5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1391 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2325 /* Finish populating the prev field of the wordinfo array. Walk back
2326 * from each accept state until we find another accept state, and if
2327 * so, point the first word's .prev field at the second word. If the
2328 * second already has a .prev field set, stop now. This will be the
2329 * case either if we've already processed that word's accept state,
2330 * or that state had multiple words, and the overspill words were
2331 * already linked up earlier.
2338 for (word=1; word <= trie->wordcount; word++) {
2340 if (trie->wordinfo[word].prev)
2342 state = trie->wordinfo[word].accept;
2344 state = prev_states[state];
2347 prev = trie->states[state].wordnum;
2351 trie->wordinfo[word].prev = prev;
2353 Safefree(prev_states);
2357 /* and now dump out the compressed format */
2358 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2360 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2362 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2363 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2365 SvREFCNT_dec(revcharmap);
2369 : trie->startstate>1
2375 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2377 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2379 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2380 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2383 We find the fail state for each state in the trie, this state is the longest proper
2384 suffix of the current state's 'word' that is also a proper prefix of another word in our
2385 trie. State 1 represents the word '' and is thus the default fail state. This allows
2386 the DFA not to have to restart after its tried and failed a word at a given point, it
2387 simply continues as though it had been matching the other word in the first place.
2389 'abcdgu'=~/abcdefg|cdgu/
2390 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2391 fail, which would bring us to the state representing 'd' in the second word where we would
2392 try 'g' and succeed, proceeding to match 'cdgu'.
2394 /* add a fail transition */
2395 const U32 trie_offset = ARG(source);
2396 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2398 const U32 ucharcount = trie->uniquecharcount;
2399 const U32 numstates = trie->statecount;
2400 const U32 ubound = trie->lasttrans + ucharcount;
2404 U32 base = trie->states[ 1 ].trans.base;
2407 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2408 GET_RE_DEBUG_FLAGS_DECL;
2410 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2412 PERL_UNUSED_ARG(depth);
2416 ARG_SET( stclass, data_slot );
2417 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2418 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2419 aho->trie=trie_offset;
2420 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2421 Copy( trie->states, aho->states, numstates, reg_trie_state );
2422 Newxz( q, numstates, U32);
2423 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2426 /* initialize fail[0..1] to be 1 so that we always have
2427 a valid final fail state */
2428 fail[ 0 ] = fail[ 1 ] = 1;
2430 for ( charid = 0; charid < ucharcount ; charid++ ) {
2431 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2433 q[ q_write ] = newstate;
2434 /* set to point at the root */
2435 fail[ q[ q_write++ ] ]=1;
2438 while ( q_read < q_write) {
2439 const U32 cur = q[ q_read++ % numstates ];
2440 base = trie->states[ cur ].trans.base;
2442 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2443 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2445 U32 fail_state = cur;
2448 fail_state = fail[ fail_state ];
2449 fail_base = aho->states[ fail_state ].trans.base;
2450 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2452 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2453 fail[ ch_state ] = fail_state;
2454 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2456 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2458 q[ q_write++ % numstates] = ch_state;
2462 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2463 when we fail in state 1, this allows us to use the
2464 charclass scan to find a valid start char. This is based on the principle
2465 that theres a good chance the string being searched contains lots of stuff
2466 that cant be a start char.
2468 fail[ 0 ] = fail[ 1 ] = 0;
2469 DEBUG_TRIE_COMPILE_r({
2470 PerlIO_printf(Perl_debug_log,
2471 "%*sStclass Failtable (%"UVuf" states): 0",
2472 (int)(depth * 2), "", (UV)numstates
2474 for( q_read=1; q_read<numstates; q_read++ ) {
2475 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2477 PerlIO_printf(Perl_debug_log, "\n");
2480 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2485 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2486 * These need to be revisited when a newer toolchain becomes available.
2488 #if defined(__sparc64__) && defined(__GNUC__)
2489 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2490 # undef SPARC64_GCC_WORKAROUND
2491 # define SPARC64_GCC_WORKAROUND 1
2495 #define DEBUG_PEEP(str,scan,depth) \
2496 DEBUG_OPTIMISE_r({if (scan){ \
2497 SV * const mysv=sv_newmortal(); \
2498 regnode *Next = regnext(scan); \
2499 regprop(RExC_rx, mysv, scan); \
2500 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2501 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2502 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2509 #define JOIN_EXACT(scan,min,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2514 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2518 regnode *next = scan + NODE_SZ_STR(scan);
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2525 PERL_UNUSED_ARG(depth);
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529 #ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2533 DEBUG_PEEP("join",scan,depth);
2535 /* Skip NOTHING, merge EXACT*. */
2537 ( PL_regkind[OP(n)] == NOTHING ||
2538 (stringok && (OP(n) == OP(scan))))
2540 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2542 if (OP(n) == TAIL || n > next)
2544 if (PL_regkind[OP(n)] == NOTHING) {
2545 DEBUG_PEEP("skip:",n,depth);
2546 NEXT_OFF(scan) += NEXT_OFF(n);
2547 next = n + NODE_STEP_REGNODE;
2554 else if (stringok) {
2555 const unsigned int oldl = STR_LEN(scan);
2556 regnode * const nnext = regnext(n);
2558 DEBUG_PEEP("merg",n,depth);
2561 if (oldl + STR_LEN(n) > U8_MAX)
2563 NEXT_OFF(scan) += NEXT_OFF(n);
2564 STR_LEN(scan) += STR_LEN(n);
2565 next = n + NODE_SZ_STR(n);
2566 /* Now we can overwrite *n : */
2567 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2575 #ifdef EXPERIMENTAL_INPLACESCAN
2576 if (flags && !NEXT_OFF(n)) {
2577 DEBUG_PEEP("atch", val, depth);
2578 if (reg_off_by_arg[OP(n)]) {
2579 ARG_SET(n, val - n);
2582 NEXT_OFF(n) = val - n;
2588 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2589 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2590 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2591 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2594 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2595 && ( STR_LEN(scan) >= 6 ) )
2598 Two problematic code points in Unicode casefolding of EXACT nodes:
2600 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2601 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2607 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2608 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2610 This means that in case-insensitive matching (or "loose matching",
2611 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2612 length of the above casefolded versions) can match a target string
2613 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2614 This would rather mess up the minimum length computation.
2616 What we'll do is to look for the tail four bytes, and then peek
2617 at the preceding two bytes to see whether we need to decrease
2618 the minimum length by four (six minus two).
2620 Thanks to the design of UTF-8, there cannot be false matches:
2621 A sequence of valid UTF-8 bytes cannot be a subsequence of
2622 another valid sequence of UTF-8 bytes.
2625 char * const s0 = STRING(scan), *s, *t;
2626 char * const s1 = s0 + STR_LEN(scan) - 1;
2627 char * const s2 = s1 - 4;
2628 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2629 const char t0[] = "\xaf\x49\xaf\x42";
2631 const char t0[] = "\xcc\x88\xcc\x81";
2633 const char * const t1 = t0 + 3;
2636 s < s2 && (t = ninstr(s, s1, t0, t1));
2639 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2640 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2642 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2643 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2651 n = scan + NODE_SZ_STR(scan);
2653 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2660 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2664 /* REx optimizer. Converts nodes into quicker variants "in place".
2665 Finds fixed substrings. */
2667 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2668 to the position after last scanned or to NULL. */
2670 #define INIT_AND_WITHP \
2671 assert(!and_withp); \
2672 Newx(and_withp,1,struct regnode_charclass_class); \
2673 SAVEFREEPV(and_withp)
2675 /* this is a chain of data about sub patterns we are processing that
2676 need to be handled separately/specially in study_chunk. Its so
2677 we can simulate recursion without losing state. */
2679 typedef struct scan_frame {
2680 regnode *last; /* last node to process in this frame */
2681 regnode *next; /* next node to process when last is reached */
2682 struct scan_frame *prev; /*previous frame*/
2683 I32 stop; /* what stopparen do we use */
2687 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2689 #define CASE_SYNST_FNC(nAmE) \
2691 if (flags & SCF_DO_STCLASS_AND) { \
2692 for (value = 0; value < 256; value++) \
2693 if (!is_ ## nAmE ## _cp(value)) \
2694 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2697 for (value = 0; value < 256; value++) \
2698 if (is_ ## nAmE ## _cp(value)) \
2699 ANYOF_BITMAP_SET(data->start_class, value); \
2703 if (flags & SCF_DO_STCLASS_AND) { \
2704 for (value = 0; value < 256; value++) \
2705 if (is_ ## nAmE ## _cp(value)) \
2706 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2709 for (value = 0; value < 256; value++) \
2710 if (!is_ ## nAmE ## _cp(value)) \
2711 ANYOF_BITMAP_SET(data->start_class, value); \
2718 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2719 I32 *minlenp, I32 *deltap,
2724 struct regnode_charclass_class *and_withp,
2725 U32 flags, U32 depth)
2726 /* scanp: Start here (read-write). */
2727 /* deltap: Write maxlen-minlen here. */
2728 /* last: Stop before this one. */
2729 /* data: string data about the pattern */
2730 /* stopparen: treat close N as END */
2731 /* recursed: which subroutines have we recursed into */
2732 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2735 I32 min = 0, pars = 0, code;
2736 regnode *scan = *scanp, *next;
2738 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2739 int is_inf_internal = 0; /* The studied chunk is infinite */
2740 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2741 scan_data_t data_fake;
2742 SV *re_trie_maxbuff = NULL;
2743 regnode *first_non_open = scan;
2744 I32 stopmin = I32_MAX;
2745 scan_frame *frame = NULL;
2746 GET_RE_DEBUG_FLAGS_DECL;
2748 PERL_ARGS_ASSERT_STUDY_CHUNK;
2751 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2755 while (first_non_open && OP(first_non_open) == OPEN)
2756 first_non_open=regnext(first_non_open);
2761 while ( scan && OP(scan) != END && scan < last ){
2762 /* Peephole optimizer: */
2763 DEBUG_STUDYDATA("Peep:", data,depth);
2764 DEBUG_PEEP("Peep",scan,depth);
2765 JOIN_EXACT(scan,&min,0);
2767 /* Follow the next-chain of the current node and optimize
2768 away all the NOTHINGs from it. */
2769 if (OP(scan) != CURLYX) {
2770 const int max = (reg_off_by_arg[OP(scan)]
2772 /* I32 may be smaller than U16 on CRAYs! */
2773 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2774 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2778 /* Skip NOTHING and LONGJMP. */
2779 while ((n = regnext(n))
2780 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2781 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2782 && off + noff < max)
2784 if (reg_off_by_arg[OP(scan)])
2787 NEXT_OFF(scan) = off;
2792 /* The principal pseudo-switch. Cannot be a switch, since we
2793 look into several different things. */
2794 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2795 || OP(scan) == IFTHEN) {
2796 next = regnext(scan);
2798 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2800 if (OP(next) == code || code == IFTHEN) {
2801 /* NOTE - There is similar code to this block below for handling
2802 TRIE nodes on a re-study. If you change stuff here check there
2804 I32 max1 = 0, min1 = I32_MAX, num = 0;
2805 struct regnode_charclass_class accum;
2806 regnode * const startbranch=scan;
2808 if (flags & SCF_DO_SUBSTR)
2809 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2810 if (flags & SCF_DO_STCLASS)
2811 cl_init_zero(pRExC_state, &accum);
2813 while (OP(scan) == code) {
2814 I32 deltanext, minnext, f = 0, fake;
2815 struct regnode_charclass_class this_class;
2818 data_fake.flags = 0;
2820 data_fake.whilem_c = data->whilem_c;
2821 data_fake.last_closep = data->last_closep;
2824 data_fake.last_closep = &fake;
2826 data_fake.pos_delta = delta;
2827 next = regnext(scan);
2828 scan = NEXTOPER(scan);
2830 scan = NEXTOPER(scan);
2831 if (flags & SCF_DO_STCLASS) {
2832 cl_init(pRExC_state, &this_class);
2833 data_fake.start_class = &this_class;
2834 f = SCF_DO_STCLASS_AND;
2836 if (flags & SCF_WHILEM_VISITED_POS)
2837 f |= SCF_WHILEM_VISITED_POS;
2839 /* we suppose the run is continuous, last=next...*/
2840 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2842 stopparen, recursed, NULL, f,depth+1);
2845 if (max1 < minnext + deltanext)
2846 max1 = minnext + deltanext;
2847 if (deltanext == I32_MAX)
2848 is_inf = is_inf_internal = 1;
2850 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2852 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2853 if ( stopmin > minnext)
2854 stopmin = min + min1;
2855 flags &= ~SCF_DO_SUBSTR;
2857 data->flags |= SCF_SEEN_ACCEPT;
2860 if (data_fake.flags & SF_HAS_EVAL)
2861 data->flags |= SF_HAS_EVAL;
2862 data->whilem_c = data_fake.whilem_c;
2864 if (flags & SCF_DO_STCLASS)
2865 cl_or(pRExC_state, &accum, &this_class);
2867 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2869 if (flags & SCF_DO_SUBSTR) {
2870 data->pos_min += min1;
2871 data->pos_delta += max1 - min1;
2872 if (max1 != min1 || is_inf)
2873 data->longest = &(data->longest_float);
2876 delta += max1 - min1;
2877 if (flags & SCF_DO_STCLASS_OR) {
2878 cl_or(pRExC_state, data->start_class, &accum);
2880 cl_and(data->start_class, and_withp);
2881 flags &= ~SCF_DO_STCLASS;
2884 else if (flags & SCF_DO_STCLASS_AND) {
2886 cl_and(data->start_class, &accum);
2887 flags &= ~SCF_DO_STCLASS;
2890 /* Switch to OR mode: cache the old value of
2891 * data->start_class */
2893 StructCopy(data->start_class, and_withp,
2894 struct regnode_charclass_class);
2895 flags &= ~SCF_DO_STCLASS_AND;
2896 StructCopy(&accum, data->start_class,
2897 struct regnode_charclass_class);
2898 flags |= SCF_DO_STCLASS_OR;
2899 data->start_class->flags |= ANYOF_EOS;
2903 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2906 Assuming this was/is a branch we are dealing with: 'scan' now
2907 points at the item that follows the branch sequence, whatever
2908 it is. We now start at the beginning of the sequence and look
2915 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2917 If we can find such a subsequence we need to turn the first
2918 element into a trie and then add the subsequent branch exact
2919 strings to the trie.
2923 1. patterns where the whole set of branches can be converted.
2925 2. patterns where only a subset can be converted.
2927 In case 1 we can replace the whole set with a single regop
2928 for the trie. In case 2 we need to keep the start and end
2931 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2932 becomes BRANCH TRIE; BRANCH X;
2934 There is an additional case, that being where there is a
2935 common prefix, which gets split out into an EXACT like node
2936 preceding the TRIE node.
2938 If x(1..n)==tail then we can do a simple trie, if not we make
2939 a "jump" trie, such that when we match the appropriate word
2940 we "jump" to the appropriate tail node. Essentially we turn
2941 a nested if into a case structure of sorts.
2946 if (!re_trie_maxbuff) {
2947 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2948 if (!SvIOK(re_trie_maxbuff))
2949 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2951 if ( SvIV(re_trie_maxbuff)>=0 ) {
2953 regnode *first = (regnode *)NULL;
2954 regnode *last = (regnode *)NULL;
2955 regnode *tail = scan;
2960 SV * const mysv = sv_newmortal(); /* for dumping */
2962 /* var tail is used because there may be a TAIL
2963 regop in the way. Ie, the exacts will point to the
2964 thing following the TAIL, but the last branch will
2965 point at the TAIL. So we advance tail. If we
2966 have nested (?:) we may have to move through several
2970 while ( OP( tail ) == TAIL ) {
2971 /* this is the TAIL generated by (?:) */
2972 tail = regnext( tail );
2977 regprop(RExC_rx, mysv, tail );
2978 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2979 (int)depth * 2 + 2, "",
2980 "Looking for TRIE'able sequences. Tail node is: ",
2981 SvPV_nolen_const( mysv )
2987 step through the branches, cur represents each
2988 branch, noper is the first thing to be matched
2989 as part of that branch and noper_next is the
2990 regnext() of that node. if noper is an EXACT
2991 and noper_next is the same as scan (our current
2992 position in the regex) then the EXACT branch is
2993 a possible optimization target. Once we have
2994 two or more consecutive such branches we can
2995 create a trie of the EXACT's contents and stich
2996 it in place. If the sequence represents all of
2997 the branches we eliminate the whole thing and
2998 replace it with a single TRIE. If it is a
2999 subsequence then we need to stitch it in. This
3000 means the first branch has to remain, and needs
3001 to be repointed at the item on the branch chain
3002 following the last branch optimized. This could
3003 be either a BRANCH, in which case the
3004 subsequence is internal, or it could be the
3005 item following the branch sequence in which
3006 case the subsequence is at the end.
3010 /* dont use tail as the end marker for this traverse */
3011 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3012 regnode * const noper = NEXTOPER( cur );
3013 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3014 regnode * const noper_next = regnext( noper );
3018 regprop(RExC_rx, mysv, cur);
3019 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3020 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3022 regprop(RExC_rx, mysv, noper);
3023 PerlIO_printf( Perl_debug_log, " -> %s",
3024 SvPV_nolen_const(mysv));
3027 regprop(RExC_rx, mysv, noper_next );
3028 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3029 SvPV_nolen_const(mysv));
3031 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3032 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3034 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3035 : PL_regkind[ OP( noper ) ] == EXACT )
3036 || OP(noper) == NOTHING )
3038 && noper_next == tail
3043 if ( !first || optype == NOTHING ) {
3044 if (!first) first = cur;
3045 optype = OP( noper );
3051 Currently the trie logic handles case insensitive matching properly only
3052 when the pattern is UTF-8 and the node is EXACTFU (thus forcing unicode
3055 If/when this is fixed the following define can be swapped
3056 in below to fully enable trie logic.
3058 #define TRIE_TYPE_IS_SAFE 1
3061 #define TRIE_TYPE_IS_SAFE ((UTF && optype == EXACTFU) || optype==EXACT)
3063 if ( last && TRIE_TYPE_IS_SAFE ) {
3064 make_trie( pRExC_state,
3065 startbranch, first, cur, tail, count,
3068 if ( PL_regkind[ OP( noper ) ] == EXACT
3070 && noper_next == tail
3075 optype = OP( noper );
3085 regprop(RExC_rx, mysv, cur);
3086 PerlIO_printf( Perl_debug_log,
3087 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3088 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3092 if ( last && TRIE_TYPE_IS_SAFE ) {
3093 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3094 #ifdef TRIE_STUDY_OPT
3095 if ( ((made == MADE_EXACT_TRIE &&
3096 startbranch == first)
3097 || ( first_non_open == first )) &&
3099 flags |= SCF_TRIE_RESTUDY;
3100 if ( startbranch == first
3103 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3113 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3114 scan = NEXTOPER(NEXTOPER(scan));
3115 } else /* single branch is optimized. */
3116 scan = NEXTOPER(scan);
3118 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3119 scan_frame *newframe = NULL;
3124 if (OP(scan) != SUSPEND) {
3125 /* set the pointer */
3126 if (OP(scan) == GOSUB) {
3128 RExC_recurse[ARG2L(scan)] = scan;
3129 start = RExC_open_parens[paren-1];
3130 end = RExC_close_parens[paren-1];
3133 start = RExC_rxi->program + 1;
3137 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3138 SAVEFREEPV(recursed);
3140 if (!PAREN_TEST(recursed,paren+1)) {
3141 PAREN_SET(recursed,paren+1);
3142 Newx(newframe,1,scan_frame);
3144 if (flags & SCF_DO_SUBSTR) {
3145 SCAN_COMMIT(pRExC_state,data,minlenp);
3146 data->longest = &(data->longest_float);
3148 is_inf = is_inf_internal = 1;
3149 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3150 cl_anything(pRExC_state, data->start_class);
3151 flags &= ~SCF_DO_STCLASS;
3154 Newx(newframe,1,scan_frame);
3157 end = regnext(scan);
3162 SAVEFREEPV(newframe);
3163 newframe->next = regnext(scan);
3164 newframe->last = last;
3165 newframe->stop = stopparen;
3166 newframe->prev = frame;
3176 else if (OP(scan) == EXACT) {
3177 I32 l = STR_LEN(scan);
3180 const U8 * const s = (U8*)STRING(scan);
3181 l = utf8_length(s, s + l);
3182 uc = utf8_to_uvchr(s, NULL);
3184 uc = *((U8*)STRING(scan));
3187 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3188 /* The code below prefers earlier match for fixed
3189 offset, later match for variable offset. */
3190 if (data->last_end == -1) { /* Update the start info. */
3191 data->last_start_min = data->pos_min;
3192 data->last_start_max = is_inf
3193 ? I32_MAX : data->pos_min + data->pos_delta;
3195 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3197 SvUTF8_on(data->last_found);
3199 SV * const sv = data->last_found;
3200 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3201 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3202 if (mg && mg->mg_len >= 0)
3203 mg->mg_len += utf8_length((U8*)STRING(scan),
3204 (U8*)STRING(scan)+STR_LEN(scan));
3206 data->last_end = data->pos_min + l;
3207 data->pos_min += l; /* As in the first entry. */
3208 data->flags &= ~SF_BEFORE_EOL;
3210 if (flags & SCF_DO_STCLASS_AND) {
3211 /* Check whether it is compatible with what we know already! */
3215 /* If compatible, we or it in below. It is compatible if is
3216 * in the bitmp and either 1) its bit or its fold is set, or 2)
3217 * it's for a locale. Even if there isn't unicode semantics
3218 * here, at runtime there may be because of matching against a
3219 * utf8 string, so accept a possible false positive for
3220 * latin1-range folds */
3222 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3223 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3224 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3225 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3230 ANYOF_CLASS_ZERO(data->start_class);
3231 ANYOF_BITMAP_ZERO(data->start_class);
3233 ANYOF_BITMAP_SET(data->start_class, uc);
3234 else if (uc >= 0x100) {
3237 /* Some Unicode code points fold to the Latin1 range; as
3238 * XXX temporary code, instead of figuring out if this is
3239 * one, just assume it is and set all the start class bits
3240 * that could be some such above 255 code point's fold
3241 * which will generate fals positives. As the code
3242 * elsewhere that does compute the fold settles down, it
3243 * can be extracted out and re-used here */
3244 for (i = 0; i < 256; i++){
3245 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3246 ANYOF_BITMAP_SET(data->start_class, i);
3250 data->start_class->flags &= ~ANYOF_EOS;
3252 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3254 else if (flags & SCF_DO_STCLASS_OR) {
3255 /* false positive possible if the class is case-folded */
3257 ANYOF_BITMAP_SET(data->start_class, uc);
3259 data->start_class->flags |= ANYOF_UNICODE_ALL;
3260 data->start_class->flags &= ~ANYOF_EOS;
3261 cl_and(data->start_class, and_withp);
3263 flags &= ~SCF_DO_STCLASS;
3265 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3266 I32 l = STR_LEN(scan);
3267 UV uc = *((U8*)STRING(scan));
3269 /* Search for fixed substrings supports EXACT only. */
3270 if (flags & SCF_DO_SUBSTR) {
3272 SCAN_COMMIT(pRExC_state, data, minlenp);
3275 const U8 * const s = (U8 *)STRING(scan);
3276 l = utf8_length(s, s + l);
3277 uc = utf8_to_uvchr(s, NULL);
3280 if (flags & SCF_DO_SUBSTR)
3282 if (flags & SCF_DO_STCLASS_AND) {
3283 /* Check whether it is compatible with what we know already! */
3286 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3287 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3288 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3292 ANYOF_CLASS_ZERO(data->start_class);
3293 ANYOF_BITMAP_ZERO(data->start_class);
3295 ANYOF_BITMAP_SET(data->start_class, uc);
3296 data->start_class->flags &= ~ANYOF_EOS;
3297 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3298 if (OP(scan) == EXACTFL) {
3299 /* XXX This set is probably no longer necessary, and
3300 * probably wrong as LOCALE now is on in the initial
3302 data->start_class->flags |= ANYOF_LOCALE;
3306 /* Also set the other member of the fold pair. In case
3307 * that unicode semantics is called for at runtime, use
3308 * the full latin1 fold. (Can't do this for locale,
3309 * because not known until runtime */
3310 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3313 else if (uc >= 0x100) {
3315 for (i = 0; i < 256; i++){
3316 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3317 ANYOF_BITMAP_SET(data->start_class, i);
3322 else if (flags & SCF_DO_STCLASS_OR) {
3323 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3324 /* false positive possible if the class is case-folded.
3325 Assume that the locale settings are the same... */
3327 ANYOF_BITMAP_SET(data->start_class, uc);
3328 if (OP(scan) != EXACTFL) {
3330 /* And set the other member of the fold pair, but
3331 * can't do that in locale because not known until
3333 ANYOF_BITMAP_SET(data->start_class,
3334 PL_fold_latin1[uc]);
3337 data->start_class->flags &= ~ANYOF_EOS;
3339 cl_and(data->start_class, and_withp);
3341 flags &= ~SCF_DO_STCLASS;
3343 else if (REGNODE_VARIES(OP(scan))) {
3344 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3345 I32 f = flags, pos_before = 0;
3346 regnode * const oscan = scan;
3347 struct regnode_charclass_class this_class;
3348 struct regnode_charclass_class *oclass = NULL;
3349 I32 next_is_eval = 0;
3351 switch (PL_regkind[OP(scan)]) {
3352 case WHILEM: /* End of (?:...)* . */
3353 scan = NEXTOPER(scan);
3356 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3357 next = NEXTOPER(scan);
3358 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3360 maxcount = REG_INFTY;
3361 next = regnext(scan);
3362 scan = NEXTOPER(scan);
3366 if (flags & SCF_DO_SUBSTR)
3371 if (flags & SCF_DO_STCLASS) {
3373 maxcount = REG_INFTY;
3374 next = regnext(scan);
3375 scan = NEXTOPER(scan);
3378 is_inf = is_inf_internal = 1;
3379 scan = regnext(scan);
3380 if (flags & SCF_DO_SUBSTR) {
3381 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3382 data->longest = &(data->longest_float);
3384 goto optimize_curly_tail;
3386 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3387 && (scan->flags == stopparen))
3392 mincount = ARG1(scan);
3393 maxcount = ARG2(scan);
3395 next = regnext(scan);
3396 if (OP(scan) == CURLYX) {
3397 I32 lp = (data ? *(data->last_closep) : 0);
3398 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3400 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3401 next_is_eval = (OP(scan) == EVAL);
3403 if (flags & SCF_DO_SUBSTR) {
3404 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3405 pos_before = data->pos_min;
3409 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3411 data->flags |= SF_IS_INF;
3413 if (flags & SCF_DO_STCLASS) {
3414 cl_init(pRExC_state, &this_class);
3415 oclass = data->start_class;
3416 data->start_class = &this_class;
3417 f |= SCF_DO_STCLASS_AND;
3418 f &= ~SCF_DO_STCLASS_OR;
3420 /* Exclude from super-linear cache processing any {n,m}
3421 regops for which the combination of input pos and regex
3422 pos is not enough information to determine if a match
3425 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3426 regex pos at the \s*, the prospects for a match depend not
3427 only on the input position but also on how many (bar\s*)
3428 repeats into the {4,8} we are. */
3429 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3430 f &= ~SCF_WHILEM_VISITED_POS;
3432 /* This will finish on WHILEM, setting scan, or on NULL: */
3433 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3434 last, data, stopparen, recursed, NULL,
3436 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3438 if (flags & SCF_DO_STCLASS)
3439 data->start_class = oclass;
3440 if (mincount == 0 || minnext == 0) {
3441 if (flags & SCF_DO_STCLASS_OR) {
3442 cl_or(pRExC_state, data->start_class, &this_class);
3444 else if (flags & SCF_DO_STCLASS_AND) {
3445 /* Switch to OR mode: cache the old value of
3446 * data->start_class */
3448 StructCopy(data->start_class, and_withp,
3449 struct regnode_charclass_class);
3450 flags &= ~SCF_DO_STCLASS_AND;
3451 StructCopy(&this_class, data->start_class,
3452 struct regnode_charclass_class);
3453 flags |= SCF_DO_STCLASS_OR;
3454 data->start_class->flags |= ANYOF_EOS;
3456 } else { /* Non-zero len */
3457 if (flags & SCF_DO_STCLASS_OR) {
3458 cl_or(pRExC_state, data->start_class, &this_class);
3459 cl_and(data->start_class, and_withp);
3461 else if (flags & SCF_DO_STCLASS_AND)
3462 cl_and(data->start_class, &this_class);
3463 flags &= ~SCF_DO_STCLASS;
3465 if (!scan) /* It was not CURLYX, but CURLY. */
3467 if ( /* ? quantifier ok, except for (?{ ... }) */
3468 (next_is_eval || !(mincount == 0 && maxcount == 1))
3469 && (minnext == 0) && (deltanext == 0)
3470 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3471 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3473 ckWARNreg(RExC_parse,
3474 "Quantifier unexpected on zero-length expression");
3477 min += minnext * mincount;
3478 is_inf_internal |= ((maxcount == REG_INFTY
3479 && (minnext + deltanext) > 0)
3480 || deltanext == I32_MAX);
3481 is_inf |= is_inf_internal;
3482 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3484 /* Try powerful optimization CURLYX => CURLYN. */
3485 if ( OP(oscan) == CURLYX && data
3486 && data->flags & SF_IN_PAR
3487 && !(data->flags & SF_HAS_EVAL)
3488 && !deltanext && minnext == 1 ) {
3489 /* Try to optimize to CURLYN. */
3490 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3491 regnode * const nxt1 = nxt;
3498 if (!REGNODE_SIMPLE(OP(nxt))
3499 && !(PL_regkind[OP(nxt)] == EXACT
3500 && STR_LEN(nxt) == 1))
3506 if (OP(nxt) != CLOSE)
3508 if (RExC_open_parens) {
3509 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3510 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3512 /* Now we know that nxt2 is the only contents: */
3513 oscan->flags = (U8)ARG(nxt);
3515 OP(nxt1) = NOTHING; /* was OPEN. */
3518 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3519 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3520 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3521 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3522 OP(nxt + 1) = OPTIMIZED; /* was count. */
3523 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3528 /* Try optimization CURLYX => CURLYM. */
3529 if ( OP(oscan) == CURLYX && data
3530 && !(data->flags & SF_HAS_PAR)
3531 && !(data->flags & SF_HAS_EVAL)
3532 && !deltanext /* atom is fixed width */
3533 && minnext != 0 /* CURLYM can't handle zero width */
3535 /* XXXX How to optimize if data == 0? */
3536 /* Optimize to a simpler form. */
3537 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3541 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3542 && (OP(nxt2) != WHILEM))
3544 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3545 /* Need to optimize away parenths. */
3546 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3547 /* Set the parenth number. */
3548 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3550 oscan->flags = (U8)ARG(nxt);
3551 if (RExC_open_parens) {
3552 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3553 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3555 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3556 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3559 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3560 OP(nxt + 1) = OPTIMIZED; /* was count. */
3561 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3562 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3565 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3566 regnode *nnxt = regnext(nxt1);
3568 if (reg_off_by_arg[OP(nxt1)])
3569 ARG_SET(nxt1, nxt2 - nxt1);
3570 else if (nxt2 - nxt1 < U16_MAX)
3571 NEXT_OFF(nxt1) = nxt2 - nxt1;
3573 OP(nxt) = NOTHING; /* Cannot beautify */
3578 /* Optimize again: */
3579 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3580 NULL, stopparen, recursed, NULL, 0,depth+1);
3585 else if ((OP(oscan) == CURLYX)
3586 && (flags & SCF_WHILEM_VISITED_POS)
3587 /* See the comment on a similar expression above.
3588 However, this time it's not a subexpression
3589 we care about, but the expression itself. */
3590 && (maxcount == REG_INFTY)
3591 && data && ++data->whilem_c < 16) {
3592 /* This stays as CURLYX, we can put the count/of pair. */
3593 /* Find WHILEM (as in regexec.c) */
3594 regnode *nxt = oscan + NEXT_OFF(oscan);
3596 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3598 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3599 | (RExC_whilem_seen << 4)); /* On WHILEM */
3601 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3603 if (flags & SCF_DO_SUBSTR) {
3604 SV *last_str = NULL;
3605 int counted = mincount != 0;
3607 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3608 #if defined(SPARC64_GCC_WORKAROUND)
3611 const char *s = NULL;
3614 if (pos_before >= data->last_start_min)
3617 b = data->last_start_min;
3620 s = SvPV_const(data->last_found, l);
3621 old = b - data->last_start_min;
3624 I32 b = pos_before >= data->last_start_min
3625 ? pos_before : data->last_start_min;
3627 const char * const s = SvPV_const(data->last_found, l);
3628 I32 old = b - data->last_start_min;
3632 old = utf8_hop((U8*)s, old) - (U8*)s;
3634 /* Get the added string: */
3635 last_str = newSVpvn_utf8(s + old, l, UTF);
3636 if (deltanext == 0 && pos_before == b) {
3637 /* What was added is a constant string */
3639 SvGROW(last_str, (mincount * l) + 1);
3640 repeatcpy(SvPVX(last_str) + l,
3641 SvPVX_const(last_str), l, mincount - 1);
3642 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3643 /* Add additional parts. */
3644 SvCUR_set(data->last_found,
3645 SvCUR(data->last_found) - l);
3646 sv_catsv(data->last_found, last_str);
3648 SV * sv = data->last_found;
3650 SvUTF8(sv) && SvMAGICAL(sv) ?
3651 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3652 if (mg && mg->mg_len >= 0)
3653 mg->mg_len += CHR_SVLEN(last_str) - l;
3655 data->last_end += l * (mincount - 1);
3658 /* start offset must point into the last copy */
3659 data->last_start_min += minnext * (mincount - 1);
3660 data->last_start_max += is_inf ? I32_MAX
3661 : (maxcount - 1) * (minnext + data->pos_delta);
3664 /* It is counted once already... */
3665 data->pos_min += minnext * (mincount - counted);
3666 data->pos_delta += - counted * deltanext +
3667 (minnext + deltanext) * maxcount - minnext * mincount;
3668 if (mincount != maxcount) {
3669 /* Cannot extend fixed substrings found inside
3671 SCAN_COMMIT(pRExC_state,data,minlenp);
3672 if (mincount && last_str) {
3673 SV * const sv = data->last_found;
3674 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3675 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3679 sv_setsv(sv, last_str);
3680 data->last_end = data->pos_min;
3681 data->last_start_min =
3682 data->pos_min - CHR_SVLEN(last_str);
3683 data->last_start_max = is_inf
3685 : data->pos_min + data->pos_delta
3686 - CHR_SVLEN(last_str);
3688 data->longest = &(data->longest_float);
3690 SvREFCNT_dec(last_str);
3692 if (data && (fl & SF_HAS_EVAL))
3693 data->flags |= SF_HAS_EVAL;
3694 optimize_curly_tail:
3695 if (OP(oscan) != CURLYX) {
3696 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3698 NEXT_OFF(oscan) += NEXT_OFF(next);
3701 default: /* REF, ANYOFV, and CLUMP only? */
3702 if (flags & SCF_DO_SUBSTR) {
3703 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3704 data->longest = &(data->longest_float);
3706 is_inf = is_inf_internal = 1;
3707 if (flags & SCF_DO_STCLASS_OR)
3708 cl_anything(pRExC_state, data->start_class);
3709 flags &= ~SCF_DO_STCLASS;
3713 else if (OP(scan) == LNBREAK) {
3714 if (flags & SCF_DO_STCLASS) {
3716 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3717 if (flags & SCF_DO_STCLASS_AND) {
3718 for (value = 0; value < 256; value++)
3719 if (!is_VERTWS_cp(value))
3720 ANYOF_BITMAP_CLEAR(data->start_class, value);
3723 for (value = 0; value < 256; value++)
3724 if (is_VERTWS_cp(value))
3725 ANYOF_BITMAP_SET(data->start_class, value);
3727 if (flags & SCF_DO_STCLASS_OR)
3728 cl_and(data->start_class, and_withp);
3729 flags &= ~SCF_DO_STCLASS;
3733 if (flags & SCF_DO_SUBSTR) {
3734 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3736 data->pos_delta += 1;
3737 data->longest = &(data->longest_float);
3740 else if (OP(scan) == FOLDCHAR) {
3741 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3742 flags &= ~SCF_DO_STCLASS;
3745 if (flags & SCF_DO_SUBSTR) {
3746 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3748 data->pos_delta += d;
3749 data->longest = &(data->longest_float);
3752 else if (REGNODE_SIMPLE(OP(scan))) {
3755 if (flags & SCF_DO_SUBSTR) {
3756 SCAN_COMMIT(pRExC_state,data,minlenp);
3760 if (flags & SCF_DO_STCLASS) {
3761 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3763 /* Some of the logic below assumes that switching
3764 locale on will only add false positives. */
3765 switch (PL_regkind[OP(scan)]) {
3769 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3770 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3771 cl_anything(pRExC_state, data->start_class);
3774 if (OP(scan) == SANY)
3776 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3777 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3778 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3779 cl_anything(pRExC_state, data->start_class);
3781 if (flags & SCF_DO_STCLASS_AND || !value)
3782 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3785 if (flags & SCF_DO_STCLASS_AND)
3786 cl_and(data->start_class,
3787 (struct regnode_charclass_class*)scan);
3789 cl_or(pRExC_state, data->start_class,
3790 (struct regnode_charclass_class*)scan);
3793 if (flags & SCF_DO_STCLASS_AND) {
3794 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3795 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3796 if (OP(scan) == ALNUMU) {
3797 for (value = 0; value < 256; value++) {
3798 if (!isWORDCHAR_L1(value)) {
3799 ANYOF_BITMAP_CLEAR(data->start_class, value);
3803 for (value = 0; value < 256; value++) {
3804 if (!isALNUM(value)) {
3805 ANYOF_BITMAP_CLEAR(data->start_class, value);
3812 if (data->start_class->flags & ANYOF_LOCALE)
3813 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3815 /* Even if under locale, set the bits for non-locale
3816 * in case it isn't a true locale-node. This will
3817 * create false positives if it truly is locale */
3818 if (OP(scan) == ALNUMU) {
3819 for (value = 0; value < 256; value++) {
3820 if (isWORDCHAR_L1(value)) {
3821 ANYOF_BITMAP_SET(data->start_class, value);
3825 for (value = 0; value < 256; value++) {
3826 if (isALNUM(value)) {
3827 ANYOF_BITMAP_SET(data->start_class, value);
3834 if (flags & SCF_DO_STCLASS_AND) {
3835 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3836 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3837 if (OP(scan) == NALNUMU) {
3838 for (value = 0; value < 256; value++) {
3839 if (isWORDCHAR_L1(value)) {
3840 ANYOF_BITMAP_CLEAR(data->start_class, value);
3844 for (value = 0; value < 256; value++) {
3845 if (isALNUM(value)) {
3846 ANYOF_BITMAP_CLEAR(data->start_class, value);
3853 if (data->start_class->flags & ANYOF_LOCALE)
3854 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3856 /* Even if under locale, set the bits for non-locale in
3857 * case it isn't a true locale-node. This will create
3858 * false positives if it truly is locale */
3859 if (OP(scan) == NALNUMU) {
3860 for (value = 0; value < 256; value++) {
3861 if (! isWORDCHAR_L1(value)) {
3862 ANYOF_BITMAP_SET(data->start_class, value);
3866 for (value = 0; value < 256; value++) {
3867 if (! isALNUM(value)) {
3868 ANYOF_BITMAP_SET(data->start_class, value);
3875 if (flags & SCF_DO_STCLASS_AND) {
3876 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3877 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3878 if (OP(scan) == SPACEU) {
3879 for (value = 0; value < 256; value++) {
3880 if (!isSPACE_L1(value)) {
3881 ANYOF_BITMAP_CLEAR(data->start_class, value);
3885 for (value = 0; value < 256; value++) {
3886 if (!isSPACE(value)) {
3887 ANYOF_BITMAP_CLEAR(data->start_class, value);
3894 if (data->start_class->flags & ANYOF_LOCALE) {
3895 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3897 if (OP(scan) == SPACEU) {
3898 for (value = 0; value < 256; value++) {
3899 if (isSPACE_L1(value)) {
3900 ANYOF_BITMAP_SET(data->start_class, value);
3904 for (value = 0; value < 256; value++) {
3905 if (isSPACE(value)) {
3906 ANYOF_BITMAP_SET(data->start_class, value);
3913 if (flags & SCF_DO_STCLASS_AND) {
3914 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3915 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3916 if (OP(scan) == NSPACEU) {
3917 for (value = 0; value < 256; value++) {
3918 if (isSPACE_L1(value)) {
3919 ANYOF_BITMAP_CLEAR(data->start_class, value);
3923 for (value = 0; value < 256; value++) {
3924 if (isSPACE(value)) {
3925 ANYOF_BITMAP_CLEAR(data->start_class, value);
3932 if (data->start_class->flags & ANYOF_LOCALE)
3933 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3934 if (OP(scan) == NSPACEU) {
3935 for (value = 0; value < 256; value++) {
3936 if (!isSPACE_L1(value)) {
3937 ANYOF_BITMAP_SET(data->start_class, value);
3942 for (value = 0; value < 256; value++) {
3943 if (!isSPACE(value)) {
3944 ANYOF_BITMAP_SET(data->start_class, value);
3951 if (flags & SCF_DO_STCLASS_AND) {
3952 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3953 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3954 for (value = 0; value < 256; value++)
3955 if (!isDIGIT(value))
3956 ANYOF_BITMAP_CLEAR(data->start_class, value);
3960 if (data->start_class->flags & ANYOF_LOCALE)
3961 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3962 for (value = 0; value < 256; value++)
3964 ANYOF_BITMAP_SET(data->start_class, value);
3968 if (flags & SCF_DO_STCLASS_AND) {
3969 if (!(data->start_class->flags & ANYOF_LOCALE))
3970 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3971 for (value = 0; value < 256; value++)
3973 ANYOF_BITMAP_CLEAR(data->start_class, value);
3976 if (data->start_class->flags & ANYOF_LOCALE)
3977 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3978 for (value = 0; value < 256; value++)
3979 if (!isDIGIT(value))
3980 ANYOF_BITMAP_SET(data->start_class, value);
3983 CASE_SYNST_FNC(VERTWS);
3984 CASE_SYNST_FNC(HORIZWS);
3987 if (flags & SCF_DO_STCLASS_OR)
3988 cl_and(data->start_class, and_withp);
3989 flags &= ~SCF_DO_STCLASS;
3992 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3993 data->flags |= (OP(scan) == MEOL
3997 else if ( PL_regkind[OP(scan)] == BRANCHJ
3998 /* Lookbehind, or need to calculate parens/evals/stclass: */
3999 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4000 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4001 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4002 || OP(scan) == UNLESSM )
4004 /* Negative Lookahead/lookbehind
4005 In this case we can't do fixed string optimisation.
4008 I32 deltanext, minnext, fake = 0;
4010 struct regnode_charclass_class intrnl;
4013 data_fake.flags = 0;
4015 data_fake.whilem_c = data->whilem_c;
4016 data_fake.last_closep = data->last_closep;
4019 data_fake.last_closep = &fake;
4020 data_fake.pos_delta = delta;
4021 if ( flags & SCF_DO_STCLASS && !scan->flags
4022 && OP(scan) == IFMATCH ) { /* Lookahead */
4023 cl_init(pRExC_state, &intrnl);
4024 data_fake.start_class = &intrnl;
4025 f |= SCF_DO_STCLASS_AND;
4027 if (flags & SCF_WHILEM_VISITED_POS)
4028 f |= SCF_WHILEM_VISITED_POS;
4029 next = regnext(scan);
4030 nscan = NEXTOPER(NEXTOPER(scan));
4031 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4032 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4035 FAIL("Variable length lookbehind not implemented");
4037 else if (minnext > (I32)U8_MAX) {
4038 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4040 scan->flags = (U8)minnext;
4043 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4045 if (data_fake.flags & SF_HAS_EVAL)
4046 data->flags |= SF_HAS_EVAL;
4047 data->whilem_c = data_fake.whilem_c;
4049 if (f & SCF_DO_STCLASS_AND) {
4050 if (flags & SCF_DO_STCLASS_OR) {
4051 /* OR before, AND after: ideally we would recurse with
4052 * data_fake to get the AND applied by study of the
4053 * remainder of the pattern, and then derecurse;
4054 * *** HACK *** for now just treat as "no information".
4055 * See [perl #56690].
4057 cl_init(pRExC_state, data->start_class);
4059 /* AND before and after: combine and continue */
4060 const int was = (data->start_class->flags & ANYOF_EOS);
4062 cl_and(data->start_class, &intrnl);
4064 data->start_class->flags |= ANYOF_EOS;
4068 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4070 /* Positive Lookahead/lookbehind
4071 In this case we can do fixed string optimisation,
4072 but we must be careful about it. Note in the case of
4073 lookbehind the positions will be offset by the minimum
4074 length of the pattern, something we won't know about
4075 until after the recurse.
4077 I32 deltanext, fake = 0;
4079 struct regnode_charclass_class intrnl;
4081 /* We use SAVEFREEPV so that when the full compile
4082 is finished perl will clean up the allocated
4083 minlens when it's all done. This way we don't
4084 have to worry about freeing them when we know
4085 they wont be used, which would be a pain.
4088 Newx( minnextp, 1, I32 );
4089 SAVEFREEPV(minnextp);
4092 StructCopy(data, &data_fake, scan_data_t);
4093 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4096 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4097 data_fake.last_found=newSVsv(data->last_found);
4101 data_fake.last_closep = &fake;
4102 data_fake.flags = 0;
4103 data_fake.pos_delta = delta;
4105 data_fake.flags |= SF_IS_INF;
4106 if ( flags & SCF_DO_STCLASS && !scan->flags
4107 && OP(scan) == IFMATCH ) { /* Lookahead */
4108 cl_init(pRExC_state, &intrnl);
4109 data_fake.start_class = &intrnl;
4110 f |= SCF_DO_STCLASS_AND;
4112 if (flags & SCF_WHILEM_VISITED_POS)
4113 f |= SCF_WHILEM_VISITED_POS;
4114 next = regnext(scan);
4115 nscan = NEXTOPER(NEXTOPER(scan));
4117 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4118 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4121 FAIL("Variable length lookbehind not implemented");
4123 else if (*minnextp > (I32)U8_MAX) {
4124 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4126 scan->flags = (U8)*minnextp;
4131 if (f & SCF_DO_STCLASS_AND) {
4132 const int was = (data->start_class->flags & ANYOF_EOS);
4134 cl_and(data->start_class, &intrnl);
4136 data->start_class->flags |= ANYOF_EOS;
4139 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4141 if (data_fake.flags & SF_HAS_EVAL)
4142 data->flags |= SF_HAS_EVAL;
4143 data->whilem_c = data_fake.whilem_c;
4144 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4145 if (RExC_rx->minlen<*minnextp)
4146 RExC_rx->minlen=*minnextp;
4147 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4148 SvREFCNT_dec(data_fake.last_found);
4150 if ( data_fake.minlen_fixed != minlenp )
4152 data->offset_fixed= data_fake.offset_fixed;
4153 data->minlen_fixed= data_fake.minlen_fixed;
4154 data->lookbehind_fixed+= scan->flags;
4156 if ( data_fake.minlen_float != minlenp )
4158 data->minlen_float= data_fake.minlen_float;
4159 data->offset_float_min=data_fake.offset_float_min;
4160 data->offset_float_max=data_fake.offset_float_max;
4161 data->lookbehind_float+= scan->flags;
4170 else if (OP(scan) == OPEN) {
4171 if (stopparen != (I32)ARG(scan))
4174 else if (OP(scan) == CLOSE) {
4175 if (stopparen == (I32)ARG(scan)) {
4178 if ((I32)ARG(scan) == is_par) {
4179 next = regnext(scan);
4181 if ( next && (OP(next) != WHILEM) && next < last)
4182 is_par = 0; /* Disable optimization */
4185 *(data->last_closep) = ARG(scan);
4187 else if (OP(scan) == EVAL) {
4189 data->flags |= SF_HAS_EVAL;
4191 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4192 if (flags & SCF_DO_SUBSTR) {
4193 SCAN_COMMIT(pRExC_state,data,minlenp);
4194 flags &= ~SCF_DO_SUBSTR;
4196 if (data && OP(scan)==ACCEPT) {
4197 data->flags |= SCF_SEEN_ACCEPT;
4202 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4204 if (flags & SCF_DO_SUBSTR) {
4205 SCAN_COMMIT(pRExC_state,data,minlenp);
4206 data->longest = &(data->longest_float);
4208 is_inf = is_inf_internal = 1;
4209 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4210 cl_anything(pRExC_state, data->start_class);
4211 flags &= ~SCF_DO_STCLASS;
4213 else if (OP(scan) == GPOS) {
4214 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4215 !(delta || is_inf || (data && data->pos_delta)))
4217 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4218 RExC_rx->extflags |= RXf_ANCH_GPOS;
4219 if (RExC_rx->gofs < (U32)min)
4220 RExC_rx->gofs = min;
4222 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4226 #ifdef TRIE_STUDY_OPT
4227 #ifdef FULL_TRIE_STUDY
4228 else if (PL_regkind[OP(scan)] == TRIE) {
4229 /* NOTE - There is similar code to this block above for handling
4230 BRANCH nodes on the initial study. If you change stuff here
4232 regnode *trie_node= scan;
4233 regnode *tail= regnext(scan);
4234 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4235 I32 max1 = 0, min1 = I32_MAX;
4236 struct regnode_charclass_class accum;
4238 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4239 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4240 if (flags & SCF_DO_STCLASS)
4241 cl_init_zero(pRExC_state, &accum);
4247 const regnode *nextbranch= NULL;
4250 for ( word=1 ; word <= trie->wordcount ; word++)
4252 I32 deltanext=0, minnext=0, f = 0, fake;
4253 struct regnode_charclass_class this_class;
4255 data_fake.flags = 0;
4257 data_fake.whilem_c = data->whilem_c;
4258 data_fake.last_closep = data->last_closep;
4261 data_fake.last_closep = &fake;
4262 data_fake.pos_delta = delta;
4263 if (flags & SCF_DO_STCLASS) {
4264 cl_init(pRExC_state, &this_class);
4265 data_fake.start_class = &this_class;
4266 f = SCF_DO_STCLASS_AND;
4268 if (flags & SCF_WHILEM_VISITED_POS)
4269 f |= SCF_WHILEM_VISITED_POS;
4271 if (trie->jump[word]) {
4273 nextbranch = trie_node + trie->jump[0];
4274 scan= trie_node + trie->jump[word];
4275 /* We go from the jump point to the branch that follows
4276 it. Note this means we need the vestigal unused branches
4277 even though they arent otherwise used.
4279 minnext = study_chunk(pRExC_state, &scan, minlenp,
4280 &deltanext, (regnode *)nextbranch, &data_fake,
4281 stopparen, recursed, NULL, f,depth+1);
4283 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4284 nextbranch= regnext((regnode*)nextbranch);
4286 if (min1 > (I32)(minnext + trie->minlen))
4287 min1 = minnext + trie->minlen;
4288 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4289 max1 = minnext + deltanext + trie->maxlen;
4290 if (deltanext == I32_MAX)
4291 is_inf = is_inf_internal = 1;
4293 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4295 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4296 if ( stopmin > min + min1)
4297 stopmin = min + min1;
4298 flags &= ~SCF_DO_SUBSTR;
4300 data->flags |= SCF_SEEN_ACCEPT;
4303 if (data_fake.flags & SF_HAS_EVAL)
4304 data->flags |= SF_HAS_EVAL;
4305 data->whilem_c = data_fake.whilem_c;
4307 if (flags & SCF_DO_STCLASS)
4308 cl_or(pRExC_state, &accum, &this_class);
4311 if (flags & SCF_DO_SUBSTR) {
4312 data->pos_min += min1;
4313 data->pos_delta += max1 - min1;
4314 if (max1 != min1 || is_inf)
4315 data->longest = &(data->longest_float);
4318 delta += max1 - min1;
4319 if (flags & SCF_DO_STCLASS_OR) {
4320 cl_or(pRExC_state, data->start_class, &accum);
4322 cl_and(data->start_class, and_withp);
4323 flags &= ~SCF_DO_STCLASS;
4326 else if (flags & SCF_DO_STCLASS_AND) {
4328 cl_and(data->start_class, &accum);
4329 flags &= ~SCF_DO_STCLASS;
4332 /* Switch to OR mode: cache the old value of
4333 * data->start_class */
4335 StructCopy(data->start_class, and_withp,
4336 struct regnode_charclass_class);
4337 flags &= ~SCF_DO_STCLASS_AND;
4338 StructCopy(&accum, data->start_class,
4339 struct regnode_charclass_class);
4340 flags |= SCF_DO_STCLASS_OR;
4341 data->start_class->flags |= ANYOF_EOS;
4348 else if (PL_regkind[OP(scan)] == TRIE) {
4349 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4352 min += trie->minlen;
4353 delta += (trie->maxlen - trie->minlen);
4354 flags &= ~SCF_DO_STCLASS; /* xxx */
4355 if (flags & SCF_DO_SUBSTR) {
4356 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4357 data->pos_min += trie->minlen;
4358 data->pos_delta += (trie->maxlen - trie->minlen);
4359 if (trie->maxlen != trie->minlen)
4360 data->longest = &(data->longest_float);
4362 if (trie->jump) /* no more substrings -- for now /grr*/
4363 flags &= ~SCF_DO_SUBSTR;
4365 #endif /* old or new */
4366 #endif /* TRIE_STUDY_OPT */
4368 /* Else: zero-length, ignore. */
4369 scan = regnext(scan);
4374 stopparen = frame->stop;
4375 frame = frame->prev;
4376 goto fake_study_recurse;
4381 DEBUG_STUDYDATA("pre-fin:",data,depth);
4384 *deltap = is_inf_internal ? I32_MAX : delta;
4385 if (flags & SCF_DO_SUBSTR && is_inf)
4386 data->pos_delta = I32_MAX - data->pos_min;
4387 if (is_par > (I32)U8_MAX)
4389 if (is_par && pars==1 && data) {
4390 data->flags |= SF_IN_PAR;
4391 data->flags &= ~SF_HAS_PAR;
4393 else if (pars && data) {
4394 data->flags |= SF_HAS_PAR;
4395 data->flags &= ~SF_IN_PAR;
4397 if (flags & SCF_DO_STCLASS_OR)
4398 cl_and(data->start_class, and_withp);
4399 if (flags & SCF_TRIE_RESTUDY)
4400 data->flags |= SCF_TRIE_RESTUDY;
4402 DEBUG_STUDYDATA("post-fin:",data,depth);
4404 return min < stopmin ? min : stopmin;
4408 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4410 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4412 PERL_ARGS_ASSERT_ADD_DATA;
4414 Renewc(RExC_rxi->data,
4415 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4416 char, struct reg_data);
4418 Renew(RExC_rxi->data->what, count + n, U8);
4420 Newx(RExC_rxi->data->what, n, U8);
4421 RExC_rxi->data->count = count + n;
4422 Copy(s, RExC_rxi->data->what + count, n, U8);
4426 /*XXX: todo make this not included in a non debugging perl */
4427 #ifndef PERL_IN_XSUB_RE
4429 Perl_reginitcolors(pTHX)
4432 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4434 char *t = savepv(s);
4438 t = strchr(t, '\t');
4444 PL_colors[i] = t = (char *)"";
4449 PL_colors[i++] = (char *)"";
4456 #ifdef TRIE_STUDY_OPT
4457 #define CHECK_RESTUDY_GOTO \
4459 (data.flags & SCF_TRIE_RESTUDY) \
4463 #define CHECK_RESTUDY_GOTO
4467 - pregcomp - compile a regular expression into internal code
4469 * We can't allocate space until we know how big the compiled form will be,
4470 * but we can't compile it (and thus know how big it is) until we've got a
4471 * place to put the code. So we cheat: we compile it twice, once with code
4472 * generation turned off and size counting turned on, and once "for real".
4473 * This also means that we don't allocate space until we are sure that the
4474 * thing really will compile successfully, and we never have to move the
4475 * code and thus invalidate pointers into it. (Note that it has to be in
4476 * one piece because free() must be able to free it all.) [NB: not true in perl]
4478 * Beware that the optimization-preparation code in here knows about some
4479 * of the structure of the compiled regexp. [I'll say.]
4484 #ifndef PERL_IN_XSUB_RE
4485 #define RE_ENGINE_PTR &PL_core_reg_engine
4487 extern const struct regexp_engine my_reg_engine;
4488 #define RE_ENGINE_PTR &my_reg_engine
4491 #ifndef PERL_IN_XSUB_RE
4493 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4496 HV * const table = GvHV(PL_hintgv);
4498 PERL_ARGS_ASSERT_PREGCOMP;
4500 /* Dispatch a request to compile a regexp to correct
4503 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4504 GET_RE_DEBUG_FLAGS_DECL;
4505 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4506 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4508 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4511 return CALLREGCOMP_ENG(eng, pattern, flags);
4514 return Perl_re_compile(aTHX_ pattern, flags);
4519 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4524 register regexp_internal *ri;
4533 /* these are all flags - maybe they should be turned
4534 * into a single int with different bit masks */
4535 I32 sawlookahead = 0;
4538 bool used_setjump = FALSE;
4539 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4544 RExC_state_t RExC_state;
4545 RExC_state_t * const pRExC_state = &RExC_state;
4546 #ifdef TRIE_STUDY_OPT
4548 RExC_state_t copyRExC_state;
4550 GET_RE_DEBUG_FLAGS_DECL;
4552 PERL_ARGS_ASSERT_RE_COMPILE;
4554 DEBUG_r(if (!PL_colorset) reginitcolors());
4556 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4557 RExC_uni_semantics = 0;
4558 RExC_contains_locale = 0;
4560 /****************** LONG JUMP TARGET HERE***********************/
4561 /* Longjmp back to here if have to switch in midstream to utf8 */
4562 if (! RExC_orig_utf8) {
4563 JMPENV_PUSH(jump_ret);
4564 used_setjump = TRUE;
4567 if (jump_ret == 0) { /* First time through */
4568 exp = SvPV(pattern, plen);
4570 /* ignore the utf8ness if the pattern is 0 length */
4572 RExC_utf8 = RExC_orig_utf8 = 0;
4576 SV *dsv= sv_newmortal();
4577 RE_PV_QUOTED_DECL(s, RExC_utf8,
4578 dsv, exp, plen, 60);
4579 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4580 PL_colors[4],PL_colors[5],s);
4583 else { /* longjumped back */
4586 /* If the cause for the longjmp was other than changing to utf8, pop
4587 * our own setjmp, and longjmp to the correct handler */
4588 if (jump_ret != UTF8_LONGJMP) {
4590 JMPENV_JUMP(jump_ret);
4595 /* It's possible to write a regexp in ascii that represents Unicode
4596 codepoints outside of the byte range, such as via \x{100}. If we
4597 detect such a sequence we have to convert the entire pattern to utf8
4598 and then recompile, as our sizing calculation will have been based
4599 on 1 byte == 1 character, but we will need to use utf8 to encode
4600 at least some part of the pattern, and therefore must convert the whole
4603 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4604 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4605 exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
4607 RExC_orig_utf8 = RExC_utf8 = 1;
4611 #ifdef TRIE_STUDY_OPT
4615 pm_flags = orig_pm_flags;
4617 if (initial_charset == REGEX_LOCALE_CHARSET) {
4618 RExC_contains_locale = 1;
4620 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4622 /* Set to use unicode semantics if the pattern is in utf8 and has the
4623 * 'depends' charset specified, as it means unicode when utf8 */
4624 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4628 RExC_flags = pm_flags;
4632 RExC_in_lookbehind = 0;
4633 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4634 RExC_seen_evals = 0;
4636 RExC_override_recoding = 0;
4638 /* First pass: determine size, legality. */
4646 RExC_emit = &PL_regdummy;
4647 RExC_whilem_seen = 0;
4648 RExC_open_parens = NULL;
4649 RExC_close_parens = NULL;
4651 RExC_paren_names = NULL;
4653 RExC_paren_name_list = NULL;
4655 RExC_recurse = NULL;
4656 RExC_recurse_count = 0;
4658 #if 0 /* REGC() is (currently) a NOP at the first pass.
4659 * Clever compilers notice this and complain. --jhi */
4660 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4662 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4663 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4664 RExC_precomp = NULL;
4668 /* Here, finished first pass. Get rid of any added setjmp */
4674 PerlIO_printf(Perl_debug_log,
4675 "Required size %"IVdf" nodes\n"
4676 "Starting second pass (creation)\n",
4679 RExC_lastparse=NULL;
4682 /* The first pass could have found things that force Unicode semantics */
4683 if ((RExC_utf8 || RExC_uni_semantics)
4684 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4686 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4689 /* Small enough for pointer-storage convention?
4690 If extralen==0, this means that we will not need long jumps. */
4691 if (RExC_size >= 0x10000L && RExC_extralen)
4692 RExC_size += RExC_extralen;
4695 if (RExC_whilem_seen > 15)
4696 RExC_whilem_seen = 15;
4698 /* Allocate space and zero-initialize. Note, the two step process
4699 of zeroing when in debug mode, thus anything assigned has to
4700 happen after that */
4701 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4702 r = (struct regexp*)SvANY(rx);
4703 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4704 char, regexp_internal);
4705 if ( r == NULL || ri == NULL )
4706 FAIL("Regexp out of space");
4708 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4709 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4711 /* bulk initialize base fields with 0. */
4712 Zero(ri, sizeof(regexp_internal), char);
4715 /* non-zero initialization begins here */
4717 r->engine= RE_ENGINE_PTR;
4718 r->extflags = pm_flags;
4720 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4721 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4723 /* The caret is output if there are any defaults: if not all the STD
4724 * flags are set, or if no character set specifier is needed */
4726 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4728 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4729 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4730 >> RXf_PMf_STD_PMMOD_SHIFT);
4731 const char *fptr = STD_PAT_MODS; /*"msix"*/
4733 /* Allocate for the worst case, which is all the std flags are turned
4734 * on. If more precision is desired, we could do a population count of
4735 * the flags set. This could be done with a small lookup table, or by
4736 * shifting, masking and adding, or even, when available, assembly
4737 * language for a machine-language population count.
4738 * We never output a minus, as all those are defaults, so are
4739 * covered by the caret */
4740 const STRLEN wraplen = plen + has_p + has_runon
4741 + has_default /* If needs a caret */
4743 /* If needs a character set specifier */
4744 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4745 + (sizeof(STD_PAT_MODS) - 1)
4746 + (sizeof("(?:)") - 1);
4748 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4750 SvFLAGS(rx) |= SvUTF8(pattern);
4753 /* If a default, cover it using the caret */
4755 *p++= DEFAULT_PAT_MOD;
4759 const char* const name = get_regex_charset_name(r->extflags, &len);
4760 Copy(name, p, len, char);
4764 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4767 while((ch = *fptr++)) {
4775 Copy(RExC_precomp, p, plen, char);
4776 assert ((RX_WRAPPED(rx) - p) < 16);
4777 r->pre_prefix = p - RX_WRAPPED(rx);
4783 SvCUR_set(rx, p - SvPVX_const(rx));
4787 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4789 if (RExC_seen & REG_SEEN_RECURSE) {
4790 Newxz(RExC_open_parens, RExC_npar,regnode *);
4791 SAVEFREEPV(RExC_open_parens);
4792 Newxz(RExC_close_parens,RExC_npar,regnode *);
4793 SAVEFREEPV(RExC_close_parens);
4796 /* Useful during FAIL. */
4797 #ifdef RE_TRACK_PATTERN_OFFSETS
4798 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4799 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4800 "%s %"UVuf" bytes for offset annotations.\n",
4801 ri->u.offsets ? "Got" : "Couldn't get",
4802 (UV)((2*RExC_size+1) * sizeof(U32))));
4804 SetProgLen(ri,RExC_size);
4808 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
4810 /* Second pass: emit code. */
4811 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4816 RExC_emit_start = ri->program;
4817 RExC_emit = ri->program;
4818 RExC_emit_bound = ri->program + RExC_size + 1;
4820 /* Store the count of eval-groups for security checks: */
4821 RExC_rx->seen_evals = RExC_seen_evals;
4822 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4823 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4827 /* XXXX To minimize changes to RE engine we always allocate
4828 3-units-long substrs field. */
4829 Newx(r->substrs, 1, struct reg_substr_data);
4830 if (RExC_recurse_count) {
4831 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4832 SAVEFREEPV(RExC_recurse);
4836 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4837 Zero(r->substrs, 1, struct reg_substr_data);
4839 #ifdef TRIE_STUDY_OPT
4841 StructCopy(&zero_scan_data, &data, scan_data_t);
4842 copyRExC_state = RExC_state;
4845 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4847 RExC_state = copyRExC_state;
4848 if (seen & REG_TOP_LEVEL_BRANCHES)
4849 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4851 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4852 if (data.last_found) {
4853 SvREFCNT_dec(data.longest_fixed);
4854 SvREFCNT_dec(data.longest_float);
4855 SvREFCNT_dec(data.last_found);
4857 StructCopy(&zero_scan_data, &data, scan_data_t);
4860 StructCopy(&zero_scan_data, &data, scan_data_t);
4863 /* Dig out information for optimizations. */
4864 r->extflags = RExC_flags; /* was pm_op */
4865 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4868 SvUTF8_on(rx); /* Unicode in it? */
4869 ri->regstclass = NULL;
4870 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4871 r->intflags |= PREGf_NAUGHTY;
4872 scan = ri->program + 1; /* First BRANCH. */
4874 /* testing for BRANCH here tells us whether there is "must appear"
4875 data in the pattern. If there is then we can use it for optimisations */
4876 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4878 STRLEN longest_float_length, longest_fixed_length;
4879 struct regnode_charclass_class ch_class; /* pointed to by data */
4881 I32 last_close = 0; /* pointed to by data */
4882 regnode *first= scan;
4883 regnode *first_next= regnext(first);
4885 * Skip introductions and multiplicators >= 1
4886 * so that we can extract the 'meat' of the pattern that must
4887 * match in the large if() sequence following.
4888 * NOTE that EXACT is NOT covered here, as it is normally
4889 * picked up by the optimiser separately.
4891 * This is unfortunate as the optimiser isnt handling lookahead
4892 * properly currently.
4895 while ((OP(first) == OPEN && (sawopen = 1)) ||
4896 /* An OR of *one* alternative - should not happen now. */
4897 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4898 /* for now we can't handle lookbehind IFMATCH*/
4899 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4900 (OP(first) == PLUS) ||
4901 (OP(first) == MINMOD) ||
4902 /* An {n,m} with n>0 */
4903 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4904 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4907 * the only op that could be a regnode is PLUS, all the rest
4908 * will be regnode_1 or regnode_2.
4911 if (OP(first) == PLUS)
4914 first += regarglen[OP(first)];
4916 first = NEXTOPER(first);
4917 first_next= regnext(first);
4920 /* Starting-point info. */
4922 DEBUG_PEEP("first:",first,0);
4923 /* Ignore EXACT as we deal with it later. */
4924 if (PL_regkind[OP(first)] == EXACT) {
4925 if (OP(first) == EXACT)
4926 NOOP; /* Empty, get anchored substr later. */
4928 ri->regstclass = first;
4931 else if (PL_regkind[OP(first)] == TRIE &&
4932 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4935 /* this can happen only on restudy */
4936 if ( OP(first) == TRIE ) {
4937 struct regnode_1 *trieop = (struct regnode_1 *)
4938 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4939 StructCopy(first,trieop,struct regnode_1);
4940 trie_op=(regnode *)trieop;
4942 struct regnode_charclass *trieop = (struct regnode_charclass *)
4943 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4944 StructCopy(first,trieop,struct regnode_charclass);
4945 trie_op=(regnode *)trieop;
4948 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4949 ri->regstclass = trie_op;
4952 else if (REGNODE_SIMPLE(OP(first)))
4953 ri->regstclass = first;
4954 else if (PL_regkind[OP(first)] == BOUND ||
4955 PL_regkind[OP(first)] == NBOUND)
4956 ri->regstclass = first;
4957 else if (PL_regkind[OP(first)] == BOL) {
4958 r->extflags |= (OP(first) == MBOL
4960 : (OP(first) == SBOL
4963 first = NEXTOPER(first);
4966 else if (OP(first) == GPOS) {
4967 r->extflags |= RXf_ANCH_GPOS;
4968 first = NEXTOPER(first);
4971 else if ((!sawopen || !RExC_sawback) &&
4972 (OP(first) == STAR &&
4973 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4974 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4976 /* turn .* into ^.* with an implied $*=1 */
4978 (OP(NEXTOPER(first)) == REG_ANY)
4981 r->extflags |= type;
4982 r->intflags |= PREGf_IMPLICIT;
4983 first = NEXTOPER(first);
4986 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4987 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4988 /* x+ must match at the 1st pos of run of x's */
4989 r->intflags |= PREGf_SKIP;
4991 /* Scan is after the zeroth branch, first is atomic matcher. */
4992 #ifdef TRIE_STUDY_OPT
4995 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
4996 (IV)(first - scan + 1))
5000 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5001 (IV)(first - scan + 1))
5007 * If there's something expensive in the r.e., find the
5008 * longest literal string that must appear and make it the
5009 * regmust. Resolve ties in favor of later strings, since
5010 * the regstart check works with the beginning of the r.e.
5011 * and avoiding duplication strengthens checking. Not a
5012 * strong reason, but sufficient in the absence of others.
5013 * [Now we resolve ties in favor of the earlier string if
5014 * it happens that c_offset_min has been invalidated, since the
5015 * earlier string may buy us something the later one won't.]
5018 data.longest_fixed = newSVpvs("");
5019 data.longest_float = newSVpvs("");
5020 data.last_found = newSVpvs("");
5021 data.longest = &(data.longest_fixed);
5023 if (!ri->regstclass) {
5024 cl_init(pRExC_state, &ch_class);
5025 data.start_class = &ch_class;
5026 stclass_flag = SCF_DO_STCLASS_AND;
5027 } else /* XXXX Check for BOUND? */
5029 data.last_closep = &last_close;
5031 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5032 &data, -1, NULL, NULL,
5033 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5039 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5040 && data.last_start_min == 0 && data.last_end > 0
5041 && !RExC_seen_zerolen
5042 && !(RExC_seen & REG_SEEN_VERBARG)
5043 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5044 r->extflags |= RXf_CHECK_ALL;
5045 scan_commit(pRExC_state, &data,&minlen,0);
5046 SvREFCNT_dec(data.last_found);
5048 /* Note that code very similar to this but for anchored string
5049 follows immediately below, changes may need to be made to both.
5052 longest_float_length = CHR_SVLEN(data.longest_float);
5053 if (longest_float_length
5054 || (data.flags & SF_FL_BEFORE_EOL
5055 && (!(data.flags & SF_FL_BEFORE_MEOL)
5056 || (RExC_flags & RXf_PMf_MULTILINE))))
5060 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5061 && data.offset_fixed == data.offset_float_min
5062 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5063 goto remove_float; /* As in (a)+. */
5065 /* copy the information about the longest float from the reg_scan_data
5066 over to the program. */
5067 if (SvUTF8(data.longest_float)) {
5068 r->float_utf8 = data.longest_float;
5069 r->float_substr = NULL;
5071 r->float_substr = data.longest_float;
5072 r->float_utf8 = NULL;
5074 /* float_end_shift is how many chars that must be matched that
5075 follow this item. We calculate it ahead of time as once the
5076 lookbehind offset is added in we lose the ability to correctly
5078 ml = data.minlen_float ? *(data.minlen_float)
5079 : (I32)longest_float_length;
5080 r->float_end_shift = ml - data.offset_float_min
5081 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5082 + data.lookbehind_float;
5083 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5084 r->float_max_offset = data.offset_float_max;
5085 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5086 r->float_max_offset -= data.lookbehind_float;
5088 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5089 && (!(data.flags & SF_FL_BEFORE_MEOL)
5090 || (RExC_flags & RXf_PMf_MULTILINE)));
5091 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5095 r->float_substr = r->float_utf8 = NULL;
5096 SvREFCNT_dec(data.longest_float);
5097 longest_float_length = 0;
5100 /* Note that code very similar to this but for floating string
5101 is immediately above, changes may need to be made to both.
5104 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5105 if (longest_fixed_length
5106 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5107 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5108 || (RExC_flags & RXf_PMf_MULTILINE))))
5112 /* copy the information about the longest fixed
5113 from the reg_scan_data over to the program. */
5114 if (SvUTF8(data.longest_fixed)) {
5115 r->anchored_utf8 = data.longest_fixed;
5116 r->anchored_substr = NULL;
5118 r->anchored_substr = data.longest_fixed;
5119 r->anchored_utf8 = NULL;
5121 /* fixed_end_shift is how many chars that must be matched that
5122 follow this item. We calculate it ahead of time as once the
5123 lookbehind offset is added in we lose the ability to correctly
5125 ml = data.minlen_fixed ? *(data.minlen_fixed)
5126 : (I32)longest_fixed_length;
5127 r->anchored_end_shift = ml - data.offset_fixed
5128 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5129 + data.lookbehind_fixed;
5130 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5132 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5133 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5134 || (RExC_flags & RXf_PMf_MULTILINE)));
5135 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5138 r->anchored_substr = r->anchored_utf8 = NULL;
5139 SvREFCNT_dec(data.longest_fixed);
5140 longest_fixed_length = 0;
5143 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5144 ri->regstclass = NULL;
5146 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5148 && !(data.start_class->flags & ANYOF_EOS)
5149 && !cl_is_anything(data.start_class))
5151 const U32 n = add_data(pRExC_state, 1, "f");
5152 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5154 Newx(RExC_rxi->data->data[n], 1,
5155 struct regnode_charclass_class);
5156 StructCopy(data.start_class,
5157 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5158 struct regnode_charclass_class);
5159 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5160 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5161 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5162 regprop(r, sv, (regnode*)data.start_class);
5163 PerlIO_printf(Perl_debug_log,
5164 "synthetic stclass \"%s\".\n",
5165 SvPVX_const(sv));});
5168 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5169 if (longest_fixed_length > longest_float_length) {
5170 r->check_end_shift = r->anchored_end_shift;
5171 r->check_substr = r->anchored_substr;
5172 r->check_utf8 = r->anchored_utf8;
5173 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5174 if (r->extflags & RXf_ANCH_SINGLE)
5175 r->extflags |= RXf_NOSCAN;
5178 r->check_end_shift = r->float_end_shift;
5179 r->check_substr = r->float_substr;
5180 r->check_utf8 = r->float_utf8;
5181 r->check_offset_min = r->float_min_offset;
5182 r->check_offset_max = r->float_max_offset;
5184 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5185 This should be changed ASAP! */
5186 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5187 r->extflags |= RXf_USE_INTUIT;
5188 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5189 r->extflags |= RXf_INTUIT_TAIL;
5191 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5192 if ( (STRLEN)minlen < longest_float_length )
5193 minlen= longest_float_length;
5194 if ( (STRLEN)minlen < longest_fixed_length )
5195 minlen= longest_fixed_length;
5199 /* Several toplevels. Best we can is to set minlen. */
5201 struct regnode_charclass_class ch_class;
5204 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5206 scan = ri->program + 1;
5207 cl_init(pRExC_state, &ch_class);
5208 data.start_class = &ch_class;
5209 data.last_closep = &last_close;
5212 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5213 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5217 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5218 = r->float_substr = r->float_utf8 = NULL;
5220 if (!(data.start_class->flags & ANYOF_EOS)
5221 && !cl_is_anything(data.start_class))
5223 const U32 n = add_data(pRExC_state, 1, "f");
5224 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5226 Newx(RExC_rxi->data->data[n], 1,
5227 struct regnode_charclass_class);
5228 StructCopy(data.start_class,
5229 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5230 struct regnode_charclass_class);
5231 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5232 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5233 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5234 regprop(r, sv, (regnode*)data.start_class);
5235 PerlIO_printf(Perl_debug_log,
5236 "synthetic stclass \"%s\".\n",
5237 SvPVX_const(sv));});
5241 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5242 the "real" pattern. */
5244 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5245 (IV)minlen, (IV)r->minlen);
5247 r->minlenret = minlen;
5248 if (r->minlen < minlen)
5251 if (RExC_seen & REG_SEEN_GPOS)
5252 r->extflags |= RXf_GPOS_SEEN;
5253 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5254 r->extflags |= RXf_LOOKBEHIND_SEEN;
5255 if (RExC_seen & REG_SEEN_EVAL)
5256 r->extflags |= RXf_EVAL_SEEN;
5257 if (RExC_seen & REG_SEEN_CANY)
5258 r->extflags |= RXf_CANY_SEEN;
5259 if (RExC_seen & REG_SEEN_VERBARG)
5260 r->intflags |= PREGf_VERBARG_SEEN;
5261 if (RExC_seen & REG_SEEN_CUTGROUP)
5262 r->intflags |= PREGf_CUTGROUP_SEEN;
5263 if (RExC_paren_names)
5264 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5266 RXp_PAREN_NAMES(r) = NULL;
5268 #ifdef STUPID_PATTERN_CHECKS
5269 if (RX_PRELEN(rx) == 0)
5270 r->extflags |= RXf_NULL;
5271 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5272 /* XXX: this should happen BEFORE we compile */
5273 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5274 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5275 r->extflags |= RXf_WHITE;
5276 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5277 r->extflags |= RXf_START_ONLY;
5279 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5280 /* XXX: this should happen BEFORE we compile */
5281 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5283 regnode *first = ri->program + 1;
5286 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5287 r->extflags |= RXf_NULL;
5288 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5289 r->extflags |= RXf_START_ONLY;
5290 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5291 && OP(regnext(first)) == END)
5292 r->extflags |= RXf_WHITE;
5296 if (RExC_paren_names) {
5297 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5298 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5301 ri->name_list_idx = 0;
5303 if (RExC_recurse_count) {
5304 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5305 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5306 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5309 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5310 /* assume we don't need to swap parens around before we match */
5313 PerlIO_printf(Perl_debug_log,"Final program:\n");
5316 #ifdef RE_TRACK_PATTERN_OFFSETS
5317 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5318 const U32 len = ri->u.offsets[0];
5320 GET_RE_DEBUG_FLAGS_DECL;
5321 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5322 for (i = 1; i <= len; i++) {
5323 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5324 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5325 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5327 PerlIO_printf(Perl_debug_log, "\n");
5333 #undef RE_ENGINE_PTR
5337 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5340 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5342 PERL_UNUSED_ARG(value);
5344 if (flags & RXapif_FETCH) {
5345 return reg_named_buff_fetch(rx, key, flags);
5346 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5347 Perl_croak_no_modify(aTHX);
5349 } else if (flags & RXapif_EXISTS) {
5350 return reg_named_buff_exists(rx, key, flags)
5353 } else if (flags & RXapif_REGNAMES) {
5354 return reg_named_buff_all(rx, flags);
5355 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5356 return reg_named_buff_scalar(rx, flags);
5358 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5364 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5367 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5368 PERL_UNUSED_ARG(lastkey);
5370 if (flags & RXapif_FIRSTKEY)
5371 return reg_named_buff_firstkey(rx, flags);
5372 else if (flags & RXapif_NEXTKEY)
5373 return reg_named_buff_nextkey(rx, flags);
5375 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5381 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5384 AV *retarray = NULL;
5386 struct regexp *const rx = (struct regexp *)SvANY(r);
5388 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5390 if (flags & RXapif_ALL)
5393 if (rx && RXp_PAREN_NAMES(rx)) {
5394 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5397 SV* sv_dat=HeVAL(he_str);
5398 I32 *nums=(I32*)SvPVX(sv_dat);
5399 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5400 if ((I32)(rx->nparens) >= nums[i]
5401 && rx->offs[nums[i]].start != -1
5402 && rx->offs[nums[i]].end != -1)
5405 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5409 ret = newSVsv(&PL_sv_undef);
5412 av_push(retarray, ret);
5415 return newRV_noinc(MUTABLE_SV(retarray));
5422 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5425 struct regexp *const rx = (struct regexp *)SvANY(r);
5427 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5429 if (rx && RXp_PAREN_NAMES(rx)) {
5430 if (flags & RXapif_ALL) {
5431 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5433 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5447 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5449 struct regexp *const rx = (struct regexp *)SvANY(r);
5451 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5453 if ( rx && RXp_PAREN_NAMES(rx) ) {
5454 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5456 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5463 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5465 struct regexp *const rx = (struct regexp *)SvANY(r);
5466 GET_RE_DEBUG_FLAGS_DECL;
5468 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5470 if (rx && RXp_PAREN_NAMES(rx)) {
5471 HV *hv = RXp_PAREN_NAMES(rx);
5473 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5476 SV* sv_dat = HeVAL(temphe);
5477 I32 *nums = (I32*)SvPVX(sv_dat);
5478 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5479 if ((I32)(rx->lastparen) >= nums[i] &&
5480 rx->offs[nums[i]].start != -1 &&
5481 rx->offs[nums[i]].end != -1)
5487 if (parno || flags & RXapif_ALL) {
5488 return newSVhek(HeKEY_hek(temphe));
5496 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5501 struct regexp *const rx = (struct regexp *)SvANY(r);
5503 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5505 if (rx && RXp_PAREN_NAMES(rx)) {
5506 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5507 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5508 } else if (flags & RXapif_ONE) {
5509 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5510 av = MUTABLE_AV(SvRV(ret));
5511 length = av_len(av);
5513 return newSViv(length + 1);
5515 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5519 return &PL_sv_undef;
5523 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5525 struct regexp *const rx = (struct regexp *)SvANY(r);
5528 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5530 if (rx && RXp_PAREN_NAMES(rx)) {
5531 HV *hv= RXp_PAREN_NAMES(rx);
5533 (void)hv_iterinit(hv);
5534 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5537 SV* sv_dat = HeVAL(temphe);
5538 I32 *nums = (I32*)SvPVX(sv_dat);
5539 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5540 if ((I32)(rx->lastparen) >= nums[i] &&
5541 rx->offs[nums[i]].start != -1 &&
5542 rx->offs[nums[i]].end != -1)
5548 if (parno || flags & RXapif_ALL) {
5549 av_push(av, newSVhek(HeKEY_hek(temphe)));
5554 return newRV_noinc(MUTABLE_SV(av));
5558 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5561 struct regexp *const rx = (struct regexp *)SvANY(r);
5566 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5569 sv_setsv(sv,&PL_sv_undef);
5573 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5575 i = rx->offs[0].start;
5579 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5581 s = rx->subbeg + rx->offs[0].end;
5582 i = rx->sublen - rx->offs[0].end;
5585 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5586 (s1 = rx->offs[paren].start) != -1 &&
5587 (t1 = rx->offs[paren].end) != -1)
5591 s = rx->subbeg + s1;
5593 sv_setsv(sv,&PL_sv_undef);
5596 assert(rx->sublen >= (s - rx->subbeg) + i );
5598 const int oldtainted = PL_tainted;
5600 sv_setpvn(sv, s, i);
5601 PL_tainted = oldtainted;
5602 if ( (rx->extflags & RXf_CANY_SEEN)
5603 ? (RXp_MATCH_UTF8(rx)
5604 && (!i || is_utf8_string((U8*)s, i)))
5605 : (RXp_MATCH_UTF8(rx)) )
5612 if (RXp_MATCH_TAINTED(rx)) {
5613 if (SvTYPE(sv) >= SVt_PVMG) {
5614 MAGIC* const mg = SvMAGIC(sv);
5617 SvMAGIC_set(sv, mg->mg_moremagic);
5619 if ((mgt = SvMAGIC(sv))) {
5620 mg->mg_moremagic = mgt;
5621 SvMAGIC_set(sv, mg);
5631 sv_setsv(sv,&PL_sv_undef);
5637 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5638 SV const * const value)
5640 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5642 PERL_UNUSED_ARG(rx);
5643 PERL_UNUSED_ARG(paren);
5644 PERL_UNUSED_ARG(value);
5647 Perl_croak_no_modify(aTHX);
5651 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5654 struct regexp *const rx = (struct regexp *)SvANY(r);
5658 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5660 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5662 /* $` / ${^PREMATCH} */
5663 case RX_BUFF_IDX_PREMATCH:
5664 if (rx->offs[0].start != -1) {
5665 i = rx->offs[0].start;
5673 /* $' / ${^POSTMATCH} */
5674 case RX_BUFF_IDX_POSTMATCH:
5675 if (rx->offs[0].end != -1) {
5676 i = rx->sublen - rx->offs[0].end;
5678 s1 = rx->offs[0].end;
5684 /* $& / ${^MATCH}, $1, $2, ... */
5686 if (paren <= (I32)rx->nparens &&
5687 (s1 = rx->offs[paren].start) != -1 &&
5688 (t1 = rx->offs[paren].end) != -1)
5693 if (ckWARN(WARN_UNINITIALIZED))
5694 report_uninit((const SV *)sv);
5699 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5700 const char * const s = rx->subbeg + s1;
5705 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5712 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5714 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5715 PERL_UNUSED_ARG(rx);
5719 return newSVpvs("Regexp");
5722 /* Scans the name of a named buffer from the pattern.
5723 * If flags is REG_RSN_RETURN_NULL returns null.
5724 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5725 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5726 * to the parsed name as looked up in the RExC_paren_names hash.
5727 * If there is an error throws a vFAIL().. type exception.
5730 #define REG_RSN_RETURN_NULL 0
5731 #define REG_RSN_RETURN_NAME 1
5732 #define REG_RSN_RETURN_DATA 2
5735 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5737 char *name_start = RExC_parse;
5739 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5741 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5742 /* skip IDFIRST by using do...while */
5745 RExC_parse += UTF8SKIP(RExC_parse);
5746 } while (isALNUM_utf8((U8*)RExC_parse));
5750 } while (isALNUM(*RExC_parse));
5755 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5756 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5757 if ( flags == REG_RSN_RETURN_NAME)
5759 else if (flags==REG_RSN_RETURN_DATA) {
5762 if ( ! sv_name ) /* should not happen*/
5763 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5764 if (RExC_paren_names)
5765 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5767 sv_dat = HeVAL(he_str);
5769 vFAIL("Reference to nonexistent named group");
5773 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5780 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5781 int rem=(int)(RExC_end - RExC_parse); \
5790 if (RExC_lastparse!=RExC_parse) \
5791 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5794 iscut ? "..." : "<" \
5797 PerlIO_printf(Perl_debug_log,"%16s",""); \
5800 num = RExC_size + 1; \
5802 num=REG_NODE_NUM(RExC_emit); \
5803 if (RExC_lastnum!=num) \
5804 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5806 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5807 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5808 (int)((depth*2)), "", \
5812 RExC_lastparse=RExC_parse; \
5817 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5818 DEBUG_PARSE_MSG((funcname)); \
5819 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5821 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5822 DEBUG_PARSE_MSG((funcname)); \
5823 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5826 /* This section of code defines the inversion list object and its methods. The
5827 * interfaces are highly subject to change, so as much as possible is static to
5828 * this file. An inversion list is here implemented as a malloc'd C array with
5829 * some added info. More will be coming when functionality is added later.
5831 * It is currently implemented as an HV to the outside world, but is actually
5832 * an SV pointing to an array of UVs that the SV thinks are bytes. This allows
5833 * us to have an array of UV whose memory management is automatically handled
5834 * by the existing facilities for SV's.
5836 * Some of the methods should always be private to the implementation, and some
5837 * should eventually be made public */
5839 #define INVLIST_INITIAL_LEN 10
5841 PERL_STATIC_INLINE UV*
5842 S_invlist_array(pTHX_ HV* const invlist)
5844 /* Returns the pointer to the inversion list's array. Every time the
5845 * length changes, this needs to be called in case malloc or realloc moved
5848 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5850 return (UV *) SvPVX(invlist);
5853 PERL_STATIC_INLINE UV
5854 S_invlist_len(pTHX_ HV* const invlist)
5856 /* Returns the current number of elements in the inversion list's array */
5858 PERL_ARGS_ASSERT_INVLIST_LEN;
5860 return SvCUR(invlist) / sizeof(UV);
5863 PERL_STATIC_INLINE UV
5864 S_invlist_max(pTHX_ HV* const invlist)
5866 /* Returns the maximum number of elements storable in the inversion list's
5867 * array, without having to realloc() */
5869 PERL_ARGS_ASSERT_INVLIST_MAX;
5871 return SvLEN(invlist) / sizeof(UV);
5874 PERL_STATIC_INLINE void
5875 S_invlist_set_len(pTHX_ HV* const invlist, const UV len)
5877 /* Sets the current number of elements stored in the inversion list */
5879 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5881 SvCUR_set(invlist, len * sizeof(UV));
5884 PERL_STATIC_INLINE void
5885 S_invlist_set_max(pTHX_ HV* const invlist, const UV max)
5888 /* Sets the maximum number of elements storable in the inversion list
5889 * without having to realloc() */
5891 PERL_ARGS_ASSERT_INVLIST_SET_MAX;
5893 if (max < invlist_len(invlist)) {
5894 Perl_croak(aTHX_ "panic: Can't make max size '%"UVuf"' less than current length %"UVuf" in inversion list", invlist_max(invlist), invlist_len(invlist));
5897 SvLEN_set(invlist, max * sizeof(UV));
5900 #ifndef PERL_IN_XSUB_RE
5902 Perl__new_invlist(pTHX_ IV initial_size)
5905 /* Return a pointer to a newly constructed inversion list, with enough
5906 * space to store 'initial_size' elements. If that number is negative, a
5907 * system default is used instead */
5909 if (initial_size < 0) {
5910 initial_size = INVLIST_INITIAL_LEN;
5913 /* Allocate the initial space */
5914 return (HV *) newSV(initial_size * sizeof(UV));
5918 PERL_STATIC_INLINE void
5919 S_invlist_destroy(pTHX_ HV* const invlist)
5921 /* Inversion list destructor */
5923 PERL_ARGS_ASSERT_INVLIST_DESTROY;
5925 SvREFCNT_dec(invlist);
5929 S_invlist_extend(pTHX_ HV* const invlist, const UV new_max)
5931 /* Grow the maximum size of an inversion list */
5933 PERL_ARGS_ASSERT_INVLIST_EXTEND;
5935 SvGROW((SV *)invlist, new_max * sizeof(UV));
5938 PERL_STATIC_INLINE void
5939 S_invlist_trim(pTHX_ HV* const invlist)
5941 PERL_ARGS_ASSERT_INVLIST_TRIM;
5943 /* Change the length of the inversion list to how many entries it currently
5946 SvPV_shrink_to_cur((SV *) invlist);
5949 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
5952 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
5954 #ifndef PERL_IN_XSUB_RE
5956 Perl__append_range_to_invlist(pTHX_ HV* const invlist, const UV start, const UV end)
5958 /* Subject to change or removal. Append the range from 'start' to 'end' at
5959 * the end of the inversion list. The range must be above any existing
5962 UV* array = invlist_array(invlist);
5963 UV max = invlist_max(invlist);
5964 UV len = invlist_len(invlist);
5966 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
5970 /* Here, the existing list is non-empty. The current max entry in the
5971 * list is generally the first value not in the set, except when the
5972 * set extends to the end of permissible values, in which case it is
5973 * the first entry in that final set, and so this call is an attempt to
5974 * append out-of-order */
5976 UV final_element = len - 1;
5977 if (array[final_element] > start
5978 || ELEMENT_IN_INVLIST_SET(final_element))
5980 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
5983 /* Here, it is a legal append. If the new range begins with the first
5984 * value not in the set, it is extending the set, so the new first
5985 * value not in the set is one greater than the newly extended range.
5987 if (array[final_element] == start) {
5988 if (end != UV_MAX) {
5989 array[final_element] = end + 1;
5992 /* But if the end is the maximum representable on the machine,
5993 * just let the range that this would extend have no end */
5994 invlist_set_len(invlist, len - 1);
6000 /* Here the new range doesn't extend any existing set. Add it */
6002 len += 2; /* Includes an element each for the start and end of range */
6004 /* If overflows the existing space, extend, which may cause the array to be
6007 invlist_extend(invlist, len);
6008 array = invlist_array(invlist);
6011 invlist_set_len(invlist, len);
6013 /* The next item on the list starts the range, the one after that is
6014 * one past the new range. */
6015 array[len - 2] = start;
6016 if (end != UV_MAX) {
6017 array[len - 1] = end + 1;
6020 /* But if the end is the maximum representable on the machine, just let
6021 * the range have no end */
6022 invlist_set_len(invlist, len - 1);
6028 S_invlist_union(pTHX_ HV* const a, HV* const b)
6030 /* Return a new inversion list which is the union of two inversion lists.
6031 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6032 * Richard Gillam, published by Addison-Wesley, and explained at some
6033 * length there. The preface says to incorporate its examples into your
6034 * code at your own risk.
6036 * The algorithm is like a merge sort.
6038 * XXX A potential performance improvement is to keep track as we go along
6039 * if only one of the inputs contributes to the result, meaning the other
6040 * is a subset of that one. In that case, we can skip the final copy and
6041 * return the larger of the input lists */
6043 UV* array_a = invlist_array(a); /* a's array */
6044 UV* array_b = invlist_array(b);
6045 UV len_a = invlist_len(a); /* length of a's array */
6046 UV len_b = invlist_len(b);
6048 HV* u; /* the resulting union */
6052 UV i_a = 0; /* current index into a's array */
6056 /* running count, as explained in the algorithm source book; items are
6057 * stopped accumulating and are output when the count changes to/from 0.
6058 * The count is incremented when we start a range that's in the set, and
6059 * decremented when we start a range that's not in the set. So its range
6060 * is 0 to 2. Only when the count is zero is something not in the set.
6064 PERL_ARGS_ASSERT_INVLIST_UNION;
6066 /* Size the union for the worst case: that the sets are completely
6068 u = _new_invlist(len_a + len_b);
6069 array_u = invlist_array(u);
6071 /* Go through each list item by item, stopping when exhausted one of
6073 while (i_a < len_a && i_b < len_b) {
6074 UV cp; /* The element to potentially add to the union's array */
6075 bool cp_in_set; /* is it in the the input list's set or not */
6077 /* We need to take one or the other of the two inputs for the union.
6078 * Since we are merging two sorted lists, we take the smaller of the
6079 * next items. In case of a tie, we take the one that is in its set
6080 * first. If we took one not in the set first, it would decrement the
6081 * count, possibly to 0 which would cause it to be output as ending the
6082 * range, and the next time through we would take the same number, and
6083 * output it again as beginning the next range. By doing it the
6084 * opposite way, there is no possibility that the count will be
6085 * momentarily decremented to 0, and thus the two adjoining ranges will
6086 * be seamlessly merged. (In a tie and both are in the set or both not
6087 * in the set, it doesn't matter which we take first.) */
6088 if (array_a[i_a] < array_b[i_b]
6089 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6091 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6095 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6099 /* Here, have chosen which of the two inputs to look at. Only output
6100 * if the running count changes to/from 0, which marks the
6101 * beginning/end of a range in that's in the set */
6104 array_u[i_u++] = cp;
6111 array_u[i_u++] = cp;
6116 /* Here, we are finished going through at least one of the lists, which
6117 * means there is something remaining in at most one. We check if the list
6118 * that hasn't been exhausted is positioned such that we are in the middle
6119 * of a range in its set or not. (We are in the set if the next item in
6120 * the array marks the beginning of something not in the set) If in the
6121 * set, we decrement 'count'; if 0, there is potentially more to output.
6122 * There are four cases:
6123 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6124 * in the union is entirely from the non-exhausted set.
6125 * 2) Both were in their sets, count is 2. Nothing further should
6126 * be output, as everything that remains will be in the exhausted
6127 * list's set, hence in the union; decrementing to 1 but not 0 insures
6129 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6130 * Nothing further should be output because the union includes
6131 * everything from the exhausted set. Not decrementing insures that.
6132 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6133 * decrementing to 0 insures that we look at the remainder of the
6134 * non-exhausted set */
6135 if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
6136 || (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
6141 /* The final length is what we've output so far, plus what else is about to
6142 * be output. (If 'count' is non-zero, then the input list we exhausted
6143 * has everything remaining up to the machine's limit in its set, and hence
6144 * in the union, so there will be no further output. */
6147 /* At most one of the subexpressions will be non-zero */
6148 len_u += (len_a - i_a) + (len_b - i_b);
6151 /* Set result to final length, which can change the pointer to array_u, so
6153 if (len_u != invlist_len(u)) {
6154 invlist_set_len(u, len_u);
6156 array_u = invlist_array(u);
6159 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6160 * the other) ended with everything above it not in its set. That means
6161 * that the remaining part of the union is precisely the same as the
6162 * non-exhausted list, so can just copy it unchanged. (If both list were
6163 * exhausted at the same time, then the operations below will be both 0.)
6166 IV copy_count; /* At most one will have a non-zero copy count */
6167 if ((copy_count = len_a - i_a) > 0) {
6168 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6170 else if ((copy_count = len_b - i_b) > 0) {
6171 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6179 S_invlist_intersection(pTHX_ HV* const a, HV* const b)
6181 /* Return the intersection of two inversion lists. The basis for this
6182 * comes from "Unicode Demystified" Chapter 13 by Richard Gillam, published
6183 * by Addison-Wesley, and explained at some length there. The preface says
6184 * to incorporate its examples into your code at your own risk.
6186 * The algorithm is like a merge sort, and is essentially the same as the
6190 UV* array_a = invlist_array(a); /* a's array */
6191 UV* array_b = invlist_array(b);
6192 UV len_a = invlist_len(a); /* length of a's array */
6193 UV len_b = invlist_len(b);
6195 HV* r; /* the resulting intersection */
6199 UV i_a = 0; /* current index into a's array */
6203 /* running count, as explained in the algorithm source book; items are
6204 * stopped accumulating and are output when the count changes to/from 2.
6205 * The count is incremented when we start a range that's in the set, and
6206 * decremented when we start a range that's not in the set. So its range
6207 * is 0 to 2. Only when the count is 2 is something in the intersection.
6211 PERL_ARGS_ASSERT_INVLIST_INTERSECTION;
6213 /* Size the intersection for the worst case: that the intersection ends up
6214 * fragmenting everything to be completely disjoint */
6215 r= _new_invlist(len_a + len_b);
6216 array_r = invlist_array(r);
6218 /* Go through each list item by item, stopping when exhausted one of
6220 while (i_a < len_a && i_b < len_b) {
6221 UV cp; /* The element to potentially add to the intersection's
6223 bool cp_in_set; /* Is it in the input list's set or not */
6225 /* We need to take one or the other of the two inputs for the union.
6226 * Since we are merging two sorted lists, we take the smaller of the
6227 * next items. In case of a tie, we take the one that is not in its
6228 * set first (a difference from the union algorithm). If we took one
6229 * in the set first, it would increment the count, possibly to 2 which
6230 * would cause it to be output as starting a range in the intersection,
6231 * and the next time through we would take that same number, and output
6232 * it again as ending the set. By doing it the opposite of this, we
6233 * there is no possibility that the count will be momentarily
6234 * incremented to 2. (In a tie and both are in the set or both not in
6235 * the set, it doesn't matter which we take first.) */
6236 if (array_a[i_a] < array_b[i_b]
6237 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6239 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6243 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6247 /* Here, have chosen which of the two inputs to look at. Only output
6248 * if the running count changes to/from 2, which marks the
6249 * beginning/end of a range that's in the intersection */
6253 array_r[i_r++] = cp;
6258 array_r[i_r++] = cp;
6264 /* Here, we are finished going through at least one of the sets, which
6265 * means there is something remaining in at most one. See the comments in
6267 if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
6268 || (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
6273 /* The final length is what we've output so far plus what else is in the
6274 * intersection. Only one of the subexpressions below will be non-zero */
6277 len_r += (len_a - i_a) + (len_b - i_b);
6280 /* Set result to final length, which can change the pointer to array_r, so
6282 if (len_r != invlist_len(r)) {
6283 invlist_set_len(r, len_r);
6285 array_r = invlist_array(r);
6288 /* Finish outputting any remaining */
6289 if (count == 2) { /* Only one of will have a non-zero copy count */
6291 if ((copy_count = len_a - i_a) > 0) {
6292 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6294 else if ((copy_count = len_b - i_b) > 0) {
6295 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6303 S_add_range_to_invlist(pTHX_ HV* invlist, const UV start, const UV end)
6305 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6306 * set. A pointer to the inversion list is returned. This may actually be
6307 * a new list, in which case the passed in one has been destroyed. The
6308 * passed in inversion list can be NULL, in which case a new one is created
6309 * with just the one range in it */
6315 if (invlist == NULL) {
6316 invlist = _new_invlist(2);
6320 len = invlist_len(invlist);
6323 /* If comes after the final entry, can just append it to the end */
6325 || start >= invlist_array(invlist)
6326 [invlist_len(invlist) - 1])
6328 _append_range_to_invlist(invlist, start, end);
6332 /* Here, can't just append things, create and return a new inversion list
6333 * which is the union of this range and the existing inversion list */
6334 range_invlist = _new_invlist(2);
6335 _append_range_to_invlist(range_invlist, start, end);
6337 added_invlist = invlist_union(invlist, range_invlist);
6339 /* The passed in list can be freed, as well as our temporary */
6340 invlist_destroy(range_invlist);
6341 if (invlist != added_invlist) {
6342 invlist_destroy(invlist);
6345 return added_invlist;
6348 PERL_STATIC_INLINE HV*
6349 S_add_cp_to_invlist(pTHX_ HV* invlist, const UV cp) {
6350 return add_range_to_invlist(invlist, cp, cp);
6353 /* End of inversion list object */
6356 - reg - regular expression, i.e. main body or parenthesized thing
6358 * Caller must absorb opening parenthesis.
6360 * Combining parenthesis handling with the base level of regular expression
6361 * is a trifle forced, but the need to tie the tails of the branches to what
6362 * follows makes it hard to avoid.
6364 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6366 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6368 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6372 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6373 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6376 register regnode *ret; /* Will be the head of the group. */
6377 register regnode *br;
6378 register regnode *lastbr;
6379 register regnode *ender = NULL;
6380 register I32 parno = 0;
6382 U32 oregflags = RExC_flags;
6383 bool have_branch = 0;
6385 I32 freeze_paren = 0;
6386 I32 after_freeze = 0;
6388 /* for (?g), (?gc), and (?o) warnings; warning
6389 about (?c) will warn about (?g) -- japhy */
6391 #define WASTED_O 0x01
6392 #define WASTED_G 0x02
6393 #define WASTED_C 0x04
6394 #define WASTED_GC (0x02|0x04)
6395 I32 wastedflags = 0x00;
6397 char * parse_start = RExC_parse; /* MJD */
6398 char * const oregcomp_parse = RExC_parse;
6400 GET_RE_DEBUG_FLAGS_DECL;
6402 PERL_ARGS_ASSERT_REG;
6403 DEBUG_PARSE("reg ");
6405 *flagp = 0; /* Tentatively. */
6408 /* Make an OPEN node, if parenthesized. */
6410 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6411 char *start_verb = RExC_parse;
6412 STRLEN verb_len = 0;
6413 char *start_arg = NULL;
6414 unsigned char op = 0;
6416 int internal_argval = 0; /* internal_argval is only useful if !argok */
6417 while ( *RExC_parse && *RExC_parse != ')' ) {
6418 if ( *RExC_parse == ':' ) {
6419 start_arg = RExC_parse + 1;
6425 verb_len = RExC_parse - start_verb;
6428 while ( *RExC_parse && *RExC_parse != ')' )
6430 if ( *RExC_parse != ')' )
6431 vFAIL("Unterminated verb pattern argument");
6432 if ( RExC_parse == start_arg )
6435 if ( *RExC_parse != ')' )
6436 vFAIL("Unterminated verb pattern");
6439 switch ( *start_verb ) {
6440 case 'A': /* (*ACCEPT) */
6441 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6443 internal_argval = RExC_nestroot;
6446 case 'C': /* (*COMMIT) */
6447 if ( memEQs(start_verb,verb_len,"COMMIT") )
6450 case 'F': /* (*FAIL) */
6451 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6456 case ':': /* (*:NAME) */
6457 case 'M': /* (*MARK:NAME) */
6458 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6463 case 'P': /* (*PRUNE) */
6464 if ( memEQs(start_verb,verb_len,"PRUNE") )
6467 case 'S': /* (*SKIP) */
6468 if ( memEQs(start_verb,verb_len,"SKIP") )
6471 case 'T': /* (*THEN) */
6472 /* [19:06] <TimToady> :: is then */
6473 if ( memEQs(start_verb,verb_len,"THEN") ) {
6475 RExC_seen |= REG_SEEN_CUTGROUP;
6481 vFAIL3("Unknown verb pattern '%.*s'",
6482 verb_len, start_verb);
6485 if ( start_arg && internal_argval ) {
6486 vFAIL3("Verb pattern '%.*s' may not have an argument",
6487 verb_len, start_verb);
6488 } else if ( argok < 0 && !start_arg ) {
6489 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6490 verb_len, start_verb);
6492 ret = reganode(pRExC_state, op, internal_argval);
6493 if ( ! internal_argval && ! SIZE_ONLY ) {
6495 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6496 ARG(ret) = add_data( pRExC_state, 1, "S" );
6497 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6504 if (!internal_argval)
6505 RExC_seen |= REG_SEEN_VERBARG;
6506 } else if ( start_arg ) {
6507 vFAIL3("Verb pattern '%.*s' may not have an argument",
6508 verb_len, start_verb);
6510 ret = reg_node(pRExC_state, op);
6512 nextchar(pRExC_state);
6515 if (*RExC_parse == '?') { /* (?...) */
6516 bool is_logical = 0;
6517 const char * const seqstart = RExC_parse;
6518 bool has_use_defaults = FALSE;
6521 paren = *RExC_parse++;
6522 ret = NULL; /* For look-ahead/behind. */
6525 case 'P': /* (?P...) variants for those used to PCRE/Python */
6526 paren = *RExC_parse++;
6527 if ( paren == '<') /* (?P<...>) named capture */
6529 else if (paren == '>') { /* (?P>name) named recursion */
6530 goto named_recursion;
6532 else if (paren == '=') { /* (?P=...) named backref */
6533 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6534 you change this make sure you change that */
6535 char* name_start = RExC_parse;
6537 SV *sv_dat = reg_scan_name(pRExC_state,
6538 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6539 if (RExC_parse == name_start || *RExC_parse != ')')
6540 vFAIL2("Sequence %.3s... not terminated",parse_start);
6543 num = add_data( pRExC_state, 1, "S" );
6544 RExC_rxi->data->data[num]=(void*)sv_dat;
6545 SvREFCNT_inc_simple_void(sv_dat);
6548 ret = reganode(pRExC_state,
6551 : (MORE_ASCII_RESTRICTED)
6553 : (AT_LEAST_UNI_SEMANTICS)
6561 Set_Node_Offset(ret, parse_start+1);
6562 Set_Node_Cur_Length(ret); /* MJD */
6564 nextchar(pRExC_state);
6568 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6570 case '<': /* (?<...) */
6571 if (*RExC_parse == '!')
6573 else if (*RExC_parse != '=')
6579 case '\'': /* (?'...') */
6580 name_start= RExC_parse;
6581 svname = reg_scan_name(pRExC_state,
6582 SIZE_ONLY ? /* reverse test from the others */
6583 REG_RSN_RETURN_NAME :
6584 REG_RSN_RETURN_NULL);
6585 if (RExC_parse == name_start) {
6587 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6590 if (*RExC_parse != paren)
6591 vFAIL2("Sequence (?%c... not terminated",
6592 paren=='>' ? '<' : paren);
6596 if (!svname) /* shouldn't happen */
6598 "panic: reg_scan_name returned NULL");
6599 if (!RExC_paren_names) {
6600 RExC_paren_names= newHV();
6601 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6603 RExC_paren_name_list= newAV();
6604 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6607 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6609 sv_dat = HeVAL(he_str);
6611 /* croak baby croak */
6613 "panic: paren_name hash element allocation failed");
6614 } else if ( SvPOK(sv_dat) ) {
6615 /* (?|...) can mean we have dupes so scan to check
6616 its already been stored. Maybe a flag indicating
6617 we are inside such a construct would be useful,
6618 but the arrays are likely to be quite small, so
6619 for now we punt -- dmq */
6620 IV count = SvIV(sv_dat);
6621 I32 *pv = (I32*)SvPVX(sv_dat);
6623 for ( i = 0 ; i < count ; i++ ) {
6624 if ( pv[i] == RExC_npar ) {
6630 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
6631 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
6632 pv[count] = RExC_npar;
6633 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
6636 (void)SvUPGRADE(sv_dat,SVt_PVNV);
6637 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
6639 SvIV_set(sv_dat, 1);
6642 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
6643 SvREFCNT_dec(svname);
6646 /*sv_dump(sv_dat);*/
6648 nextchar(pRExC_state);
6650 goto capturing_parens;
6652 RExC_seen |= REG_SEEN_LOOKBEHIND;
6653 RExC_in_lookbehind++;
6655 case '=': /* (?=...) */
6656 RExC_seen_zerolen++;
6658 case '!': /* (?!...) */
6659 RExC_seen_zerolen++;
6660 if (*RExC_parse == ')') {
6661 ret=reg_node(pRExC_state, OPFAIL);
6662 nextchar(pRExC_state);
6666 case '|': /* (?|...) */
6667 /* branch reset, behave like a (?:...) except that
6668 buffers in alternations share the same numbers */
6670 after_freeze = freeze_paren = RExC_npar;
6672 case ':': /* (?:...) */
6673 case '>': /* (?>...) */
6675 case '$': /* (?$...) */
6676 case '@': /* (?@...) */
6677 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
6679 case '#': /* (?#...) */
6680 while (*RExC_parse && *RExC_parse != ')')
6682 if (*RExC_parse != ')')
6683 FAIL("Sequence (?#... not terminated");
6684 nextchar(pRExC_state);
6687 case '0' : /* (?0) */
6688 case 'R' : /* (?R) */
6689 if (*RExC_parse != ')')
6690 FAIL("Sequence (?R) not terminated");
6691 ret = reg_node(pRExC_state, GOSTART);
6692 *flagp |= POSTPONED;
6693 nextchar(pRExC_state);
6696 { /* named and numeric backreferences */
6698 case '&': /* (?&NAME) */
6699 parse_start = RExC_parse - 1;
6702 SV *sv_dat = reg_scan_name(pRExC_state,
6703 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6704 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6706 goto gen_recurse_regop;
6709 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6711 vFAIL("Illegal pattern");
6713 goto parse_recursion;
6715 case '-': /* (?-1) */
6716 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6717 RExC_parse--; /* rewind to let it be handled later */
6721 case '1': case '2': case '3': case '4': /* (?1) */
6722 case '5': case '6': case '7': case '8': case '9':
6725 num = atoi(RExC_parse);
6726 parse_start = RExC_parse - 1; /* MJD */
6727 if (*RExC_parse == '-')
6729 while (isDIGIT(*RExC_parse))
6731 if (*RExC_parse!=')')
6732 vFAIL("Expecting close bracket");
6735 if ( paren == '-' ) {
6737 Diagram of capture buffer numbering.
6738 Top line is the normal capture buffer numbers
6739 Bottom line is the negative indexing as from
6743 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
6747 num = RExC_npar + num;
6750 vFAIL("Reference to nonexistent group");
6752 } else if ( paren == '+' ) {
6753 num = RExC_npar + num - 1;
6756 ret = reganode(pRExC_state, GOSUB, num);
6758 if (num > (I32)RExC_rx->nparens) {
6760 vFAIL("Reference to nonexistent group");
6762 ARG2L_SET( ret, RExC_recurse_count++);
6764 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
6765 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
6769 RExC_seen |= REG_SEEN_RECURSE;
6770 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
6771 Set_Node_Offset(ret, parse_start); /* MJD */
6773 *flagp |= POSTPONED;
6774 nextchar(pRExC_state);
6776 } /* named and numeric backreferences */
6779 case '?': /* (??...) */
6781 if (*RExC_parse != '{') {
6783 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6786 *flagp |= POSTPONED;
6787 paren = *RExC_parse++;
6789 case '{': /* (?{...}) */
6794 char *s = RExC_parse;
6796 RExC_seen_zerolen++;
6797 RExC_seen |= REG_SEEN_EVAL;
6798 while (count && (c = *RExC_parse)) {
6809 if (*RExC_parse != ')') {
6811 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
6815 OP_4tree *sop, *rop;
6816 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
6819 Perl_save_re_context(aTHX);
6820 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
6821 sop->op_private |= OPpREFCOUNTED;
6822 /* re_dup will OpREFCNT_inc */
6823 OpREFCNT_set(sop, 1);
6826 n = add_data(pRExC_state, 3, "nop");
6827 RExC_rxi->data->data[n] = (void*)rop;
6828 RExC_rxi->data->data[n+1] = (void*)sop;
6829 RExC_rxi->data->data[n+2] = (void*)pad;
6832 else { /* First pass */
6833 if (PL_reginterp_cnt < ++RExC_seen_evals
6835 /* No compiled RE interpolated, has runtime
6836 components ===> unsafe. */
6837 FAIL("Eval-group not allowed at runtime, use re 'eval'");
6838 if (PL_tainting && PL_tainted)
6839 FAIL("Eval-group in insecure regular expression");
6840 #if PERL_VERSION > 8
6841 if (IN_PERL_COMPILETIME)
6846 nextchar(pRExC_state);
6848 ret = reg_node(pRExC_state, LOGICAL);
6851 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
6852 /* deal with the length of this later - MJD */
6855 ret = reganode(pRExC_state, EVAL, n);
6856 Set_Node_Length(ret, RExC_parse - parse_start + 1);
6857 Set_Node_Offset(ret, parse_start);
6860 case '(': /* (?(?{...})...) and (?(?=...)...) */
6863 if (RExC_parse[0] == '?') { /* (?(?...)) */
6864 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
6865 || RExC_parse[1] == '<'
6866 || RExC_parse[1] == '{') { /* Lookahead or eval. */
6869 ret = reg_node(pRExC_state, LOGICAL);
6872 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
6876 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
6877 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
6879 char ch = RExC_parse[0] == '<' ? '>' : '\'';
6880 char *name_start= RExC_parse++;
6882 SV *sv_dat=reg_scan_name(pRExC_state,
6883 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6884 if (RExC_parse == name_start || *RExC_parse != ch)
6885 vFAIL2("Sequence (?(%c... not terminated",
6886 (ch == '>' ? '<' : ch));
6889 num = add_data( pRExC_state, 1, "S" );
6890 RExC_rxi->data->data[num]=(void*)sv_dat;
6891 SvREFCNT_inc_simple_void(sv_dat);
6893 ret = reganode(pRExC_state,NGROUPP,num);
6894 goto insert_if_check_paren;
6896 else if (RExC_parse[0] == 'D' &&
6897 RExC_parse[1] == 'E' &&
6898 RExC_parse[2] == 'F' &&
6899 RExC_parse[3] == 'I' &&
6900 RExC_parse[4] == 'N' &&
6901 RExC_parse[5] == 'E')
6903 ret = reganode(pRExC_state,DEFINEP,0);
6906 goto insert_if_check_paren;
6908 else if (RExC_parse[0] == 'R') {
6911 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6912 parno = atoi(RExC_parse++);
6913 while (isDIGIT(*RExC_parse))
6915 } else if (RExC_parse[0] == '&') {
6918 sv_dat = reg_scan_name(pRExC_state,
6919 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6920 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6922 ret = reganode(pRExC_state,INSUBP,parno);
6923 goto insert_if_check_paren;
6925 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6928 parno = atoi(RExC_parse++);
6930 while (isDIGIT(*RExC_parse))
6932 ret = reganode(pRExC_state, GROUPP, parno);
6934 insert_if_check_paren:
6935 if ((c = *nextchar(pRExC_state)) != ')')
6936 vFAIL("Switch condition not recognized");
6938 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
6939 br = regbranch(pRExC_state, &flags, 1,depth+1);
6941 br = reganode(pRExC_state, LONGJMP, 0);
6943 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
6944 c = *nextchar(pRExC_state);
6949 vFAIL("(?(DEFINE)....) does not allow branches");
6950 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
6951 regbranch(pRExC_state, &flags, 1,depth+1);
6952 REGTAIL(pRExC_state, ret, lastbr);
6955 c = *nextchar(pRExC_state);
6960 vFAIL("Switch (?(condition)... contains too many branches");
6961 ender = reg_node(pRExC_state, TAIL);
6962 REGTAIL(pRExC_state, br, ender);
6964 REGTAIL(pRExC_state, lastbr, ender);
6965 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
6968 REGTAIL(pRExC_state, ret, ender);
6969 RExC_size++; /* XXX WHY do we need this?!!
6970 For large programs it seems to be required
6971 but I can't figure out why. -- dmq*/
6975 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
6979 RExC_parse--; /* for vFAIL to print correctly */
6980 vFAIL("Sequence (? incomplete");
6982 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
6984 has_use_defaults = TRUE;
6985 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
6986 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
6987 ? REGEX_UNICODE_CHARSET
6988 : REGEX_DEPENDS_CHARSET);
6992 parse_flags: /* (?i) */
6994 U32 posflags = 0, negflags = 0;
6995 U32 *flagsp = &posflags;
6996 char has_charset_modifier = '\0';
6997 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
6998 ? REGEX_UNICODE_CHARSET
6999 : REGEX_DEPENDS_CHARSET;
7001 while (*RExC_parse) {
7002 /* && strchr("iogcmsx", *RExC_parse) */
7003 /* (?g), (?gc) and (?o) are useless here
7004 and must be globally applied -- japhy */
7005 switch (*RExC_parse) {
7006 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7007 case LOCALE_PAT_MOD:
7008 if (has_charset_modifier) {
7009 goto excess_modifier;
7011 else if (flagsp == &negflags) {
7014 cs = REGEX_LOCALE_CHARSET;
7015 has_charset_modifier = LOCALE_PAT_MOD;
7016 RExC_contains_locale = 1;
7018 case UNICODE_PAT_MOD:
7019 if (has_charset_modifier) {
7020 goto excess_modifier;
7022 else if (flagsp == &negflags) {
7025 cs = REGEX_UNICODE_CHARSET;
7026 has_charset_modifier = UNICODE_PAT_MOD;
7028 case ASCII_RESTRICT_PAT_MOD:
7029 if (flagsp == &negflags) {
7032 if (has_charset_modifier) {
7033 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7034 goto excess_modifier;
7036 /* Doubled modifier implies more restricted */
7037 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7040 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7042 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7044 case DEPENDS_PAT_MOD:
7045 if (has_use_defaults) {
7046 goto fail_modifiers;
7048 else if (flagsp == &negflags) {
7051 else if (has_charset_modifier) {
7052 goto excess_modifier;
7055 /* The dual charset means unicode semantics if the
7056 * pattern (or target, not known until runtime) are
7057 * utf8, or something in the pattern indicates unicode
7059 cs = (RExC_utf8 || RExC_uni_semantics)
7060 ? REGEX_UNICODE_CHARSET
7061 : REGEX_DEPENDS_CHARSET;
7062 has_charset_modifier = DEPENDS_PAT_MOD;
7066 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7067 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7069 else if (has_charset_modifier == *(RExC_parse - 1)) {
7070 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7073 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7078 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7080 case ONCE_PAT_MOD: /* 'o' */
7081 case GLOBAL_PAT_MOD: /* 'g' */
7082 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7083 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7084 if (! (wastedflags & wflagbit) ) {
7085 wastedflags |= wflagbit;
7088 "Useless (%s%c) - %suse /%c modifier",
7089 flagsp == &negflags ? "?-" : "?",
7091 flagsp == &negflags ? "don't " : "",
7098 case CONTINUE_PAT_MOD: /* 'c' */
7099 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7100 if (! (wastedflags & WASTED_C) ) {
7101 wastedflags |= WASTED_GC;
7104 "Useless (%sc) - %suse /gc modifier",
7105 flagsp == &negflags ? "?-" : "?",
7106 flagsp == &negflags ? "don't " : ""
7111 case KEEPCOPY_PAT_MOD: /* 'p' */
7112 if (flagsp == &negflags) {
7114 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7116 *flagsp |= RXf_PMf_KEEPCOPY;
7120 /* A flag is a default iff it is following a minus, so
7121 * if there is a minus, it means will be trying to
7122 * re-specify a default which is an error */
7123 if (has_use_defaults || flagsp == &negflags) {
7126 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7130 wastedflags = 0; /* reset so (?g-c) warns twice */
7136 RExC_flags |= posflags;
7137 RExC_flags &= ~negflags;
7138 set_regex_charset(&RExC_flags, cs);
7140 oregflags |= posflags;
7141 oregflags &= ~negflags;
7142 set_regex_charset(&oregflags, cs);
7144 nextchar(pRExC_state);
7155 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7160 }} /* one for the default block, one for the switch */
7167 ret = reganode(pRExC_state, OPEN, parno);
7170 RExC_nestroot = parno;
7171 if (RExC_seen & REG_SEEN_RECURSE
7172 && !RExC_open_parens[parno-1])
7174 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7175 "Setting open paren #%"IVdf" to %d\n",
7176 (IV)parno, REG_NODE_NUM(ret)));
7177 RExC_open_parens[parno-1]= ret;
7180 Set_Node_Length(ret, 1); /* MJD */
7181 Set_Node_Offset(ret, RExC_parse); /* MJD */
7189 /* Pick up the branches, linking them together. */
7190 parse_start = RExC_parse; /* MJD */
7191 br = regbranch(pRExC_state, &flags, 1,depth+1);
7193 /* branch_len = (paren != 0); */
7197 if (*RExC_parse == '|') {
7198 if (!SIZE_ONLY && RExC_extralen) {
7199 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7202 reginsert(pRExC_state, BRANCH, br, depth+1);
7203 Set_Node_Length(br, paren != 0);
7204 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7208 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7210 else if (paren == ':') {
7211 *flagp |= flags&SIMPLE;
7213 if (is_open) { /* Starts with OPEN. */
7214 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7216 else if (paren != '?') /* Not Conditional */
7218 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7220 while (*RExC_parse == '|') {
7221 if (!SIZE_ONLY && RExC_extralen) {
7222 ender = reganode(pRExC_state, LONGJMP,0);
7223 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7226 RExC_extralen += 2; /* Account for LONGJMP. */
7227 nextchar(pRExC_state);
7229 if (RExC_npar > after_freeze)
7230 after_freeze = RExC_npar;
7231 RExC_npar = freeze_paren;
7233 br = regbranch(pRExC_state, &flags, 0, depth+1);
7237 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7239 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7242 if (have_branch || paren != ':') {
7243 /* Make a closing node, and hook it on the end. */
7246 ender = reg_node(pRExC_state, TAIL);
7249 ender = reganode(pRExC_state, CLOSE, parno);
7250 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7251 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7252 "Setting close paren #%"IVdf" to %d\n",
7253 (IV)parno, REG_NODE_NUM(ender)));
7254 RExC_close_parens[parno-1]= ender;
7255 if (RExC_nestroot == parno)
7258 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7259 Set_Node_Length(ender,1); /* MJD */
7265 *flagp &= ~HASWIDTH;
7268 ender = reg_node(pRExC_state, SUCCEED);
7271 ender = reg_node(pRExC_state, END);
7273 assert(!RExC_opend); /* there can only be one! */
7278 REGTAIL(pRExC_state, lastbr, ender);
7280 if (have_branch && !SIZE_ONLY) {
7282 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7284 /* Hook the tails of the branches to the closing node. */
7285 for (br = ret; br; br = regnext(br)) {
7286 const U8 op = PL_regkind[OP(br)];
7288 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7290 else if (op == BRANCHJ) {
7291 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7299 static const char parens[] = "=!<,>";
7301 if (paren && (p = strchr(parens, paren))) {
7302 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7303 int flag = (p - parens) > 1;
7306 node = SUSPEND, flag = 0;
7307 reginsert(pRExC_state, node,ret, depth+1);
7308 Set_Node_Cur_Length(ret);
7309 Set_Node_Offset(ret, parse_start + 1);
7311 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7315 /* Check for proper termination. */
7317 RExC_flags = oregflags;
7318 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7319 RExC_parse = oregcomp_parse;
7320 vFAIL("Unmatched (");
7323 else if (!paren && RExC_parse < RExC_end) {
7324 if (*RExC_parse == ')') {
7326 vFAIL("Unmatched )");
7329 FAIL("Junk on end of regexp"); /* "Can't happen". */
7333 if (RExC_in_lookbehind) {
7334 RExC_in_lookbehind--;
7336 if (after_freeze > RExC_npar)
7337 RExC_npar = after_freeze;
7342 - regbranch - one alternative of an | operator
7344 * Implements the concatenation operator.
7347 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7350 register regnode *ret;
7351 register regnode *chain = NULL;
7352 register regnode *latest;
7353 I32 flags = 0, c = 0;
7354 GET_RE_DEBUG_FLAGS_DECL;
7356 PERL_ARGS_ASSERT_REGBRANCH;
7358 DEBUG_PARSE("brnc");
7363 if (!SIZE_ONLY && RExC_extralen)
7364 ret = reganode(pRExC_state, BRANCHJ,0);
7366 ret = reg_node(pRExC_state, BRANCH);
7367 Set_Node_Length(ret, 1);
7371 if (!first && SIZE_ONLY)
7372 RExC_extralen += 1; /* BRANCHJ */
7374 *flagp = WORST; /* Tentatively. */
7377 nextchar(pRExC_state);
7378 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7380 latest = regpiece(pRExC_state, &flags,depth+1);
7381 if (latest == NULL) {
7382 if (flags & TRYAGAIN)
7386 else if (ret == NULL)
7388 *flagp |= flags&(HASWIDTH|POSTPONED);
7389 if (chain == NULL) /* First piece. */
7390 *flagp |= flags&SPSTART;
7393 REGTAIL(pRExC_state, chain, latest);
7398 if (chain == NULL) { /* Loop ran zero times. */
7399 chain = reg_node(pRExC_state, NOTHING);
7404 *flagp |= flags&SIMPLE;
7411 - regpiece - something followed by possible [*+?]
7413 * Note that the branching code sequences used for ? and the general cases
7414 * of * and + are somewhat optimized: they use the same NOTHING node as
7415 * both the endmarker for their branch list and the body of the last branch.
7416 * It might seem that this node could be dispensed with entirely, but the
7417 * endmarker role is not redundant.
7420 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7423 register regnode *ret;
7425 register char *next;
7427 const char * const origparse = RExC_parse;
7429 I32 max = REG_INFTY;
7431 const char *maxpos = NULL;
7432 GET_RE_DEBUG_FLAGS_DECL;
7434 PERL_ARGS_ASSERT_REGPIECE;
7436 DEBUG_PARSE("piec");
7438 ret = regatom(pRExC_state, &flags,depth+1);
7440 if (flags & TRYAGAIN)
7447 if (op == '{' && regcurly(RExC_parse)) {
7449 parse_start = RExC_parse; /* MJD */
7450 next = RExC_parse + 1;
7451 while (isDIGIT(*next) || *next == ',') {
7460 if (*next == '}') { /* got one */
7464 min = atoi(RExC_parse);
7468 maxpos = RExC_parse;
7470 if (!max && *maxpos != '0')
7471 max = REG_INFTY; /* meaning "infinity" */
7472 else if (max >= REG_INFTY)
7473 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7475 nextchar(pRExC_state);
7478 if ((flags&SIMPLE)) {
7479 RExC_naughty += 2 + RExC_naughty / 2;
7480 reginsert(pRExC_state, CURLY, ret, depth+1);
7481 Set_Node_Offset(ret, parse_start+1); /* MJD */
7482 Set_Node_Cur_Length(ret);
7485 regnode * const w = reg_node(pRExC_state, WHILEM);
7488 REGTAIL(pRExC_state, ret, w);
7489 if (!SIZE_ONLY && RExC_extralen) {
7490 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7491 reginsert(pRExC_state, NOTHING,ret, depth+1);
7492 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7494 reginsert(pRExC_state, CURLYX,ret, depth+1);
7496 Set_Node_Offset(ret, parse_start+1);
7497 Set_Node_Length(ret,
7498 op == '{' ? (RExC_parse - parse_start) : 1);
7500 if (!SIZE_ONLY && RExC_extralen)
7501 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7502 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7504 RExC_whilem_seen++, RExC_extralen += 3;
7505 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7514 vFAIL("Can't do {n,m} with n > m");
7516 ARG1_SET(ret, (U16)min);
7517 ARG2_SET(ret, (U16)max);
7529 #if 0 /* Now runtime fix should be reliable. */
7531 /* if this is reinstated, don't forget to put this back into perldiag:
7533 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7535 (F) The part of the regexp subject to either the * or + quantifier
7536 could match an empty string. The {#} shows in the regular
7537 expression about where the problem was discovered.
7541 if (!(flags&HASWIDTH) && op != '?')
7542 vFAIL("Regexp *+ operand could be empty");
7545 parse_start = RExC_parse;
7546 nextchar(pRExC_state);
7548 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7550 if (op == '*' && (flags&SIMPLE)) {
7551 reginsert(pRExC_state, STAR, ret, depth+1);
7555 else if (op == '*') {
7559 else if (op == '+' && (flags&SIMPLE)) {
7560 reginsert(pRExC_state, PLUS, ret, depth+1);
7564 else if (op == '+') {
7568 else if (op == '?') {
7573 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7574 ckWARN3reg(RExC_parse,
7575 "%.*s matches null string many times",
7576 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7580 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7581 nextchar(pRExC_state);
7582 reginsert(pRExC_state, MINMOD, ret, depth+1);
7583 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7585 #ifndef REG_ALLOW_MINMOD_SUSPEND
7588 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7590 nextchar(pRExC_state);
7591 ender = reg_node(pRExC_state, SUCCEED);
7592 REGTAIL(pRExC_state, ret, ender);
7593 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7595 ender = reg_node(pRExC_state, TAIL);
7596 REGTAIL(pRExC_state, ret, ender);
7600 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7602 vFAIL("Nested quantifiers");
7609 /* reg_namedseq(pRExC_state,UVp, UV depth)
7611 This is expected to be called by a parser routine that has
7612 recognized '\N' and needs to handle the rest. RExC_parse is
7613 expected to point at the first char following the N at the time
7616 The \N may be inside (indicated by valuep not being NULL) or outside a
7619 \N may begin either a named sequence, or if outside a character class, mean
7620 to match a non-newline. For non single-quoted regexes, the tokenizer has
7621 attempted to decide which, and in the case of a named sequence converted it
7622 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
7623 where c1... are the characters in the sequence. For single-quoted regexes,
7624 the tokenizer passes the \N sequence through unchanged; this code will not
7625 attempt to determine this nor expand those. The net effect is that if the
7626 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
7627 signals that this \N occurrence means to match a non-newline.
7629 Only the \N{U+...} form should occur in a character class, for the same
7630 reason that '.' inside a character class means to just match a period: it
7631 just doesn't make sense.
7633 If valuep is non-null then it is assumed that we are parsing inside
7634 of a charclass definition and the first codepoint in the resolved
7635 string is returned via *valuep and the routine will return NULL.
7636 In this mode if a multichar string is returned from the charnames
7637 handler, a warning will be issued, and only the first char in the
7638 sequence will be examined. If the string returned is zero length
7639 then the value of *valuep is undefined and NON-NULL will
7640 be returned to indicate failure. (This will NOT be a valid pointer
7643 If valuep is null then it is assumed that we are parsing normal text and a
7644 new EXACT node is inserted into the program containing the resolved string,
7645 and a pointer to the new node is returned. But if the string is zero length
7646 a NOTHING node is emitted instead.
7648 On success RExC_parse is set to the char following the endbrace.
7649 Parsing failures will generate a fatal error via vFAIL(...)
7652 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
7654 char * endbrace; /* '}' following the name */
7655 regnode *ret = NULL;
7658 GET_RE_DEBUG_FLAGS_DECL;
7660 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
7664 /* The [^\n] meaning of \N ignores spaces and comments under the /x
7665 * modifier. The other meaning does not */
7666 p = (RExC_flags & RXf_PMf_EXTENDED)
7667 ? regwhite( pRExC_state, RExC_parse )
7670 /* Disambiguate between \N meaning a named character versus \N meaning
7671 * [^\n]. The former is assumed when it can't be the latter. */
7672 if (*p != '{' || regcurly(p)) {
7675 /* no bare \N in a charclass */
7676 vFAIL("\\N in a character class must be a named character: \\N{...}");
7678 nextchar(pRExC_state);
7679 ret = reg_node(pRExC_state, REG_ANY);
7680 *flagp |= HASWIDTH|SIMPLE;
7683 Set_Node_Length(ret, 1); /* MJD */
7687 /* Here, we have decided it should be a named sequence */
7689 /* The test above made sure that the next real character is a '{', but
7690 * under the /x modifier, it could be separated by space (or a comment and
7691 * \n) and this is not allowed (for consistency with \x{...} and the
7692 * tokenizer handling of \N{NAME}). */
7693 if (*RExC_parse != '{') {
7694 vFAIL("Missing braces on \\N{}");
7697 RExC_parse++; /* Skip past the '{' */
7699 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
7700 || ! (endbrace == RExC_parse /* nothing between the {} */
7701 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
7702 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
7704 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
7705 vFAIL("\\N{NAME} must be resolved by the lexer");
7708 if (endbrace == RExC_parse) { /* empty: \N{} */
7710 RExC_parse = endbrace + 1;
7711 return reg_node(pRExC_state,NOTHING);
7715 ckWARNreg(RExC_parse,
7716 "Ignoring zero length \\N{} in character class"
7718 RExC_parse = endbrace + 1;
7721 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
7724 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
7725 RExC_parse += 2; /* Skip past the 'U+' */
7727 if (valuep) { /* In a bracketed char class */
7728 /* We only pay attention to the first char of
7729 multichar strings being returned. I kinda wonder
7730 if this makes sense as it does change the behaviour
7731 from earlier versions, OTOH that behaviour was broken
7732 as well. XXX Solution is to recharacterize as
7733 [rest-of-class]|multi1|multi2... */
7735 STRLEN length_of_hex;
7736 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
7737 | PERL_SCAN_DISALLOW_PREFIX
7738 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
7740 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
7741 if (endchar < endbrace) {
7742 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
7745 length_of_hex = (STRLEN)(endchar - RExC_parse);
7746 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
7748 /* The tokenizer should have guaranteed validity, but it's possible to
7749 * bypass it by using single quoting, so check */
7750 if (length_of_hex == 0
7751 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
7753 RExC_parse += length_of_hex; /* Includes all the valid */
7754 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
7755 ? UTF8SKIP(RExC_parse)
7757 /* Guard against malformed utf8 */
7758 if (RExC_parse >= endchar) RExC_parse = endchar;
7759 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7762 RExC_parse = endbrace + 1;
7763 if (endchar == endbrace) return NULL;
7765 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
7767 else { /* Not a char class */
7769 /* What is done here is to convert this to a sub-pattern of the form
7770 * (?:\x{char1}\x{char2}...)
7771 * and then call reg recursively. That way, it retains its atomicness,
7772 * while not having to worry about special handling that some code
7773 * points may have. toke.c has converted the original Unicode values
7774 * to native, so that we can just pass on the hex values unchanged. We
7775 * do have to set a flag to keep recoding from happening in the
7778 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
7780 char *endchar; /* Points to '.' or '}' ending cur char in the input
7782 char *orig_end = RExC_end;
7784 while (RExC_parse < endbrace) {
7786 /* Code points are separated by dots. If none, there is only one
7787 * code point, and is terminated by the brace */
7788 endchar = RExC_parse + strcspn(RExC_parse, ".}");
7790 /* Convert to notation the rest of the code understands */
7791 sv_catpv(substitute_parse, "\\x{");
7792 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
7793 sv_catpv(substitute_parse, "}");
7795 /* Point to the beginning of the next character in the sequence. */
7796 RExC_parse = endchar + 1;
7798 sv_catpv(substitute_parse, ")");
7800 RExC_parse = SvPV(substitute_parse, len);
7802 /* Don't allow empty number */
7804 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7806 RExC_end = RExC_parse + len;
7808 /* The values are Unicode, and therefore not subject to recoding */
7809 RExC_override_recoding = 1;
7811 ret = reg(pRExC_state, 1, flagp, depth+1);
7813 RExC_parse = endbrace;
7814 RExC_end = orig_end;
7815 RExC_override_recoding = 0;
7817 nextchar(pRExC_state);
7827 * It returns the code point in utf8 for the value in *encp.
7828 * value: a code value in the source encoding
7829 * encp: a pointer to an Encode object
7831 * If the result from Encode is not a single character,
7832 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
7835 S_reg_recode(pTHX_ const char value, SV **encp)
7838 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
7839 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
7840 const STRLEN newlen = SvCUR(sv);
7841 UV uv = UNICODE_REPLACEMENT;
7843 PERL_ARGS_ASSERT_REG_RECODE;
7847 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
7850 if (!newlen || numlen != newlen) {
7851 uv = UNICODE_REPLACEMENT;
7859 - regatom - the lowest level
7861 Try to identify anything special at the start of the pattern. If there
7862 is, then handle it as required. This may involve generating a single regop,
7863 such as for an assertion; or it may involve recursing, such as to
7864 handle a () structure.
7866 If the string doesn't start with something special then we gobble up
7867 as much literal text as we can.
7869 Once we have been able to handle whatever type of thing started the
7870 sequence, we return.
7872 Note: we have to be careful with escapes, as they can be both literal
7873 and special, and in the case of \10 and friends can either, depending
7874 on context. Specifically there are two separate switches for handling
7875 escape sequences, with the one for handling literal escapes requiring
7876 a dummy entry for all of the special escapes that are actually handled
7881 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7884 register regnode *ret = NULL;
7886 char *parse_start = RExC_parse;
7888 GET_RE_DEBUG_FLAGS_DECL;
7889 DEBUG_PARSE("atom");
7890 *flagp = WORST; /* Tentatively. */
7892 PERL_ARGS_ASSERT_REGATOM;
7895 switch ((U8)*RExC_parse) {
7897 RExC_seen_zerolen++;
7898 nextchar(pRExC_state);
7899 if (RExC_flags & RXf_PMf_MULTILINE)
7900 ret = reg_node(pRExC_state, MBOL);
7901 else if (RExC_flags & RXf_PMf_SINGLELINE)
7902 ret = reg_node(pRExC_state, SBOL);
7904 ret = reg_node(pRExC_state, BOL);
7905 Set_Node_Length(ret, 1); /* MJD */
7908 nextchar(pRExC_state);
7910 RExC_seen_zerolen++;
7911 if (RExC_flags & RXf_PMf_MULTILINE)
7912 ret = reg_node(pRExC_state, MEOL);
7913 else if (RExC_flags & RXf_PMf_SINGLELINE)
7914 ret = reg_node(pRExC_state, SEOL);
7916 ret = reg_node(pRExC_state, EOL);
7917 Set_Node_Length(ret, 1); /* MJD */
7920 nextchar(pRExC_state);
7921 if (RExC_flags & RXf_PMf_SINGLELINE)
7922 ret = reg_node(pRExC_state, SANY);
7924 ret = reg_node(pRExC_state, REG_ANY);
7925 *flagp |= HASWIDTH|SIMPLE;
7927 Set_Node_Length(ret, 1); /* MJD */
7931 char * const oregcomp_parse = ++RExC_parse;
7932 ret = regclass(pRExC_state,depth+1);
7933 if (*RExC_parse != ']') {
7934 RExC_parse = oregcomp_parse;
7935 vFAIL("Unmatched [");
7937 nextchar(pRExC_state);
7938 *flagp |= HASWIDTH|SIMPLE;
7939 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
7943 nextchar(pRExC_state);
7944 ret = reg(pRExC_state, 1, &flags,depth+1);
7946 if (flags & TRYAGAIN) {
7947 if (RExC_parse == RExC_end) {
7948 /* Make parent create an empty node if needed. */
7956 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
7960 if (flags & TRYAGAIN) {
7964 vFAIL("Internal urp");
7965 /* Supposed to be caught earlier. */
7968 if (!regcurly(RExC_parse)) {
7977 vFAIL("Quantifier follows nothing");
7982 This switch handles escape sequences that resolve to some kind
7983 of special regop and not to literal text. Escape sequnces that
7984 resolve to literal text are handled below in the switch marked
7987 Every entry in this switch *must* have a corresponding entry
7988 in the literal escape switch. However, the opposite is not
7989 required, as the default for this switch is to jump to the
7990 literal text handling code.
7992 switch ((U8)*++RExC_parse) {
7993 /* Special Escapes */
7995 RExC_seen_zerolen++;
7996 ret = reg_node(pRExC_state, SBOL);
7998 goto finish_meta_pat;
8000 ret = reg_node(pRExC_state, GPOS);
8001 RExC_seen |= REG_SEEN_GPOS;
8003 goto finish_meta_pat;
8005 RExC_seen_zerolen++;
8006 ret = reg_node(pRExC_state, KEEPS);
8008 /* XXX:dmq : disabling in-place substitution seems to
8009 * be necessary here to avoid cases of memory corruption, as
8010 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8012 RExC_seen |= REG_SEEN_LOOKBEHIND;
8013 goto finish_meta_pat;
8015 ret = reg_node(pRExC_state, SEOL);
8017 RExC_seen_zerolen++; /* Do not optimize RE away */
8018 goto finish_meta_pat;
8020 ret = reg_node(pRExC_state, EOS);
8022 RExC_seen_zerolen++; /* Do not optimize RE away */
8023 goto finish_meta_pat;
8025 ret = reg_node(pRExC_state, CANY);
8026 RExC_seen |= REG_SEEN_CANY;
8027 *flagp |= HASWIDTH|SIMPLE;
8028 goto finish_meta_pat;
8030 ret = reg_node(pRExC_state, CLUMP);
8032 goto finish_meta_pat;
8034 switch (get_regex_charset(RExC_flags)) {
8035 case REGEX_LOCALE_CHARSET:
8038 case REGEX_UNICODE_CHARSET:
8041 case REGEX_ASCII_RESTRICTED_CHARSET:
8042 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8045 case REGEX_DEPENDS_CHARSET:
8051 ret = reg_node(pRExC_state, op);
8052 *flagp |= HASWIDTH|SIMPLE;
8053 goto finish_meta_pat;
8055 switch (get_regex_charset(RExC_flags)) {
8056 case REGEX_LOCALE_CHARSET:
8059 case REGEX_UNICODE_CHARSET:
8062 case REGEX_ASCII_RESTRICTED_CHARSET:
8063 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8066 case REGEX_DEPENDS_CHARSET:
8072 ret = reg_node(pRExC_state, op);
8073 *flagp |= HASWIDTH|SIMPLE;
8074 goto finish_meta_pat;
8076 RExC_seen_zerolen++;
8077 RExC_seen |= REG_SEEN_LOOKBEHIND;
8078 switch (get_regex_charset(RExC_flags)) {
8079 case REGEX_LOCALE_CHARSET:
8082 case REGEX_UNICODE_CHARSET:
8085 case REGEX_ASCII_RESTRICTED_CHARSET:
8086 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8089 case REGEX_DEPENDS_CHARSET:
8095 ret = reg_node(pRExC_state, op);
8096 FLAGS(ret) = get_regex_charset(RExC_flags);
8098 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8099 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8101 goto finish_meta_pat;
8103 RExC_seen_zerolen++;
8104 RExC_seen |= REG_SEEN_LOOKBEHIND;
8105 switch (get_regex_charset(RExC_flags)) {
8106 case REGEX_LOCALE_CHARSET:
8109 case REGEX_UNICODE_CHARSET:
8112 case REGEX_ASCII_RESTRICTED_CHARSET:
8113 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8116 case REGEX_DEPENDS_CHARSET:
8122 ret = reg_node(pRExC_state, op);
8123 FLAGS(ret) = get_regex_charset(RExC_flags);
8125 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8126 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8128 goto finish_meta_pat;
8130 switch (get_regex_charset(RExC_flags)) {
8131 case REGEX_LOCALE_CHARSET:
8134 case REGEX_UNICODE_CHARSET:
8137 case REGEX_ASCII_RESTRICTED_CHARSET:
8138 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8141 case REGEX_DEPENDS_CHARSET:
8147 ret = reg_node(pRExC_state, op);
8148 *flagp |= HASWIDTH|SIMPLE;
8149 goto finish_meta_pat;
8151 switch (get_regex_charset(RExC_flags)) {
8152 case REGEX_LOCALE_CHARSET:
8155 case REGEX_UNICODE_CHARSET:
8158 case REGEX_ASCII_RESTRICTED_CHARSET:
8159 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8162 case REGEX_DEPENDS_CHARSET:
8168 ret = reg_node(pRExC_state, op);
8169 *flagp |= HASWIDTH|SIMPLE;
8170 goto finish_meta_pat;
8172 switch (get_regex_charset(RExC_flags)) {
8173 case REGEX_LOCALE_CHARSET:
8176 case REGEX_ASCII_RESTRICTED_CHARSET:
8177 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8180 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8181 case REGEX_UNICODE_CHARSET:
8187 ret = reg_node(pRExC_state, op);
8188 *flagp |= HASWIDTH|SIMPLE;
8189 goto finish_meta_pat;
8191 switch (get_regex_charset(RExC_flags)) {
8192 case REGEX_LOCALE_CHARSET:
8195 case REGEX_ASCII_RESTRICTED_CHARSET:
8196 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8199 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8200 case REGEX_UNICODE_CHARSET:
8206 ret = reg_node(pRExC_state, op);
8207 *flagp |= HASWIDTH|SIMPLE;
8208 goto finish_meta_pat;
8210 ret = reg_node(pRExC_state, LNBREAK);
8211 *flagp |= HASWIDTH|SIMPLE;
8212 goto finish_meta_pat;
8214 ret = reg_node(pRExC_state, HORIZWS);
8215 *flagp |= HASWIDTH|SIMPLE;
8216 goto finish_meta_pat;
8218 ret = reg_node(pRExC_state, NHORIZWS);
8219 *flagp |= HASWIDTH|SIMPLE;
8220 goto finish_meta_pat;
8222 ret = reg_node(pRExC_state, VERTWS);
8223 *flagp |= HASWIDTH|SIMPLE;
8224 goto finish_meta_pat;
8226 ret = reg_node(pRExC_state, NVERTWS);
8227 *flagp |= HASWIDTH|SIMPLE;
8229 nextchar(pRExC_state);
8230 Set_Node_Length(ret, 2); /* MJD */
8235 char* const oldregxend = RExC_end;
8237 char* parse_start = RExC_parse - 2;
8240 if (RExC_parse[1] == '{') {
8241 /* a lovely hack--pretend we saw [\pX] instead */
8242 RExC_end = strchr(RExC_parse, '}');
8244 const U8 c = (U8)*RExC_parse;
8246 RExC_end = oldregxend;
8247 vFAIL2("Missing right brace on \\%c{}", c);
8252 RExC_end = RExC_parse + 2;
8253 if (RExC_end > oldregxend)
8254 RExC_end = oldregxend;
8258 ret = regclass(pRExC_state,depth+1);
8260 RExC_end = oldregxend;
8263 Set_Node_Offset(ret, parse_start + 2);
8264 Set_Node_Cur_Length(ret);
8265 nextchar(pRExC_state);
8266 *flagp |= HASWIDTH|SIMPLE;
8270 /* Handle \N and \N{NAME} here and not below because it can be
8271 multicharacter. join_exact() will join them up later on.
8272 Also this makes sure that things like /\N{BLAH}+/ and
8273 \N{BLAH} being multi char Just Happen. dmq*/
8275 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8277 case 'k': /* Handle \k<NAME> and \k'NAME' */
8280 char ch= RExC_parse[1];
8281 if (ch != '<' && ch != '\'' && ch != '{') {
8283 vFAIL2("Sequence %.2s... not terminated",parse_start);
8285 /* this pretty much dupes the code for (?P=...) in reg(), if
8286 you change this make sure you change that */
8287 char* name_start = (RExC_parse += 2);
8289 SV *sv_dat = reg_scan_name(pRExC_state,
8290 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8291 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8292 if (RExC_parse == name_start || *RExC_parse != ch)
8293 vFAIL2("Sequence %.3s... not terminated",parse_start);
8296 num = add_data( pRExC_state, 1, "S" );
8297 RExC_rxi->data->data[num]=(void*)sv_dat;
8298 SvREFCNT_inc_simple_void(sv_dat);
8302 ret = reganode(pRExC_state,
8305 : (MORE_ASCII_RESTRICTED)
8307 : (AT_LEAST_UNI_SEMANTICS)
8315 /* override incorrect value set in reganode MJD */
8316 Set_Node_Offset(ret, parse_start+1);
8317 Set_Node_Cur_Length(ret); /* MJD */
8318 nextchar(pRExC_state);
8324 case '1': case '2': case '3': case '4':
8325 case '5': case '6': case '7': case '8': case '9':
8328 bool isg = *RExC_parse == 'g';
8333 if (*RExC_parse == '{') {
8337 if (*RExC_parse == '-') {
8341 if (hasbrace && !isDIGIT(*RExC_parse)) {
8342 if (isrel) RExC_parse--;
8344 goto parse_named_seq;
8346 num = atoi(RExC_parse);
8347 if (isg && num == 0)
8348 vFAIL("Reference to invalid group 0");
8350 num = RExC_npar - num;
8352 vFAIL("Reference to nonexistent or unclosed group");
8354 if (!isg && num > 9 && num >= RExC_npar)
8357 char * const parse_start = RExC_parse - 1; /* MJD */
8358 while (isDIGIT(*RExC_parse))
8360 if (parse_start == RExC_parse - 1)
8361 vFAIL("Unterminated \\g... pattern");
8363 if (*RExC_parse != '}')
8364 vFAIL("Unterminated \\g{...} pattern");
8368 if (num > (I32)RExC_rx->nparens)
8369 vFAIL("Reference to nonexistent group");
8372 ret = reganode(pRExC_state,
8375 : (MORE_ASCII_RESTRICTED)
8377 : (AT_LEAST_UNI_SEMANTICS)
8385 /* override incorrect value set in reganode MJD */
8386 Set_Node_Offset(ret, parse_start+1);
8387 Set_Node_Cur_Length(ret); /* MJD */
8389 nextchar(pRExC_state);
8394 if (RExC_parse >= RExC_end)
8395 FAIL("Trailing \\");
8398 /* Do not generate "unrecognized" warnings here, we fall
8399 back into the quick-grab loop below */
8406 if (RExC_flags & RXf_PMf_EXTENDED) {
8407 if ( reg_skipcomment( pRExC_state ) )
8414 parse_start = RExC_parse - 1;
8427 char_state latest_char_state = generic_char;
8428 register STRLEN len;
8433 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8434 regnode * orig_emit;
8437 orig_emit = RExC_emit; /* Save the original output node position in
8438 case we need to output a different node
8440 ret = reg_node(pRExC_state,
8441 (U8) ((! FOLD) ? EXACT
8444 : (MORE_ASCII_RESTRICTED)
8446 : (AT_LEAST_UNI_SEMANTICS)
8451 for (len = 0, p = RExC_parse - 1;
8452 len < 127 && p < RExC_end;
8455 char * const oldp = p;
8457 if (RExC_flags & RXf_PMf_EXTENDED)
8458 p = regwhite( pRExC_state, p );
8469 /* Literal Escapes Switch
8471 This switch is meant to handle escape sequences that
8472 resolve to a literal character.
8474 Every escape sequence that represents something
8475 else, like an assertion or a char class, is handled
8476 in the switch marked 'Special Escapes' above in this
8477 routine, but also has an entry here as anything that
8478 isn't explicitly mentioned here will be treated as
8479 an unescaped equivalent literal.
8483 /* These are all the special escapes. */
8484 case 'A': /* Start assertion */
8485 case 'b': case 'B': /* Word-boundary assertion*/
8486 case 'C': /* Single char !DANGEROUS! */
8487 case 'd': case 'D': /* digit class */
8488 case 'g': case 'G': /* generic-backref, pos assertion */
8489 case 'h': case 'H': /* HORIZWS */
8490 case 'k': case 'K': /* named backref, keep marker */
8491 case 'N': /* named char sequence */
8492 case 'p': case 'P': /* Unicode property */
8493 case 'R': /* LNBREAK */
8494 case 's': case 'S': /* space class */
8495 case 'v': case 'V': /* VERTWS */
8496 case 'w': case 'W': /* word class */
8497 case 'X': /* eXtended Unicode "combining character sequence" */
8498 case 'z': case 'Z': /* End of line/string assertion */
8502 /* Anything after here is an escape that resolves to a
8503 literal. (Except digits, which may or may not)
8522 ender = ASCII_TO_NATIVE('\033');
8526 ender = ASCII_TO_NATIVE('\007');
8531 STRLEN brace_len = len;
8533 const char* error_msg;
8535 bool valid = grok_bslash_o(p,
8542 RExC_parse = p; /* going to die anyway; point
8543 to exact spot of failure */
8550 if (PL_encoding && ender < 0x100) {
8551 goto recode_encoding;
8560 char* const e = strchr(p, '}');
8564 vFAIL("Missing right brace on \\x{}");
8567 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8568 | PERL_SCAN_DISALLOW_PREFIX;
8569 STRLEN numlen = e - p - 1;
8570 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8577 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8579 ender = grok_hex(p, &numlen, &flags, NULL);
8582 if (PL_encoding && ender < 0x100)
8583 goto recode_encoding;
8587 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8589 case '0': case '1': case '2': case '3':case '4':
8590 case '5': case '6': case '7': case '8':case '9':
8592 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8594 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8596 ender = grok_oct(p, &numlen, &flags, NULL);
8606 if (PL_encoding && ender < 0x100)
8607 goto recode_encoding;
8610 if (! RExC_override_recoding) {
8611 SV* enc = PL_encoding;
8612 ender = reg_recode((const char)(U8)ender, &enc);
8613 if (!enc && SIZE_ONLY)
8614 ckWARNreg(p, "Invalid escape in the specified encoding");
8620 FAIL("Trailing \\");
8623 if (!SIZE_ONLY&& isALPHA(*p)) {
8624 /* Include any { following the alpha to emphasize
8625 * that it could be part of an escape at some point
8627 int len = (*(p + 1) == '{') ? 2 : 1;
8628 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
8630 goto normal_default;
8635 if (UTF8_IS_START(*p) && UTF) {
8637 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
8638 &numlen, UTF8_ALLOW_DEFAULT);
8644 } /* End of switch on the literal */
8646 /* Certain characters are problematic because their folded
8647 * length is so different from their original length that it
8648 * isn't handleable by the optimizer. They are therefore not
8649 * placed in an EXACTish node; and are here handled specially.
8650 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
8651 * putting it in a special node keeps regexec from having to
8652 * deal with a non-utf8 multi-char fold */
8654 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
8656 /* We look for either side of the fold. For example \xDF
8657 * folds to 'ss'. We look for both the single character
8658 * \xDF and the sequence 'ss'. When we find something that
8659 * could be one of those, we stop and flush whatever we
8660 * have output so far into the EXACTish node that was being
8661 * built. Then restore the input pointer to what it was.
8662 * regatom will return that EXACT node, and will be called
8663 * again, positioned so the first character is the one in
8664 * question, which we return in a different node type.
8665 * The multi-char folds are a sequence, so the occurrence
8666 * of the first character in that sequence doesn't
8667 * necessarily mean that what follows is the rest of the
8668 * sequence. We keep track of that with a state machine,
8669 * with the state being set to the latest character
8670 * processed before the current one. Most characters will
8671 * set the state to 0, but if one occurs that is part of a
8672 * potential tricky fold sequence, the state is set to that
8673 * character, and the next loop iteration sees if the state
8674 * should progress towards the final folded-from character,
8675 * or if it was a false alarm. If it turns out to be a
8676 * false alarm, the character(s) will be output in a new
8677 * EXACTish node, and join_exact() will later combine them.
8678 * In the case of the 'ss' sequence, which is more common
8679 * and more easily checked, some look-ahead is done to
8680 * save time by ruling-out some false alarms */
8683 latest_char_state = generic_char;
8687 case 0x17F: /* LATIN SMALL LETTER LONG S */
8688 if (AT_LEAST_UNI_SEMANTICS) {
8689 if (latest_char_state == char_s) { /* 'ss' */
8690 ender = LATIN_SMALL_LETTER_SHARP_S;
8693 else if (p < RExC_end) {
8695 /* Look-ahead at the next character. If it
8696 * is also an s, we handle as a sharp s
8697 * tricky regnode. */
8698 if (*p == 's' || *p == 'S') {
8700 /* But first flush anything in the
8701 * EXACTish buffer */
8706 p++; /* Account for swallowing this
8708 ender = LATIN_SMALL_LETTER_SHARP_S;
8711 /* Here, the next character is not a
8712 * literal 's', but still could
8713 * evaluate to one if part of a \o{},
8714 * \x or \OCTAL-DIGIT. The minimum
8715 * length required for that is 4, eg
8719 && (isDIGIT(*(p + 1))
8721 || *(p + 1) == 'o' ))
8724 /* Here, it could be an 's', too much
8725 * bother to figure it out here. Flush
8726 * the buffer if any; when come back
8727 * here, set the state so know that the
8728 * previous char was an 's' */
8730 latest_char_state = generic_char;
8734 latest_char_state = char_s;
8740 /* Here, can't be an 'ss' sequence, or at least not
8741 * one that could fold to/from the sharp ss */
8742 latest_char_state = generic_char;
8744 case 0x03C5: /* First char in upsilon series */
8745 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
8746 latest_char_state = upsilon_1;
8753 latest_char_state = generic_char;
8756 case 0x03B9: /* First char in iota series */
8757 if (p < RExC_end - 4) {
8758 latest_char_state = iota_1;
8765 latest_char_state = generic_char;
8769 if (latest_char_state == upsilon_1) {
8770 latest_char_state = upsilon_2;
8772 else if (latest_char_state == iota_1) {
8773 latest_char_state = iota_2;
8776 latest_char_state = generic_char;
8780 if (latest_char_state == upsilon_2) {
8781 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
8784 else if (latest_char_state == iota_2) {
8785 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
8788 latest_char_state = generic_char;
8791 /* These are the tricky fold characters. Flush any
8793 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
8794 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
8795 case LATIN_SMALL_LETTER_SHARP_S:
8796 case LATIN_CAPITAL_LETTER_SHARP_S:
8805 char* const oldregxend = RExC_end;
8806 U8 tmpbuf[UTF8_MAXBYTES+1];
8808 /* Here, we know we need to generate a special
8809 * regnode, and 'ender' contains the tricky
8810 * character. What's done is to pretend it's in a
8811 * [bracketed] class, and let the code that deals
8812 * with those handle it, as that code has all the
8813 * intelligence necessary. First save the current
8814 * parse state, get rid of the already allocated
8815 * but empty EXACT node that the ANYOFV node will
8816 * replace, and point the parse to a buffer which
8817 * we fill with the character we want the regclass
8818 * code to think is being parsed */
8819 RExC_emit = orig_emit;
8820 RExC_parse = (char *) tmpbuf;
8822 U8 *d = uvchr_to_utf8(tmpbuf, ender);
8824 RExC_end = (char *) d;
8826 else { /* ender above 255 already excluded */
8827 tmpbuf[0] = (U8) ender;
8829 RExC_end = RExC_parse + 1;
8832 ret = regclass(pRExC_state,depth+1);
8834 /* Here, have parsed the buffer. Reset the parse to
8835 * the actual input, and return */
8836 RExC_end = oldregxend;
8839 Set_Node_Offset(ret, RExC_parse);
8840 Set_Node_Cur_Length(ret);
8841 nextchar(pRExC_state);
8842 *flagp |= HASWIDTH|SIMPLE;
8848 if ( RExC_flags & RXf_PMf_EXTENDED)
8849 p = regwhite( pRExC_state, p );
8851 /* Prime the casefolded buffer. Locale rules, which apply
8852 * only to code points < 256, aren't known until execution,
8853 * so for them, just output the original character using
8855 if (LOC && ender < 256) {
8856 if (UNI_IS_INVARIANT(ender)) {
8857 *tmpbuf = (U8) ender;
8860 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
8861 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
8865 else if (isASCII(ender)) { /* Note: Here can't also be LOC
8867 ender = toLOWER(ender);
8868 *tmpbuf = (U8) ender;
8871 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
8873 /* Locale and /aa require more selectivity about the
8874 * fold, so are handled below. Otherwise, here, just
8876 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
8879 /* Under locale rules or /aa we are not to mix,
8880 * respectively, ords < 256 or ASCII with non-. So
8881 * reject folds that mix them, using only the
8882 * non-folded code point. So do the fold to a
8883 * temporary, and inspect each character in it. */
8884 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
8886 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
8887 U8* e = s + foldlen;
8888 bool fold_ok = TRUE;
8892 || (LOC && (UTF8_IS_INVARIANT(*s)
8893 || UTF8_IS_DOWNGRADEABLE_START(*s))))
8901 Copy(trialbuf, tmpbuf, foldlen, U8);
8905 uvuni_to_utf8(tmpbuf, ender);
8906 foldlen = UNISKIP(ender);
8910 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
8915 /* Emit all the Unicode characters. */
8917 for (foldbuf = tmpbuf;
8919 foldlen -= numlen) {
8920 ender = utf8_to_uvchr(foldbuf, &numlen);
8922 const STRLEN unilen = reguni(pRExC_state, ender, s);
8925 /* In EBCDIC the numlen
8926 * and unilen can differ. */
8928 if (numlen >= foldlen)
8932 break; /* "Can't happen." */
8936 const STRLEN unilen = reguni(pRExC_state, ender, s);
8945 REGC((char)ender, s++);
8951 /* Emit all the Unicode characters. */
8953 for (foldbuf = tmpbuf;
8955 foldlen -= numlen) {
8956 ender = utf8_to_uvchr(foldbuf, &numlen);
8958 const STRLEN unilen = reguni(pRExC_state, ender, s);
8961 /* In EBCDIC the numlen
8962 * and unilen can differ. */
8964 if (numlen >= foldlen)
8972 const STRLEN unilen = reguni(pRExC_state, ender, s);
8981 REGC((char)ender, s++);
8984 loopdone: /* Jumped to when encounters something that shouldn't be in
8987 Set_Node_Cur_Length(ret); /* MJD */
8988 nextchar(pRExC_state);
8990 /* len is STRLEN which is unsigned, need to copy to signed */
8993 vFAIL("Internal disaster");
8997 if (len == 1 && UNI_IS_INVARIANT(ender))
9001 RExC_size += STR_SZ(len);
9004 RExC_emit += STR_SZ(len);
9012 /* Jumped to when an unrecognized character set is encountered */
9014 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9019 S_regwhite( RExC_state_t *pRExC_state, char *p )
9021 const char *e = RExC_end;
9023 PERL_ARGS_ASSERT_REGWHITE;
9028 else if (*p == '#') {
9037 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9045 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9046 Character classes ([:foo:]) can also be negated ([:^foo:]).
9047 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9048 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9049 but trigger failures because they are currently unimplemented. */
9051 #define POSIXCC_DONE(c) ((c) == ':')
9052 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9053 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9056 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9059 I32 namedclass = OOB_NAMEDCLASS;
9061 PERL_ARGS_ASSERT_REGPPOSIXCC;
9063 if (value == '[' && RExC_parse + 1 < RExC_end &&
9064 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9065 POSIXCC(UCHARAT(RExC_parse))) {
9066 const char c = UCHARAT(RExC_parse);
9067 char* const s = RExC_parse++;
9069 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9071 if (RExC_parse == RExC_end)
9072 /* Grandfather lone [:, [=, [. */
9075 const char* const t = RExC_parse++; /* skip over the c */
9078 if (UCHARAT(RExC_parse) == ']') {
9079 const char *posixcc = s + 1;
9080 RExC_parse++; /* skip over the ending ] */
9083 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9084 const I32 skip = t - posixcc;
9086 /* Initially switch on the length of the name. */
9089 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9090 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9093 /* Names all of length 5. */
9094 /* alnum alpha ascii blank cntrl digit graph lower
9095 print punct space upper */
9096 /* Offset 4 gives the best switch position. */
9097 switch (posixcc[4]) {
9099 if (memEQ(posixcc, "alph", 4)) /* alpha */
9100 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9103 if (memEQ(posixcc, "spac", 4)) /* space */
9104 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9107 if (memEQ(posixcc, "grap", 4)) /* graph */
9108 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9111 if (memEQ(posixcc, "asci", 4)) /* ascii */
9112 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9115 if (memEQ(posixcc, "blan", 4)) /* blank */
9116 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9119 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9120 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9123 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9124 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9127 if (memEQ(posixcc, "lowe", 4)) /* lower */
9128 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9129 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9130 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9133 if (memEQ(posixcc, "digi", 4)) /* digit */
9134 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9135 else if (memEQ(posixcc, "prin", 4)) /* print */
9136 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9137 else if (memEQ(posixcc, "punc", 4)) /* punct */
9138 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9143 if (memEQ(posixcc, "xdigit", 6))
9144 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9148 if (namedclass == OOB_NAMEDCLASS)
9149 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9151 assert (posixcc[skip] == ':');
9152 assert (posixcc[skip+1] == ']');
9153 } else if (!SIZE_ONLY) {
9154 /* [[=foo=]] and [[.foo.]] are still future. */
9156 /* adjust RExC_parse so the warning shows after
9158 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9160 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9163 /* Maternal grandfather:
9164 * "[:" ending in ":" but not in ":]" */
9174 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9178 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9180 if (POSIXCC(UCHARAT(RExC_parse))) {
9181 const char *s = RExC_parse;
9182 const char c = *s++;
9186 if (*s && c == *s && s[1] == ']') {
9188 "POSIX syntax [%c %c] belongs inside character classes",
9191 /* [[=foo=]] and [[.foo.]] are still future. */
9192 if (POSIXCC_NOTYET(c)) {
9193 /* adjust RExC_parse so the error shows after
9195 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9197 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9203 /* No locale test, and always Unicode semantics */
9204 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9206 for (value = 0; value < 256; value++) \
9208 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9212 case ANYOF_N##NAME: \
9213 for (value = 0; value < 256; value++) \
9215 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9220 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9221 * there are two tests passed in, to use depending on that. There aren't any
9222 * cases where the label is different from the name, so no need for that
9224 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD) \
9226 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9227 else if (UNI_SEMANTICS) { \
9228 for (value = 0; value < 256; value++) { \
9229 if (TEST_8(value)) stored += \
9230 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9234 for (value = 0; value < 128; value++) { \
9235 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9236 set_regclass_bit(pRExC_state, ret, \
9237 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9243 case ANYOF_N##NAME: \
9244 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9245 else if (UNI_SEMANTICS) { \
9246 for (value = 0; value < 256; value++) { \
9247 if (! TEST_8(value)) stored += \
9248 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9252 for (value = 0; value < 128; value++) { \
9253 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9254 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9256 if (AT_LEAST_ASCII_RESTRICTED) { \
9257 for (value = 128; value < 256; value++) { \
9258 stored += set_regclass_bit( \
9259 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9261 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9264 /* For a non-ut8 target string with DEPENDS semantics, all above \
9265 * ASCII Latin1 code points match the complement of any of the \
9266 * classes. But in utf8, they have their Unicode semantics, so \
9267 * can't just set them in the bitmap, or else regexec.c will think \
9268 * they matched when they shouldn't. */ \
9269 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9277 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9280 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9281 * Locale folding is done at run-time, so this function should not be
9282 * called for nodes that are for locales.
9284 * This function sets the bit corresponding to the fold of the input
9285 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9288 * It also knows about the characters that are in the bitmap that have
9289 * folds that are matchable only outside it, and sets the appropriate lists
9292 * It returns the number of bits that actually changed from 0 to 1 */
9297 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9299 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9302 /* It assumes the bit for 'value' has already been set */
9303 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9304 ANYOF_BITMAP_SET(node, fold);
9307 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9308 /* Certain Latin1 characters have matches outside the bitmap. To get
9309 * here, 'value' is one of those characters. None of these matches is
9310 * valid for ASCII characters under /aa, which have been excluded by
9311 * the 'if' above. The matches fall into three categories:
9312 * 1) They are singly folded-to or -from an above 255 character, as
9313 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9315 * 2) They are part of a multi-char fold with another character in the
9316 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9317 * 3) They are part of a multi-char fold with a character not in the
9318 * bitmap, such as various ligatures.
9319 * We aren't dealing fully with multi-char folds, except we do deal
9320 * with the pattern containing a character that has a multi-char fold
9321 * (not so much the inverse).
9322 * For types 1) and 3), the matches only happen when the target string
9323 * is utf8; that's not true for 2), and we set a flag for it.
9325 * The code below adds to the passed in inversion list the single fold
9326 * closures for 'value'. The values are hard-coded here so that an
9327 * innocent-looking character class, like /[ks]/i won't have to go out
9328 * to disk to find the possible matches. XXX It would be better to
9329 * generate these via regen, in case a new version of the Unicode
9330 * standard adds new mappings, though that is not really likely. */
9335 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9339 /* LATIN SMALL LETTER LONG S */
9340 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9343 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9344 GREEK_SMALL_LETTER_MU);
9345 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9346 GREEK_CAPITAL_LETTER_MU);
9348 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9349 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9351 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9352 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9353 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9354 PL_fold_latin1[value]);
9357 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9358 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9359 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9361 case LATIN_SMALL_LETTER_SHARP_S:
9362 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9363 LATIN_CAPITAL_LETTER_SHARP_S);
9365 /* Under /a, /d, and /u, this can match the two chars "ss" */
9366 if (! MORE_ASCII_RESTRICTED) {
9367 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9369 /* And under /u or /a, it can match even if the target is
9371 if (AT_LEAST_UNI_SEMANTICS) {
9372 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9386 /* These all are targets of multi-character folds from code
9387 * points that require UTF8 to express, so they can't match
9388 * unless the target string is in UTF-8, so no action here is
9389 * necessary, as regexec.c properly handles the general case
9390 * for UTF-8 matching */
9393 /* Use deprecated warning to increase the chances of this
9395 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9399 else if (DEPENDS_SEMANTICS
9401 && PL_fold_latin1[value] != value)
9403 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9404 * folds only when the target string is in UTF-8. We add the fold
9405 * here to the list of things to match outside the bitmap, which
9406 * won't be looked at unless it is UTF8 (or else if something else
9407 * says to look even if not utf8, but those things better not happen
9408 * under DEPENDS semantics. */
9409 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9416 PERL_STATIC_INLINE U8
9417 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9419 /* This inline function sets a bit in the bitmap if not already set, and if
9420 * appropriate, its fold, returning the number of bits that actually
9421 * changed from 0 to 1 */
9425 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9427 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9431 ANYOF_BITMAP_SET(node, value);
9434 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9435 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9442 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9444 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9445 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9446 * the multi-character folds of characters in the node */
9449 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9451 if (! *alternate_ptr) {
9452 *alternate_ptr = newAV();
9454 sv = newSVpvn_utf8((char*)string, len, TRUE);
9455 av_push(*alternate_ptr, sv);
9460 parse a class specification and produce either an ANYOF node that
9461 matches the pattern or perhaps will be optimized into an EXACTish node
9462 instead. The node contains a bit map for the first 256 characters, with the
9463 corresponding bit set if that character is in the list. For characters
9464 above 255, a range list is used */
9467 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9470 register UV nextvalue;
9471 register IV prevvalue = OOB_UNICODE;
9472 register IV range = 0;
9473 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9474 register regnode *ret;
9477 char *rangebegin = NULL;
9478 bool need_class = 0;
9479 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9481 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9482 than just initialized. */
9485 /* code points this node matches that can't be stored in the bitmap */
9486 HV* nonbitmap = NULL;
9488 /* The items that are to match that aren't stored in the bitmap, but are a
9489 * result of things that are stored there. This is the fold closure of
9490 * such a character, either because it has DEPENDS semantics and shouldn't
9491 * be matched unless the target string is utf8, or is a code point that is
9492 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9493 * above 255. This all is solely for performance reasons. By having this
9494 * code know the outside-the-bitmap folds that the bitmapped characters are
9495 * involved with, we don't have to go out to disk to find the list of
9496 * matches, unless the character class includes code points that aren't
9497 * storable in the bit map. That means that a character class with an 's'
9498 * in it, for example, doesn't need to go out to disk to find everything
9499 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9500 * empty unless there is something whose fold we don't know about, and will
9501 * have to go out to the disk to find. */
9502 HV* l1_fold_invlist = NULL;
9504 /* List of multi-character folds that are matched by this node */
9505 AV* unicode_alternate = NULL;
9507 UV literal_endpoint = 0;
9509 UV stored = 0; /* how many chars stored in the bitmap */
9511 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9512 case we need to change the emitted regop to an EXACT. */
9513 const char * orig_parse = RExC_parse;
9514 GET_RE_DEBUG_FLAGS_DECL;
9516 PERL_ARGS_ASSERT_REGCLASS;
9518 PERL_UNUSED_ARG(depth);
9521 DEBUG_PARSE("clas");
9523 /* Assume we are going to generate an ANYOF node. */
9524 ret = reganode(pRExC_state, ANYOF, 0);
9528 ANYOF_FLAGS(ret) = 0;
9531 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9535 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9537 /* We have decided to not allow multi-char folds in inverted character
9538 * classes, due to the confusion that can happen, even with classes
9539 * that are designed for a non-Unicode world: You have the peculiar
9541 "s s" =~ /^[^\xDF]+$/i => Y
9542 "ss" =~ /^[^\xDF]+$/i => N
9544 * See [perl #89750] */
9545 allow_full_fold = FALSE;
9549 RExC_size += ANYOF_SKIP;
9550 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9553 RExC_emit += ANYOF_SKIP;
9555 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9557 ANYOF_BITMAP_ZERO(ret);
9558 listsv = newSVpvs("# comment\n");
9559 initial_listsv_len = SvCUR(listsv);
9562 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9564 if (!SIZE_ONLY && POSIXCC(nextvalue))
9565 checkposixcc(pRExC_state);
9567 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9568 if (UCHARAT(RExC_parse) == ']')
9572 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9576 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9579 rangebegin = RExC_parse;
9581 value = utf8n_to_uvchr((U8*)RExC_parse,
9582 RExC_end - RExC_parse,
9583 &numlen, UTF8_ALLOW_DEFAULT);
9584 RExC_parse += numlen;
9587 value = UCHARAT(RExC_parse++);
9589 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9590 if (value == '[' && POSIXCC(nextvalue))
9591 namedclass = regpposixcc(pRExC_state, value);
9592 else if (value == '\\') {
9594 value = utf8n_to_uvchr((U8*)RExC_parse,
9595 RExC_end - RExC_parse,
9596 &numlen, UTF8_ALLOW_DEFAULT);
9597 RExC_parse += numlen;
9600 value = UCHARAT(RExC_parse++);
9601 /* Some compilers cannot handle switching on 64-bit integer
9602 * values, therefore value cannot be an UV. Yes, this will
9603 * be a problem later if we want switch on Unicode.
9604 * A similar issue a little bit later when switching on
9605 * namedclass. --jhi */
9606 switch ((I32)value) {
9607 case 'w': namedclass = ANYOF_ALNUM; break;
9608 case 'W': namedclass = ANYOF_NALNUM; break;
9609 case 's': namedclass = ANYOF_SPACE; break;
9610 case 'S': namedclass = ANYOF_NSPACE; break;
9611 case 'd': namedclass = ANYOF_DIGIT; break;
9612 case 'D': namedclass = ANYOF_NDIGIT; break;
9613 case 'v': namedclass = ANYOF_VERTWS; break;
9614 case 'V': namedclass = ANYOF_NVERTWS; break;
9615 case 'h': namedclass = ANYOF_HORIZWS; break;
9616 case 'H': namedclass = ANYOF_NHORIZWS; break;
9617 case 'N': /* Handle \N{NAME} in class */
9619 /* We only pay attention to the first char of
9620 multichar strings being returned. I kinda wonder
9621 if this makes sense as it does change the behaviour
9622 from earlier versions, OTOH that behaviour was broken
9624 UV v; /* value is register so we cant & it /grrr */
9625 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
9635 if (RExC_parse >= RExC_end)
9636 vFAIL2("Empty \\%c{}", (U8)value);
9637 if (*RExC_parse == '{') {
9638 const U8 c = (U8)value;
9639 e = strchr(RExC_parse++, '}');
9641 vFAIL2("Missing right brace on \\%c{}", c);
9642 while (isSPACE(UCHARAT(RExC_parse)))
9644 if (e == RExC_parse)
9645 vFAIL2("Empty \\%c{}", c);
9647 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
9655 if (UCHARAT(RExC_parse) == '^') {
9658 value = value == 'p' ? 'P' : 'p'; /* toggle */
9659 while (isSPACE(UCHARAT(RExC_parse))) {
9665 /* Add the property name to the list. If /i matching, give
9666 * a different name which consists of the normal name
9667 * sandwiched between two underscores and '_i'. The design
9668 * is discussed in the commit message for this. */
9669 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
9670 (value=='p' ? '+' : '!'),
9679 /* The \p could match something in the Latin1 range, hence
9680 * something that isn't utf8 */
9681 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
9682 namedclass = ANYOF_MAX; /* no official name, but it's named */
9684 /* \p means they want Unicode semantics */
9685 RExC_uni_semantics = 1;
9688 case 'n': value = '\n'; break;
9689 case 'r': value = '\r'; break;
9690 case 't': value = '\t'; break;
9691 case 'f': value = '\f'; break;
9692 case 'b': value = '\b'; break;
9693 case 'e': value = ASCII_TO_NATIVE('\033');break;
9694 case 'a': value = ASCII_TO_NATIVE('\007');break;
9696 RExC_parse--; /* function expects to be pointed at the 'o' */
9698 const char* error_msg;
9699 bool valid = grok_bslash_o(RExC_parse,
9704 RExC_parse += numlen;
9709 if (PL_encoding && value < 0x100) {
9710 goto recode_encoding;
9714 if (*RExC_parse == '{') {
9715 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
9716 | PERL_SCAN_DISALLOW_PREFIX;
9717 char * const e = strchr(RExC_parse++, '}');
9719 vFAIL("Missing right brace on \\x{}");
9721 numlen = e - RExC_parse;
9722 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9726 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
9728 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9729 RExC_parse += numlen;
9731 if (PL_encoding && value < 0x100)
9732 goto recode_encoding;
9735 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
9737 case '0': case '1': case '2': case '3': case '4':
9738 case '5': case '6': case '7':
9740 /* Take 1-3 octal digits */
9741 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
9743 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
9744 RExC_parse += numlen;
9745 if (PL_encoding && value < 0x100)
9746 goto recode_encoding;
9750 if (! RExC_override_recoding) {
9751 SV* enc = PL_encoding;
9752 value = reg_recode((const char)(U8)value, &enc);
9753 if (!enc && SIZE_ONLY)
9754 ckWARNreg(RExC_parse,
9755 "Invalid escape in the specified encoding");
9759 /* Allow \_ to not give an error */
9760 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
9761 ckWARN2reg(RExC_parse,
9762 "Unrecognized escape \\%c in character class passed through",
9767 } /* end of \blah */
9773 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
9775 /* What matches in a locale is not known until runtime, so need to
9776 * (one time per class) allocate extra space to pass to regexec.
9777 * The space will contain a bit for each named class that is to be
9778 * matched against. This isn't needed for \p{} and pseudo-classes,
9779 * as they are not affected by locale, and hence are dealt with
9781 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
9784 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9787 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9788 ANYOF_CLASS_ZERO(ret);
9790 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
9793 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
9794 * literal, as is the character that began the false range, i.e.
9795 * the 'a' in the examples */
9799 RExC_parse >= rangebegin ?
9800 RExC_parse - rangebegin : 0;
9801 ckWARN4reg(RExC_parse,
9802 "False [] range \"%*.*s\"",
9806 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9807 if (prevvalue < 256) {
9809 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
9812 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
9816 range = 0; /* this was not a true range */
9822 const char *what = NULL;
9825 /* Possible truncation here but in some 64-bit environments
9826 * the compiler gets heartburn about switch on 64-bit values.
9827 * A similar issue a little earlier when switching on value.
9829 switch ((I32)namedclass) {
9831 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum");
9832 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha");
9833 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank");
9834 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl");
9835 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph");
9836 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower");
9837 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint");
9838 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace");
9839 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct");
9840 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper");
9841 /* \s, \w match all unicode if utf8. */
9842 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl");
9843 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word");
9844 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit");
9845 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
9846 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
9849 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
9851 for (value = 0; value < 128; value++)
9853 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9856 what = NULL; /* Doesn't match outside ascii, so
9857 don't want to add +utf8:: */
9861 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
9863 for (value = 128; value < 256; value++)
9865 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9867 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9873 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
9875 /* consecutive digits assumed */
9876 for (value = '0'; value <= '9'; value++)
9878 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9885 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
9887 /* consecutive digits assumed */
9888 for (value = 0; value < '0'; value++)
9890 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9891 for (value = '9' + 1; value < 256; value++)
9893 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9897 if (AT_LEAST_ASCII_RESTRICTED ) {
9898 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9902 /* this is to handle \p and \P */
9905 vFAIL("Invalid [::] class");
9908 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
9909 /* Strings such as "+utf8::isWord\n" */
9910 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::Is%s\n", yesno, what);
9915 } /* end of namedclass \blah */
9918 if (prevvalue > (IV)value) /* b-a */ {
9919 const int w = RExC_parse - rangebegin;
9920 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
9921 range = 0; /* not a valid range */
9925 prevvalue = value; /* save the beginning of the range */
9926 if (RExC_parse+1 < RExC_end
9927 && *RExC_parse == '-'
9928 && RExC_parse[1] != ']')
9932 /* a bad range like \w-, [:word:]- ? */
9933 if (namedclass > OOB_NAMEDCLASS) {
9934 if (ckWARN(WARN_REGEXP)) {
9936 RExC_parse >= rangebegin ?
9937 RExC_parse - rangebegin : 0;
9939 "False [] range \"%*.*s\"",
9944 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9946 range = 1; /* yeah, it's a range! */
9947 continue; /* but do it the next time */
9951 /* non-Latin1 code point implies unicode semantics. Must be set in
9952 * pass1 so is there for the whole of pass 2 */
9954 RExC_uni_semantics = 1;
9957 /* now is the next time */
9959 if (prevvalue < 256) {
9960 const IV ceilvalue = value < 256 ? value : 255;
9963 /* In EBCDIC [\x89-\x91] should include
9964 * the \x8e but [i-j] should not. */
9965 if (literal_endpoint == 2 &&
9966 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
9967 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
9969 if (isLOWER(prevvalue)) {
9970 for (i = prevvalue; i <= ceilvalue; i++)
9971 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
9973 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
9976 for (i = prevvalue; i <= ceilvalue; i++)
9977 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
9979 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
9985 for (i = prevvalue; i <= ceilvalue; i++) {
9986 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
9990 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
9991 const UV natvalue = NATIVE_TO_UNI(value);
9992 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
9995 literal_endpoint = 0;
9999 range = 0; /* this range (if it was one) is done now */
10006 /****** !SIZE_ONLY AFTER HERE *********/
10008 /* If folding and there are code points above 255, we calculate all
10009 * characters that could fold to or from the ones already on the list */
10010 if (FOLD && nonbitmap) {
10013 HV* fold_intersection;
10016 /* This is a list of all the characters that participate in folds
10017 * (except marks, etc in multi-char folds */
10018 if (! PL_utf8_foldable) {
10019 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10020 PL_utf8_foldable = _swash_to_invlist(swash);
10023 /* This is a hash that for a particular fold gives all characters
10024 * that are involved in it */
10025 if (! PL_utf8_foldclosures) {
10027 /* If we were unable to find any folds, then we likely won't be
10028 * able to find the closures. So just create an empty list.
10029 * Folding will effectively be restricted to the non-Unicode rules
10030 * hard-coded into Perl. (This case happens legitimately during
10031 * compilation of Perl itself before the Unicode tables are
10033 if (invlist_len(PL_utf8_foldable) == 0) {
10034 PL_utf8_foldclosures = _new_invlist(0);
10036 /* If the folds haven't been read in, call a fold function
10038 if (! PL_utf8_tofold) {
10039 U8 dummy[UTF8_MAXBYTES+1];
10041 to_utf8_fold((U8*) "A", dummy, &dummy_len);
10043 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10047 /* Only the characters in this class that participate in folds need
10048 * be checked. Get the intersection of this class and all the
10049 * possible characters that are foldable. This can quickly narrow
10050 * down a large class */
10051 fold_intersection = invlist_intersection(PL_utf8_foldable, nonbitmap);
10053 /* Now look at the foldable characters in this class individually */
10054 fold_list = invlist_array(fold_intersection);
10055 for (i = 0; i < invlist_len(fold_intersection); i++) {
10058 /* The next entry is the beginning of the range that is in the
10060 UV start = fold_list[i++];
10063 /* The next entry is the beginning of the next range, which
10064 * isn't in the class, so the end of the current range is one
10065 * less than that */
10066 UV end = fold_list[i] - 1;
10068 /* Look at every character in the range */
10069 for (j = start; j <= end; j++) {
10072 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10075 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10077 if (foldlen > (STRLEN)UNISKIP(f)) {
10079 /* Any multicharacter foldings (disallowed in
10080 * lookbehind patterns) require the following
10081 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10082 * E folds into "pq" and F folds into "rst", all other
10083 * characters fold to single characters. We save away
10084 * these multicharacter foldings, to be later saved as
10085 * part of the additional "s" data. */
10086 if (! RExC_in_lookbehind) {
10088 U8* e = foldbuf + foldlen;
10090 /* If any of the folded characters of this are in
10091 * the Latin1 range, tell the regex engine that
10092 * this can match a non-utf8 target string. The
10093 * only multi-byte fold whose source is in the
10094 * Latin1 range (U+00DF) applies only when the
10095 * target string is utf8, or under unicode rules */
10096 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10099 /* Can't mix ascii with non- under /aa */
10100 if (MORE_ASCII_RESTRICTED
10101 && (isASCII(*loc) != isASCII(j)))
10103 goto end_multi_fold;
10105 if (UTF8_IS_INVARIANT(*loc)
10106 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10108 /* Can't mix above and below 256 under
10111 goto end_multi_fold;
10114 |= ANYOF_NONBITMAP_NON_UTF8;
10117 loc += UTF8SKIP(loc);
10121 add_alternate(&unicode_alternate, foldbuf, foldlen);
10125 /* This is special-cased, as it is the only letter which
10126 * has both a multi-fold and single-fold in Latin1. All
10127 * the other chars that have single and multi-folds are
10128 * always in utf8, and the utf8 folding algorithm catches
10130 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10131 stored += set_regclass_bit(pRExC_state,
10133 LATIN_SMALL_LETTER_SHARP_S,
10134 &l1_fold_invlist, &unicode_alternate);
10138 /* Single character fold. Add everything in its fold
10139 * closure to the list that this node should match */
10142 /* The fold closures data structure is a hash with the
10143 * keys being every character that is folded to, like
10144 * 'k', and the values each an array of everything that
10145 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10146 if ((listp = hv_fetch(PL_utf8_foldclosures,
10147 (char *) foldbuf, foldlen, FALSE)))
10149 AV* list = (AV*) *listp;
10151 for (k = 0; k <= av_len(list); k++) {
10152 SV** c_p = av_fetch(list, k, FALSE);
10155 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10159 /* /aa doesn't allow folds between ASCII and
10160 * non-; /l doesn't allow them between above
10162 if ((MORE_ASCII_RESTRICTED
10163 && (isASCII(c) != isASCII(j)))
10164 || (LOC && ((c < 256) != (j < 256))))
10169 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10170 stored += set_regclass_bit(pRExC_state,
10173 &l1_fold_invlist, &unicode_alternate);
10175 /* It may be that the code point is already
10176 * in this range or already in the bitmap,
10177 * in which case we need do nothing */
10178 else if ((c < start || c > end)
10180 || ! ANYOF_BITMAP_TEST(ret, c)))
10182 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10189 invlist_destroy(fold_intersection);
10192 /* Combine the two lists into one. */
10193 if (l1_fold_invlist) {
10195 HV* temp = invlist_union(nonbitmap, l1_fold_invlist);
10196 invlist_destroy(nonbitmap);
10198 invlist_destroy(l1_fold_invlist);
10201 nonbitmap = l1_fold_invlist;
10205 /* Here, we have calculated what code points should be in the character
10206 * class. Now we can see about various optimizations. Fold calculation
10207 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10208 * include K, which under /i would match k. */
10210 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10211 * set the FOLD flag yet, so this this does optimize those. It doesn't
10212 * optimize locale. Doing so perhaps could be done as long as there is
10213 * nothing like \w in it; some thought also would have to be given to the
10214 * interaction with above 0x100 chars */
10216 && (ANYOF_FLAGS(ret) & ANYOF_FLAGS_ALL) == ANYOF_INVERT
10217 && ! unicode_alternate
10219 && SvCUR(listsv) == initial_listsv_len)
10221 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10222 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10223 stored = 256 - stored;
10225 /* The inversion means that everything above 255 is matched; and at the
10226 * same time we clear the invert flag */
10227 ANYOF_FLAGS(ret) = ANYOF_UNICODE_ALL;
10230 /* Folding in the bitmap is taken care of above, but not for locale (for
10231 * which we have to wait to see what folding is in effect at runtime), and
10232 * for things not in the bitmap. Set run-time fold flag for these */
10233 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10234 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10237 /* A single character class can be "optimized" into an EXACTish node.
10238 * Note that since we don't currently count how many characters there are
10239 * outside the bitmap, we are XXX missing optimization possibilities for
10240 * them. This optimization can't happen unless this is a truly single
10241 * character class, which means that it can't be an inversion into a
10242 * many-character class, and there must be no possibility of there being
10243 * things outside the bitmap. 'stored' (only) for locales doesn't include
10244 * \w, etc, so have to make a special test that they aren't present
10246 * Similarly A 2-character class of the very special form like [bB] can be
10247 * optimized into an EXACTFish node, but only for non-locales, and for
10248 * characters which only have the two folds; so things like 'fF' and 'Ii'
10249 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10252 && ! unicode_alternate
10253 && SvCUR(listsv) == initial_listsv_len
10254 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10255 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10256 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10257 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10258 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10259 /* If the latest code point has a fold whose
10260 * bit is set, it must be the only other one */
10261 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10262 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10264 /* Note that the information needed to decide to do this optimization
10265 * is not currently available until the 2nd pass, and that the actually
10266 * used EXACTish node takes less space than the calculated ANYOF node,
10267 * and hence the amount of space calculated in the first pass is larger
10268 * than actually used, so this optimization doesn't gain us any space.
10269 * But an EXACT node is faster than an ANYOF node, and can be combined
10270 * with any adjacent EXACT nodes later by the optimizer for further
10271 * gains. The speed of executing an EXACTF is similar to an ANYOF
10272 * node, so the optimization advantage comes from the ability to join
10273 * it to adjacent EXACT nodes */
10275 const char * cur_parse= RExC_parse;
10277 RExC_emit = (regnode *)orig_emit;
10278 RExC_parse = (char *)orig_parse;
10282 /* A locale node with one point can be folded; all the other cases
10283 * with folding will have two points, since we calculate them above
10285 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10291 } /* else 2 chars in the bit map: the folds of each other */
10292 else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10294 /* To join adjacent nodes, they must be the exact EXACTish type.
10295 * Try to use the most likely type, by using EXACTFU if the regex
10296 * calls for them, or is required because the character is
10300 else { /* Otherwise, more likely to be EXACTF type */
10304 ret = reg_node(pRExC_state, op);
10305 RExC_parse = (char *)cur_parse;
10306 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10307 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10308 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10310 RExC_emit += STR_SZ(2);
10313 *STRING(ret)= (char)value;
10315 RExC_emit += STR_SZ(1);
10317 SvREFCNT_dec(listsv);
10322 UV* nonbitmap_array = invlist_array(nonbitmap);
10323 UV nonbitmap_len = invlist_len(nonbitmap);
10326 /* Here have the full list of items to match that aren't in the
10327 * bitmap. Convert to the structure that the rest of the code is
10328 * expecting. XXX That rest of the code should convert to this
10330 for (i = 0; i < nonbitmap_len; i++) {
10332 /* The next entry is the beginning of the range that is in the
10334 UV start = nonbitmap_array[i++];
10337 /* The next entry is the beginning of the next range, which isn't
10338 * in the class, so the end of the current range is one less than
10339 * that. But if there is no next range, it means that the range
10340 * begun by 'start' extends to infinity, which for this platform
10341 * ends at UV_MAX */
10342 if (i == nonbitmap_len) {
10346 end = nonbitmap_array[i] - 1;
10349 if (start == end) {
10350 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10353 /* The \t sets the whole range */
10354 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10359 invlist_destroy(nonbitmap);
10362 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10363 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10364 SvREFCNT_dec(listsv);
10365 SvREFCNT_dec(unicode_alternate);
10369 AV * const av = newAV();
10371 /* The 0th element stores the character class description
10372 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10373 * to initialize the appropriate swash (which gets stored in
10374 * the 1st element), and also useful for dumping the regnode.
10375 * The 2nd element stores the multicharacter foldings,
10376 * used later (regexec.c:S_reginclass()). */
10377 av_store(av, 0, listsv);
10378 av_store(av, 1, NULL);
10380 /* Store any computed multi-char folds only if we are allowing
10382 if (allow_full_fold) {
10383 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10384 if (unicode_alternate) { /* This node is variable length */
10389 av_store(av, 2, NULL);
10391 rv = newRV_noinc(MUTABLE_SV(av));
10392 n = add_data(pRExC_state, 1, "s");
10393 RExC_rxi->data->data[n] = (void*)rv;
10401 /* reg_skipcomment()
10403 Absorbs an /x style # comments from the input stream.
10404 Returns true if there is more text remaining in the stream.
10405 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10406 terminates the pattern without including a newline.
10408 Note its the callers responsibility to ensure that we are
10409 actually in /x mode
10414 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10418 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10420 while (RExC_parse < RExC_end)
10421 if (*RExC_parse++ == '\n') {
10426 /* we ran off the end of the pattern without ending
10427 the comment, so we have to add an \n when wrapping */
10428 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10436 Advances the parse position, and optionally absorbs
10437 "whitespace" from the inputstream.
10439 Without /x "whitespace" means (?#...) style comments only,
10440 with /x this means (?#...) and # comments and whitespace proper.
10442 Returns the RExC_parse point from BEFORE the scan occurs.
10444 This is the /x friendly way of saying RExC_parse++.
10448 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10450 char* const retval = RExC_parse++;
10452 PERL_ARGS_ASSERT_NEXTCHAR;
10455 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10456 RExC_parse[2] == '#') {
10457 while (*RExC_parse != ')') {
10458 if (RExC_parse == RExC_end)
10459 FAIL("Sequence (?#... not terminated");
10465 if (RExC_flags & RXf_PMf_EXTENDED) {
10466 if (isSPACE(*RExC_parse)) {
10470 else if (*RExC_parse == '#') {
10471 if ( reg_skipcomment( pRExC_state ) )
10480 - reg_node - emit a node
10482 STATIC regnode * /* Location. */
10483 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10486 register regnode *ptr;
10487 regnode * const ret = RExC_emit;
10488 GET_RE_DEBUG_FLAGS_DECL;
10490 PERL_ARGS_ASSERT_REG_NODE;
10493 SIZE_ALIGN(RExC_size);
10497 if (RExC_emit >= RExC_emit_bound)
10498 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10500 NODE_ALIGN_FILL(ret);
10502 FILL_ADVANCE_NODE(ptr, op);
10503 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
10504 #ifdef RE_TRACK_PATTERN_OFFSETS
10505 if (RExC_offsets) { /* MJD */
10506 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10507 "reg_node", __LINE__,
10509 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10510 ? "Overwriting end of array!\n" : "OK",
10511 (UV)(RExC_emit - RExC_emit_start),
10512 (UV)(RExC_parse - RExC_start),
10513 (UV)RExC_offsets[0]));
10514 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10522 - reganode - emit a node with an argument
10524 STATIC regnode * /* Location. */
10525 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10528 register regnode *ptr;
10529 regnode * const ret = RExC_emit;
10530 GET_RE_DEBUG_FLAGS_DECL;
10532 PERL_ARGS_ASSERT_REGANODE;
10535 SIZE_ALIGN(RExC_size);
10540 assert(2==regarglen[op]+1);
10542 Anything larger than this has to allocate the extra amount.
10543 If we changed this to be:
10545 RExC_size += (1 + regarglen[op]);
10547 then it wouldn't matter. Its not clear what side effect
10548 might come from that so its not done so far.
10553 if (RExC_emit >= RExC_emit_bound)
10554 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10556 NODE_ALIGN_FILL(ret);
10558 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10559 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
10560 #ifdef RE_TRACK_PATTERN_OFFSETS
10561 if (RExC_offsets) { /* MJD */
10562 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10566 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10567 "Overwriting end of array!\n" : "OK",
10568 (UV)(RExC_emit - RExC_emit_start),
10569 (UV)(RExC_parse - RExC_start),
10570 (UV)RExC_offsets[0]));
10571 Set_Cur_Node_Offset;
10579 - reguni - emit (if appropriate) a Unicode character
10582 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
10586 PERL_ARGS_ASSERT_REGUNI;
10588 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
10592 - reginsert - insert an operator in front of already-emitted operand
10594 * Means relocating the operand.
10597 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
10600 register regnode *src;
10601 register regnode *dst;
10602 register regnode *place;
10603 const int offset = regarglen[(U8)op];
10604 const int size = NODE_STEP_REGNODE + offset;
10605 GET_RE_DEBUG_FLAGS_DECL;
10607 PERL_ARGS_ASSERT_REGINSERT;
10608 PERL_UNUSED_ARG(depth);
10609 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
10610 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
10619 if (RExC_open_parens) {
10621 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
10622 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
10623 if ( RExC_open_parens[paren] >= opnd ) {
10624 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
10625 RExC_open_parens[paren] += size;
10627 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
10629 if ( RExC_close_parens[paren] >= opnd ) {
10630 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
10631 RExC_close_parens[paren] += size;
10633 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
10638 while (src > opnd) {
10639 StructCopy(--src, --dst, regnode);
10640 #ifdef RE_TRACK_PATTERN_OFFSETS
10641 if (RExC_offsets) { /* MJD 20010112 */
10642 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
10646 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
10647 ? "Overwriting end of array!\n" : "OK",
10648 (UV)(src - RExC_emit_start),
10649 (UV)(dst - RExC_emit_start),
10650 (UV)RExC_offsets[0]));
10651 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
10652 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
10658 place = opnd; /* Op node, where operand used to be. */
10659 #ifdef RE_TRACK_PATTERN_OFFSETS
10660 if (RExC_offsets) { /* MJD */
10661 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10665 (UV)(place - RExC_emit_start) > RExC_offsets[0]
10666 ? "Overwriting end of array!\n" : "OK",
10667 (UV)(place - RExC_emit_start),
10668 (UV)(RExC_parse - RExC_start),
10669 (UV)RExC_offsets[0]));
10670 Set_Node_Offset(place, RExC_parse);
10671 Set_Node_Length(place, 1);
10674 src = NEXTOPER(place);
10675 FILL_ADVANCE_NODE(place, op);
10676 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
10677 Zero(src, offset, regnode);
10681 - regtail - set the next-pointer at the end of a node chain of p to val.
10682 - SEE ALSO: regtail_study
10684 /* TODO: All three parms should be const */
10686 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10689 register regnode *scan;
10690 GET_RE_DEBUG_FLAGS_DECL;
10692 PERL_ARGS_ASSERT_REGTAIL;
10694 PERL_UNUSED_ARG(depth);
10700 /* Find last node. */
10703 regnode * const temp = regnext(scan);
10705 SV * const mysv=sv_newmortal();
10706 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
10707 regprop(RExC_rx, mysv, scan);
10708 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
10709 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
10710 (temp == NULL ? "->" : ""),
10711 (temp == NULL ? PL_reg_name[OP(val)] : "")
10719 if (reg_off_by_arg[OP(scan)]) {
10720 ARG_SET(scan, val - scan);
10723 NEXT_OFF(scan) = val - scan;
10729 - regtail_study - set the next-pointer at the end of a node chain of p to val.
10730 - Look for optimizable sequences at the same time.
10731 - currently only looks for EXACT chains.
10733 This is experimental code. The idea is to use this routine to perform
10734 in place optimizations on branches and groups as they are constructed,
10735 with the long term intention of removing optimization from study_chunk so
10736 that it is purely analytical.
10738 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
10739 to control which is which.
10742 /* TODO: All four parms should be const */
10745 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10748 register regnode *scan;
10750 #ifdef EXPERIMENTAL_INPLACESCAN
10753 GET_RE_DEBUG_FLAGS_DECL;
10755 PERL_ARGS_ASSERT_REGTAIL_STUDY;
10761 /* Find last node. */
10765 regnode * const temp = regnext(scan);
10766 #ifdef EXPERIMENTAL_INPLACESCAN
10767 if (PL_regkind[OP(scan)] == EXACT)
10768 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
10772 switch (OP(scan)) {
10778 if( exact == PSEUDO )
10780 else if ( exact != OP(scan) )
10789 SV * const mysv=sv_newmortal();
10790 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
10791 regprop(RExC_rx, mysv, scan);
10792 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
10793 SvPV_nolen_const(mysv),
10794 REG_NODE_NUM(scan),
10795 PL_reg_name[exact]);
10802 SV * const mysv_val=sv_newmortal();
10803 DEBUG_PARSE_MSG("");
10804 regprop(RExC_rx, mysv_val, val);
10805 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
10806 SvPV_nolen_const(mysv_val),
10807 (IV)REG_NODE_NUM(val),
10811 if (reg_off_by_arg[OP(scan)]) {
10812 ARG_SET(scan, val - scan);
10815 NEXT_OFF(scan) = val - scan;
10823 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
10827 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
10833 for (bit=0; bit<32; bit++) {
10834 if (flags & (1<<bit)) {
10835 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
10838 if (!set++ && lead)
10839 PerlIO_printf(Perl_debug_log, "%s",lead);
10840 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
10843 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
10844 if (!set++ && lead) {
10845 PerlIO_printf(Perl_debug_log, "%s",lead);
10848 case REGEX_UNICODE_CHARSET:
10849 PerlIO_printf(Perl_debug_log, "UNICODE");
10851 case REGEX_LOCALE_CHARSET:
10852 PerlIO_printf(Perl_debug_log, "LOCALE");
10854 case REGEX_ASCII_RESTRICTED_CHARSET:
10855 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
10857 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10858 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
10861 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
10867 PerlIO_printf(Perl_debug_log, "\n");
10869 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
10875 Perl_regdump(pTHX_ const regexp *r)
10879 SV * const sv = sv_newmortal();
10880 SV *dsv= sv_newmortal();
10881 RXi_GET_DECL(r,ri);
10882 GET_RE_DEBUG_FLAGS_DECL;
10884 PERL_ARGS_ASSERT_REGDUMP;
10886 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
10888 /* Header fields of interest. */
10889 if (r->anchored_substr) {
10890 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
10891 RE_SV_DUMPLEN(r->anchored_substr), 30);
10892 PerlIO_printf(Perl_debug_log,
10893 "anchored %s%s at %"IVdf" ",
10894 s, RE_SV_TAIL(r->anchored_substr),
10895 (IV)r->anchored_offset);
10896 } else if (r->anchored_utf8) {
10897 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
10898 RE_SV_DUMPLEN(r->anchored_utf8), 30);
10899 PerlIO_printf(Perl_debug_log,
10900 "anchored utf8 %s%s at %"IVdf" ",
10901 s, RE_SV_TAIL(r->anchored_utf8),
10902 (IV)r->anchored_offset);
10904 if (r->float_substr) {
10905 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
10906 RE_SV_DUMPLEN(r->float_substr), 30);
10907 PerlIO_printf(Perl_debug_log,
10908 "floating %s%s at %"IVdf"..%"UVuf" ",
10909 s, RE_SV_TAIL(r->float_substr),
10910 (IV)r->float_min_offset, (UV)r->float_max_offset);
10911 } else if (r->float_utf8) {
10912 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
10913 RE_SV_DUMPLEN(r->float_utf8), 30);
10914 PerlIO_printf(Perl_debug_log,
10915 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
10916 s, RE_SV_TAIL(r->float_utf8),
10917 (IV)r->float_min_offset, (UV)r->float_max_offset);
10919 if (r->check_substr || r->check_utf8)
10920 PerlIO_printf(Perl_debug_log,
10922 (r->check_substr == r->float_substr
10923 && r->check_utf8 == r->float_utf8
10924 ? "(checking floating" : "(checking anchored"));
10925 if (r->extflags & RXf_NOSCAN)
10926 PerlIO_printf(Perl_debug_log, " noscan");
10927 if (r->extflags & RXf_CHECK_ALL)
10928 PerlIO_printf(Perl_debug_log, " isall");
10929 if (r->check_substr || r->check_utf8)
10930 PerlIO_printf(Perl_debug_log, ") ");
10932 if (ri->regstclass) {
10933 regprop(r, sv, ri->regstclass);
10934 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
10936 if (r->extflags & RXf_ANCH) {
10937 PerlIO_printf(Perl_debug_log, "anchored");
10938 if (r->extflags & RXf_ANCH_BOL)
10939 PerlIO_printf(Perl_debug_log, "(BOL)");
10940 if (r->extflags & RXf_ANCH_MBOL)
10941 PerlIO_printf(Perl_debug_log, "(MBOL)");
10942 if (r->extflags & RXf_ANCH_SBOL)
10943 PerlIO_printf(Perl_debug_log, "(SBOL)");
10944 if (r->extflags & RXf_ANCH_GPOS)
10945 PerlIO_printf(Perl_debug_log, "(GPOS)");
10946 PerlIO_putc(Perl_debug_log, ' ');
10948 if (r->extflags & RXf_GPOS_SEEN)
10949 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
10950 if (r->intflags & PREGf_SKIP)
10951 PerlIO_printf(Perl_debug_log, "plus ");
10952 if (r->intflags & PREGf_IMPLICIT)
10953 PerlIO_printf(Perl_debug_log, "implicit ");
10954 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
10955 if (r->extflags & RXf_EVAL_SEEN)
10956 PerlIO_printf(Perl_debug_log, "with eval ");
10957 PerlIO_printf(Perl_debug_log, "\n");
10958 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
10960 PERL_ARGS_ASSERT_REGDUMP;
10961 PERL_UNUSED_CONTEXT;
10962 PERL_UNUSED_ARG(r);
10963 #endif /* DEBUGGING */
10967 - regprop - printable representation of opcode
10969 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
10972 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
10973 if (flags & ANYOF_INVERT) \
10974 /*make sure the invert info is in each */ \
10975 sv_catpvs(sv, "^"); \
10981 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
10986 RXi_GET_DECL(prog,progi);
10987 GET_RE_DEBUG_FLAGS_DECL;
10989 PERL_ARGS_ASSERT_REGPROP;
10993 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
10994 /* It would be nice to FAIL() here, but this may be called from
10995 regexec.c, and it would be hard to supply pRExC_state. */
10996 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
10997 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
10999 k = PL_regkind[OP(o)];
11002 sv_catpvs(sv, " ");
11003 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11004 * is a crude hack but it may be the best for now since
11005 * we have no flag "this EXACTish node was UTF-8"
11007 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11008 PERL_PV_ESCAPE_UNI_DETECT |
11009 PERL_PV_ESCAPE_NONASCII |
11010 PERL_PV_PRETTY_ELLIPSES |
11011 PERL_PV_PRETTY_LTGT |
11012 PERL_PV_PRETTY_NOCLEAR
11014 } else if (k == TRIE) {
11015 /* print the details of the trie in dumpuntil instead, as
11016 * progi->data isn't available here */
11017 const char op = OP(o);
11018 const U32 n = ARG(o);
11019 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11020 (reg_ac_data *)progi->data->data[n] :
11022 const reg_trie_data * const trie
11023 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11025 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11026 DEBUG_TRIE_COMPILE_r(
11027 Perl_sv_catpvf(aTHX_ sv,
11028 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11029 (UV)trie->startstate,
11030 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11031 (UV)trie->wordcount,
11034 (UV)TRIE_CHARCOUNT(trie),
11035 (UV)trie->uniquecharcount
11038 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11040 int rangestart = -1;
11041 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11042 sv_catpvs(sv, "[");
11043 for (i = 0; i <= 256; i++) {
11044 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11045 if (rangestart == -1)
11047 } else if (rangestart != -1) {
11048 if (i <= rangestart + 3)
11049 for (; rangestart < i; rangestart++)
11050 put_byte(sv, rangestart);
11052 put_byte(sv, rangestart);
11053 sv_catpvs(sv, "-");
11054 put_byte(sv, i - 1);
11059 sv_catpvs(sv, "]");
11062 } else if (k == CURLY) {
11063 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11064 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11065 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11067 else if (k == WHILEM && o->flags) /* Ordinal/of */
11068 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11069 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11070 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11071 if ( RXp_PAREN_NAMES(prog) ) {
11072 if ( k != REF || (OP(o) < NREF)) {
11073 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11074 SV **name= av_fetch(list, ARG(o), 0 );
11076 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11079 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11080 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11081 I32 *nums=(I32*)SvPVX(sv_dat);
11082 SV **name= av_fetch(list, nums[0], 0 );
11085 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11086 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11087 (n ? "," : ""), (IV)nums[n]);
11089 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11093 } else if (k == GOSUB)
11094 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11095 else if (k == VERB) {
11097 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11098 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11099 } else if (k == LOGICAL)
11100 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11101 else if (k == FOLDCHAR)
11102 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11103 else if (k == ANYOF) {
11104 int i, rangestart = -1;
11105 const U8 flags = ANYOF_FLAGS(o);
11108 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11109 static const char * const anyofs[] = {
11142 if (flags & ANYOF_LOCALE)
11143 sv_catpvs(sv, "{loc}");
11144 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11145 sv_catpvs(sv, "{i}");
11146 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11147 if (flags & ANYOF_INVERT)
11148 sv_catpvs(sv, "^");
11150 /* output what the standard cp 0-255 bitmap matches */
11151 for (i = 0; i <= 256; i++) {
11152 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11153 if (rangestart == -1)
11155 } else if (rangestart != -1) {
11156 if (i <= rangestart + 3)
11157 for (; rangestart < i; rangestart++)
11158 put_byte(sv, rangestart);
11160 put_byte(sv, rangestart);
11161 sv_catpvs(sv, "-");
11162 put_byte(sv, i - 1);
11169 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11170 /* output any special charclass tests (used entirely under use locale) */
11171 if (ANYOF_CLASS_TEST_ANY_SET(o))
11172 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11173 if (ANYOF_CLASS_TEST(o,i)) {
11174 sv_catpv(sv, anyofs[i]);
11178 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11180 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11181 sv_catpvs(sv, "{non-utf8-latin1-all}");
11184 /* output information about the unicode matching */
11185 if (flags & ANYOF_UNICODE_ALL)
11186 sv_catpvs(sv, "{unicode_all}");
11187 else if (ANYOF_NONBITMAP(o))
11188 sv_catpvs(sv, "{unicode}");
11189 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11190 sv_catpvs(sv, "{outside bitmap}");
11192 if (ANYOF_NONBITMAP(o)) {
11194 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11198 U8 s[UTF8_MAXBYTES_CASE+1];
11200 for (i = 0; i <= 256; i++) { /* just the first 256 */
11201 uvchr_to_utf8(s, i);
11203 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11204 if (rangestart == -1)
11206 } else if (rangestart != -1) {
11207 if (i <= rangestart + 3)
11208 for (; rangestart < i; rangestart++) {
11209 const U8 * const e = uvchr_to_utf8(s,rangestart);
11211 for(p = s; p < e; p++)
11215 const U8 *e = uvchr_to_utf8(s,rangestart);
11217 for (p = s; p < e; p++)
11219 sv_catpvs(sv, "-");
11220 e = uvchr_to_utf8(s, i-1);
11221 for (p = s; p < e; p++)
11228 sv_catpvs(sv, "..."); /* et cetera */
11232 char *s = savesvpv(lv);
11233 char * const origs = s;
11235 while (*s && *s != '\n')
11239 const char * const t = ++s;
11257 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11259 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11260 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11262 PERL_UNUSED_CONTEXT;
11263 PERL_UNUSED_ARG(sv);
11264 PERL_UNUSED_ARG(o);
11265 PERL_UNUSED_ARG(prog);
11266 #endif /* DEBUGGING */
11270 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11271 { /* Assume that RE_INTUIT is set */
11273 struct regexp *const prog = (struct regexp *)SvANY(r);
11274 GET_RE_DEBUG_FLAGS_DECL;
11276 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11277 PERL_UNUSED_CONTEXT;
11281 const char * const s = SvPV_nolen_const(prog->check_substr
11282 ? prog->check_substr : prog->check_utf8);
11284 if (!PL_colorset) reginitcolors();
11285 PerlIO_printf(Perl_debug_log,
11286 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11288 prog->check_substr ? "" : "utf8 ",
11289 PL_colors[5],PL_colors[0],
11292 (strlen(s) > 60 ? "..." : ""));
11295 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11301 handles refcounting and freeing the perl core regexp structure. When
11302 it is necessary to actually free the structure the first thing it
11303 does is call the 'free' method of the regexp_engine associated to
11304 the regexp, allowing the handling of the void *pprivate; member
11305 first. (This routine is not overridable by extensions, which is why
11306 the extensions free is called first.)
11308 See regdupe and regdupe_internal if you change anything here.
11310 #ifndef PERL_IN_XSUB_RE
11312 Perl_pregfree(pTHX_ REGEXP *r)
11318 Perl_pregfree2(pTHX_ REGEXP *rx)
11321 struct regexp *const r = (struct regexp *)SvANY(rx);
11322 GET_RE_DEBUG_FLAGS_DECL;
11324 PERL_ARGS_ASSERT_PREGFREE2;
11326 if (r->mother_re) {
11327 ReREFCNT_dec(r->mother_re);
11329 CALLREGFREE_PVT(rx); /* free the private data */
11330 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11333 SvREFCNT_dec(r->anchored_substr);
11334 SvREFCNT_dec(r->anchored_utf8);
11335 SvREFCNT_dec(r->float_substr);
11336 SvREFCNT_dec(r->float_utf8);
11337 Safefree(r->substrs);
11339 RX_MATCH_COPY_FREE(rx);
11340 #ifdef PERL_OLD_COPY_ON_WRITE
11341 SvREFCNT_dec(r->saved_copy);
11348 This is a hacky workaround to the structural issue of match results
11349 being stored in the regexp structure which is in turn stored in
11350 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11351 could be PL_curpm in multiple contexts, and could require multiple
11352 result sets being associated with the pattern simultaneously, such
11353 as when doing a recursive match with (??{$qr})
11355 The solution is to make a lightweight copy of the regexp structure
11356 when a qr// is returned from the code executed by (??{$qr}) this
11357 lightweight copy doesn't actually own any of its data except for
11358 the starp/end and the actual regexp structure itself.
11364 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11366 struct regexp *ret;
11367 struct regexp *const r = (struct regexp *)SvANY(rx);
11368 register const I32 npar = r->nparens+1;
11370 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11373 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11374 ret = (struct regexp *)SvANY(ret_x);
11376 (void)ReREFCNT_inc(rx);
11377 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11378 by pointing directly at the buffer, but flagging that the allocated
11379 space in the copy is zero. As we've just done a struct copy, it's now
11380 a case of zero-ing that, rather than copying the current length. */
11381 SvPV_set(ret_x, RX_WRAPPED(rx));
11382 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11383 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11384 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11385 SvLEN_set(ret_x, 0);
11386 SvSTASH_set(ret_x, NULL);
11387 SvMAGIC_set(ret_x, NULL);
11388 Newx(ret->offs, npar, regexp_paren_pair);
11389 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11391 Newx(ret->substrs, 1, struct reg_substr_data);
11392 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11394 SvREFCNT_inc_void(ret->anchored_substr);
11395 SvREFCNT_inc_void(ret->anchored_utf8);
11396 SvREFCNT_inc_void(ret->float_substr);
11397 SvREFCNT_inc_void(ret->float_utf8);
11399 /* check_substr and check_utf8, if non-NULL, point to either their
11400 anchored or float namesakes, and don't hold a second reference. */
11402 RX_MATCH_COPIED_off(ret_x);
11403 #ifdef PERL_OLD_COPY_ON_WRITE
11404 ret->saved_copy = NULL;
11406 ret->mother_re = rx;
11412 /* regfree_internal()
11414 Free the private data in a regexp. This is overloadable by
11415 extensions. Perl takes care of the regexp structure in pregfree(),
11416 this covers the *pprivate pointer which technically perl doesn't
11417 know about, however of course we have to handle the
11418 regexp_internal structure when no extension is in use.
11420 Note this is called before freeing anything in the regexp
11425 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11428 struct regexp *const r = (struct regexp *)SvANY(rx);
11429 RXi_GET_DECL(r,ri);
11430 GET_RE_DEBUG_FLAGS_DECL;
11432 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11438 SV *dsv= sv_newmortal();
11439 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11440 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11441 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11442 PL_colors[4],PL_colors[5],s);
11445 #ifdef RE_TRACK_PATTERN_OFFSETS
11447 Safefree(ri->u.offsets); /* 20010421 MJD */
11450 int n = ri->data->count;
11451 PAD* new_comppad = NULL;
11456 /* If you add a ->what type here, update the comment in regcomp.h */
11457 switch (ri->data->what[n]) {
11462 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11465 Safefree(ri->data->data[n]);
11468 new_comppad = MUTABLE_AV(ri->data->data[n]);
11471 if (new_comppad == NULL)
11472 Perl_croak(aTHX_ "panic: pregfree comppad");
11473 PAD_SAVE_LOCAL(old_comppad,
11474 /* Watch out for global destruction's random ordering. */
11475 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11478 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11481 op_free((OP_4tree*)ri->data->data[n]);
11483 PAD_RESTORE_LOCAL(old_comppad);
11484 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11485 new_comppad = NULL;
11490 { /* Aho Corasick add-on structure for a trie node.
11491 Used in stclass optimization only */
11493 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11495 refcount = --aho->refcount;
11498 PerlMemShared_free(aho->states);
11499 PerlMemShared_free(aho->fail);
11500 /* do this last!!!! */
11501 PerlMemShared_free(ri->data->data[n]);
11502 PerlMemShared_free(ri->regstclass);
11508 /* trie structure. */
11510 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11512 refcount = --trie->refcount;
11515 PerlMemShared_free(trie->charmap);
11516 PerlMemShared_free(trie->states);
11517 PerlMemShared_free(trie->trans);
11519 PerlMemShared_free(trie->bitmap);
11521 PerlMemShared_free(trie->jump);
11522 PerlMemShared_free(trie->wordinfo);
11523 /* do this last!!!! */
11524 PerlMemShared_free(ri->data->data[n]);
11529 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11532 Safefree(ri->data->what);
11533 Safefree(ri->data);
11539 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11540 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11541 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11544 re_dup - duplicate a regexp.
11546 This routine is expected to clone a given regexp structure. It is only
11547 compiled under USE_ITHREADS.
11549 After all of the core data stored in struct regexp is duplicated
11550 the regexp_engine.dupe method is used to copy any private data
11551 stored in the *pprivate pointer. This allows extensions to handle
11552 any duplication it needs to do.
11554 See pregfree() and regfree_internal() if you change anything here.
11556 #if defined(USE_ITHREADS)
11557 #ifndef PERL_IN_XSUB_RE
11559 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11563 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11564 struct regexp *ret = (struct regexp *)SvANY(dstr);
11566 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11568 npar = r->nparens+1;
11569 Newx(ret->offs, npar, regexp_paren_pair);
11570 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11572 /* no need to copy these */
11573 Newx(ret->swap, npar, regexp_paren_pair);
11576 if (ret->substrs) {
11577 /* Do it this way to avoid reading from *r after the StructCopy().
11578 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11579 cache, it doesn't matter. */
11580 const bool anchored = r->check_substr
11581 ? r->check_substr == r->anchored_substr
11582 : r->check_utf8 == r->anchored_utf8;
11583 Newx(ret->substrs, 1, struct reg_substr_data);
11584 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11586 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
11587 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
11588 ret->float_substr = sv_dup_inc(ret->float_substr, param);
11589 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
11591 /* check_substr and check_utf8, if non-NULL, point to either their
11592 anchored or float namesakes, and don't hold a second reference. */
11594 if (ret->check_substr) {
11596 assert(r->check_utf8 == r->anchored_utf8);
11597 ret->check_substr = ret->anchored_substr;
11598 ret->check_utf8 = ret->anchored_utf8;
11600 assert(r->check_substr == r->float_substr);
11601 assert(r->check_utf8 == r->float_utf8);
11602 ret->check_substr = ret->float_substr;
11603 ret->check_utf8 = ret->float_utf8;
11605 } else if (ret->check_utf8) {
11607 ret->check_utf8 = ret->anchored_utf8;
11609 ret->check_utf8 = ret->float_utf8;
11614 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
11617 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
11619 if (RX_MATCH_COPIED(dstr))
11620 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
11622 ret->subbeg = NULL;
11623 #ifdef PERL_OLD_COPY_ON_WRITE
11624 ret->saved_copy = NULL;
11627 if (ret->mother_re) {
11628 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
11629 /* Our storage points directly to our mother regexp, but that's
11630 1: a buffer in a different thread
11631 2: something we no longer hold a reference on
11632 so we need to copy it locally. */
11633 /* Note we need to sue SvCUR() on our mother_re, because it, in
11634 turn, may well be pointing to its own mother_re. */
11635 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
11636 SvCUR(ret->mother_re)+1));
11637 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
11639 ret->mother_re = NULL;
11643 #endif /* PERL_IN_XSUB_RE */
11648 This is the internal complement to regdupe() which is used to copy
11649 the structure pointed to by the *pprivate pointer in the regexp.
11650 This is the core version of the extension overridable cloning hook.
11651 The regexp structure being duplicated will be copied by perl prior
11652 to this and will be provided as the regexp *r argument, however
11653 with the /old/ structures pprivate pointer value. Thus this routine
11654 may override any copying normally done by perl.
11656 It returns a pointer to the new regexp_internal structure.
11660 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
11663 struct regexp *const r = (struct regexp *)SvANY(rx);
11664 regexp_internal *reti;
11666 RXi_GET_DECL(r,ri);
11668 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
11670 npar = r->nparens+1;
11673 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
11674 Copy(ri->program, reti->program, len+1, regnode);
11677 reti->regstclass = NULL;
11680 struct reg_data *d;
11681 const int count = ri->data->count;
11684 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
11685 char, struct reg_data);
11686 Newx(d->what, count, U8);
11689 for (i = 0; i < count; i++) {
11690 d->what[i] = ri->data->what[i];
11691 switch (d->what[i]) {
11692 /* legal options are one of: sSfpontTua
11693 see also regcomp.h and pregfree() */
11694 case 'a': /* actually an AV, but the dup function is identical. */
11697 case 'p': /* actually an AV, but the dup function is identical. */
11698 case 'u': /* actually an HV, but the dup function is identical. */
11699 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
11702 /* This is cheating. */
11703 Newx(d->data[i], 1, struct regnode_charclass_class);
11704 StructCopy(ri->data->data[i], d->data[i],
11705 struct regnode_charclass_class);
11706 reti->regstclass = (regnode*)d->data[i];
11709 /* Compiled op trees are readonly and in shared memory,
11710 and can thus be shared without duplication. */
11712 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
11716 /* Trie stclasses are readonly and can thus be shared
11717 * without duplication. We free the stclass in pregfree
11718 * when the corresponding reg_ac_data struct is freed.
11720 reti->regstclass= ri->regstclass;
11724 ((reg_trie_data*)ri->data->data[i])->refcount++;
11728 d->data[i] = ri->data->data[i];
11731 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
11740 reti->name_list_idx = ri->name_list_idx;
11742 #ifdef RE_TRACK_PATTERN_OFFSETS
11743 if (ri->u.offsets) {
11744 Newx(reti->u.offsets, 2*len+1, U32);
11745 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
11748 SetProgLen(reti,len);
11751 return (void*)reti;
11754 #endif /* USE_ITHREADS */
11756 #ifndef PERL_IN_XSUB_RE
11759 - regnext - dig the "next" pointer out of a node
11762 Perl_regnext(pTHX_ register regnode *p)
11765 register I32 offset;
11770 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
11771 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
11774 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
11783 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
11786 STRLEN l1 = strlen(pat1);
11787 STRLEN l2 = strlen(pat2);
11790 const char *message;
11792 PERL_ARGS_ASSERT_RE_CROAK2;
11798 Copy(pat1, buf, l1 , char);
11799 Copy(pat2, buf + l1, l2 , char);
11800 buf[l1 + l2] = '\n';
11801 buf[l1 + l2 + 1] = '\0';
11803 /* ANSI variant takes additional second argument */
11804 va_start(args, pat2);
11808 msv = vmess(buf, &args);
11810 message = SvPV_const(msv,l1);
11813 Copy(message, buf, l1 , char);
11814 buf[l1-1] = '\0'; /* Overwrite \n */
11815 Perl_croak(aTHX_ "%s", buf);
11818 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
11820 #ifndef PERL_IN_XSUB_RE
11822 Perl_save_re_context(pTHX)
11826 struct re_save_state *state;
11828 SAVEVPTR(PL_curcop);
11829 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
11831 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
11832 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
11833 SSPUSHUV(SAVEt_RE_STATE);
11835 Copy(&PL_reg_state, state, 1, struct re_save_state);
11837 PL_reg_start_tmp = 0;
11838 PL_reg_start_tmpl = 0;
11839 PL_reg_oldsaved = NULL;
11840 PL_reg_oldsavedlen = 0;
11841 PL_reg_maxiter = 0;
11842 PL_reg_leftiter = 0;
11843 PL_reg_poscache = NULL;
11844 PL_reg_poscache_size = 0;
11845 #ifdef PERL_OLD_COPY_ON_WRITE
11849 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
11851 const REGEXP * const rx = PM_GETRE(PL_curpm);
11854 for (i = 1; i <= RX_NPARENS(rx); i++) {
11855 char digits[TYPE_CHARS(long)];
11856 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
11857 GV *const *const gvp
11858 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
11861 GV * const gv = *gvp;
11862 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
11872 clear_re(pTHX_ void *r)
11875 ReREFCNT_dec((REGEXP *)r);
11881 S_put_byte(pTHX_ SV *sv, int c)
11883 PERL_ARGS_ASSERT_PUT_BYTE;
11885 /* Our definition of isPRINT() ignores locales, so only bytes that are
11886 not part of UTF-8 are considered printable. I assume that the same
11887 holds for UTF-EBCDIC.
11888 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
11889 which Wikipedia says:
11891 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
11892 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
11893 identical, to the ASCII delete (DEL) or rubout control character.
11894 ) So the old condition can be simplified to !isPRINT(c) */
11897 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
11900 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
11904 const char string = c;
11905 if (c == '-' || c == ']' || c == '\\' || c == '^')
11906 sv_catpvs(sv, "\\");
11907 sv_catpvn(sv, &string, 1);
11912 #define CLEAR_OPTSTART \
11913 if (optstart) STMT_START { \
11914 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
11918 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
11920 STATIC const regnode *
11921 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
11922 const regnode *last, const regnode *plast,
11923 SV* sv, I32 indent, U32 depth)
11926 register U8 op = PSEUDO; /* Arbitrary non-END op. */
11927 register const regnode *next;
11928 const regnode *optstart= NULL;
11930 RXi_GET_DECL(r,ri);
11931 GET_RE_DEBUG_FLAGS_DECL;
11933 PERL_ARGS_ASSERT_DUMPUNTIL;
11935 #ifdef DEBUG_DUMPUNTIL
11936 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
11937 last ? last-start : 0,plast ? plast-start : 0);
11940 if (plast && plast < last)
11943 while (PL_regkind[op] != END && (!last || node < last)) {
11944 /* While that wasn't END last time... */
11947 if (op == CLOSE || op == WHILEM)
11949 next = regnext((regnode *)node);
11952 if (OP(node) == OPTIMIZED) {
11953 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
11960 regprop(r, sv, node);
11961 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
11962 (int)(2*indent + 1), "", SvPVX_const(sv));
11964 if (OP(node) != OPTIMIZED) {
11965 if (next == NULL) /* Next ptr. */
11966 PerlIO_printf(Perl_debug_log, " (0)");
11967 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
11968 PerlIO_printf(Perl_debug_log, " (FAIL)");
11970 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
11971 (void)PerlIO_putc(Perl_debug_log, '\n');
11975 if (PL_regkind[(U8)op] == BRANCHJ) {
11978 register const regnode *nnode = (OP(next) == LONGJMP
11979 ? regnext((regnode *)next)
11981 if (last && nnode > last)
11983 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
11986 else if (PL_regkind[(U8)op] == BRANCH) {
11988 DUMPUNTIL(NEXTOPER(node), next);
11990 else if ( PL_regkind[(U8)op] == TRIE ) {
11991 const regnode *this_trie = node;
11992 const char op = OP(node);
11993 const U32 n = ARG(node);
11994 const reg_ac_data * const ac = op>=AHOCORASICK ?
11995 (reg_ac_data *)ri->data->data[n] :
11997 const reg_trie_data * const trie =
11998 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12000 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12002 const regnode *nextbranch= NULL;
12005 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12006 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12008 PerlIO_printf(Perl_debug_log, "%*s%s ",
12009 (int)(2*(indent+3)), "",
12010 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12011 PL_colors[0], PL_colors[1],
12012 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12013 PERL_PV_PRETTY_ELLIPSES |
12014 PERL_PV_PRETTY_LTGT
12019 U16 dist= trie->jump[word_idx+1];
12020 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12021 (UV)((dist ? this_trie + dist : next) - start));
12024 nextbranch= this_trie + trie->jump[0];
12025 DUMPUNTIL(this_trie + dist, nextbranch);
12027 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12028 nextbranch= regnext((regnode *)nextbranch);
12030 PerlIO_printf(Perl_debug_log, "\n");
12033 if (last && next > last)
12038 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12039 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12040 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12042 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12044 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12046 else if ( op == PLUS || op == STAR) {
12047 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12049 else if (PL_regkind[(U8)op] == ANYOF) {
12050 /* arglen 1 + class block */
12051 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12052 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12053 node = NEXTOPER(node);
12055 else if (PL_regkind[(U8)op] == EXACT) {
12056 /* Literal string, where present. */
12057 node += NODE_SZ_STR(node) - 1;
12058 node = NEXTOPER(node);
12061 node = NEXTOPER(node);
12062 node += regarglen[(U8)op];
12064 if (op == CURLYX || op == OPEN)
12068 #ifdef DEBUG_DUMPUNTIL
12069 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12074 #endif /* DEBUGGING */
12078 * c-indentation-style: bsd
12079 * c-basic-offset: 4
12080 * indent-tabs-mode: t
12083 * ex: set ts=8 sts=4 sw=4 noet: