache_mask) \
+ PL_reg_poscache[ST.cache_offset] |= ST.cache_mask; \
+ sayNO
+
+/* this is used to determine how far from the left messages like
+ 'failed...' are printed. It should be set such that messages
+ are inline with the regop output that created them.
+*/
+#define REPORT_CODE_OFF 32
+
+
+#define CHRTEST_UNINIT -1001 /* c1/c2 haven't been calculated yet */
+#define CHRTEST_VOID -1000 /* the c1/c2 "next char" test should be skipped */
+
+#define SLAB_FIRST(s) (&(s)->states[0])
+#define SLAB_LAST(s) (&(s)->states[PERL_REGMATCH_SLAB_SLOTS-1])
+
+/* grab a new slab and return the first slot in it */
+
+STATIC regmatch_state *
+S_push_slab(pTHX)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ regmatch_slab *s = PL_regmatch_slab->next;
+ if (!s) {
+ Newx(s, 1, regmatch_slab);
+ s->prev = PL_regmatch_slab;
+ s->next = NULL;
+ PL_regmatch_slab->next = s;
+ }
+ PL_regmatch_slab = s;
+ return SLAB_FIRST(s);
+}
+
+
+/* push a new state then goto it */
+
+#define PUSH_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_state;
+
+/* push a new state with success backtracking, then goto it */
+
+#define PUSH_YES_STATE_GOTO(state, node) \
+ scan = node; \
+ st->resume_state = state; \
+ goto push_yes_state;
+
+
+
+/*
+
+regmatch() - main matching routine
+
+This is basically one big switch statement in a loop. We execute an op,
+set 'next' to point the next op, and continue. If we come to a point which
+we may need to backtrack to on failure such as (A|B|C), we push a
+backtrack state onto the backtrack stack. On failure, we pop the top
+state, and re-enter the loop at the state indicated. If there are no more
+states to pop, we return failure.
+
+Sometimes we also need to backtrack on success; for example /A+/, where
+after successfully matching one A, we need to go back and try to
+match another one; similarly for lookahead assertions: if the assertion
+completes successfully, we backtrack to the state just before the assertion
+and then carry on. In these cases, the pushed state is marked as
+'backtrack on success too'. This marking is in fact done by a chain of
+pointers, each pointing to the previous 'yes' state. On success, we pop to
+the nearest yes state, discarding any intermediate failure-only states.
+Sometimes a yes state is pushed just to force some cleanup code to be
+called at the end of a successful match or submatch; e.g. (??{$re}) uses
+it to free the inner regex.
+
+Note that failure backtracking rewinds the cursor position, while
+success backtracking leaves it alone.
+
+A pattern is complete when the END op is executed, while a subpattern
+such as (?=foo) is complete when the SUCCESS op is executed. Both of these
+ops trigger the "pop to last yes state if any, otherwise return true"
+behaviour.
+
+A common convention in this function is to use A and B to refer to the two
+subpatterns (or to the first nodes thereof) in patterns like /A*B/: so A is
+the subpattern to be matched possibly multiple times, while B is the entire
+rest of the pattern. Variable and state names reflect this convention.
+
+The states in the main switch are the union of ops and failure/success of
+substates associated with with that op. For example, IFMATCH is the op
+that does lookahead assertions /(?=A)B/ and so the IFMATCH state means
+'execute IFMATCH'; while IFMATCH_A is a state saying that we have just
+successfully matched A and IFMATCH_A_fail is a state saying that we have
+just failed to match A. Resume states always come in pairs. The backtrack
+state we push is marked as 'IFMATCH_A', but when that is popped, we resume
+at IFMATCH_A or IFMATCH_A_fail, depending on whether we are backtracking
+on success or failure.
+
+The struct that holds a backtracking state is actually a big union, with
+one variant for each major type of op. The variable st points to the
+top-most backtrack struct. To make the code clearer, within each
+block of code we #define ST to alias the relevant union.
+
+Here's a concrete example of a (vastly oversimplified) IFMATCH
+implementation:
+
+ switch (state) {
+ ....
+
+#define ST st->u.ifmatch
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ ST.foo = ...; // some state we wish to save
+ ...
+ // push a yes backtrack state with a resume value of
+ // IFMATCH_A/IFMATCH_A_fail, then continue execution at the
+ // first node of A:
+ PUSH_YES_STATE_GOTO(IFMATCH_A, A);
+ // NOTREACHED
+
+ case IFMATCH_A: // we have successfully executed A; now continue with B
+ next = B;
+ bar = ST.foo; // do something with the preserved value
+ break;
+
+ case IFMATCH_A_fail: // A failed, so the assertion failed
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+
+#undef ST
+
+ ...
+ }
+
+For any old-timers reading this who are familiar with the old recursive
+approach, the code above is equivalent to:
+
+ case IFMATCH: // we are executing the IFMATCH op, (?=A)B
+ {
+ int foo = ...
+ ...
+ if (regmatch(A)) {
+ next = B;
+ bar = foo;
+ break;
+ }
+ ...; // do some housekeeping, then ...
+ sayNO; // propagate the failure
+ }
+
+The topmost backtrack state, pointed to by st, is usually free. If you
+want to claim it, populate any ST.foo fields in it with values you wish to
+save, then do one of
+
+ PUSH_STATE_GOTO(resume_state, node);
+ PUSH_YES_STATE_GOTO(resume_state, node);
+
+which sets that backtrack state's resume value to 'resume_state', pushes a
+new free entry to the top of the backtrack stack, then goes to 'node'.
+On backtracking, the free slot is popped, and the saved state becomes the
+new free state. An ST.foo field in this new top state can be temporarily
+accessed to retrieve values, but once the main loop is re-entered, it
+becomes available for reuse.
+
+Note that the depth of the backtrack stack constantly increases during the
+left-to-right execution of the pattern, rather than going up and down with
+the pattern nesting. For example the stack is at its maximum at Z at the
+end of the pattern, rather than at X in the following:
+
+ /(((X)+)+)+....(Y)+....Z/
+
+The only exceptions to this are lookahead/behind assertions and the cut,
+(?>A), which pop all the backtrack states associated with A before
+continuing.
+
+Backtrack state structs are allocated in slabs of about 4K in size.
+PL_regmatch_state and st always point to the currently active state,
+and PL_regmatch_slab points to the slab currently containing
+PL_regmatch_state. The first time regmatch() is called, the first slab is
+allocated, and is never freed until interpreter destruction. When the slab
+is full, a new one is allocated and chained to the end. At exit from
+regmatch(), slabs allocated since entry are freed.
+
+*/
+
+
+#define DEBUG_STATE_pp(pp) \
+ DEBUG_STATE_r({ \
+ DUMP_EXEC_POS(locinput, scan, utf8_target); \
+ PerlIO_printf(Perl_debug_log, \
+ " %*s"pp" %s%s%s%s%s\n", \
+ depth*2, "", \
+ PL_reg_name[st->resume_state], \
+ ((st==yes_state||st==mark_state) ? "[" : ""), \
+ ((st==yes_state) ? "Y" : ""), \
+ ((st==mark_state) ? "M" : ""), \
+ ((st==yes_state||st==mark_state) ? "]" : "") \
+ ); \
+ });
+
+
+#define REG_NODE_NUM(x) ((x) ? (int)((x)-prog) : -1)
+
+#ifdef DEBUGGING
+
+STATIC void
+S_debug_start_match(pTHX_ const REGEXP *prog, const bool utf8_target,
+ const char *start, const char *end, const char *blurb)
+{
+ const bool utf8_pat = RX_UTF8(prog) ? 1 : 0;
+
+ PERL_ARGS_ASSERT_DEBUG_START_MATCH;
+
+ if (!PL_colorset)
+ reginitcolors();
+ {
+ RE_PV_QUOTED_DECL(s0, utf8_pat, PERL_DEBUG_PAD_ZERO(0),
+ RX_PRECOMP_const(prog), RX_PRELEN(prog), 60);
+
+ RE_PV_QUOTED_DECL(s1, utf8_target, PERL_DEBUG_PAD_ZERO(1),
+ start, end - start, 60);
+
+ PerlIO_printf(Perl_debug_log,
+ "%s%s REx%s %s against %s\n",
+ PL_colors[4], blurb, PL_colors[5], s0, s1);
+
+ if (utf8_target||utf8_pat)
+ PerlIO_printf(Perl_debug_log, "UTF-8 %s%s%s...\n",
+ utf8_pat ? "pattern" : "",
+ utf8_pat && utf8_target ? " and " : "",
+ utf8_target ? "string" : ""
+ );
+ }
+}
+
+STATIC void
+S_dump_exec_pos(pTHX_ const char *locinput,
+ const regnode *scan,
+ const char *loc_regeol,
+ const char *loc_bostr,
+ const char *loc_reg_starttry,
+ const bool utf8_target)
+{
+ const int docolor = *PL_colors[0] || *PL_colors[2] || *PL_colors[4];
+ const int taill = (docolor ? 10 : 7); /* 3 chars for "> <" */
+ int l = (loc_regeol - locinput) > taill ? taill : (loc_regeol - locinput);
+ /* The part of the string before starttry has one color
+ (pref0_len chars), between starttry and current
+ position another one (pref_len - pref0_len chars),
+ after the current position the third one.
+ We assume that pref0_len <= pref_len, otherwise we
+ decrease pref0_len. */
+ int pref_len = (locinput - loc_bostr) > (5 + taill) - l
+ ? (5 + taill) - l : locinput - loc_bostr;
+ int pref0_len;
+
+ PERL_ARGS_ASSERT_DUMP_EXEC_POS;
+
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput - pref_len)))
+ pref_len++;
+ pref0_len = pref_len - (locinput - loc_reg_starttry);
+ if (l + pref_len < (5 + taill) && l < loc_regeol - locinput)
+ l = ( loc_regeol - locinput > (5 + taill) - pref_len
+ ? (5 + taill) - pref_len : loc_regeol - locinput);
+ while (utf8_target && UTF8_IS_CONTINUATION(*(U8*)(locinput + l)))
+ l--;
+ if (pref0_len < 0)
+ pref0_len = 0;
+ if (pref0_len > pref_len)
+ pref0_len = pref_len;
+ {
+ const int is_uni = (utf8_target && OP(scan) != CANY) ? 1 : 0;
+
+ RE_PV_COLOR_DECL(s0,len0,is_uni,PERL_DEBUG_PAD(0),
+ (locinput - pref_len),pref0_len, 60, 4, 5);
+
+ RE_PV_COLOR_DECL(s1,len1,is_uni,PERL_DEBUG_PAD(1),
+ (locinput - pref_len + pref0_len),
+ pref_len - pref0_len, 60, 2, 3);
+
+ RE_PV_COLOR_DECL(s2,len2,is_uni,PERL_DEBUG_PAD(2),
+ locinput, loc_regeol - locinput, 10, 0, 1);
+
+ const STRLEN tlen=len0+len1+len2;
+ PerlIO_printf(Perl_debug_log,
+ "%4"IVdf" <%.*s%.*s%s%.*s>%*s|",
+ (IV)(locinput - loc_bostr),
+ len0, s0,
+ len1, s1,
+ (docolor ? "" : "> <"),
+ len2, s2,
+ (int)(tlen > 19 ? 0 : 19 - tlen),
+ "");
+ }
+}
+
+#endif
+
+/* reg_check_named_buff_matched()
+ * Checks to see if a named buffer has matched. The data array of
+ * buffer numbers corresponding to the buffer is expected to reside
+ * in the regexp->data->data array in the slot stored in the ARG() of
+ * node involved. Note that this routine doesn't actually care about the
+ * name, that information is not preserved from compilation to execution.
+ * Returns the index of the leftmost defined buffer with the given name
+ * or 0 if non of the buffers matched.
+ */
+STATIC I32
+S_reg_check_named_buff_matched(pTHX_ const regexp *rex, const regnode *scan)
+{
+ I32 n;
+ RXi_GET_DECL(rex,rexi);
+ SV *sv_dat= MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ I32 *nums=(I32*)SvPVX(sv_dat);
+
+ PERL_ARGS_ASSERT_REG_CHECK_NAMED_BUFF_MATCHED;
+
+ for ( n=0; n<SvIVX(sv_dat); n++ ) {
+ if ((I32)*PL_reglastparen >= nums[n] &&
+ PL_regoffs[nums[n]].end != -1)
+ {
+ return nums[n];
+ }
+ }
+ return 0;
+}
+
+
+/* free all slabs above current one - called during LEAVE_SCOPE */
+
+STATIC void
+S_clear_backtrack_stack(pTHX_ void *p)
+{
+ regmatch_slab *s = PL_regmatch_slab->next;
+ PERL_UNUSED_ARG(p);
+
+ if (!s)
+ return;
+ PL_regmatch_slab->next = NULL;
+ while (s) {
+ regmatch_slab * const osl = s;
+ s = s->next;
+ Safefree(osl);
+ }
+}
+
+
+#define SETREX(Re1,Re2) \
+ if (PL_reg_eval_set) PM_SETRE((PL_reg_curpm), (Re2)); \
+ Re1 = (Re2)
+
+STATIC I32 /* 0 failure, 1 success */
+S_regmatch(pTHX_ regmatch_info *reginfo, regnode *prog)
+{
+#if PERL_VERSION < 9 && !defined(PERL_CORE)
+ dMY_CXT;
+#endif
+ dVAR;
+ register const bool utf8_target = PL_reg_match_utf8;
+ const U32 uniflags = UTF8_ALLOW_DEFAULT;
+ REGEXP *rex_sv = reginfo->prog;
+ regexp *rex = (struct regexp *)SvANY(rex_sv);
+ RXi_GET_DECL(rex,rexi);
+ I32 oldsave;
+ /* the current state. This is a cached copy of PL_regmatch_state */
+ register regmatch_state *st;
+ /* cache heavy used fields of st in registers */
+ register regnode *scan;
+ register regnode *next;
+ register U32 n = 0; /* general value; init to avoid compiler warning */
+ register I32 ln = 0; /* len or last; init to avoid compiler warning */
+ register char *locinput = PL_reginput;
+ register I32 nextchr; /* is always set to UCHARAT(locinput) */
+
+ bool result = 0; /* return value of S_regmatch */
+ int depth = 0; /* depth of backtrack stack */
+ U32 nochange_depth = 0; /* depth of GOSUB recursion with nochange */
+ const U32 max_nochange_depth =
+ (3 * rex->nparens > MAX_RECURSE_EVAL_NOCHANGE_DEPTH) ?
+ 3 * rex->nparens : MAX_RECURSE_EVAL_NOCHANGE_DEPTH;
+ regmatch_state *yes_state = NULL; /* state to pop to on success of
+ subpattern */
+ /* mark_state piggy backs on the yes_state logic so that when we unwind
+ the stack on success we can update the mark_state as we go */
+ regmatch_state *mark_state = NULL; /* last mark state we have seen */
+ regmatch_state *cur_eval = NULL; /* most recent EVAL_AB state */
+ struct regmatch_state *cur_curlyx = NULL; /* most recent curlyx */
+ U32 state_num;
+ bool no_final = 0; /* prevent failure from backtracking? */
+ bool do_cutgroup = 0; /* no_final only until next branch/trie entry */
+ char *startpoint = PL_reginput;
+ SV *popmark = NULL; /* are we looking for a mark? */
+ SV *sv_commit = NULL; /* last mark name seen in failure */
+ SV *sv_yes_mark = NULL; /* last mark name we have seen
+ during a successful match */
+ U32 lastopen = 0; /* last open we saw */
+ bool has_cutgroup = RX_HAS_CUTGROUP(rex) ? 1 : 0;
+ SV* const oreplsv = GvSV(PL_replgv);
+ /* these three flags are set by various ops to signal information to
+ * the very next op. They have a useful lifetime of exactly one loop
+ * iteration, and are not preserved or restored by state pushes/pops
+ */
+ bool sw = 0; /* the condition value in (?(cond)a|b) */
+ bool minmod = 0; /* the next "{n,m}" is a "{n,m}?" */
+ int logical = 0; /* the following EVAL is:
+ 0: (?{...})
+ 1: (?(?{...})X|Y)
+ 2: (??{...})
+ or the following IFMATCH/UNLESSM is:
+ false: plain (?=foo)
+ true: used as a condition: (?(?=foo))
+ */
+#ifdef DEBUGGING
+ GET_RE_DEBUG_FLAGS_DECL;
+#endif
+
+ PERL_ARGS_ASSERT_REGMATCH;
+
+ DEBUG_OPTIMISE_r( DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,"regmatch start\n");
+ }));
+ /* on first ever call to regmatch, allocate first slab */
+ if (!PL_regmatch_slab) {
+ Newx(PL_regmatch_slab, 1, regmatch_slab);
+ PL_regmatch_slab->prev = NULL;
+ PL_regmatch_slab->next = NULL;
+ PL_regmatch_state = SLAB_FIRST(PL_regmatch_slab);
+ }
+
+ oldsave = PL_savestack_ix;
+ SAVEDESTRUCTOR_X(S_clear_backtrack_stack, NULL);
+ SAVEVPTR(PL_regmatch_slab);
+ SAVEVPTR(PL_regmatch_state);
+
+ /* grab next free state slot */
+ st = ++PL_regmatch_state;
+ if (st > SLAB_LAST(PL_regmatch_slab))
+ st = PL_regmatch_state = S_push_slab(aTHX);
+
+ /* Note that nextchr is a byte even in UTF */
+ nextchr = UCHARAT(locinput);
+ scan = prog;
+ while (scan != NULL) {
+
+ DEBUG_EXECUTE_r( {
+ SV * const prop = sv_newmortal();
+ regnode *rnext=regnext(scan);
+ DUMP_EXEC_POS( locinput, scan, utf8_target );
+ regprop(rex, prop, scan);
+
+ PerlIO_printf(Perl_debug_log,
+ "%3"IVdf":%*s%s(%"IVdf")\n",
+ (IV)(scan - rexi->program), depth*2, "",
+ SvPVX_const(prop),
+ (PL_regkind[OP(scan)] == END || !rnext) ?
+ 0 : (IV)(rnext - rexi->program));
+ });
+
+ next = scan + NEXT_OFF(scan);
+ if (next == scan)
+ next = NULL;
+ state_num = OP(scan);
+
+ REH_CALL_EXEC_NODE_HOOK(rex, scan, reginfo, st);
+ reenter_switch:
+
+ assert(PL_reglastparen == &rex->lastparen);
+ assert(PL_reglastcloseparen == &rex->lastcloseparen);
+ assert(PL_regoffs == rex->offs);
+
+ switch (state_num) {
+ case BOL:
+ if (locinput == PL_bostr)
+ {
+ /* reginfo->till = reginfo->bol; */
+ break;
+ }
+ sayNO;
+ case MBOL:
+ if (locinput == PL_bostr ||
+ ((nextchr || locinput < PL_regeol) && locinput[-1] == '\n'))
+ {
+ break;
+ }
+ sayNO;
+ case SBOL:
+ if (locinput == PL_bostr)
+ break;
+ sayNO;
+ case GPOS:
+ if (locinput == reginfo->ganch)
+ break;
+ sayNO;
+
+ case KEEPS:
+ /* update the startpoint */
+ st->u.keeper.val = PL_regoffs[0].start;
+ PL_reginput = locinput;
+ PL_regoffs[0].start = locinput - PL_bostr;
+ PUSH_STATE_GOTO(KEEPS_next, next);
+ /*NOT-REACHED*/
+ case KEEPS_next_fail:
+ /* rollback the start point change */
+ PL_regoffs[0].start = st->u.keeper.val;
+ sayNO_SILENT;
+ /*NOT-REACHED*/
+ case EOL:
+ goto seol;
+ case MEOL:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ break;
+ case SEOL:
+ seol:
+ if ((nextchr || locinput < PL_regeol) && nextchr != '\n')
+ sayNO;
+ if (PL_regeol - locinput > 1)
+ sayNO;
+ break;
+ case EOS:
+ if (PL_regeol != locinput)
+ sayNO;
+ break;
+ case SANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+ case CANY:
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ case REG_ANY:
+ if ((!nextchr && locinput >= PL_regeol) || nextchr == '\n')
+ sayNO;
+ if (utf8_target) {
+ locinput += PL_utf8skip[nextchr];
+ if (locinput > PL_regeol)
+ sayNO;
+ nextchr = UCHARAT(locinput);
+ }
+ else
+ nextchr = UCHARAT(++locinput);
+ break;
+
+#undef ST
+#define ST st->u.trie
+ case TRIEC:
+ /* In this case the charclass data is available inline so
+ we can fail fast without a lot of extra overhead.
+ */
+ if(!ANYOF_BITMAP_TEST(scan, *locinput)) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ /* NOTREACHED */
+ }
+ /* FALL THROUGH */
+ case TRIE:
+ /* the basic plan of execution of the trie is:
+ * At the beginning, run though all the states, and
+ * find the longest-matching word. Also remember the position
+ * of the shortest matching word. For example, this pattern:
+ * 1 2 3 4 5
+ * ab|a|x|abcd|abc
+ * when matched against the string "abcde", will generate
+ * accept states for all words except 3, with the longest
+ * matching word being 4, and the shortest being 1 (with
+ * the position being after char 1 of the string).
+ *
+ * Then for each matching word, in word order (i.e. 1,2,4,5),
+ * we run the remainder of the pattern; on each try setting
+ * the current position to the character following the word,
+ * returning to try the next word on failure.
+ *
+ * We avoid having to build a list of words at runtime by
+ * using a compile-time structure, wordinfo[].prev, which
+ * gives, for each word, the previous accepting word (if any).
+ * In the case above it would contain the mappings 1->2, 2->0,
+ * 3->0, 4->5, 5->1. We can use this table to generate, from
+ * the longest word (4 above), a list of all words, by
+ * following the list of prev pointers; this gives us the
+ * unordered list 4,5,1,2. Then given the current word we have
+ * just tried, we can go through the list and find the
+ * next-biggest word to try (so if we just failed on word 2,
+ * the next in the list is 4).
+ *
+ * Since at runtime we don't record the matching position in
+ * the string for each word, we have to work that out for
+ * each word we're about to process. The wordinfo table holds
+ * the character length of each word; given that we recorded
+ * at the start: the position of the shortest word and its
+ * length in chars, we just need to move the pointer the
+ * difference between the two char lengths. Depending on
+ * Unicode status and folding, that's cheap or expensive.
+ *
+ * This algorithm is optimised for the case where are only a
+ * small number of accept states, i.e. 0,1, or maybe 2.
+ * With lots of accepts states, and having to try all of them,
+ * it becomes quadratic on number of accept states to find all
+ * the next words.
+ */
+
+ {
+ /* what type of TRIE am I? (utf8 makes this contextual) */
+ DECL_TRIE_TYPE(scan);
+
+ /* what trie are we using right now */
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ ARG( scan ) ];
+ HV * widecharmap = MUTABLE_HV(rexi->data->data[ ARG( scan ) + 1 ]);
+ U32 state = trie->startstate;
+
+ if (trie->bitmap && !TRIE_BITMAP_TEST(trie,*locinput) ) {
+ if (trie->states[ state ].wordnum) {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %smatched empty string...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ if (!trie->jump)
+ break;
+ } else {
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed to match trie start class...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5])
+ );
+ sayNO_SILENT;
+ }
+ }
+
+ {
+ U8 *uc = ( U8* )locinput;
+
+ STRLEN len = 0;
+ STRLEN foldlen = 0;
+ U8 *uscan = (U8*)NULL;
+ U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
+ U32 charcount = 0; /* how many input chars we have matched */
+ U32 accepted = 0; /* have we seen any accepting states? */
+
+ ST.B = next;
+ ST.jump = trie->jump;
+ ST.me = scan;
+ ST.firstpos = NULL;
+ ST.longfold = FALSE; /* char longer if folded => it's harder */
+ ST.nextword = 0;
+
+ /* fully traverse the TRIE; note the position of the
+ shortest accept state and the wordnum of the longest
+ accept state */
+
+ while ( state && uc <= (U8*)PL_regeol ) {
+ U32 base = trie->states[ state ].trans.base;
+ UV uvc = 0;
+ U16 charid = 0;
+ U16 wordnum;
+ wordnum = trie->states[ state ].wordnum;
+
+ if (wordnum) { /* it's an accept state */
+ if (!accepted) {
+ accepted = 1;
+ /* record first match position */
+ if (ST.longfold) {
+ ST.firstpos = (U8*)locinput;
+ ST.firstchars = 0;
+ }
+ else {
+ ST.firstpos = uc;
+ ST.firstchars = charcount;
+ }
+ }
+ if (!ST.nextword || wordnum < ST.nextword)
+ ST.nextword = wordnum;
+ ST.topword = wordnum;
+ }
+
+ DEBUG_TRIE_EXECUTE_r({
+ DUMP_EXEC_POS( (char *)uc, scan, utf8_target );
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sState: %4"UVxf" Accepted: %c ",
+ 2+depth * 2, "", PL_colors[4],
+ (UV)state, (accepted ? 'Y' : 'N'));
+ });
+
+ /* read a char and goto next state */
+ if ( base ) {
+ I32 offset;
+ REXEC_TRIE_READ_CHAR(trie_type, trie, widecharmap, uc,
+ uscan, len, uvc, charid, foldlen,
+ foldbuf, uniflags);
+ charcount++;
+ if (foldlen>0)
+ ST.longfold = TRUE;
+ if (charid &&
+ ( ((offset =
+ base + charid - 1 - trie->uniquecharcount)) >= 0)
+
+ && ((U32)offset < trie->lasttrans)
+ && trie->trans[offset].check == state)
+ {
+ state = trie->trans[offset].next;
+ }
+ else {
+ state = 0;
+ }
+ uc += len;
+
+ }
+ else {
+ state = 0;
+ }
+ DEBUG_TRIE_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "Charid:%3x CP:%4"UVxf" After State: %4"UVxf"%s\n",
+ charid, uvc, (UV)state, PL_colors[5] );
+ );
+ }
+ if (!accepted)
+ sayNO;
+
+ /* calculate total number of accept states */
+ {
+ U16 w = ST.topword;
+ accepted = 0;
+ while (w) {
+ w = trie->wordinfo[w].prev;
+ accepted++;
+ }
+ ST.accepted = accepted;
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sgot %"IVdf" possible matches%s\n",
+ REPORT_CODE_OFF + depth * 2, "",
+ PL_colors[4], (IV)ST.accepted, PL_colors[5] );
+ );
+ goto trie_first_try; /* jump into the fail handler */
+ }}
+ /* NOTREACHED */
+
+ case TRIE_next_fail: /* we failed - try next alternative */
+ if ( ST.jump) {
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ }
+ if (!--ST.accepted) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ {
+ /* Find next-highest word to process. Note that this code
+ * is O(N^2) per trie run (O(N) per branch), so keep tight */
+ register U16 min = 0;
+ register U16 word;
+ register U16 const nextword = ST.nextword;
+ register reg_trie_wordinfo * const wordinfo
+ = ((reg_trie_data*)rexi->data->data[ARG(ST.me)])->wordinfo;
+ for (word=ST.topword; word; word=wordinfo[word].prev) {
+ if (word > nextword && (!min || word < min))
+ min = word;
+ }
+ ST.nextword = min;
+ }
+
+ trie_first_try:
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+
+ if ( ST.jump) {
+ ST.lastparen = *PL_reglastparen;
+ REGCP_SET(ST.cp);
+ }
+
+ /* find start char of end of current word */
+ {
+ U32 chars; /* how many chars to skip */
+ U8 *uc = ST.firstpos;
+ reg_trie_data * const trie
+ = (reg_trie_data*)rexi->data->data[ARG(ST.me)];
+
+ assert((trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ >= ST.firstchars);
+ chars = (trie->wordinfo[ST.nextword].len - trie->prefixlen)
+ - ST.firstchars;
+
+ if (ST.longfold) {
+ /* the hard option - fold each char in turn and find
+ * its folded length (which may be different */
+ U8 foldbuf[UTF8_MAXBYTES_CASE + 1];
+ STRLEN foldlen;
+ STRLEN len;
+ UV uvc;
+ U8 *uscan;
+
+ while (chars) {
+ if (utf8_target) {
+ uvc = utf8n_to_uvuni((U8*)uc, UTF8_MAXLEN, &len,
+ uniflags);
+ uc += len;
+ }
+ else {
+ uvc = *uc;
+ uc++;
+ }
+ uvc = to_uni_fold(uvc, foldbuf, &foldlen);
+ uscan = foldbuf;
+ while (foldlen) {
+ if (!--chars)
+ break;
+ uvc = utf8n_to_uvuni(uscan, UTF8_MAXLEN, &len,
+ uniflags);
+ uscan += len;
+ foldlen -= len;
+ }
+ }
+ }
+ else {
+ if (utf8_target)
+ while (chars--)
+ uc += UTF8SKIP(uc);
+ else
+ uc += chars;
+ }
+ PL_reginput = (char *)uc;
+ }
+
+ scan = (ST.jump && ST.jump[ST.nextword])
+ ? ST.me + ST.jump[ST.nextword]
+ : ST.B;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sTRIE matched word #%d, continuing%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ ST.nextword,
+ PL_colors[5]
+ );
+ });
+
+ if (ST.accepted > 1 || has_cutgroup) {
+ PUSH_STATE_GOTO(TRIE_next, scan);
+ /* NOTREACHED */
+ }
+ /* only one choice left - just continue */
+ DEBUG_EXECUTE_r({
+ AV *const trie_words
+ = MUTABLE_AV(rexi->data->data[ARG(ST.me)+TRIE_WORDS_OFFSET]);
+ SV ** const tmp = av_fetch( trie_words,
+ ST.nextword-1, 0 );
+ SV *sv= tmp ? sv_newmortal() : NULL;
+
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sonly one match left, short-circuiting: #%d <%s>%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4],
+ ST.nextword,
+ tmp ? pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 0,
+ PL_colors[0], PL_colors[1],
+ (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)|PERL_PV_ESCAPE_NONASCII
+ )
+ : "not compiled under -Dr",
+ PL_colors[5] );
+ });
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ continue; /* execute rest of RE */
+ /* NOTREACHED */
+#undef ST
+
+ case EXACT: {
+ char *s = STRING(scan);
+ ln = STR_LEN(scan);
+ if (utf8_target != UTF_PATTERN) {
+ /* The target and the pattern have differing utf8ness. */
+ char *l = locinput;
+ const char * const e = s + ln;
+
+ if (utf8_target) {
+ /* The target is utf8, the pattern is not utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*(U8*)s) !=
+ utf8n_to_uvuni((U8*)l, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ l += ulen;
+ s ++;
+ }
+ }
+ else {
+ /* The target is not utf8, the pattern is utf8. */
+ while (s < e) {
+ STRLEN ulen;
+ if (l >= PL_regeol)
+ sayNO;
+ if (NATIVE_TO_UNI(*((U8*)l)) !=
+ utf8n_to_uvuni((U8*)s, UTF8_MAXBYTES, &ulen,
+ uniflags))
+ sayNO;
+ s += ulen;
+ l ++;
+ }
+ }
+ locinput = l;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ /* The target and the pattern have the same utf8ness. */
+ /* Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr)
+ sayNO;
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && memNE(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case EXACTFL: {
+ re_fold_t folder;
+ const U8 * fold_array;
+ const char * s;
+ U32 fold_utf8_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ fold_utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = (UTF_PATTERN) ? FOLDEQ_S1_ALREADY_FOLDED : 0;
+ goto do_exactf;
+
+ case EXACTFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ fold_utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ fold_utf8_flags = 0;
+
+ do_exactf:
+ s = STRING(scan);
+ ln = STR_LEN(scan);
+
+ if (utf8_target || UTF_PATTERN || state_num == EXACTFU_SS) {
+ /* Either target or the pattern are utf8, or has the issue where
+ * the fold lengths may differ. */
+ const char * const l = locinput;
+ char *e = PL_regeol;
+
+ if (! foldEQ_utf8_flags(s, 0, ln, cBOOL(UTF_PATTERN),
+ l, &e, 0, utf8_target, fold_utf8_flags))
+ {
+ sayNO;
+ }
+ locinput = e;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Neither the target nor the pattern are utf8 */
+ if (UCHARAT(s) != nextchr &&
+ UCHARAT(s) != fold_array[nextchr])
+ {
+ sayNO;
+ }
+ if (PL_regeol - locinput < ln)
+ sayNO;
+ if (ln > 1 && ! folder(s, locinput, ln))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* XXX Could improve efficiency by separating these all out using a
+ * macro or in-line function. At that point regcomp.c would no longer
+ * have to set the FLAGS fields of these */
+ case BOUNDL:
+ case NBOUNDL:
+ PL_reg_flags |= RF_tainted;
+ /* FALL THROUGH */
+ case BOUND:
+ case BOUNDU:
+ case BOUNDA:
+ case NBOUND:
+ case NBOUNDU:
+ case NBOUNDA:
+ /* was last char in word? */
+ if (utf8_target
+ && FLAGS(scan) != REGEX_ASCII_RESTRICTED_CHARSET
+ && FLAGS(scan) != REGEX_ASCII_MORE_RESTRICTED_CHARSET)
+ {
+ if (locinput == PL_bostr)
+ ln = '\n';
+ else {
+ const U8 * const r = reghop3((U8*)locinput, -1, (U8*)PL_bostr);
+
+ ln = utf8n_to_uvchr(r, UTF8SKIP(r), 0, uniflags);
+ }
+ if (FLAGS(scan) != REGEX_LOCALE_CHARSET) {
+ ln = isALNUM_uni(ln);
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ n = swash_fetch(PL_utf8_alnum, (U8*)locinput, utf8_target);
+ }
+ else {
+ ln = isALNUM_LC_uvchr(UNI_TO_NATIVE(ln));
+ n = isALNUM_LC_utf8((U8*)locinput);
+ }
+ }
+ else {
+
+ /* Here the string isn't utf8, or is utf8 and only ascii
+ * characters are to match \w. In the latter case looking at
+ * the byte just prior to the current one may be just the final
+ * byte of a multi-byte character. This is ok. There are two
+ * cases:
+ * 1) it is a single byte character, and then the test is doing
+ * just what it's supposed to.
+ * 2) it is a multi-byte character, in which case the final
+ * byte is never mistakable for ASCII, and so the test
+ * will say it is not a word character, which is the
+ * correct answer. */
+ ln = (locinput != PL_bostr) ?
+ UCHARAT(locinput - 1) : '\n';
+ switch (FLAGS(scan)) {
+ case REGEX_UNICODE_CHARSET:
+ ln = isWORDCHAR_L1(ln);
+ n = isWORDCHAR_L1(nextchr);
+ break;
+ case REGEX_LOCALE_CHARSET:
+ ln = isALNUM_LC(ln);
+ n = isALNUM_LC(nextchr);
+ break;
+ case REGEX_DEPENDS_CHARSET:
+ ln = isALNUM(ln);
+ n = isALNUM(nextchr);
+ break;
+ case REGEX_ASCII_RESTRICTED_CHARSET:
+ case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
+ ln = isWORDCHAR_A(ln);
+ n = isWORDCHAR_A(nextchr);
+ break;
+ default:
+ Perl_croak(aTHX_ "panic: Unexpected FLAGS %u in op %u", FLAGS(scan), OP(scan));
+ break;
+ }
+ }
+ /* Note requires that all BOUNDs be lower than all NBOUNDs in
+ * regcomp.sym */
+ if (((!ln) == (!n)) == (OP(scan) < NBOUND))
+ sayNO;
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || state_num == ANYOFV) {
+ STRLEN inclasslen = PL_regeol - locinput;
+ if (locinput >= PL_regeol)
+ sayNO;
+
+ if (!reginclass(rex, scan, (U8*)locinput, &inclasslen, utf8_target))
+ sayNO;
+ locinput += inclasslen;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ else {
+ if (nextchr < 0)
+ nextchr = UCHARAT(locinput);
+ if (!nextchr && locinput >= PL_regeol)
+ sayNO;
+ if (!REGINCLASS(rex, scan, (U8*)locinput))
+ sayNO;
+ nextchr = UCHARAT(++locinput);
+ break;
+ }
+ break;
+ /* Special char classes - The defines start on line 129 or so */
+ CCC_TRY_U(ALNUM, NALNUM, isWORDCHAR,
+ ALNUML, NALNUML, isALNUM_LC, isALNUM_LC_utf8,
+ ALNUMU, NALNUMU, isWORDCHAR_L1,
+ ALNUMA, NALNUMA, isWORDCHAR_A,
+ alnum, "a");
+
+ CCC_TRY_U(SPACE, NSPACE, isSPACE,
+ SPACEL, NSPACEL, isSPACE_LC, isSPACE_LC_utf8,
+ SPACEU, NSPACEU, isSPACE_L1,
+ SPACEA, NSPACEA, isSPACE_A,
+ space, " ");
+
+ CCC_TRY(DIGIT, NDIGIT, isDIGIT,
+ DIGITL, NDIGITL, isDIGIT_LC, isDIGIT_LC_utf8,
+ DIGITA, NDIGITA, isDIGIT_A,
+ digit, "0");
+
+ case CLUMP: /* Match \X: logical Unicode character. This is defined as
+ a Unicode extended Grapheme Cluster */
+ /* From http://www.unicode.org/reports/tr29 (5.2 version). An
+ extended Grapheme Cluster is:
+
+ CR LF
+ | Prepend* Begin Extend*
+ | .
+
+ Begin is (Hangul-syllable | ! Control)
+ Extend is (Grapheme_Extend | Spacing_Mark)
+ Control is [ GCB_Control CR LF ]
+
+ The discussion below shows how the code for CLUMP is derived
+ from this regex. Note that most of these concepts are from
+ property values of the Grapheme Cluster Boundary (GCB) property.
+ No code point can have multiple property values for a given
+ property. Thus a code point in Prepend can't be in Control, but
+ it must be in !Control. This is why Control above includes
+ GCB_Control plus CR plus LF. The latter two are used in the GCB
+ property separately, and so can't be in GCB_Control, even though
+ they logically are controls. Control is not the same as gc=cc,
+ but includes format and other characters as well.
+
+ The Unicode definition of Hangul-syllable is:
+ L+
+ | (L* ( ( V | LV ) V* | LVT ) T*)
+ | T+
+ )
+ Each of these is a value for the GCB property, and hence must be
+ disjoint, so the order they are tested is immaterial, so the
+ above can safely be changed to
+ T+
+ | L+
+ | (L* ( LVT | ( V | LV ) V*) T*)
+
+ The last two terms can be combined like this:
+ L* ( L
+ | (( LVT | ( V | LV ) V*) T*))
+
+ And refactored into this:
+ L* (L | LVT T* | V V* T* | LV V* T*)
+
+ That means that if we have seen any L's at all we can quit
+ there, but if the next character is an LVT, a V, or an LV we
+ should keep going.
+
+ There is a subtlety with Prepend* which showed up in testing.
+ Note that the Begin, and only the Begin is required in:
+ | Prepend* Begin Extend*
+ Also, Begin contains '! Control'. A Prepend must be a
+ '! Control', which means it must also be a Begin. What it
+ comes down to is that if we match Prepend* and then find no
+ suitable Begin afterwards, that if we backtrack the last
+ Prepend, that one will be a suitable Begin.
+ */
+
+ if (locinput >= PL_regeol)
+ sayNO;
+ if (! utf8_target) {
+
+ /* Match either CR LF or '.', as all the other possibilities
+ * require utf8 */
+ locinput++; /* Match the . or CR */
+ if (nextchr == '\r' /* And if it was CR, and the next is LF,
+ match the LF */
+ && locinput < PL_regeol
+ && UCHARAT(locinput) == '\n') locinput++;
+ }
+ else {
+
+ /* Utf8: See if is ( CR LF ); already know that locinput <
+ * PL_regeol, so locinput+1 is in bounds */
+ if (nextchr == '\r' && UCHARAT(locinput + 1) == '\n') {
+ locinput += 2;
+ }
+ else {
+ /* In case have to backtrack to beginning, then match '.' */
+ char *starting = locinput;
+
+ /* In case have to backtrack the last prepend */
+ char *previous_prepend = 0;
+
+ LOAD_UTF8_CHARCLASS_GCB();
+
+ /* Match (prepend)* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_prepend,
+ (U8*)locinput, utf8_target))
+ {
+ previous_prepend = locinput;
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* As noted above, if we matched a prepend character, but
+ * the next thing won't match, back off the last prepend we
+ * matched, as it is guaranteed to match the begin */
+ if (previous_prepend
+ && (locinput >= PL_regeol
+ || ! swash_fetch(PL_utf8_X_begin,
+ (U8*)locinput, utf8_target)))
+ {
+ locinput = previous_prepend;
+ }
+
+ /* Note that here we know PL_regeol > locinput, as we
+ * tested that upon input to this switch case, and if we
+ * moved locinput forward, we tested the result just above
+ * and it either passed, or we backed off so that it will
+ * now pass */
+ if (! swash_fetch(PL_utf8_X_begin, (U8*)locinput, utf8_target)) {
+
+ /* Here did not match the required 'Begin' in the
+ * second term. So just match the very first
+ * character, the '.' of the final term of the regex */
+ locinput = starting + UTF8SKIP(starting);
+ } else {
+
+ /* Here is the beginning of a character that can have
+ * an extender. It is either a hangul syllable, or a
+ * non-control */
+ if (swash_fetch(PL_utf8_X_non_hangul,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Here not a Hangul syllable, must be a
+ * ('! * Control') */
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Here is a Hangul syllable. It can be composed
+ * of several individual characters. One
+ * possibility is T+ */
+ if (swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ } else {
+
+ /* Here, not T+, but is a Hangul. That means
+ * it is one of the others: L, LV, LVT or V,
+ * and matches:
+ * L* (L | LVT T* | V V* T* | LV V* T*) */
+
+ /* Match L* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_L,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+
+ /* Here, have exhausted L*. If the next
+ * character is not an LV, LVT nor V, it means
+ * we had to have at least one L, so matches L+
+ * in the original equation, we have a complete
+ * hangul syllable. Are done. */
+
+ if (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_LV_LVT_V,
+ (U8*)locinput, utf8_target))
+ {
+
+ /* Otherwise keep going. Must be LV, LVT
+ * or V. See if LVT */
+ if (swash_fetch(PL_utf8_X_LVT,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ } else {
+
+ /* Must be V or LV. Take it, then
+ * match V* */
+ locinput += UTF8SKIP(locinput);
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_V,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+
+ /* And any of LV, LVT, or V can be followed
+ * by T* */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_T,
+ (U8*)locinput,
+ utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ }
+
+ /* Match any extender */
+ while (locinput < PL_regeol
+ && swash_fetch(PL_utf8_X_extend,
+ (U8*)locinput, utf8_target))
+ {
+ locinput += UTF8SKIP(locinput);
+ }
+ }
+ }
+ if (locinput > PL_regeol) sayNO;
+ }
+ nextchr = UCHARAT(locinput);
+ break;
+
+ case NREFFL:
+ { /* The capture buffer cases. The ones beginning with N for the
+ named buffers just convert to the equivalent numbered and
+ pretend they were called as the corresponding numbered buffer
+ op. */
+ /* don't initialize these in the declaration, it makes C++
+ unhappy */
+ char *s;
+ char type;
+ re_fold_t folder;
+ const U8 *fold_array;
+ UV utf8_fold_flags;
+
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ type = REFFL;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_nref;
+
+ case NREFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFA;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_nref;
+
+ case NREFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ type = REFFU;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ type = REFF;
+ utf8_fold_flags = 0;
+ goto do_nref;
+
+ case NREF:
+ type = REF;
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+ do_nref:
+
+ /* For the named back references, find the corresponding buffer
+ * number */
+ n = reg_check_named_buff_matched(rex,scan);
+
+ if ( ! n ) {
+ sayNO;
+ }
+ goto do_nref_ref_common;
+
+ case REFFL:
+ PL_reg_flags |= RF_tainted;
+ folder = foldEQ_locale;
+ fold_array = PL_fold_locale;
+ utf8_fold_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_ref;
+
+ case REFFA:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_ref;
+
+ case REFFU:
+ folder = foldEQ_latin1;
+ fold_array = PL_fold_latin1;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REFF:
+ folder = foldEQ;
+ fold_array = PL_fold;
+ utf8_fold_flags = 0;
+ goto do_ref;
+
+ case REF:
+ folder = NULL;
+ fold_array = NULL;
+ utf8_fold_flags = 0;
+
+ do_ref:
+ type = OP(scan);
+ n = ARG(scan); /* which paren pair */
+
+ do_nref_ref_common:
+ ln = PL_regoffs[n].start;
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (*PL_reglastparen < n || ln == -1)
+ sayNO; /* Do not match unless seen CLOSEn. */
+ if (ln == PL_regoffs[n].end)
+ break;
+
+ s = PL_bostr + ln;
+ if (type != REF /* REF can do byte comparison */
+ && (utf8_target || type == REFFU))
+ { /* XXX handle REFFL better */
+ char * limit = PL_regeol;
+
+ /* This call case insensitively compares the entire buffer
+ * at s, with the current input starting at locinput, but
+ * not going off the end given by PL_regeol, and returns in
+ * limit upon success, how much of the current input was
+ * matched */
+ if (! foldEQ_utf8_flags(s, NULL, PL_regoffs[n].end - ln, utf8_target,
+ locinput, &limit, 0, utf8_target, utf8_fold_flags))
+ {
+ sayNO;
+ }
+ locinput = limit;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+
+ /* Not utf8: Inline the first character, for speed. */
+ if (UCHARAT(s) != nextchr &&
+ (type == REF ||
+ UCHARAT(s) != fold_array[nextchr]))
+ sayNO;
+ ln = PL_regoffs[n].end - ln;
+ if (locinput + ln > PL_regeol)
+ sayNO;
+ if (ln > 1 && (type == REF
+ ? memNE(s, locinput, ln)
+ : ! folder(s, locinput, ln)))
+ sayNO;
+ locinput += ln;
+ nextchr = UCHARAT(locinput);
+ break;
+ }
+ case NOTHING:
+ case TAIL:
+ break;
+ case BACK:
+ break;
+
+#undef ST
+#define ST st->u.eval
+ {
+ SV *ret;
+ REGEXP *re_sv;
+ regexp *re;
+ regexp_internal *rei;
+ regnode *startpoint;
+
+ case GOSTART:
+ case GOSUB: /* /(...(?1))/ /(...(?&foo))/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if (cur_eval->u.eval.close_paren == (U32)ARG(scan))
+ Perl_croak(aTHX_ "Infinite recursion in regex");
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_
+ "Pattern subroutine nesting without pos change"
+ " exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ re_sv = rex_sv;
+ re = rex;
+ rei = rexi;
+ (void)ReREFCNT_inc(rex_sv);
+ if (OP(scan)==GOSUB) {
+ startpoint = scan + ARG2L(scan);
+ ST.close_paren = ARG(scan);
+ } else {
+ startpoint = rei->program+1;
+ ST.close_paren = 0;
+ }
+ goto eval_recurse_doit;
+ /* NOTREACHED */
+ case EVAL: /* /(?{A})B/ /(??{A})B/ and /(?(?{A})X|Y)B/ */
+ if (cur_eval && cur_eval->locinput==locinput) {
+ if ( ++nochange_depth > max_nochange_depth )
+ Perl_croak(aTHX_ "EVAL without pos change exceeded limit in regex");
+ } else {
+ nochange_depth = 0;
+ }
+ {
+ /* execute the code in the {...} */
+ dSP;
+ SV ** const before = SP;
+ OP_4tree * const oop = PL_op;
+ COP * const ocurcop = PL_curcop;
+ PAD *old_comppad;
+ char *saved_regeol = PL_regeol;
+ struct re_save_state saved_state;
+
+ /* To not corrupt the existing regex state while executing the
+ * eval we would normally put it on the save stack, like with
+ * save_re_context. However, re-evals have a weird scoping so we
+ * can't just add ENTER/LEAVE here. With that, things like
+ *
+ * (?{$a=2})(a(?{local$a=$a+1}))*aak*c(?{$b=$a})
+ *
+ * would break, as they expect the localisation to be unwound
+ * only when the re-engine backtracks through the bit that
+ * localised it.
+ *
+ * What we do instead is just saving the state in a local c
+ * variable.
+ */
+ Copy(&PL_reg_state, &saved_state, 1, struct re_save_state);
+
+ n = ARG(scan);
+ PL_op = (OP_4tree*)rexi->data->data[n];
+ DEBUG_STATE_r( PerlIO_printf(Perl_debug_log,
+ " re_eval 0x%"UVxf"\n", PTR2UV(PL_op)) );
+ /* wrap the call in two SAVECOMPPADs. This ensures that
+ * when the save stack is eventually unwound, all the
+ * accumulated SAVEt_CLEARSV's will be processed with
+ * interspersed SAVEt_COMPPAD's to ensure that lexicals
+ * are cleared in the right pad */
+ SAVECOMPPAD();
+ PAD_SAVE_LOCAL(old_comppad, (PAD*)rexi->data->data[n + 2]);
+ PL_regoffs[0].end = PL_reg_magic->mg_len = locinput - PL_bostr;
+
+ if (sv_yes_mark) {
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ CALLRUNOPS(aTHX); /* Scalar context. */
+ SPAGAIN;
+ if (SP == before)
+ ret = &PL_sv_undef; /* protect against empty (?{}) blocks. */
+ else {
+ ret = POPs;
+ PUTBACK;
+ }
+
+ Copy(&saved_state, &PL_reg_state, 1, struct re_save_state);
+
+ PL_op = oop;
+ SAVECOMPPAD();
+ PAD_RESTORE_LOCAL(old_comppad);
+ PL_curcop = ocurcop;
+ PL_regeol = saved_regeol;
+ if (!logical) {
+ /* /(?{...})/ */
+ sv_setsv(save_scalar(PL_replgv), ret);
+ break;
+ }
+ }
+ if (logical == 2) { /* Postponed subexpression: /(??{...})/ */
+ logical = 0;
+ {
+ /* extract RE object from returned value; compiling if
+ * necessary */
+ MAGIC *mg = NULL;
+ REGEXP *rx = NULL;
+
+ if (SvROK(ret)) {
+ SV *const sv = SvRV(ret);
+
+ if (SvTYPE(sv) == SVt_REGEXP) {
+ rx = (REGEXP*) sv;
+ } else if (SvSMAGICAL(sv)) {
+ mg = mg_find(sv, PERL_MAGIC_qr);
+ assert(mg);
+ }
+ } else if (SvTYPE(ret) == SVt_REGEXP) {
+ rx = (REGEXP*) ret;
+ } else if (SvSMAGICAL(ret)) {
+ if (SvGMAGICAL(ret)) {
+ /* I don't believe that there is ever qr magic
+ here. */
+ assert(!mg_find(ret, PERL_MAGIC_qr));
+ sv_unmagic(ret, PERL_MAGIC_qr);
+ }
+ else {
+ mg = mg_find(ret, PERL_MAGIC_qr);
+ /* testing suggests mg only ends up non-NULL for
+ scalars who were upgraded and compiled in the
+ else block below. In turn, this is only
+ triggered in the "postponed utf8 string" tests
+ in t/op/pat.t */
+ }
+ }
+
+ if (mg) {
+ rx = (REGEXP *) mg->mg_obj; /*XXX:dmq*/
+ assert(rx);
+ }
+ if (rx) {
+ rx = reg_temp_copy(NULL, rx);
+ }
+ else {
+ U32 pm_flags = 0;
+ const I32 osize = PL_regsize;
+
+ if (DO_UTF8(ret)) {
+ assert (SvUTF8(ret));
+ } else if (SvUTF8(ret)) {
+ /* Not doing UTF-8, despite what the SV says. Is
+ this only if we're trapped in use 'bytes'? */
+ /* Make a copy of the octet sequence, but without
+ the flag on, as the compiler now honours the
+ SvUTF8 flag on ret. */
+ STRLEN len;
+ const char *const p = SvPV(ret, len);
+ ret = newSVpvn_flags(p, len, SVs_TEMP);
+ }
+ rx = CALLREGCOMP(ret, pm_flags);
+ if (!(SvFLAGS(ret)
+ & (SVs_TEMP | SVs_PADTMP | SVf_READONLY
+ | SVs_GMG))) {
+ /* This isn't a first class regexp. Instead, it's
+ caching a regexp onto an existing, Perl visible
+ scalar. */
+ sv_magic(ret, MUTABLE_SV(rx), PERL_MAGIC_qr, 0, 0);
+ }
+ PL_regsize = osize;
+ }
+ re_sv = rx;
+ re = (struct regexp *)SvANY(rx);
+ }
+ RXp_MATCH_COPIED_off(re);
+ re->subbeg = rex->subbeg;
+ re->sublen = rex->sublen;
+ rei = RXi_GET(re);
+ DEBUG_EXECUTE_r(
+ debug_start_match(re_sv, utf8_target, locinput, PL_regeol,
+ "Matching embedded");
+ );
+ startpoint = rei->program + 1;
+ ST.close_paren = 0; /* only used for GOSUB */
+ /* borrowed from regtry */
+ if (PL_reg_start_tmpl <= re->nparens) {
+ PL_reg_start_tmpl = re->nparens*3/2 + 3;
+ if(PL_reg_start_tmp)
+ Renew(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ else
+ Newx(PL_reg_start_tmp, PL_reg_start_tmpl, char*);
+ }
+
+ eval_recurse_doit: /* Share code with GOSUB below this line */
+ /* run the pattern returned from (??{...}) */
+ ST.cp = regcppush(0); /* Save *all* the positions. */
+ REGCP_SET(ST.lastcp);
+
+ PL_regoffs = re->offs; /* essentially NOOP on GOSUB */
+
+ /* see regtry, specifically PL_reglast(?:close)?paren is a pointer! (i dont know why) :dmq */
+ PL_reglastparen = &re->lastparen;
+ PL_reglastcloseparen = &re->lastcloseparen;
+ re->lastparen = 0;
+ re->lastcloseparen = 0;
+
+ PL_reginput = locinput;
+ PL_regsize = 0;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+
+ ST.toggle_reg_flags = PL_reg_flags;
+ if (RX_UTF8(re_sv))
+ PL_reg_flags |= RF_utf8;
+ else
+ PL_reg_flags &= ~RF_utf8;
+ ST.toggle_reg_flags ^= PL_reg_flags; /* diff of old and new */
+
+ ST.prev_rex = rex_sv;
+ ST.prev_curlyx = cur_curlyx;
+ SETREX(rex_sv,re_sv);
+ rex = re;
+ rexi = rei;
+ cur_curlyx = NULL;
+ ST.B = next;
+ ST.prev_eval = cur_eval;
+ cur_eval = st;
+ /* now continue from first node in postoned RE */
+ PUSH_YES_STATE_GOTO(EVAL_AB, startpoint);
+ /* NOTREACHED */
+ }
+ /* logical is 1, /(?(?{...})X|Y)/ */
+ sw = cBOOL(SvTRUE(ret));
+ logical = 0;
+ break;
+ }
+
+ case EVAL_AB: /* cleanup after a successful (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ regcpblow(ST.cp);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+ /* also update PL_regoffs */
+ PL_regoffs = rex->offs;
+
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayYES;
+
+
+ case EVAL_AB_fail: /* unsuccessfully ran A or B in (??{A})B */
+ /* note: this is called twice; first after popping B, then A */
+ PL_reg_flags ^= ST.toggle_reg_flags;
+ ReREFCNT_dec(rex_sv);
+ SETREX(rex_sv,ST.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ PL_reginput = locinput;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_eval = ST.prev_eval;
+ cur_curlyx = ST.prev_curlyx;
+ /* XXXX This is too dramatic a measure... */
+ PL_reg_maxiter = 0;
+ if ( nochange_depth )
+ nochange_depth--;
+ sayNO_SILENT;
+#undef ST
+
+ case OPEN:
+ n = ARG(scan); /* which paren pair */
+ PL_reg_start_tmp[n] = locinput;
+ if (n > PL_regsize)
+ PL_regsize = n;
+ lastopen = n;
+ break;
+ case CLOSE:
+ n = ARG(scan); /* which paren pair */
+ PL_regoffs[n].start = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if (cur_eval && cur_eval->u.eval.close_paren == n) {
+ goto fake_end;
+ }
+ break;
+ case ACCEPT:
+ if (ARG(scan)){
+ regnode *cursor;
+ for (cursor=scan;
+ cursor && OP(cursor)!=END;
+ cursor=regnext(cursor))
+ {
+ if ( OP(cursor)==CLOSE ){
+ n = ARG(cursor);
+ if ( n <= lastopen ) {
+ PL_regoffs[n].start
+ = PL_reg_start_tmp[n] - PL_bostr;
+ PL_regoffs[n].end = locinput - PL_bostr;
+ /*if (n > PL_regsize)
+ PL_regsize = n;*/
+ if (n > *PL_reglastparen)
+ *PL_reglastparen = n;
+ *PL_reglastcloseparen = n;
+ if ( n == ARG(scan) || (cur_eval &&
+ cur_eval->u.eval.close_paren == n))
+ break;
+ }
+ }
+ }
+ }
+ goto fake_end;
+ /*NOTREACHED*/
+ case GROUPP:
+ n = ARG(scan); /* which paren pair */
+ sw = cBOOL(*PL_reglastparen >= n && PL_regoffs[n].end != -1);
+ break;
+ case NGROUPP:
+ /* reg_check_named_buff_matched returns 0 for no match */
+ sw = cBOOL(0 < reg_check_named_buff_matched(rex,scan));
+ break;
+ case INSUBP:
+ n = ARG(scan);
+ sw = (cur_eval && (!n || cur_eval->u.eval.close_paren == n));
+ break;
+ case DEFINEP:
+ sw = 0;
+ break;
+ case IFTHEN:
+ PL_reg_leftiter = PL_reg_maxiter; /* Void cache */
+ if (sw)
+ next = NEXTOPER(NEXTOPER(scan));
+ else {
+ next = scan + ARG(scan);
+ if (OP(next) == IFTHEN) /* Fake one. */
+ next = NEXTOPER(NEXTOPER(next));
+ }
+ break;
+ case LOGICAL:
+ logical = scan->flags;
+ break;
+
+/*******************************************************************
+
+The CURLYX/WHILEM pair of ops handle the most generic case of the /A*B/
+pattern, where A and B are subpatterns. (For simple A, CURLYM or
+STAR/PLUS/CURLY/CURLYN are used instead.)
+
+A*B is compiled as <CURLYX><A><WHILEM><B>
+
+On entry to the subpattern, CURLYX is called. This pushes a CURLYX
+state, which contains the current count, initialised to -1. It also sets
+cur_curlyx to point to this state, with any previous value saved in the
+state block.
+
+CURLYX then jumps straight to the WHILEM op, rather than executing A,
+since the pattern may possibly match zero times (i.e. it's a while {} loop
+rather than a do {} while loop).
+
+Each entry to WHILEM represents a successful match of A. The count in the
+CURLYX block is incremented, another WHILEM state is pushed, and execution
+passes to A or B depending on greediness and the current count.
+
+For example, if matching against the string a1a2a3b (where the aN are
+substrings that match /A/), then the match progresses as follows: (the
+pushed states are interspersed with the bits of strings matched so far):
+
+ <CURLYX cnt=-1>
+ <CURLYX cnt=0><WHILEM>
+ <CURLYX cnt=1><WHILEM> a1 <WHILEM>
+ <CURLYX cnt=2><WHILEM> a1 <WHILEM> a2 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM>
+ <CURLYX cnt=3><WHILEM> a1 <WHILEM> a2 <WHILEM> a3 <WHILEM> b
+
+(Contrast this with something like CURLYM, which maintains only a single
+backtrack state:
+
+ <CURLYM cnt=0> a1
+ a1 <CURLYM cnt=1> a2
+ a1 a2 <CURLYM cnt=2> a3
+ a1 a2 a3 <CURLYM cnt=3> b
+)
+
+Each WHILEM state block marks a point to backtrack to upon partial failure
+of A or B, and also contains some minor state data related to that
+iteration. The CURLYX block, pointed to by cur_curlyx, contains the
+overall state, such as the count, and pointers to the A and B ops.
+
+This is complicated slightly by nested CURLYX/WHILEM's. Since cur_curlyx
+must always point to the *current* CURLYX block, the rules are:
+
+When executing CURLYX, save the old cur_curlyx in the CURLYX state block,
+and set cur_curlyx to point the new block.
+
+When popping the CURLYX block after a successful or unsuccessful match,
+restore the previous cur_curlyx.
+
+When WHILEM is about to execute B, save the current cur_curlyx, and set it
+to the outer one saved in the CURLYX block.
+
+When popping the WHILEM block after a successful or unsuccessful B match,
+restore the previous cur_curlyx.
+
+Here's an example for the pattern (AI* BI)*BO
+I and O refer to inner and outer, C and W refer to CURLYX and WHILEM:
+
+cur_
+curlyx backtrack stack
+------ ---------------
+NULL
+CO <CO prev=NULL> <WO>
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+NULL <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi <WO prev=CO> bo
+
+At this point the pattern succeeds, and we work back down the stack to
+clean up, restoring as we go:
+
+CO <CO prev=NULL> <WO> <CI prev=CO> <WI> ai <WI prev=CI> bi
+CI <CO prev=NULL> <WO> <CI prev=CO> <WI> ai
+CO <CO prev=NULL> <WO>
+NULL
+
+*******************************************************************/
+
+#define ST st->u.curlyx
+
+ case CURLYX: /* start of /A*B/ (for complex A) */
+ {
+ /* No need to save/restore up to this paren */
+ I32 parenfloor = scan->flags;
+
+ assert(next); /* keep Coverity happy */
+ if (OP(PREVOPER(next)) == NOTHING) /* LONGJMP */
+ next += ARG(next);
+
+ /* XXXX Probably it is better to teach regpush to support
+ parenfloor > PL_regsize... */
+ if (parenfloor > (I32)*PL_reglastparen)
+ parenfloor = *PL_reglastparen; /* Pessimization... */
+
+ ST.prev_curlyx= cur_curlyx;
+ cur_curlyx = st;
+ ST.cp = PL_savestack_ix;
+
+ /* these fields contain the state of the current curly.
+ * they are accessed by subsequent WHILEMs */
+ ST.parenfloor = parenfloor;
+ ST.me = scan;
+ ST.B = next;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.count = -1; /* this will be updated by WHILEM */
+ ST.lastloc = NULL; /* this will be updated by WHILEM */
+
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYX_end, PREVOPER(next));
+ /* NOTREACHED */
+ }
+
+ case CURLYX_end: /* just finished matching all of A*B */
+ cur_curlyx = ST.prev_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case CURLYX_end_fail: /* just failed to match all of A*B */
+ regcpblow(ST.cp);
+ cur_curlyx = ST.prev_curlyx;
+ sayNO;
+ /* NOTREACHED */
+
+
+#undef ST
+#define ST st->u.whilem
+
+ case WHILEM: /* just matched an A in /A*B/ (for complex A) */
+ {
+ /* see the discussion above about CURLYX/WHILEM */
+ I32 n;
+ int min = ARG1(cur_curlyx->u.curlyx.me);
+ int max = ARG2(cur_curlyx->u.curlyx.me);
+ regnode *A = NEXTOPER(cur_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS;
+
+ assert(cur_curlyx); /* keep Coverity happy */
+ n = ++cur_curlyx->u.curlyx.count; /* how many A's matched */
+ ST.save_lastloc = cur_curlyx->u.curlyx.lastloc;
+ ST.cache_offset = 0;
+ ST.cache_mask = 0;
+
+ PL_reginput = locinput;
+
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: matched %ld out of %d..%d\n",
+ REPORT_CODE_OFF+depth*2, "", (long)n, min, max)
+ );
+
+ /* First just match a string of min A's. */
+
+ if (n < min) {
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+
+ PUSH_STATE_GOTO(WHILEM_A_pre, A);
+ /* NOTREACHED */
+ }
+
+ /* If degenerate A matches "", assume A done. */
+
+ if (locinput == cur_curlyx->u.curlyx.lastloc) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: empty match detected, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ goto do_whilem_B_max;
+ }
+
+ /* super-linear cache processing */
+
+ if (scan->flags) {
+
+ if (!PL_reg_maxiter) {
+ /* start the countdown: Postpone detection until we
+ * know the match is not *that* much linear. */
+ PL_reg_maxiter = (PL_regeol - PL_bostr + 1) * (scan->flags>>4);
+ /* possible overflow for long strings and many CURLYX's */
+ if (PL_reg_maxiter < 0)
+ PL_reg_maxiter = I32_MAX;
+ PL_reg_leftiter = PL_reg_maxiter;
+ }
+
+ if (PL_reg_leftiter-- == 0) {
+ /* initialise cache */
+ const I32 size = (PL_reg_maxiter + 7)/8;
+ if (PL_reg_poscache) {
+ if ((I32)PL_reg_poscache_size < size) {
+ Renew(PL_reg_poscache, size, char);
+ PL_reg_poscache_size = size;
+ }
+ Zero(PL_reg_poscache, size, char);
+ }
+ else {
+ PL_reg_poscache_size = size;
+ Newxz(PL_reg_poscache, size, char);
+ }
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%swhilem: Detected a super-linear match, switching on caching%s...\n",
+ PL_colors[4], PL_colors[5])
+ );
+ }
+
+ if (PL_reg_leftiter < 0) {
+ /* have we already failed at this position? */
+ I32 offset, mask;
+ offset = (scan->flags & 0xf) - 1
+ + (locinput - PL_bostr) * (scan->flags>>4);
+ mask = 1 << (offset % 8);
+ offset /= 8;
+ if (PL_reg_poscache[offset] & mask) {
+ DEBUG_EXECUTE_r( PerlIO_printf(Perl_debug_log,
+ "%*s whilem: (cache) already tried at this position...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ sayNO; /* cache records failure */
+ }
+ ST.cache_offset = offset;
+ ST.cache_mask = mask;
+ }
+ }
+
+ /* Prefer B over A for minimal matching. */
+
+ if (cur_curlyx->u.curlyx.minmod) {
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ ST.cp = regcppush(ST.save_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_YES_STATE_GOTO(WHILEM_B_min, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+ }
+
+ /* Prefer A over B for maximal matching. */
+
+ if (n < max) { /* More greed allowed? */
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_max, A);
+ /* NOTREACHED */
+ }
+ goto do_whilem_B_max;
+ }
+ /* NOTREACHED */
+
+ case WHILEM_B_min: /* just matched B in a minimal match */
+ case WHILEM_B_max: /* just matched B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ sayYES;
+ /* NOTREACHED */
+
+ case WHILEM_B_max_fail: /* just failed to match B in a maximal match */
+ cur_curlyx = ST.save_curlyx;
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_min_fail: /* just failed to match A in a minimal match */
+ /* FALL THROUGH */
+ case WHILEM_A_pre_fail: /* just failed to match even minimal A */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+ cur_curlyx->u.curlyx.lastloc = ST.save_lastloc;
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ /* NOTREACHED */
+
+ case WHILEM_A_max_fail: /* just failed to match A in a maximal match */
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex); /* Restore some previous $<digit>s? */
+ PL_reginput = locinput;
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s whilem: failed, trying continuation...\n",
+ REPORT_CODE_OFF+depth*2, "")
+ );
+ do_whilem_B_max:
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion limit (%d) "
+ "exceeded",
+ REG_INFTY - 1);
+ }
+
+ /* now try B */
+ ST.save_curlyx = cur_curlyx;
+ cur_curlyx = cur_curlyx->u.curlyx.prev_curlyx;
+ PUSH_YES_STATE_GOTO(WHILEM_B_max, ST.save_curlyx->u.curlyx.B);
+ /* NOTREACHED */
+
+ case WHILEM_B_min_fail: /* just failed to match B in a minimal match */
+ cur_curlyx = ST.save_curlyx;
+ REGCP_UNWIND(ST.lastcp);
+ regcppop(rex);
+
+ if (cur_curlyx->u.curlyx.count >= /*max*/ARG2(cur_curlyx->u.curlyx.me)) {
+ /* Maximum greed exceeded */
+ if (cur_curlyx->u.curlyx.count >= REG_INFTY
+ && ckWARN(WARN_REGEXP)
+ && !(PL_reg_flags & RF_warned))
+ {
+ PL_reg_flags |= RF_warned;
+ Perl_warner(aTHX_ packWARN(WARN_REGEXP),
+ "Complex regular subexpression recursion "
+ "limit (%d) exceeded",
+ REG_INFTY - 1);
+ }
+ cur_curlyx->u.curlyx.count--;
+ CACHEsayNO;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%*s trying longer...\n", REPORT_CODE_OFF+depth*2, "")
+ );
+ /* Try grabbing another A and see if it helps. */
+ PL_reginput = locinput;
+ cur_curlyx->u.curlyx.lastloc = locinput;
+ ST.cp = regcppush(cur_curlyx->u.curlyx.parenfloor);
+ REGCP_SET(ST.lastcp);
+ PUSH_STATE_GOTO(WHILEM_A_min,
+ /*A*/ NEXTOPER(ST.save_curlyx->u.curlyx.me) + EXTRA_STEP_2ARGS);
+ /* NOTREACHED */
+
+#undef ST
+#define ST st->u.branch
+
+ case BRANCHJ: /* /(...|A|...)/ with long next pointer */
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ scan = NEXTOPER(scan);
+ /* FALL THROUGH */
+
+ case BRANCH: /* /(...|A|...)/ */
+ scan = NEXTOPER(scan); /* scan now points to inner node */
+ ST.lastparen = *PL_reglastparen;
+ ST.next_branch = next;
+ REGCP_SET(ST.cp);
+ PL_reginput = locinput;
+
+ /* Now go into the branch */
+ if (has_cutgroup) {
+ PUSH_YES_STATE_GOTO(BRANCH_next, scan);
+ } else {
+ PUSH_STATE_GOTO(BRANCH_next, scan);
+ }
+ /* NOTREACHED */
+ case CUTGROUP:
+ PL_reginput = locinput;
+ sv_yes_mark = st->u.mark.mark_name = scan->flags ? NULL :
+ MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(CUTGROUP_next,next);
+ /* NOTREACHED */
+ case CUTGROUP_next_fail:
+ do_cutgroup = 1;
+ no_final = 1;
+ if (st->u.mark.mark_name)
+ sv_commit = st->u.mark.mark_name;
+ sayNO;
+ /* NOTREACHED */
+ case BRANCH_next:
+ sayYES;
+ /* NOTREACHED */
+ case BRANCH_next_fail: /* that branch failed; try the next, if any */
+ if (do_cutgroup) {
+ do_cutgroup = 0;
+ no_final = 0;
+ }
+ REGCP_UNWIND(ST.cp);
+ for (n = *PL_reglastparen; n > ST.lastparen; n--)
+ PL_regoffs[n].end = -1;
+ *PL_reglastparen = n;
+ /*dmq: *PL_reglastcloseparen = n; */
+ scan = ST.next_branch;
+ /* no more branches? */
+ if (!scan || (OP(scan) != BRANCH && OP(scan) != BRANCHJ)) {
+ DEBUG_EXECUTE_r({
+ PerlIO_printf( Perl_debug_log,
+ "%*s %sBRANCH failed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4],
+ PL_colors[5] );
+ });
+ sayNO_SILENT;
+ }
+ continue; /* execute next BRANCH[J] op */
+ /* NOTREACHED */
+
+ case MINMOD:
+ minmod = 1;
+ break;
+
+#undef ST
+#define ST st->u.curlym
+
+ case CURLYM: /* /A{m,n}B/ where A is fixed-length */
+
+ /* This is an optimisation of CURLYX that enables us to push
+ * only a single backtracking state, no matter how many matches
+ * there are in {m,n}. It relies on the pattern being constant
+ * length, with no parens to influence future backrefs
+ */
+
+ ST.me = scan;
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+
+ /* if paren positive, emulate an OPEN/CLOSE around A */
+ if (ST.me->flags) {
+ U32 paren = ST.me->flags;
+ if (paren > PL_regsize)
+ PL_regsize = paren;
+ if (paren > *PL_reglastparen)
+ *PL_reglastparen = paren;
+ scan += NEXT_OFF(scan); /* Skip former OPEN. */
+ }
+ ST.A = scan;
+ ST.B = next;
+ ST.alen = 0;
+ ST.count = 0;
+ ST.minmod = minmod;
+ minmod = 0;
+ ST.c1 = CHRTEST_UNINIT;
+ REGCP_SET(ST.cp);
+
+ if (!(ST.minmod ? ARG1(ST.me) : ARG2(ST.me))) /* min/max */
+ goto curlym_do_B;
+
+ curlym_do_A: /* execute the A in /A{m,n}B/ */
+ PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(CURLYM_A, ST.A); /* match A */
+ /* NOTREACHED */
+
+ case CURLYM_A: /* we've just matched an A */
+ locinput = st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ ST.count++;
+ /* after first match, determine A's length: u.curlym.alen */
+ if (ST.count == 1) {
+ if (PL_reg_match_utf8) {
+ char *s = locinput;
+ while (s < PL_reginput) {
+ ST.alen++;
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ ST.alen = PL_reginput - locinput;
+ }
+ if (ST.alen == 0)
+ ST.count = ST.minmod ? ARG1(ST.me) : ARG2(ST.me);
+ }
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM now matched %"IVdf" times, len=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)), "",
+ (IV) ST.count, (IV)ST.alen)
+ );
+
+ locinput = PL_reginput;
+
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ goto fake_end;
+
+ {
+ I32 max = (ST.minmod ? ARG1(ST.me) : ARG2(ST.me));
+ if ( max == REG_INFTY || ST.count < max )
+ goto curlym_do_A; /* try to match another A */
+ }
+ goto curlym_do_B; /* try to match B */
+
+ case CURLYM_A_fail: /* just failed to match an A */
+ REGCP_UNWIND(ST.cp);
+
+ if (ST.minmod || ST.count < ARG1(ST.me) /* min*/
+ || (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags))
+ sayNO;
+
+ curlym_do_B: /* execute the B in /A{m,n}B/ */
+ PL_reginput = locinput;
+ if (ST.c1 == CHRTEST_UNINIT) {
+ /* calculate c1 and c2 for possible match of 1st char
+ * following curly */
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ if (HAS_TEXT(ST.B) || JUMPABLE(ST.B)) {
+ regnode *text_node = ST.B;
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+ /* this used to be
+
+ (HAS_TEXT(text_node) && PL_regkind[OP(text_node)] == EXACT)
+
+ But the former is redundant in light of the latter.
+
+ if this changes back then the macro for
+ IS_TEXT and friends need to change.
+ */
+ if (PL_regkind[OP(text_node)] == EXACT)
+ {
+
+ ST.c1 = (U8)*STRING(text_node);
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1;
+ }
+ }
+ }
+ }
+
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM trying tail with matches=%"IVdf"...\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),
+ "", (IV)ST.count)
+ );
+ if (ST.c1 != CHRTEST_VOID
+ && UCHARAT(PL_reginput) != ST.c1
+ && UCHARAT(PL_reginput) != ST.c2)
+ {
+ /* simulate B failing */
+ DEBUG_OPTIMISE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s CURLYM Fast bail c1=%"IVdf" c2=%"IVdf"\n",
+ (int)(REPORT_CODE_OFF+(depth*2)),"",
+ (IV)ST.c1,(IV)ST.c2
+ ));
+ state_num = CURLYM_B_fail;
+ goto reenter_switch;
+ }
+
+ if (ST.me->flags) {
+ /* mark current A as captured */
+ I32 paren = ST.me->flags;
+ if (ST.count) {
+ PL_regoffs[paren].start
+ = HOPc(PL_reginput, -ST.alen) - PL_bostr;
+ PL_regoffs[paren].end = PL_reginput - PL_bostr;
+ /*dmq: *PL_reglastcloseparen = paren; */
+ }
+ else
+ PL_regoffs[paren].end = -1;
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.me->flags)
+ {
+ if (ST.count)
+ goto fake_end;
+ else
+ sayNO;
+ }
+ }
+
+ PUSH_STATE_GOTO(CURLYM_B, ST.B); /* match B */
+ /* NOTREACHED */
+
+ case CURLYM_B_fail: /* just failed to match a B */
+ REGCP_UNWIND(ST.cp);
+ if (ST.minmod) {
+ I32 max = ARG2(ST.me);
+ if (max != REG_INFTY && ST.count == max)
+ sayNO;
+ goto curlym_do_A; /* try to match a further A */
+ }
+ /* backtrack one A */
+ if (ST.count == ARG1(ST.me) /* min */)
+ sayNO;
+ ST.count--;
+ locinput = HOPc(locinput, -ST.alen);
+ goto curlym_do_B; /* try to match B */
+
+#undef ST
+#define ST st->u.curly
+
+#define CURLY_SETPAREN(paren, success) \
+ if (paren) { \
+ if (success) { \
+ PL_regoffs[paren].start = HOPc(locinput, -1) - PL_bostr; \
+ PL_regoffs[paren].end = locinput - PL_bostr; \
+ *PL_reglastcloseparen = paren; \
+ } \
+ else \
+ PL_regoffs[paren].end = -1; \
+ }
+
+ case STAR: /* /A*B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 0;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case PLUS: /* /A+B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = 1;
+ ST.max = REG_INFTY;
+ scan = NEXTOPER(scan);
+ goto repeat;
+ case CURLYN: /* /(A){m,n}B/ where A is width 1 */
+ ST.paren = scan->flags; /* Which paren to set */
+ if (ST.paren > PL_regsize)
+ PL_regsize = ST.paren;
+ if (ST.paren > *PL_reglastparen)
+ *PL_reglastparen = ST.paren;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ ST.min=1;
+ ST.max=1;
+ }
+ scan = regnext(NEXTOPER(scan) + NODE_STEP_REGNODE);
+ goto repeat;
+ case CURLY: /* /A{m,n}B/ where A is width 1 */
+ ST.paren = 0;
+ ST.min = ARG1(scan); /* min to match */
+ ST.max = ARG2(scan); /* max to match */
+ scan = NEXTOPER(scan) + NODE_STEP_REGNODE;
+ repeat:
+ /*
+ * Lookahead to avoid useless match attempts
+ * when we know what character comes next.
+ *
+ * Used to only do .*x and .*?x, but now it allows
+ * for )'s, ('s and (?{ ... })'s to be in the way
+ * of the quantifier and the EXACT-like node. -- japhy
+ */
+
+ if (ST.min > ST.max) /* XXX make this a compile-time check? */
+ sayNO;
+ if (HAS_TEXT(next) || JUMPABLE(next)) {
+ U8 *s;
+ regnode *text_node = next;
+
+ if (! HAS_TEXT(text_node))
+ FIND_NEXT_IMPT(text_node);
+
+ if (! HAS_TEXT(text_node))
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ else {
+ if ( PL_regkind[OP(text_node)] != EXACT ) {
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ goto assume_ok_easy;
+ }
+ else
+ s = (U8*)STRING(text_node);
+
+ /* Currently we only get here when
+
+ PL_rekind[OP(text_node)] == EXACT
+
+ if this changes back then the macro for IS_TEXT and
+ friends need to change. */
+ if (!UTF_PATTERN) {
+ ST.c1 = *s;
+ switch (OP(text_node)) {
+ case EXACTF: ST.c2 = PL_fold[ST.c1]; break;
+ case EXACTFA:
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: ST.c2 = PL_fold_latin1[ST.c1]; break;
+ case EXACTFL: ST.c2 = PL_fold_locale[ST.c1]; break;
+ default: ST.c2 = ST.c1; break;
+ }
+ }
+ else { /* UTF_PATTERN */
+ if (IS_TEXTFU(text_node) || IS_TEXTF(text_node)) {
+ STRLEN ulen;
+ U8 tmpbuf[UTF8_MAXBYTES_CASE+1];
+
+ to_utf8_fold((U8*)s, tmpbuf, &ulen);
+ ST.c1 = ST.c2 = utf8n_to_uvchr(tmpbuf, UTF8_MAXLEN, 0,
+ uniflags);
+ }
+ else {
+ ST.c2 = ST.c1 = utf8n_to_uvchr(s, UTF8_MAXBYTES, 0,
+ uniflags);
+ }
+ }
+ }
+ }
+ else
+ ST.c1 = ST.c2 = CHRTEST_VOID;
+ assume_ok_easy:
+
+ ST.A = scan;
+ ST.B = next;
+ PL_reginput = locinput;
+ if (minmod) {
+ minmod = 0;
+ if (ST.min && regrepeat(rex, ST.A, ST.min, depth) < ST.min)
+ sayNO;
+ ST.count = ST.min;
+ locinput = PL_reginput;
+ REGCP_SET(ST.cp);
+ if (ST.c1 == CHRTEST_VOID)
+ goto curly_try_B_min;
+
+ ST.oldloc = locinput;
+
+ /* set ST.maxpos to the furthest point along the
+ * string that could possibly match */
+ if (ST.max == REG_INFTY) {
+ ST.maxpos = PL_regeol - 1;
+ if (utf8_target)
+ while (UTF8_IS_CONTINUATION(*(U8*)ST.maxpos))
+ ST.maxpos--;
+ }
+ else if (utf8_target) {
+ int m = ST.max - ST.min;
+ for (ST.maxpos = locinput;
+ m >0 && ST.maxpos + UTF8SKIP(ST.maxpos) <= PL_regeol; m--)
+ ST.maxpos += UTF8SKIP(ST.maxpos);
+ }
+ else {
+ ST.maxpos = locinput + ST.max - ST.min;
+ if (ST.maxpos >= PL_regeol)
+ ST.maxpos = PL_regeol - 1;
+ }
+ goto curly_try_B_min_known;
+
+ }
+ else {
+ ST.count = regrepeat(rex, ST.A, ST.max, depth);
+ locinput = PL_reginput;
+ if (ST.count < ST.min)
+ sayNO;
+ if ((ST.count > ST.min)
+ && (PL_regkind[OP(ST.B)] == EOL) && (OP(ST.B) != MEOL))
+ {
+ /* A{m,n} must come at the end of the string, there's
+ * no point in backing off ... */
+ ST.min = ST.count;
+ /* ...except that $ and \Z can match before *and* after
+ newline at the end. Consider "\n\n" =~ /\n+\Z\n/.
+ We may back off by one in this case. */
+ if (UCHARAT(PL_reginput - 1) == '\n' && OP(ST.B) != EOS)
+ ST.min--;
+ }
+ REGCP_SET(ST.cp);
+ goto curly_try_B_max;
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_known_fail:
+ /* failed to find B in a non-greedy match where c1,c2 valid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ PL_reginput = locinput; /* Could be reset... */
+ REGCP_UNWIND(ST.cp);
+ /* Couldn't or didn't -- move forward. */
+ ST.oldloc = locinput;
+ if (utf8_target)
+ locinput += UTF8SKIP(locinput);
+ else
+ locinput++;
+ ST.count++;
+ curly_try_B_min_known:
+ /* find the next place where 'B' could work, then call B */
+ {
+ int n;
+ if (utf8_target) {
+ n = (ST.oldloc == locinput) ? 0 : 1;
+ if (ST.c1 == ST.c2) {
+ STRLEN len;
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos &&
+ utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags) != (UV)ST.c1) {
+ locinput += len;
+ n++;
+ }
+ }
+ else {
+ /* set n to utf8_distance(oldloc, locinput) */
+ while (locinput <= ST.maxpos) {
+ STRLEN len;
+ const UV c = utf8n_to_uvchr((U8*)locinput,
+ UTF8_MAXBYTES, &len,
+ uniflags);
+ if (c == (UV)ST.c1 || c == (UV)ST.c2)
+ break;
+ locinput += len;
+ n++;
+ }
+ }
+ }
+ else {
+ if (ST.c1 == ST.c2) {
+ while (locinput <= ST.maxpos &&
+ UCHARAT(locinput) != ST.c1)
+ locinput++;
+ }
+ else {
+ while (locinput <= ST.maxpos
+ && UCHARAT(locinput) != ST.c1
+ && UCHARAT(locinput) != ST.c2)
+ locinput++;
+ }
+ n = locinput - ST.oldloc;
+ }
+ if (locinput > ST.maxpos)
+ sayNO;
+ /* PL_reginput == oldloc now */
+ if (n) {
+ ST.count += n;
+ if (regrepeat(rex, ST.A, n, depth) < n)
+ sayNO;
+ }
+ PL_reginput = locinput;
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min_known, ST.B);
+ }
+ /* NOTREACHED */
+
+
+ case CURLY_B_min_fail:
+ /* failed to find B in a non-greedy match where c1,c2 invalid */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* failed -- move forward one */
+ PL_reginput = locinput;
+ if (regrepeat(rex, ST.A, 1, depth)) {
+ ST.count++;
+ locinput = PL_reginput;
+ if (ST.count <= ST.max || (ST.max == REG_INFTY &&
+ ST.count > 0)) /* count overflow ? */
+ {
+ curly_try_B_min:
+ CURLY_SETPAREN(ST.paren, ST.count);
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ PUSH_STATE_GOTO(CURLY_B_min, ST.B);
+ }
+ }
+ sayNO;
+ /* NOTREACHED */
+
+
+ curly_try_B_max:
+ /* a successful greedy match: now try to match B */
+ if (cur_eval && cur_eval->u.eval.close_paren &&
+ cur_eval->u.eval.close_paren == (U32)ST.paren) {
+ goto fake_end;
+ }
+ {
+ UV c = 0;
+ if (ST.c1 != CHRTEST_VOID)
+ c = utf8_target ? utf8n_to_uvchr((U8*)PL_reginput,
+ UTF8_MAXBYTES, 0, uniflags)
+ : (UV) UCHARAT(PL_reginput);
+ /* If it could work, try it. */
+ if (ST.c1 == CHRTEST_VOID || c == (UV)ST.c1 || c == (UV)ST.c2) {
+ CURLY_SETPAREN(ST.paren, ST.count);
+ PUSH_STATE_GOTO(CURLY_B_max, ST.B);
+ /* NOTREACHED */
+ }
+ }
+ /* FALL THROUGH */
+ case CURLY_B_max_fail:
+ /* failed to find B in a greedy match */
+ if (ST.paren && ST.count)
+ PL_regoffs[ST.paren].end = -1;
+
+ REGCP_UNWIND(ST.cp);
+ /* back up. */
+ if (--ST.count < ST.min)
+ sayNO;
+ PL_reginput = locinput = HOPc(locinput, -1);
+ goto curly_try_B_max;
+
+#undef ST
+
+ case END:
+ fake_end:
+ if (cur_eval) {
+ /* we've just finished A in /(??{A})B/; now continue with B */
+ I32 tmpix;
+ st->u.eval.toggle_reg_flags
+ = cur_eval->u.eval.toggle_reg_flags;
+ PL_reg_flags ^= st->u.eval.toggle_reg_flags;
+
+ st->u.eval.prev_rex = rex_sv; /* inner */
+ SETREX(rex_sv,cur_eval->u.eval.prev_rex);
+ rex = (struct regexp *)SvANY(rex_sv);
+ rexi = RXi_GET(rex);
+ cur_curlyx = cur_eval->u.eval.prev_curlyx;
+ (void)ReREFCNT_inc(rex_sv);
+ st->u.eval.cp = regcppush(0); /* Save *all* the positions. */
+
+ /* rex was changed so update the pointer in PL_reglastparen and PL_reglastcloseparen */
+ PL_reglastparen = &rex->lastparen;
+ PL_reglastcloseparen = &rex->lastcloseparen;
+
+ REGCP_SET(st->u.eval.lastcp);
+ PL_reginput = locinput;
+
+ /* Restore parens of the outer rex without popping the
+ * savestack */
+ tmpix = PL_savestack_ix;
+ PL_savestack_ix = cur_eval->u.eval.lastcp;
+ regcppop(rex);
+ PL_savestack_ix = tmpix;
+
+ st->u.eval.prev_eval = cur_eval;
+ cur_eval = cur_eval->u.eval.prev_eval;
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log, "%*s EVAL trying tail ... %"UVxf"\n",
+ REPORT_CODE_OFF+depth*2, "",PTR2UV(cur_eval)););
+ if ( nochange_depth )
+ nochange_depth--;
+
+ PUSH_YES_STATE_GOTO(EVAL_AB,
+ st->u.eval.prev_eval->u.eval.B); /* match B */
+ }
+
+ if (locinput < reginfo->till) {
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log,
+ "%sMatch possible, but length=%ld is smaller than requested=%ld, failing!%s\n",
+ PL_colors[4],
+ (long)(locinput - PL_reg_starttry),
+ (long)(reginfo->till - PL_reg_starttry),
+ PL_colors[5]));
+
+ sayNO_SILENT; /* Cannot match: too short. */
+ }
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+ case SUCCEED: /* successful SUSPEND/UNLESSM/IFMATCH/CURLYM */
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssubpattern success...%s\n",
+ REPORT_CODE_OFF+depth*2, "", PL_colors[4], PL_colors[5]));
+ PL_reginput = locinput; /* put where regtry can find it */
+ sayYES; /* Success! */
+
+#undef ST
+#define ST st->u.ifmatch
+
+ case SUSPEND: /* (?>A) */
+ ST.wanted = 1;
+ PL_reginput = locinput;
+ goto do_ifmatch;
+
+ case UNLESSM: /* -ve lookaround: (?!A), or with flags, (?<!A) */
+ ST.wanted = 0;
+ goto ifmatch_trivial_fail_test;
+
+ case IFMATCH: /* +ve lookaround: (?=A), or with flags, (?<=A) */
+ ST.wanted = 1;
+ ifmatch_trivial_fail_test:
+ if (scan->flags) {
+ char * const s = HOPBACKc(locinput, scan->flags);
+ if (!s) {
+ /* trivial fail */
+ if (logical) {
+ logical = 0;
+ sw = 1 - cBOOL(ST.wanted);
+ }
+ else if (ST.wanted)
+ sayNO;
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ }
+ PL_reginput = s;
+ }
+ else
+ PL_reginput = locinput;
+
+ do_ifmatch:
+ ST.me = scan;
+ ST.logical = logical;
+ logical = 0; /* XXX: reset state of logical once it has been saved into ST */
+
+ /* execute body of (?...A) */
+ PUSH_YES_STATE_GOTO(IFMATCH_A, NEXTOPER(NEXTOPER(scan)));
+ /* NOTREACHED */
+
+ case IFMATCH_A_fail: /* body of (?...A) failed */
+ ST.wanted = !ST.wanted;
+ /* FALL THROUGH */
+
+ case IFMATCH_A: /* body of (?...A) succeeded */
+ if (ST.logical) {
+ sw = cBOOL(ST.wanted);
+ }
+ else if (!ST.wanted)
+ sayNO;
+
+ if (OP(ST.me) == SUSPEND)
+ locinput = PL_reginput;
+ else {
+ locinput = PL_reginput = st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ scan = ST.me + ARG(ST.me);
+ if (scan == ST.me)
+ scan = NULL;
+ continue; /* execute B */
+
+#undef ST
+
+ case LONGJMP:
+ next = scan + ARG(scan);
+ if (next == scan)
+ next = NULL;
+ break;
+ case COMMIT:
+ reginfo->cutpoint = PL_regeol;
+ /* FALLTHROUGH */
+ case PRUNE:
+ PL_reginput = locinput;
+ if (!scan->flags)
+ sv_yes_mark = sv_commit = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ PUSH_STATE_GOTO(COMMIT_next,next);
+ /* NOTREACHED */
+ case COMMIT_next_fail:
+ no_final = 1;
+ /* FALLTHROUGH */
+ case OPFAIL:
+ sayNO;
+ /* NOTREACHED */
+
+#define ST st->u.mark
+ case MARKPOINT:
+ ST.prev_mark = mark_state;
+ ST.mark_name = sv_commit = sv_yes_mark
+ = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+ mark_state = st;
+ ST.mark_loc = PL_reginput = locinput;
+ PUSH_YES_STATE_GOTO(MARKPOINT_next,next);
+ /* NOTREACHED */
+ case MARKPOINT_next:
+ mark_state = ST.prev_mark;
+ sayYES;
+ /* NOTREACHED */
+ case MARKPOINT_next_fail:
+ if (popmark && sv_eq(ST.mark_name,popmark))
+ {
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ popmark = NULL; /* we found our mark */
+ sv_commit = ST.mark_name;
+
+ DEBUG_EXECUTE_r({
+ PerlIO_printf(Perl_debug_log,
+ "%*s %ssetting cutpoint to mark:%"SVf"...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], SVfARG(sv_commit), PL_colors[5]);
+ });
+ }
+ mark_state = ST.prev_mark;
+ sv_yes_mark = mark_state ?
+ mark_state->u.mark.mark_name : NULL;
+ sayNO;
+ /* NOTREACHED */
+ case SKIP:
+ PL_reginput = locinput;
+ if (scan->flags) {
+ /* (*SKIP) : if we fail we cut here*/
+ ST.mark_name = NULL;
+ ST.mark_loc = locinput;
+ PUSH_STATE_GOTO(SKIP_next,next);
+ } else {
+ /* (*SKIP:NAME) : if there is a (*MARK:NAME) fail where it was,
+ otherwise do nothing. Meaning we need to scan
+ */
+ regmatch_state *cur = mark_state;
+ SV *find = MUTABLE_SV(rexi->data->data[ ARG( scan ) ]);
+
+ while (cur) {
+ if ( sv_eq( cur->u.mark.mark_name,
+ find ) )
+ {
+ ST.mark_name = find;
+ PUSH_STATE_GOTO( SKIP_next, next );
+ }
+ cur = cur->u.mark.prev_mark;
+ }
+ }
+ /* Didn't find our (*MARK:NAME) so ignore this (*SKIP:NAME) */
+ break;
+ case SKIP_next_fail:
+ if (ST.mark_name) {
+ /* (*CUT:NAME) - Set up to search for the name as we
+ collapse the stack*/
+ popmark = ST.mark_name;
+ } else {
+ /* (*CUT) - No name, we cut here.*/
+ if (ST.mark_loc > startpoint)
+ reginfo->cutpoint = HOPBACKc(ST.mark_loc, 1);
+ /* but we set sv_commit to latest mark_name if there
+ is one so they can test to see how things lead to this
+ cut */
+ if (mark_state)
+ sv_commit=mark_state->u.mark.mark_name;
+ }
+ no_final = 1;
+ sayNO;
+ /* NOTREACHED */
+#undef ST
+ case LNBREAK:
+ if ((n=is_LNBREAK(locinput,utf8_target))) {
+ locinput += n;
+ nextchr = UCHARAT(locinput);
+ } else
+ sayNO;
+ break;
+
+#define CASE_CLASS(nAmE) \
+ case nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ locinput += n; \
+ nextchr = UCHARAT(locinput); \
+ } else \
+ sayNO; \
+ break; \
+ case N##nAmE: \
+ if (locinput >= PL_regeol) \
+ sayNO; \
+ if ((n=is_##nAmE(locinput,utf8_target))) { \
+ sayNO; \
+ } else { \
+ locinput += UTF8SKIP(locinput); \
+ nextchr = UCHARAT(locinput); \
+ } \
+ break
+
+ CASE_CLASS(VERTWS);
+ CASE_CLASS(HORIZWS);
+#undef CASE_CLASS
+
+ default:
+ PerlIO_printf(Perl_error_log, "%"UVxf" %d\n",
+ PTR2UV(scan), OP(scan));
+ Perl_croak(aTHX_ "regexp memory corruption");
+
+ } /* end switch */
+
+ /* switch break jumps here */
+ scan = next; /* prepare to execute the next op and ... */
+ continue; /* ... jump back to the top, reusing st */
+ /* NOTREACHED */
+
+ push_yes_state:
+ /* push a state that backtracks on success */
+ st->u.yes.prev_yes_state = yes_state;
+ yes_state = st;
+ /* FALL THROUGH */
+ push_state:
+ /* push a new regex state, then continue at scan */
+ {
+ regmatch_state *newst;
+
+ DEBUG_STACK_r({
+ regmatch_state *cur = st;
+ regmatch_state *curyes = yes_state;
+ int curd = depth;
+ regmatch_slab *slab = PL_regmatch_slab;
+ for (;curd > -1;cur--,curd--) {
+ if (cur < SLAB_FIRST(slab)) {
+ slab = slab->prev;
+ cur = SLAB_LAST(slab);
+ }
+ PerlIO_printf(Perl_error_log, "%*s#%-3d %-10s %s\n",
+ REPORT_CODE_OFF + 2 + depth * 2,"",
+ curd, PL_reg_name[cur->resume_state],
+ (curyes == cur) ? "yes" : ""
+ );
+ if (curyes == cur)
+ curyes = cur->u.yes.prev_yes_state;
+ }
+ } else
+ DEBUG_STATE_pp("push")
+ );
+ depth++;
+ st->locinput = locinput;
+ newst = st+1;
+ if (newst > SLAB_LAST(PL_regmatch_slab))
+ newst = S_push_slab(aTHX);
+ PL_regmatch_state = newst;
+
+ locinput = PL_reginput;
+ nextchr = UCHARAT(locinput);
+ st = newst;
+ continue;
+ /* NOTREACHED */
+ }
+ }
+
+ /*
+ * We get here only if there's trouble -- normally "case END" is
+ * the terminating point.
+ */
+ Perl_croak(aTHX_ "corrupted regexp pointers");
+ /*NOTREACHED*/
+ sayNO;
+
+yes:
+ if (yes_state) {
+ /* we have successfully completed a subexpression, but we must now
+ * pop to the state marked by yes_state and continue from there */
+ assert(st != yes_state);
+#ifdef DEBUGGING
+ while (st != yes_state) {
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ DEBUG_STATE_r({
+ if (no_final) {
+ DEBUG_STATE_pp("pop (no final)");
+ } else {
+ DEBUG_STATE_pp("pop (yes)");
+ }
+ });
+ depth--;
+ }
+#else
+ while (yes_state < SLAB_FIRST(PL_regmatch_slab)
+ || yes_state > SLAB_LAST(PL_regmatch_slab))
+ {
+ /* not in this slab, pop slab */
+ depth -= (st - SLAB_FIRST(PL_regmatch_slab) + 1);
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ depth -= (st - yes_state);
+#endif
+ st = yes_state;
+ yes_state = st->u.yes.prev_yes_state;
+ PL_regmatch_state = st;
+
+ if (no_final) {
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+ }
+ state_num = st->resume_state + no_final;
+ goto reenter_switch;
+ }
+
+ DEBUG_EXECUTE_r(PerlIO_printf(Perl_debug_log, "%sMatch successful!%s\n",
+ PL_colors[4], PL_colors[5]));
+
+ if (PL_reg_eval_set) {
+ /* each successfully executed (?{...}) block does the equivalent of
+ * local $^R = do {...}
+ * When popping the save stack, all these locals would be undone;
+ * bypass this by setting the outermost saved $^R to the latest
+ * value */
+ if (oreplsv != GvSV(PL_replgv))
+ sv_setsv(oreplsv, GvSV(PL_replgv));
+ }
+ result = 1;
+ goto final_exit;
+
+no:
+ DEBUG_EXECUTE_r(
+ PerlIO_printf(Perl_debug_log,
+ "%*s %sfailed...%s\n",
+ REPORT_CODE_OFF+depth*2, "",
+ PL_colors[4], PL_colors[5])
+ );
+
+no_silent:
+ if (no_final) {
+ if (yes_state) {
+ goto yes;
+ } else {
+ goto final_exit;
+ }
+ }
+ if (depth) {
+ /* there's a previous state to backtrack to */
+ st--;
+ if (st < SLAB_FIRST(PL_regmatch_slab)) {
+ PL_regmatch_slab = PL_regmatch_slab->prev;
+ st = SLAB_LAST(PL_regmatch_slab);
+ }
+ PL_regmatch_state = st;
+ locinput= st->locinput;
+ nextchr = UCHARAT(locinput);
+
+ DEBUG_STATE_pp("pop");
+ depth--;
+ if (yes_state == st)
+ yes_state = st->u.yes.prev_yes_state;
+
+ state_num = st->resume_state + 1; /* failure = success + 1 */
+ goto reenter_switch;
+ }
+ result = 0;
+
+ final_exit:
+ if (rex->intflags & PREGf_VERBARG_SEEN) {
+ SV *sv_err = get_sv("REGERROR", 1);
+ SV *sv_mrk = get_sv("REGMARK", 1);
+ if (result) {
+ sv_commit = &PL_sv_no;
+ if (!sv_yes_mark)
+ sv_yes_mark = &PL_sv_yes;
+ } else {
+ if (!sv_commit)
+ sv_commit = &PL_sv_yes;
+ sv_yes_mark = &PL_sv_no;
+ }
+ sv_setsv(sv_err, sv_commit);
+ sv_setsv(sv_mrk, sv_yes_mark);
+ }
+
+ /* clean up; in particular, free all slabs above current one */
+ LEAVE_SCOPE(oldsave);
+
+ return result;
+}
+
+/*
+ - regrepeat - repeatedly match something simple, report how many
+ */
+/*
+ * [This routine now assumes that it will only match on things of length 1.
+ * That was true before, but now we assume scan - reginput is the count,
+ * rather than incrementing count on every character. [Er, except utf8.]]
+ */
+STATIC I32
+S_regrepeat(pTHX_ const regexp *prog, const regnode *p, I32 max, int depth)
+{
+ dVAR;
+ register char *scan;
+ register I32 c;
+ register char *loceol = PL_regeol;
+ register I32 hardcount = 0;
+ register bool utf8_target = PL_reg_match_utf8;
+ UV utf8_flags;
+#ifndef DEBUGGING
+ PERL_UNUSED_ARG(depth);
+#endif
+
+ PERL_ARGS_ASSERT_REGREPEAT;
+
+ scan = PL_reginput;
+ if (max == REG_INFTY)
+ max = I32_MAX;
+ else if (max < loceol - scan)
+ loceol = scan + max;
+ switch (OP(p)) {
+ case REG_ANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max && *scan != '\n') {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && *scan != '\n')
+ scan++;
+ }
+ break;
+ case SANY:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (scan < loceol && hardcount < max) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ }
+ else
+ scan = loceol;
+ break;
+ case CANY:
+ scan = loceol;
+ break;
+ case EXACT:
+ /* To get here, EXACTish nodes must have *byte* length == 1. That
+ * means they match only characters in the string that can be expressed
+ * as a single byte. For non-utf8 strings, that means a simple match.
+ * For utf8 strings, the character matched must be an invariant, or
+ * downgradable to a single byte. The pattern's utf8ness is
+ * irrelevant, as since it's a single byte, it either isn't utf8, or if
+ * it is, it's an invariant */
+
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (! utf8_target || UNI_IS_INVARIANT(c)) {
+ while (scan < loceol && UCHARAT(scan) == c) {
+ scan++;
+ }
+ }
+ else {
+
+ /* Here, the string is utf8, and the pattern char is different
+ * in utf8 than not, so can't compare them directly. Outside the
+ * loop, find the two utf8 bytes that represent c, and then
+ * look for those in sequence in the utf8 string */
+ U8 high = UTF8_TWO_BYTE_HI(c);
+ U8 low = UTF8_TWO_BYTE_LO(c);
+ loceol = PL_regeol;
+
+ while (hardcount < max
+ && scan + 1 < loceol
+ && UCHARAT(scan) == high
+ && UCHARAT(scan + 1) == low)
+ {
+ scan += 2;
+ hardcount++;
+ }
+ }
+ break;
+ case EXACTFA:
+ utf8_flags = FOLDEQ_UTF8_NOMIX_ASCII;
+ goto do_exactf;
+
+ case EXACTFL:
+ PL_reg_flags |= RF_tainted;
+ utf8_flags = FOLDEQ_UTF8_LOCALE;
+ goto do_exactf;
+
+ case EXACTF:
+ utf8_flags = 0;
+ goto do_exactf;
+
+ case EXACTFU_SS:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU:
+ utf8_flags = (UTF_PATTERN) ? FOLDEQ_S2_ALREADY_FOLDED : 0;
+
+ /* The comments for the EXACT case above apply as well to these fold
+ * ones */
+
+ do_exactf:
+ c = (U8)*STRING(p);
+ assert(! UTF_PATTERN || UNI_IS_INVARIANT(c));
+
+ if (utf8_target || OP(p) == EXACTFU_SS) { /* Use full Unicode fold matching */
+ char *tmpeol = loceol;
+ while (hardcount < max
+ && foldEQ_utf8_flags(scan, &tmpeol, 0, utf8_target,
+ STRING(p), NULL, 1, cBOOL(UTF_PATTERN), utf8_flags))
+ {
+ scan = tmpeol;
+ tmpeol = loceol;
+ hardcount++;
+ }
+
+ /* XXX Note that the above handles properly the German sharp s in
+ * the pattern matching ss in the string. But it doesn't handle
+ * properly cases where the string contains say 'LIGATURE ff' and
+ * the pattern is 'f+'. This would require, say, a new function or
+ * revised interface to foldEQ_utf8(), in which the maximum number
+ * of characters to match could be passed and it would return how
+ * many actually did. This is just one of many cases where
+ * multi-char folds don't work properly, and so the fix is being
+ * deferred */
+ }
+ else {
+ U8 folded;
+
+ /* Here, the string isn't utf8 and c is a single byte; and either
+ * the pattern isn't utf8 or c is an invariant, so its utf8ness
+ * doesn't affect c. Can just do simple comparisons for exact or
+ * fold matching. */
+ switch (OP(p)) {
+ case EXACTF: folded = PL_fold[c]; break;
+ case EXACTFA:
+ case EXACTFU_TRICKYFOLD:
+ case EXACTFU: folded = PL_fold_latin1[c]; break;
+ case EXACTFL: folded = PL_fold_locale[c]; break;
+ default: Perl_croak(aTHX_ "panic: Unexpected op %u", OP(p));
+ }
+ while (scan < loceol &&
+ (UCHARAT(scan) == c || UCHARAT(scan) == folded))
+ {
+ scan++;
+ }
+ }
+ break;
+ case ANYOFV:
+ case ANYOF:
+ if (utf8_target || OP(p) == ANYOFV) {
+ STRLEN inclasslen;
+ loceol = PL_regeol;
+ inclasslen = loceol - scan;
+ while (hardcount < max
+ && ((inclasslen = loceol - scan) > 0)
+ && reginclass(prog, p, (U8*)scan, &inclasslen, utf8_target))
+ {
+ scan += inclasslen;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && REGINCLASS(prog, p, (U8*)scan))
+ scan++;
+ }
+ break;
+ case ALNUMU:
+ if (utf8_target) {
+ utf8_wordchar:
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case ALNUM:
+ if (utf8_target)
+ goto utf8_wordchar;
+ while (scan < loceol && isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUMA:
+ while (scan < loceol && isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case ALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case NALNUMU:
+ if (utf8_target) {
+
+ utf8_Nwordchar:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_ALNUM();
+ while (hardcount < max && scan < loceol &&
+ ! swash_fetch(PL_utf8_alnum, (U8*)scan, utf8_target))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && ! isWORDCHAR_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUM:
+ if (utf8_target)
+ goto utf8_Nwordchar;
+ while (scan < loceol && ! isALNUM((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NALNUMA:
+ if (utf8_target) {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isWORDCHAR_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NALNUML:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isALNUM_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isALNUM_LC(*scan))
+ scan++;
+ }
+ break;
+ case SPACEU:
+ if (utf8_target) {
+
+ utf8_space:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ break;
+ }
+ case SPACE:
+ if (utf8_target)
+ goto utf8_space;
+
+ while (scan < loceol && isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEA:
+ while (scan < loceol && isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case SPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case NSPACEU:
+ if (utf8_target) {
+
+ utf8_Nspace:
+
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_SPACE();
+ while (hardcount < max && scan < loceol &&
+ ! (*scan == ' ' ||
+ swash_fetch(PL_utf8_space,(U8*)scan, utf8_target)))
+ {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ break;
+ }
+ else {
+ while (scan < loceol && ! isSPACE_L1((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACE:
+ if (utf8_target)
+ goto utf8_Nspace;
+
+ while (scan < loceol && ! isSPACE((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case NSPACEA:
+ if (utf8_target) {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isSPACE_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NSPACEL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isSPACE_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isSPACE_LC(*scan))
+ scan++;
+ }
+ break;
+ case DIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case DIGITA:
+ while (scan < loceol && isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ break;
+ case DIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case NDIGIT:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ LOAD_UTF8_CHARCLASS_DIGIT();
+ while (hardcount < max && scan < loceol &&
+ !swash_fetch(PL_utf8_digit, (U8*)scan, utf8_target)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT(*scan))
+ scan++;
+ }
+ break;
+ case NDIGITA:
+ if (utf8_target) {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan += UTF8SKIP(scan);
+ }
+ }
+ else {
+ while (scan < loceol && ! isDIGIT_A((U8) *scan)) {
+ scan++;
+ }
+ }
+ break;
+ case NDIGITL:
+ PL_reg_flags |= RF_tainted;
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol &&
+ !isDIGIT_LC_utf8((U8*)scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !isDIGIT_LC(*scan))
+ scan++;
+ }
+ break;
+ case LNBREAK:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_LNBREAK_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ /*
+ LNBREAK can match two latin chars, which is ok,
+ because we have a null terminated string, but we
+ have to use hardcount in this situation
+ */
+ while (scan < loceol && (c=is_LNBREAK_latin1(scan))) {
+ scan+=c;
+ hardcount++;
+ }
+ }
+ break;
+ case HORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_HORIZWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_HORIZWS_latin1(scan))
+ scan++;
+ }
+ break;
+ case NHORIZWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_HORIZWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_HORIZWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case VERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && (c=is_VERTWS_utf8(scan))) {
+ scan += c;
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+ case NVERTWS:
+ if (utf8_target) {
+ loceol = PL_regeol;
+ while (hardcount < max && scan < loceol && !is_VERTWS_utf8(scan)) {
+ scan += UTF8SKIP(scan);
+ hardcount++;
+ }
+ } else {
+ while (scan < loceol && !is_VERTWS_latin1(scan))
+ scan++;
+
+ }
+ break;
+
+ default: /* Called on something of 0 width. */
+ break; /* So match right here or not at all. */
+ }
+
+ if (hardcount)
+ c = hardcount;
+ else
+ c = scan - PL_reginput;
+ PL_reginput = scan;
+
+ DEBUG_r({
+ GET_RE_DEBUG_FLAGS_DECL;
+ DEBUG_EXECUTE_r({
+ SV * const prop = sv_newmortal();
+ regprop(prog, prop, p);
+ PerlIO_printf(Perl_debug_log,
+ "%*s %s can match %"IVdf" times out of %"IVdf"...\n",
+ REPORT_CODE_OFF + depth*2, "", SvPVX_const(prop),(IV)c,(IV)max);
+ });
+ });
+
+ return(c);
+}
+
+
+#if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
+/*
+- regclass_swash - prepare the utf8 swash. Wraps the shared core version to
+create a copy so that changes the caller makes won't change the shared one
+ */
+SV *
+Perl_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ PERL_ARGS_ASSERT_REGCLASS_SWASH;
+ return newSVsv(core_regclass_swash(prog, node, doinit, listsvp, altsvp));
+}
+#endif
+
+STATIC SV *
+S_core_regclass_swash(pTHX_ const regexp *prog, register const regnode* node, bool doinit, SV** listsvp, SV **altsvp)
+{
+ /* Returns the swash for the input 'node' in the regex 'prog'.
+ * If <doinit> is true, will attempt to create the swash if not already
+ * done.
+ * If <listsvp> is non-null, will return the swash initialization string in
+ * it.
+ * If <altsvp> is non-null, will return the alternates to the regular swash
+ * in it
+ * Tied intimately to how regcomp.c sets up the data structure */
+
+ dVAR;
+ SV *sw = NULL;
+ SV *si = NULL;
+ SV *alt = NULL;
+ SV* invlist = NULL;
+
+ RXi_GET_DECL(prog,progi);
+ const struct reg_data * const data = prog ? progi->data : NULL;
+
+ PERL_ARGS_ASSERT_CORE_REGCLASS_SWASH;
+
+ assert(ANYOF_NONBITMAP(node));
+
+ if (data && data->count) {
+ const U32 n = ARG(node);
+
+ if (data->what[n] == 's') {
+ SV * const rv = MUTABLE_SV(data->data[n]);
+ AV * const av = MUTABLE_AV(SvRV(rv));
+ SV **const ary = AvARRAY(av);
+ bool invlist_has_user_defined_property;
+
+ si = *ary; /* ary[0] = the string to initialize the swash with */
+
+ /* Elements 3 and 4 are either both present or both absent. [3] is
+ * any inversion list generated at compile time; [4] indicates if
+ * that inversion list has any user-defined properties in it. */
+ if (av_len(av) >= 3) {
+ invlist = ary[3];
+ invlist_has_user_defined_property = cBOOL(SvUV(ary[4]));
+ }
+ else {
+ invlist = NULL;
+ invlist_has_user_defined_property = FALSE;
+ }
+
+ /* Element [1] is reserved for the set-up swash. If already there,
+ * return it; if not, create it and store it there */
+ if (SvROK(ary[1])) {
+ sw = ary[1];
+ }
+ else if (si && doinit) {
+
+ sw = _core_swash_init("utf8", /* the utf8 package */
+ "", /* nameless */
+ si,
+ 1, /* binary */
+ 0, /* not from tr/// */
+ FALSE, /* is error if can't find
+ property */
+ invlist,
+ invlist_has_user_defined_property);
+ (void)av_store(av, 1, sw);
+ }
+
+ /* Element [2] is for any multi-char folds. Note that is a
+ * fundamentally flawed design, because can't backtrack and try
+ * again. See [perl #89774] */
+ if (SvTYPE(ary[2]) == SVt_PVAV) {
+ alt = ary[2];
+ }
+ }
+ }
+
+ if (listsvp) {
+ SV* matches_string = newSVpvn("", 0);
+ SV** invlistsvp;
+
+ /* Use the swash, if any, which has to have incorporated into it all
+ * possibilities */
+ if ( sw
+ && SvROK(sw)
+ && SvTYPE(SvRV(sw)) == SVt_PVHV
+ && (invlistsvp = hv_fetchs(MUTABLE_HV(SvRV(sw)), "INVLIST", FALSE)))
+ {
+ invlist = *invlistsvp;
+ }
+ else if (si && si != &PL_sv_undef) {
+
+ /* If no swash, use the input nitialization string, if available */
+ sv_catsv(matches_string, si);
+ }
+
+ /* Add the inversion list to whatever we have. This may have come from
+ * the swash, or from an input parameter */
+ if (invlist) {
+ sv_catsv(matches_string, _invlist_contents(invlist));
+ }
+ *listsvp = matches_string;
+ }
+
+ if (altsvp)
+ *altsvp = alt;
+
+ return sw;
+}
+
+/*
+ - reginclass - determine if a character falls into a character class
+
+ n is the ANYOF regnode
+ p is the target string
+ lenp is pointer to the maximum number of bytes of how far to go in p
+ (This is assumed wthout checking to always be at least the current
+ character's size)
+ utf8_target tells whether p is in UTF-8.
+
+ Returns true if matched; false otherwise. If lenp is not NULL, on return
+ from a successful match, the value it points to will be updated to how many
+ bytes in p were matched. If there was no match, the value is undefined,
+ possibly changed from the input.
+
+ Note that this can be a synthetic start class, a combination of various
+ nodes, so things you think might be mutually exclusive, such as locale,
+ aren't. It can match both locale and non-locale
+
+ */
+
+STATIC bool
+S_reginclass(pTHX_ const regexp * const prog, register const regnode * const n, register const U8* const p, STRLEN* lenp, register const bool utf8_target)
+{
+ dVAR;
+ const char flags = ANYOF_FLAGS(n);
+ bool match = FALSE;
+ UV c = *p;
+ STRLEN c_len = 0;
+ STRLEN maxlen;
+
+ PERL_ARGS_ASSERT_REGINCLASS;
+
+ /* If c is not already the code point, get it */
+ if (utf8_target && !UTF8_IS_INVARIANT(c)) {
+ c = utf8n_to_uvchr(p, UTF8_MAXBYTES, &c_len,
+ (UTF8_ALLOW_DEFAULT & UTF8_ALLOW_ANYUV)
+ | UTF8_ALLOW_FFFF | UTF8_CHECK_ONLY);
+ /* see [perl #37836] for UTF8_ALLOW_ANYUV; [perl #38293] for
+ * UTF8_ALLOW_FFFF */
+ if (c_len == (STRLEN)-1)
+ Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
+ }
+ else {
+ c_len = 1;
+ }
+
+ /* Use passed in max length, or one character if none passed in or less
+ * than one character. And assume will match just one character. This is
+ * overwritten later if matched more. */
+ if (lenp) {
+ maxlen = (*lenp > c_len) ? *lenp : c_len;
+ *lenp = c_len;
+
+ }
+ else {
+ maxlen = c_len;
+ }
+
+ /* If this character is potentially in the bitmap, check it */
+ if (c < 256) {
+ if (ANYOF_BITMAP_TEST(n, c))
+ match = TRUE;
+ else if (flags & ANYOF_NON_UTF8_LATIN1_ALL
+ && ! utf8_target
+ && ! isASCII(c))
+ {
+ match = TRUE;
+ }
+
+ else if (flags & ANYOF_LOCALE) {
+ PL_reg_flags |= RF_tainted;
+
+ if ((flags & ANYOF_LOC_NONBITMAP_FOLD)
+ && ANYOF_BITMAP_TEST(n, PL_fold_locale[c]))
+ {
+ match = TRUE;
+ }
+ else if (ANYOF_CLASS_TEST_ANY_SET(n) &&
+ ((ANYOF_CLASS_TEST(n, ANYOF_ALNUM) && isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUM) && !isALNUM_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_SPACE) && isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NSPACE) && !isSPACE_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_DIGIT) && isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NDIGIT) && !isDIGIT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALNUMC) && isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALNUMC) && !isALNUMC_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ALPHA) && isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NALPHA) && !isALPHA_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_ASCII) && isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NASCII) && !isASCII_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_CNTRL) && isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NCNTRL) && !isCNTRL_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_GRAPH) && isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NGRAPH) && !isGRAPH_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_LOWER) && isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NLOWER) && !isLOWER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PRINT) && isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPRINT) && !isPRINT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PUNCT) && isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPUNCT) && !isPUNCT_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_UPPER) && isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NUPPER) && !isUPPER_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_XDIGIT) && isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NXDIGIT) && !isXDIGIT(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_PSXSPC) && isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NPSXSPC) && !isPSXSPC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_BLANK) && isBLANK_LC(c)) ||
+ (ANYOF_CLASS_TEST(n, ANYOF_NBLANK) && !isBLANK_LC(c))
+ ) /* How's that for a conditional? */
+ ) {
+ match = TRUE;
+ }
+ }
+ }
+
+ /* If the bitmap didn't (or couldn't) match, and something outside the
+ * bitmap could match, try that. Locale nodes specifiy completely the
+ * behavior of code points in the bit map (otherwise, a utf8 target would
+ * cause them to be treated as Unicode and not locale), except in
+ * the very unlikely event when this node is a synthetic start class, which
+ * could be a combination of locale and non-locale nodes. So allow locale
+ * to match for the synthetic start class, which will give a false
+ * positive that will be resolved when the match is done again as not part
+ * of the synthetic start class */
+ if (!match) {
+ if (utf8_target && (flags & ANYOF_UNICODE_ALL) && c >= 256) {
+ match = TRUE; /* Everything above 255 matches */
+ }
+ else if (ANYOF_NONBITMAP(n)
+ && ((flags & ANYOF_NONBITMAP_NON_UTF8)
+ || (utf8_target
+ && (c >=256
+ || (! (flags & ANYOF_LOCALE))
+ || (flags & ANYOF_IS_SYNTHETIC)))))
+ {
+ AV *av;
+ SV * const sw = core_regclass_swash(prog, n, TRUE, 0, (SV**)&av);
+
+ if (sw) {
+ U8 * utf8_p;
+ if (utf8_target) {
+ utf8_p = (U8 *) p;
+ } else {
+
+ /* Not utf8. Convert as much of the string as available up
+ * to the limit of how far the (single) character in the
+ * pattern can possibly match (no need to go further). If
+ * the node is a straight ANYOF or not folding, it can't
+ * match more than one. Otherwise, It can match up to how
+ * far a single char can fold to. Since not utf8, each
+ * character is a single byte, so the max it can be in
+ * bytes is the same as the max it can be in characters */
+ STRLEN len = (OP(n) == ANYOF
+ || ! (flags & ANYOF_LOC_NONBITMAP_FOLD))
+ ? 1
+ : (maxlen < UTF8_MAX_FOLD_CHAR_EXPAND)
+ ? maxlen
+ : UTF8_MAX_FOLD_CHAR_EXPAND;
+ utf8_p = bytes_to_utf8(p, &len);
+ }
+
+ if (swash_fetch(sw, utf8_p, TRUE))
+ match = TRUE;
+ else if (flags & ANYOF_LOC_NONBITMAP_FOLD) {
+
+ /* Here, we need to test if the fold of the target string
+ * matches. The non-multi char folds have all been moved to
+ * the compilation phase, and the multi-char folds have
+ * been stored by regcomp into 'av'; we linearly check to
+ * see if any match the target string (folded). We know
+ * that the originals were each one character, but we don't
+ * currently know how many characters/bytes each folded to,
+ * except we do know that there are small limits imposed by
+ * Unicode. XXX A performance enhancement would be to have
+ * regcomp.c store the max number of chars/bytes that are
+ * in an av entry, as, say the 0th element. Even better
+ * would be to have a hash of the few characters that can
+ * start a multi-char fold to the max number of chars of
+ * those folds.
+ *
+ * If there is a match, we will need to advance (if lenp is
+ * specified) the match pointer in the target string. But
+ * what we are comparing here isn't that string directly,
+ * but its fold, whose length may differ from the original.
+ * As we go along in constructing the fold, therefore, we
+ * create a map so that we know how many bytes in the
+ * source to advance given that we have matched a certain
+ * number of bytes in the fold. This map is stored in
+ * 'map_fold_len_back'. Let n mean the number of bytes in
+ * the fold of the first character that we are folding.
+ * Then map_fold_len_back[n] is set to the number of bytes
+ * in that first character. Similarly let m be the
+ * corresponding number for the second character to be
+ * folded. Then map_fold_len_back[n+m] is set to the
+ * number of bytes occupied by the first two source
+ * characters. ... */
+ U8 map_fold_len_back[UTF8_MAXBYTES_CASE+1] = { 0 };
+ U8 folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN foldlen = 0; /* num bytes in fold of 1st char */
+ STRLEN total_foldlen = 0; /* num bytes in fold of all
+ chars */
+
+ if (OP(n) == ANYOF || maxlen == 1 || ! lenp || ! av) {
+
+ /* Here, only need to fold the first char of the target
+ * string. It the source wasn't utf8, is 1 byte long */
+ to_utf8_fold(utf8_p, folded, &foldlen);
+ total_foldlen = foldlen;
+ map_fold_len_back[foldlen] = (utf8_target)
+ ? UTF8SKIP(utf8_p)
+ : 1;
+ }
+ else {
+
+ /* Here, need to fold more than the first char. Do so
+ * up to the limits */
+ U8* source_ptr = utf8_p; /* The source for the fold
+ is the regex target
+ string */
+ U8* folded_ptr = folded;
+ U8* e = utf8_p + maxlen; /* Can't go beyond last
+ available byte in the
+ target string */
+ U8 i;
+ for (i = 0;
+ i < UTF8_MAX_FOLD_CHAR_EXPAND && source_ptr < e;
+ i++)
+ {
+
+ /* Fold the next character */
+ U8 this_char_folded[UTF8_MAXBYTES_CASE+1];
+ STRLEN this_char_foldlen;
+ to_utf8_fold(source_ptr,
+ this_char_folded,
+ &this_char_foldlen);
+
+ /* Bail if it would exceed the byte limit for
+ * folding a single char. */
+ if (this_char_foldlen + folded_ptr - folded >
+ UTF8_MAXBYTES_CASE)
+ {
+ break;
+ }
+
+ /* Add the fold of this character */
+ Copy(this_char_folded,
+ folded_ptr,
+ this_char_foldlen,
+ U8);
+ source_ptr += UTF8SKIP(source_ptr);
+ folded_ptr += this_char_foldlen;
+ total_foldlen = folded_ptr - folded;
+
+ /* Create map from the number of bytes in the fold
+ * back to the number of bytes in the source. If
+ * the source isn't utf8, the byte count is just
+ * the number of characters so far */
+ map_fold_len_back[total_foldlen]
+ = (utf8_target)
+ ? source_ptr - utf8_p
+ : i + 1;
+ }
+ *folded_ptr = '\0';
+ }
+
+
+ /* Do the linear search to see if the fold is in the list
+ * of multi-char folds. */
+ if (av) {
+ I32 i;
+ for (i = 0; i <= av_len(av); i++) {
+ SV* const sv = *av_fetch(av, i, FALSE);
+ STRLEN len;
+ const char * const s = SvPV_const(sv, len);
+
+ if (len <= total_foldlen
+ && memEQ(s, (char*)folded, len)
+
+ /* If 0, means matched a partial char. See
+ * [perl #90536] */
+ && map_fold_len_back[len])
+ {
+
+ /* Advance the target string ptr to account for
+ * this fold, but have to translate from the
+ * folded length to the corresponding source
+ * length. */
+ if (lenp) {
+ *lenp = map_fold_len_back[len];
+ }
+ match = TRUE;
+ break;
+ }
+ }
+ }
+ }
+
+ /* If we allocated a string above, free it */
+ if (! utf8_target) Safefree(utf8_p);
+ }
+ }
+ }
+
+ return (flags & ANYOF_INVERT) ? !match : match;
+}
+
+STATIC U8 *
+S_reghop3(U8 *s, I32 off, const U8* lim)
+{
+ /* return the position 'off' UTF-8 characters away from 's', forward if
+ * 'off' >= 0, backwards if negative. But don't go outside of position
+ * 'lim', which better be < s if off < 0 */
+
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+
+#ifdef XXX_dmq
+/* there are a bunch of places where we use two reghop3's that should
+ be replaced with this routine. but since thats not done yet
+ we ifdef it out - dmq
+*/
+STATIC U8 *
+S_reghop4(U8 *s, I32 off, const U8* llim, const U8* rlim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOP4;
+
+ if (off >= 0) {
+ while (off-- && s < rlim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ }
+ else {
+ while (off++ && s > llim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > llim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ }
+ return s;
+}
+#endif
+
+STATIC U8 *
+S_reghopmaybe3(U8* s, I32 off, const U8* lim)
+{
+ dVAR;
+
+ PERL_ARGS_ASSERT_REGHOPMAYBE3;
+
+ if (off >= 0) {
+ while (off-- && s < lim) {
+ /* XXX could check well-formedness here */
+ s += UTF8SKIP(s);
+ }
+ if (off >= 0)
+ return NULL;
+ }
+ else {
+ while (off++ && s > lim) {
+ s--;
+ if (UTF8_IS_CONTINUED(*s)) {
+ while (s > lim && UTF8_IS_CONTINUATION(*s))
+ s--;
+ }
+ /* XXX could check well-formedness here */
+ }
+ if (off <= 0)
+ return NULL;
+ }
+ return s;
+}
+
+static void
+restore_pos(pTHX_ void *arg)
+{
+ dVAR;
+ regexp * const rex = (regexp *)arg;
+ if (PL_reg_eval_set) {
+ if (PL_reg_oldsaved) {
+ rex->subbeg = PL_reg_oldsaved;
+ rex->sublen = PL_reg_oldsavedlen;
+#ifdef PERL_OLD_COPY_ON_WRITE
+ rex->saved_copy = PL_nrs;
+#endif
+ RXp_MATCH_COPIED_on(rex);
+ }
+ PL_reg_magic->mg_len = PL_reg_oldpos;
+ PL_reg_eval_set = 0;
+ PL_curpm = PL_reg_oldcurpm;
+ }
+}
+
+STATIC void
+S_to_utf8_substr(pTHX_ register regexp *prog)
+{
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_UTF8_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].substr
+ && !prog->substrs->data[i].utf8_substr) {
+ SV* const sv = newSVsv(prog->substrs->data[i].substr);
+ prog->substrs->data[i].utf8_substr = sv;
+ sv_utf8_upgrade(sv);
+ if (SvVALID(prog->substrs->data[i].substr)) {
+ if (SvTAIL(prog->substrs->data[i].substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ /* Whilst this makes the SV technically "invalid" (as its
+ buffer is no longer followed by "\0") when fbm_compile()
+ adds the "\n" back, a "\0" is restored. */
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ if (prog->substrs->data[i].substr == prog->check_substr)
+ prog->check_utf8 = sv;
+ }
+ } while (i--);
+}
+
+STATIC void
+S_to_byte_substr(pTHX_ register regexp *prog)
+{
+ dVAR;
+ int i = 1;
+
+ PERL_ARGS_ASSERT_TO_BYTE_SUBSTR;
+
+ do {
+ if (prog->substrs->data[i].utf8_substr
+ && !prog->substrs->data[i].substr) {
+ SV* sv = newSVsv(prog->substrs->data[i].utf8_substr);
+ if (sv_utf8_downgrade(sv, TRUE)) {
+ if (SvVALID(prog->substrs->data[i].utf8_substr)) {
+ if (SvTAIL(prog->substrs->data[i].utf8_substr)) {
+ /* Trim the trailing \n that fbm_compile added last
+ time. */
+ SvCUR_set(sv, SvCUR(sv) - 1);
+ fbm_compile(sv, FBMcf_TAIL);
+ } else
+ fbm_compile(sv, 0);
+ }
+ } else {
+ SvREFCNT_dec(sv);
+ sv = &PL_sv_undef;
+ }
+ prog->substrs->data[i].substr = sv;
+ if (prog->substrs->data[i].utf8_substr == prog->check_utf8)
+ prog->check_substr = sv;
+ }
+ } while (i--);
+}
+
+/*
+ * Local variables:
+ * c-indentation-style: bsd
+ * c-basic-offset: 4
+ * indent-tabs-mode: t
+ * End:
+ *
+ * ex: set ts=8 sts=4 sw=4 noet:
+ */