5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
89 #ifndef PERL_IN_XSUB_RE
90 # include "charclass_invlists.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
100 # if defined(BUGGY_MSC6)
101 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
102 # pragma optimize("a",off)
103 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
104 # pragma optimize("w",on )
105 # endif /* BUGGY_MSC6 */
109 #define STATIC static
113 typedef struct RExC_state_t {
114 U32 flags; /* RXf_* are we folding, multilining? */
115 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
116 char *precomp; /* uncompiled string. */
117 REGEXP *rx_sv; /* The SV that is the regexp. */
118 regexp *rx; /* perl core regexp structure */
119 regexp_internal *rxi; /* internal data for regexp object pprivate field */
120 char *start; /* Start of input for compile */
121 char *end; /* End of input for compile */
122 char *parse; /* Input-scan pointer. */
123 I32 whilem_seen; /* number of WHILEM in this expr */
124 regnode *emit_start; /* Start of emitted-code area */
125 regnode *emit_bound; /* First regnode outside of the allocated space */
126 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
127 I32 naughty; /* How bad is this pattern? */
128 I32 sawback; /* Did we see \1, ...? */
130 I32 size; /* Code size. */
131 I32 npar; /* Capture buffer count, (OPEN). */
132 I32 cpar; /* Capture buffer count, (CLOSE). */
133 I32 nestroot; /* root parens we are in - used by accept */
136 regnode **open_parens; /* pointers to open parens */
137 regnode **close_parens; /* pointers to close parens */
138 regnode *opend; /* END node in program */
139 I32 utf8; /* whether the pattern is utf8 or not */
140 I32 orig_utf8; /* whether the pattern was originally in utf8 */
141 /* XXX use this for future optimisation of case
142 * where pattern must be upgraded to utf8. */
143 I32 uni_semantics; /* If a d charset modifier should use unicode
144 rules, even if the pattern is not in
146 HV *paren_names; /* Paren names */
148 regnode **recurse; /* Recurse regops */
149 I32 recurse_count; /* Number of recurse regops */
152 I32 override_recoding;
153 struct reg_code_block *code_blocks; /* positions of literal (?{})
155 int num_code_blocks; /* size of code_blocks[] */
156 int code_index; /* next code_blocks[] slot */
158 char *starttry; /* -Dr: where regtry was called. */
159 #define RExC_starttry (pRExC_state->starttry)
161 SV *runtime_code_qr; /* qr with the runtime code blocks */
163 const char *lastparse;
165 AV *paren_name_list; /* idx -> name */
166 #define RExC_lastparse (pRExC_state->lastparse)
167 #define RExC_lastnum (pRExC_state->lastnum)
168 #define RExC_paren_name_list (pRExC_state->paren_name_list)
172 #define RExC_flags (pRExC_state->flags)
173 #define RExC_pm_flags (pRExC_state->pm_flags)
174 #define RExC_precomp (pRExC_state->precomp)
175 #define RExC_rx_sv (pRExC_state->rx_sv)
176 #define RExC_rx (pRExC_state->rx)
177 #define RExC_rxi (pRExC_state->rxi)
178 #define RExC_start (pRExC_state->start)
179 #define RExC_end (pRExC_state->end)
180 #define RExC_parse (pRExC_state->parse)
181 #define RExC_whilem_seen (pRExC_state->whilem_seen)
182 #ifdef RE_TRACK_PATTERN_OFFSETS
183 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
185 #define RExC_emit (pRExC_state->emit)
186 #define RExC_emit_start (pRExC_state->emit_start)
187 #define RExC_emit_bound (pRExC_state->emit_bound)
188 #define RExC_naughty (pRExC_state->naughty)
189 #define RExC_sawback (pRExC_state->sawback)
190 #define RExC_seen (pRExC_state->seen)
191 #define RExC_size (pRExC_state->size)
192 #define RExC_npar (pRExC_state->npar)
193 #define RExC_nestroot (pRExC_state->nestroot)
194 #define RExC_extralen (pRExC_state->extralen)
195 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
196 #define RExC_utf8 (pRExC_state->utf8)
197 #define RExC_uni_semantics (pRExC_state->uni_semantics)
198 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
199 #define RExC_open_parens (pRExC_state->open_parens)
200 #define RExC_close_parens (pRExC_state->close_parens)
201 #define RExC_opend (pRExC_state->opend)
202 #define RExC_paren_names (pRExC_state->paren_names)
203 #define RExC_recurse (pRExC_state->recurse)
204 #define RExC_recurse_count (pRExC_state->recurse_count)
205 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
206 #define RExC_contains_locale (pRExC_state->contains_locale)
207 #define RExC_override_recoding (pRExC_state->override_recoding)
210 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
211 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
212 ((*s) == '{' && regcurly(s)))
215 #undef SPSTART /* dratted cpp namespace... */
218 * Flags to be passed up and down.
220 #define WORST 0 /* Worst case. */
221 #define HASWIDTH 0x01 /* Known to match non-null strings. */
223 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
224 * character, and if utf8, must be invariant. Note that this is not the same
225 * thing as REGNODE_SIMPLE */
227 #define SPSTART 0x04 /* Starts with * or +. */
228 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
229 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
231 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
233 /* whether trie related optimizations are enabled */
234 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
235 #define TRIE_STUDY_OPT
236 #define FULL_TRIE_STUDY
242 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
243 #define PBITVAL(paren) (1 << ((paren) & 7))
244 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
245 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
246 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
248 /* If not already in utf8, do a longjmp back to the beginning */
249 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
250 #define REQUIRE_UTF8 STMT_START { \
251 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
254 /* About scan_data_t.
256 During optimisation we recurse through the regexp program performing
257 various inplace (keyhole style) optimisations. In addition study_chunk
258 and scan_commit populate this data structure with information about
259 what strings MUST appear in the pattern. We look for the longest
260 string that must appear at a fixed location, and we look for the
261 longest string that may appear at a floating location. So for instance
266 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
267 strings (because they follow a .* construct). study_chunk will identify
268 both FOO and BAR as being the longest fixed and floating strings respectively.
270 The strings can be composites, for instance
274 will result in a composite fixed substring 'foo'.
276 For each string some basic information is maintained:
278 - offset or min_offset
279 This is the position the string must appear at, or not before.
280 It also implicitly (when combined with minlenp) tells us how many
281 characters must match before the string we are searching for.
282 Likewise when combined with minlenp and the length of the string it
283 tells us how many characters must appear after the string we have
287 Only used for floating strings. This is the rightmost point that
288 the string can appear at. If set to I32 max it indicates that the
289 string can occur infinitely far to the right.
292 A pointer to the minimum length of the pattern that the string
293 was found inside. This is important as in the case of positive
294 lookahead or positive lookbehind we can have multiple patterns
299 The minimum length of the pattern overall is 3, the minimum length
300 of the lookahead part is 3, but the minimum length of the part that
301 will actually match is 1. So 'FOO's minimum length is 3, but the
302 minimum length for the F is 1. This is important as the minimum length
303 is used to determine offsets in front of and behind the string being
304 looked for. Since strings can be composites this is the length of the
305 pattern at the time it was committed with a scan_commit. Note that
306 the length is calculated by study_chunk, so that the minimum lengths
307 are not known until the full pattern has been compiled, thus the
308 pointer to the value.
312 In the case of lookbehind the string being searched for can be
313 offset past the start point of the final matching string.
314 If this value was just blithely removed from the min_offset it would
315 invalidate some of the calculations for how many chars must match
316 before or after (as they are derived from min_offset and minlen and
317 the length of the string being searched for).
318 When the final pattern is compiled and the data is moved from the
319 scan_data_t structure into the regexp structure the information
320 about lookbehind is factored in, with the information that would
321 have been lost precalculated in the end_shift field for the
324 The fields pos_min and pos_delta are used to store the minimum offset
325 and the delta to the maximum offset at the current point in the pattern.
329 typedef struct scan_data_t {
330 /*I32 len_min; unused */
331 /*I32 len_delta; unused */
335 I32 last_end; /* min value, <0 unless valid. */
338 SV **longest; /* Either &l_fixed, or &l_float. */
339 SV *longest_fixed; /* longest fixed string found in pattern */
340 I32 offset_fixed; /* offset where it starts */
341 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
342 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
343 SV *longest_float; /* longest floating string found in pattern */
344 I32 offset_float_min; /* earliest point in string it can appear */
345 I32 offset_float_max; /* latest point in string it can appear */
346 I32 *minlen_float; /* pointer to the minlen relevant to the string */
347 I32 lookbehind_float; /* is the position of the string modified by LB */
351 struct regnode_charclass_class *start_class;
355 * Forward declarations for pregcomp()'s friends.
358 static const scan_data_t zero_scan_data =
359 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
361 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
362 #define SF_BEFORE_SEOL 0x0001
363 #define SF_BEFORE_MEOL 0x0002
364 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
365 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
368 # define SF_FIX_SHIFT_EOL (0+2)
369 # define SF_FL_SHIFT_EOL (0+4)
371 # define SF_FIX_SHIFT_EOL (+2)
372 # define SF_FL_SHIFT_EOL (+4)
375 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
376 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
378 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
379 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
380 #define SF_IS_INF 0x0040
381 #define SF_HAS_PAR 0x0080
382 #define SF_IN_PAR 0x0100
383 #define SF_HAS_EVAL 0x0200
384 #define SCF_DO_SUBSTR 0x0400
385 #define SCF_DO_STCLASS_AND 0x0800
386 #define SCF_DO_STCLASS_OR 0x1000
387 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
388 #define SCF_WHILEM_VISITED_POS 0x2000
390 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
391 #define SCF_SEEN_ACCEPT 0x8000
393 #define UTF cBOOL(RExC_utf8)
395 /* The enums for all these are ordered so things work out correctly */
396 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
397 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
398 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
399 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
400 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
401 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
402 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
404 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
406 #define OOB_UNICODE 12345678
407 #define OOB_NAMEDCLASS -1
409 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
410 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
413 /* length of regex to show in messages that don't mark a position within */
414 #define RegexLengthToShowInErrorMessages 127
417 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
418 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
419 * op/pragma/warn/regcomp.
421 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
422 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
424 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
427 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
428 * arg. Show regex, up to a maximum length. If it's too long, chop and add
431 #define _FAIL(code) STMT_START { \
432 const char *ellipses = ""; \
433 IV len = RExC_end - RExC_precomp; \
436 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
437 if (len > RegexLengthToShowInErrorMessages) { \
438 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
439 len = RegexLengthToShowInErrorMessages - 10; \
445 #define FAIL(msg) _FAIL( \
446 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
447 msg, (int)len, RExC_precomp, ellipses))
449 #define FAIL2(msg,arg) _FAIL( \
450 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
451 arg, (int)len, RExC_precomp, ellipses))
454 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
456 #define Simple_vFAIL(m) STMT_START { \
457 const IV offset = RExC_parse - RExC_precomp; \
458 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
459 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
463 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
465 #define vFAIL(m) STMT_START { \
467 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 * Like Simple_vFAIL(), but accepts two arguments.
474 #define Simple_vFAIL2(m,a1) STMT_START { \
475 const IV offset = RExC_parse - RExC_precomp; \
476 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
477 (int)offset, RExC_precomp, RExC_precomp + offset); \
481 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
483 #define vFAIL2(m,a1) STMT_START { \
485 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
486 Simple_vFAIL2(m, a1); \
491 * Like Simple_vFAIL(), but accepts three arguments.
493 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
494 const IV offset = RExC_parse - RExC_precomp; \
495 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
496 (int)offset, RExC_precomp, RExC_precomp + offset); \
500 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
502 #define vFAIL3(m,a1,a2) STMT_START { \
504 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
505 Simple_vFAIL3(m, a1, a2); \
509 * Like Simple_vFAIL(), but accepts four arguments.
511 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
512 const IV offset = RExC_parse - RExC_precomp; \
513 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
514 (int)offset, RExC_precomp, RExC_precomp + offset); \
517 #define ckWARNreg(loc,m) STMT_START { \
518 const IV offset = loc - RExC_precomp; \
519 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
520 (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARNregdep(loc,m) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
527 (int)offset, RExC_precomp, RExC_precomp + offset); \
530 #define ckWARN2regdep(loc,m, a1) STMT_START { \
531 const IV offset = loc - RExC_precomp; \
532 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
534 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
537 #define ckWARN2reg(loc, m, a1) STMT_START { \
538 const IV offset = loc - RExC_precomp; \
539 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
540 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
543 #define vWARN3(loc, m, a1, a2) STMT_START { \
544 const IV offset = loc - RExC_precomp; \
545 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
546 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
549 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
550 const IV offset = loc - RExC_precomp; \
551 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
552 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
555 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
556 const IV offset = loc - RExC_precomp; \
557 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
558 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
561 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
562 const IV offset = loc - RExC_precomp; \
563 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
564 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
567 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
568 const IV offset = loc - RExC_precomp; \
569 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
570 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
574 /* Allow for side effects in s */
575 #define REGC(c,s) STMT_START { \
576 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
579 /* Macros for recording node offsets. 20001227 mjd@plover.com
580 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
581 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
582 * Element 0 holds the number n.
583 * Position is 1 indexed.
585 #ifndef RE_TRACK_PATTERN_OFFSETS
586 #define Set_Node_Offset_To_R(node,byte)
587 #define Set_Node_Offset(node,byte)
588 #define Set_Cur_Node_Offset
589 #define Set_Node_Length_To_R(node,len)
590 #define Set_Node_Length(node,len)
591 #define Set_Node_Cur_Length(node)
592 #define Node_Offset(n)
593 #define Node_Length(n)
594 #define Set_Node_Offset_Length(node,offset,len)
595 #define ProgLen(ri) ri->u.proglen
596 #define SetProgLen(ri,x) ri->u.proglen = x
598 #define ProgLen(ri) ri->u.offsets[0]
599 #define SetProgLen(ri,x) ri->u.offsets[0] = x
600 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
602 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
603 __LINE__, (int)(node), (int)(byte))); \
605 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
607 RExC_offsets[2*(node)-1] = (byte); \
612 #define Set_Node_Offset(node,byte) \
613 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
614 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
616 #define Set_Node_Length_To_R(node,len) STMT_START { \
618 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
619 __LINE__, (int)(node), (int)(len))); \
621 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
623 RExC_offsets[2*(node)] = (len); \
628 #define Set_Node_Length(node,len) \
629 Set_Node_Length_To_R((node)-RExC_emit_start, len)
630 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
631 #define Set_Node_Cur_Length(node) \
632 Set_Node_Length(node, RExC_parse - parse_start)
634 /* Get offsets and lengths */
635 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
636 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
638 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
639 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
640 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
644 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
645 #define EXPERIMENTAL_INPLACESCAN
646 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
648 #define DEBUG_STUDYDATA(str,data,depth) \
649 DEBUG_OPTIMISE_MORE_r(if(data){ \
650 PerlIO_printf(Perl_debug_log, \
651 "%*s" str "Pos:%"IVdf"/%"IVdf \
652 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
653 (int)(depth)*2, "", \
654 (IV)((data)->pos_min), \
655 (IV)((data)->pos_delta), \
656 (UV)((data)->flags), \
657 (IV)((data)->whilem_c), \
658 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
659 is_inf ? "INF " : "" \
661 if ((data)->last_found) \
662 PerlIO_printf(Perl_debug_log, \
663 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
664 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
665 SvPVX_const((data)->last_found), \
666 (IV)((data)->last_end), \
667 (IV)((data)->last_start_min), \
668 (IV)((data)->last_start_max), \
669 ((data)->longest && \
670 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
671 SvPVX_const((data)->longest_fixed), \
672 (IV)((data)->offset_fixed), \
673 ((data)->longest && \
674 (data)->longest==&((data)->longest_float)) ? "*" : "", \
675 SvPVX_const((data)->longest_float), \
676 (IV)((data)->offset_float_min), \
677 (IV)((data)->offset_float_max) \
679 PerlIO_printf(Perl_debug_log,"\n"); \
682 static void clear_re(pTHX_ void *r);
684 /* Mark that we cannot extend a found fixed substring at this point.
685 Update the longest found anchored substring and the longest found
686 floating substrings if needed. */
689 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
691 const STRLEN l = CHR_SVLEN(data->last_found);
692 const STRLEN old_l = CHR_SVLEN(*data->longest);
693 GET_RE_DEBUG_FLAGS_DECL;
695 PERL_ARGS_ASSERT_SCAN_COMMIT;
697 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
698 SvSetMagicSV(*data->longest, data->last_found);
699 if (*data->longest == data->longest_fixed) {
700 data->offset_fixed = l ? data->last_start_min : data->pos_min;
701 if (data->flags & SF_BEFORE_EOL)
703 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
705 data->flags &= ~SF_FIX_BEFORE_EOL;
706 data->minlen_fixed=minlenp;
707 data->lookbehind_fixed=0;
709 else { /* *data->longest == data->longest_float */
710 data->offset_float_min = l ? data->last_start_min : data->pos_min;
711 data->offset_float_max = (l
712 ? data->last_start_max
713 : data->pos_min + data->pos_delta);
714 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
715 data->offset_float_max = I32_MAX;
716 if (data->flags & SF_BEFORE_EOL)
718 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
720 data->flags &= ~SF_FL_BEFORE_EOL;
721 data->minlen_float=minlenp;
722 data->lookbehind_float=0;
725 SvCUR_set(data->last_found, 0);
727 SV * const sv = data->last_found;
728 if (SvUTF8(sv) && SvMAGICAL(sv)) {
729 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
735 data->flags &= ~SF_BEFORE_EOL;
736 DEBUG_STUDYDATA("commit: ",data,0);
739 /* Can match anything (initialization) */
741 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
743 PERL_ARGS_ASSERT_CL_ANYTHING;
745 ANYOF_BITMAP_SETALL(cl);
746 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
747 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
749 /* If any portion of the regex is to operate under locale rules,
750 * initialization includes it. The reason this isn't done for all regexes
751 * is that the optimizer was written under the assumption that locale was
752 * all-or-nothing. Given the complexity and lack of documentation in the
753 * optimizer, and that there are inadequate test cases for locale, so many
754 * parts of it may not work properly, it is safest to avoid locale unless
756 if (RExC_contains_locale) {
757 ANYOF_CLASS_SETALL(cl); /* /l uses class */
758 cl->flags |= ANYOF_LOCALE;
761 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
765 /* Can match anything (initialization) */
767 S_cl_is_anything(const struct regnode_charclass_class *cl)
771 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
773 for (value = 0; value <= ANYOF_MAX; value += 2)
774 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
776 if (!(cl->flags & ANYOF_UNICODE_ALL))
778 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
783 /* Can match anything (initialization) */
785 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
787 PERL_ARGS_ASSERT_CL_INIT;
789 Zero(cl, 1, struct regnode_charclass_class);
791 cl_anything(pRExC_state, cl);
792 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
795 /* These two functions currently do the exact same thing */
796 #define cl_init_zero S_cl_init
798 /* 'AND' a given class with another one. Can create false positives. 'cl'
799 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
800 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
802 S_cl_and(struct regnode_charclass_class *cl,
803 const struct regnode_charclass_class *and_with)
805 PERL_ARGS_ASSERT_CL_AND;
807 assert(and_with->type == ANYOF);
809 /* I (khw) am not sure all these restrictions are necessary XXX */
810 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
811 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
812 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
813 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
814 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
817 if (and_with->flags & ANYOF_INVERT)
818 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
819 cl->bitmap[i] &= ~and_with->bitmap[i];
821 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
822 cl->bitmap[i] &= and_with->bitmap[i];
823 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
825 if (and_with->flags & ANYOF_INVERT) {
827 /* Here, the and'ed node is inverted. Get the AND of the flags that
828 * aren't affected by the inversion. Those that are affected are
829 * handled individually below */
830 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
831 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
832 cl->flags |= affected_flags;
834 /* We currently don't know how to deal with things that aren't in the
835 * bitmap, but we know that the intersection is no greater than what
836 * is already in cl, so let there be false positives that get sorted
837 * out after the synthetic start class succeeds, and the node is
838 * matched for real. */
840 /* The inversion of these two flags indicate that the resulting
841 * intersection doesn't have them */
842 if (and_with->flags & ANYOF_UNICODE_ALL) {
843 cl->flags &= ~ANYOF_UNICODE_ALL;
845 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
846 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
849 else { /* and'd node is not inverted */
850 U8 outside_bitmap_but_not_utf8; /* Temp variable */
852 if (! ANYOF_NONBITMAP(and_with)) {
854 /* Here 'and_with' doesn't match anything outside the bitmap
855 * (except possibly ANYOF_UNICODE_ALL), which means the
856 * intersection can't either, except for ANYOF_UNICODE_ALL, in
857 * which case we don't know what the intersection is, but it's no
858 * greater than what cl already has, so can just leave it alone,
859 * with possible false positives */
860 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
861 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
862 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
865 else if (! ANYOF_NONBITMAP(cl)) {
867 /* Here, 'and_with' does match something outside the bitmap, and cl
868 * doesn't have a list of things to match outside the bitmap. If
869 * cl can match all code points above 255, the intersection will
870 * be those above-255 code points that 'and_with' matches. If cl
871 * can't match all Unicode code points, it means that it can't
872 * match anything outside the bitmap (since the 'if' that got us
873 * into this block tested for that), so we leave the bitmap empty.
875 if (cl->flags & ANYOF_UNICODE_ALL) {
876 ARG_SET(cl, ARG(and_with));
878 /* and_with's ARG may match things that don't require UTF8.
879 * And now cl's will too, in spite of this being an 'and'. See
880 * the comments below about the kludge */
881 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
885 /* Here, both 'and_with' and cl match something outside the
886 * bitmap. Currently we do not do the intersection, so just match
887 * whatever cl had at the beginning. */
891 /* Take the intersection of the two sets of flags. However, the
892 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
893 * kludge around the fact that this flag is not treated like the others
894 * which are initialized in cl_anything(). The way the optimizer works
895 * is that the synthetic start class (SSC) is initialized to match
896 * anything, and then the first time a real node is encountered, its
897 * values are AND'd with the SSC's with the result being the values of
898 * the real node. However, there are paths through the optimizer where
899 * the AND never gets called, so those initialized bits are set
900 * inappropriately, which is not usually a big deal, as they just cause
901 * false positives in the SSC, which will just mean a probably
902 * imperceptible slow down in execution. However this bit has a
903 * higher false positive consequence in that it can cause utf8.pm,
904 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
905 * bigger slowdown and also causes significant extra memory to be used.
906 * In order to prevent this, the code now takes a different tack. The
907 * bit isn't set unless some part of the regular expression needs it,
908 * but once set it won't get cleared. This means that these extra
909 * modules won't get loaded unless there was some path through the
910 * pattern that would have required them anyway, and so any false
911 * positives that occur by not ANDing them out when they could be
912 * aren't as severe as they would be if we treated this bit like all
914 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
915 & ANYOF_NONBITMAP_NON_UTF8;
916 cl->flags &= and_with->flags;
917 cl->flags |= outside_bitmap_but_not_utf8;
921 /* 'OR' a given class with another one. Can create false positives. 'cl'
922 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
923 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
925 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
927 PERL_ARGS_ASSERT_CL_OR;
929 if (or_with->flags & ANYOF_INVERT) {
931 /* Here, the or'd node is to be inverted. This means we take the
932 * complement of everything not in the bitmap, but currently we don't
933 * know what that is, so give up and match anything */
934 if (ANYOF_NONBITMAP(or_with)) {
935 cl_anything(pRExC_state, cl);
938 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
939 * <= (B1 | !B2) | (CL1 | !CL2)
940 * which is wasteful if CL2 is small, but we ignore CL2:
941 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
942 * XXXX Can we handle case-fold? Unclear:
943 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
944 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
946 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
947 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
948 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
951 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
952 cl->bitmap[i] |= ~or_with->bitmap[i];
953 } /* XXXX: logic is complicated otherwise */
955 cl_anything(pRExC_state, cl);
958 /* And, we can just take the union of the flags that aren't affected
959 * by the inversion */
960 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
962 /* For the remaining flags:
963 ANYOF_UNICODE_ALL and inverted means to not match anything above
964 255, which means that the union with cl should just be
965 what cl has in it, so can ignore this flag
966 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
967 is 127-255 to match them, but then invert that, so the
968 union with cl should just be what cl has in it, so can
971 } else { /* 'or_with' is not inverted */
972 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
973 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
974 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
975 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
978 /* OR char bitmap and class bitmap separately */
979 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
980 cl->bitmap[i] |= or_with->bitmap[i];
981 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
982 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
983 cl->classflags[i] |= or_with->classflags[i];
984 cl->flags |= ANYOF_CLASS;
987 else { /* XXXX: logic is complicated, leave it along for a moment. */
988 cl_anything(pRExC_state, cl);
991 if (ANYOF_NONBITMAP(or_with)) {
993 /* Use the added node's outside-the-bit-map match if there isn't a
994 * conflict. If there is a conflict (both nodes match something
995 * outside the bitmap, but what they match outside is not the same
996 * pointer, and hence not easily compared until XXX we extend
997 * inversion lists this far), give up and allow the start class to
998 * match everything outside the bitmap. If that stuff is all above
999 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
1000 if (! ANYOF_NONBITMAP(cl)) {
1001 ARG_SET(cl, ARG(or_with));
1003 else if (ARG(cl) != ARG(or_with)) {
1005 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
1006 cl_anything(pRExC_state, cl);
1009 cl->flags |= ANYOF_UNICODE_ALL;
1014 /* Take the union */
1015 cl->flags |= or_with->flags;
1019 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1020 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1021 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1022 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1027 dump_trie(trie,widecharmap,revcharmap)
1028 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1029 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1031 These routines dump out a trie in a somewhat readable format.
1032 The _interim_ variants are used for debugging the interim
1033 tables that are used to generate the final compressed
1034 representation which is what dump_trie expects.
1036 Part of the reason for their existence is to provide a form
1037 of documentation as to how the different representations function.
1042 Dumps the final compressed table form of the trie to Perl_debug_log.
1043 Used for debugging make_trie().
1047 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1048 AV *revcharmap, U32 depth)
1051 SV *sv=sv_newmortal();
1052 int colwidth= widecharmap ? 6 : 4;
1054 GET_RE_DEBUG_FLAGS_DECL;
1056 PERL_ARGS_ASSERT_DUMP_TRIE;
1058 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1059 (int)depth * 2 + 2,"",
1060 "Match","Base","Ofs" );
1062 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1063 SV ** const tmp = av_fetch( revcharmap, state, 0);
1065 PerlIO_printf( Perl_debug_log, "%*s",
1067 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1068 PL_colors[0], PL_colors[1],
1069 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1070 PERL_PV_ESCAPE_FIRSTCHAR
1075 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1076 (int)depth * 2 + 2,"");
1078 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1079 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1080 PerlIO_printf( Perl_debug_log, "\n");
1082 for( state = 1 ; state < trie->statecount ; state++ ) {
1083 const U32 base = trie->states[ state ].trans.base;
1085 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1087 if ( trie->states[ state ].wordnum ) {
1088 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1090 PerlIO_printf( Perl_debug_log, "%6s", "" );
1093 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1098 while( ( base + ofs < trie->uniquecharcount ) ||
1099 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1100 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1103 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1105 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1106 if ( ( base + ofs >= trie->uniquecharcount ) &&
1107 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1108 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1110 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1112 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1114 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1118 PerlIO_printf( Perl_debug_log, "]");
1121 PerlIO_printf( Perl_debug_log, "\n" );
1123 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1124 for (word=1; word <= trie->wordcount; word++) {
1125 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1126 (int)word, (int)(trie->wordinfo[word].prev),
1127 (int)(trie->wordinfo[word].len));
1129 PerlIO_printf(Perl_debug_log, "\n" );
1132 Dumps a fully constructed but uncompressed trie in list form.
1133 List tries normally only are used for construction when the number of
1134 possible chars (trie->uniquecharcount) is very high.
1135 Used for debugging make_trie().
1138 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1139 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1143 SV *sv=sv_newmortal();
1144 int colwidth= widecharmap ? 6 : 4;
1145 GET_RE_DEBUG_FLAGS_DECL;
1147 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1149 /* print out the table precompression. */
1150 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1151 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1152 "------:-----+-----------------\n" );
1154 for( state=1 ; state < next_alloc ; state ++ ) {
1157 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1158 (int)depth * 2 + 2,"", (UV)state );
1159 if ( ! trie->states[ state ].wordnum ) {
1160 PerlIO_printf( Perl_debug_log, "%5s| ","");
1162 PerlIO_printf( Perl_debug_log, "W%4x| ",
1163 trie->states[ state ].wordnum
1166 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1167 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1169 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1171 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1172 PL_colors[0], PL_colors[1],
1173 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1174 PERL_PV_ESCAPE_FIRSTCHAR
1176 TRIE_LIST_ITEM(state,charid).forid,
1177 (UV)TRIE_LIST_ITEM(state,charid).newstate
1180 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1181 (int)((depth * 2) + 14), "");
1184 PerlIO_printf( Perl_debug_log, "\n");
1189 Dumps a fully constructed but uncompressed trie in table form.
1190 This is the normal DFA style state transition table, with a few
1191 twists to facilitate compression later.
1192 Used for debugging make_trie().
1195 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1196 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1201 SV *sv=sv_newmortal();
1202 int colwidth= widecharmap ? 6 : 4;
1203 GET_RE_DEBUG_FLAGS_DECL;
1205 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1208 print out the table precompression so that we can do a visual check
1209 that they are identical.
1212 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1214 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1215 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1217 PerlIO_printf( Perl_debug_log, "%*s",
1219 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1220 PL_colors[0], PL_colors[1],
1221 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1222 PERL_PV_ESCAPE_FIRSTCHAR
1228 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1230 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1231 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1234 PerlIO_printf( Perl_debug_log, "\n" );
1236 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1238 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1239 (int)depth * 2 + 2,"",
1240 (UV)TRIE_NODENUM( state ) );
1242 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1243 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1245 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1247 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1249 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1250 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1252 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1253 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1261 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1262 startbranch: the first branch in the whole branch sequence
1263 first : start branch of sequence of branch-exact nodes.
1264 May be the same as startbranch
1265 last : Thing following the last branch.
1266 May be the same as tail.
1267 tail : item following the branch sequence
1268 count : words in the sequence
1269 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1270 depth : indent depth
1272 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1274 A trie is an N'ary tree where the branches are determined by digital
1275 decomposition of the key. IE, at the root node you look up the 1st character and
1276 follow that branch repeat until you find the end of the branches. Nodes can be
1277 marked as "accepting" meaning they represent a complete word. Eg:
1281 would convert into the following structure. Numbers represent states, letters
1282 following numbers represent valid transitions on the letter from that state, if
1283 the number is in square brackets it represents an accepting state, otherwise it
1284 will be in parenthesis.
1286 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1290 (1) +-i->(6)-+-s->[7]
1292 +-s->(3)-+-h->(4)-+-e->[5]
1294 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1296 This shows that when matching against the string 'hers' we will begin at state 1
1297 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1298 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1299 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1300 single traverse. We store a mapping from accepting to state to which word was
1301 matched, and then when we have multiple possibilities we try to complete the
1302 rest of the regex in the order in which they occured in the alternation.
1304 The only prior NFA like behaviour that would be changed by the TRIE support is
1305 the silent ignoring of duplicate alternations which are of the form:
1307 / (DUPE|DUPE) X? (?{ ... }) Y /x
1309 Thus EVAL blocks following a trie may be called a different number of times with
1310 and without the optimisation. With the optimisations dupes will be silently
1311 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1312 the following demonstrates:
1314 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1316 which prints out 'word' three times, but
1318 'words'=~/(word|word|word)(?{ print $1 })S/
1320 which doesnt print it out at all. This is due to other optimisations kicking in.
1322 Example of what happens on a structural level:
1324 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1326 1: CURLYM[1] {1,32767}(18)
1337 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1338 and should turn into:
1340 1: CURLYM[1] {1,32767}(18)
1342 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1350 Cases where tail != last would be like /(?foo|bar)baz/:
1360 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1361 and would end up looking like:
1364 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1371 d = uvuni_to_utf8_flags(d, uv, 0);
1373 is the recommended Unicode-aware way of saying
1378 #define TRIE_STORE_REVCHAR(val) \
1381 SV *zlopp = newSV(7); /* XXX: optimize me */ \
1382 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1383 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, val); \
1384 SvCUR_set(zlopp, kapow - flrbbbbb); \
1387 av_push(revcharmap, zlopp); \
1389 char ooooff = (char)val; \
1390 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1394 #define TRIE_READ_CHAR STMT_START { \
1397 /* if it is UTF then it is either already folded, or does not need folding */ \
1398 uvc = utf8n_to_uvuni( (const U8*) uc, UTF8_MAXLEN, &len, uniflags); \
1400 else if (folder == PL_fold_latin1) { \
1401 /* if we use this folder we have to obey unicode rules on latin-1 data */ \
1402 if ( foldlen > 0 ) { \
1403 uvc = utf8n_to_uvuni( (const U8*) scan, UTF8_MAXLEN, &len, uniflags ); \
1409 uvc = _to_fold_latin1( (U8) *uc, foldbuf, &foldlen, 1); \
1410 skiplen = UNISKIP(uvc); \
1411 foldlen -= skiplen; \
1412 scan = foldbuf + skiplen; \
1415 /* raw data, will be folded later if needed */ \
1423 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1424 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1425 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1426 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1428 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1429 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1430 TRIE_LIST_CUR( state )++; \
1433 #define TRIE_LIST_NEW(state) STMT_START { \
1434 Newxz( trie->states[ state ].trans.list, \
1435 4, reg_trie_trans_le ); \
1436 TRIE_LIST_CUR( state ) = 1; \
1437 TRIE_LIST_LEN( state ) = 4; \
1440 #define TRIE_HANDLE_WORD(state) STMT_START { \
1441 U16 dupe= trie->states[ state ].wordnum; \
1442 regnode * const noper_next = regnext( noper ); \
1445 /* store the word for dumping */ \
1447 if (OP(noper) != NOTHING) \
1448 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1450 tmp = newSVpvn_utf8( "", 0, UTF ); \
1451 av_push( trie_words, tmp ); \
1455 trie->wordinfo[curword].prev = 0; \
1456 trie->wordinfo[curword].len = wordlen; \
1457 trie->wordinfo[curword].accept = state; \
1459 if ( noper_next < tail ) { \
1461 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1462 trie->jump[curword] = (U16)(noper_next - convert); \
1464 jumper = noper_next; \
1466 nextbranch= regnext(cur); \
1470 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1471 /* chain, so that when the bits of chain are later */\
1472 /* linked together, the dups appear in the chain */\
1473 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1474 trie->wordinfo[dupe].prev = curword; \
1476 /* we haven't inserted this word yet. */ \
1477 trie->states[ state ].wordnum = curword; \
1482 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1483 ( ( base + charid >= ucharcount \
1484 && base + charid < ubound \
1485 && state == trie->trans[ base - ucharcount + charid ].check \
1486 && trie->trans[ base - ucharcount + charid ].next ) \
1487 ? trie->trans[ base - ucharcount + charid ].next \
1488 : ( state==1 ? special : 0 ) \
1492 #define MADE_JUMP_TRIE 2
1493 #define MADE_EXACT_TRIE 4
1496 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1499 /* first pass, loop through and scan words */
1500 reg_trie_data *trie;
1501 HV *widecharmap = NULL;
1502 AV *revcharmap = newAV();
1504 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1509 regnode *jumper = NULL;
1510 regnode *nextbranch = NULL;
1511 regnode *convert = NULL;
1512 U32 *prev_states; /* temp array mapping each state to previous one */
1513 /* we just use folder as a flag in utf8 */
1514 const U8 * folder = NULL;
1517 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1518 AV *trie_words = NULL;
1519 /* along with revcharmap, this only used during construction but both are
1520 * useful during debugging so we store them in the struct when debugging.
1523 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1524 STRLEN trie_charcount=0;
1526 SV *re_trie_maxbuff;
1527 GET_RE_DEBUG_FLAGS_DECL;
1529 PERL_ARGS_ASSERT_MAKE_TRIE;
1531 PERL_UNUSED_ARG(depth);
1538 case EXACTFU_TRICKYFOLD:
1539 case EXACTFU: folder = PL_fold_latin1; break;
1540 case EXACTF: folder = PL_fold; break;
1541 case EXACTFL: folder = PL_fold_locale; break;
1542 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
1545 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1547 trie->startstate = 1;
1548 trie->wordcount = word_count;
1549 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1550 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1552 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1553 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1554 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1557 trie_words = newAV();
1560 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1561 if (!SvIOK(re_trie_maxbuff)) {
1562 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1564 DEBUG_TRIE_COMPILE_r({
1565 PerlIO_printf( Perl_debug_log,
1566 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1567 (int)depth * 2 + 2, "",
1568 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1569 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1573 /* Find the node we are going to overwrite */
1574 if ( first == startbranch && OP( last ) != BRANCH ) {
1575 /* whole branch chain */
1578 /* branch sub-chain */
1579 convert = NEXTOPER( first );
1582 /* -- First loop and Setup --
1584 We first traverse the branches and scan each word to determine if it
1585 contains widechars, and how many unique chars there are, this is
1586 important as we have to build a table with at least as many columns as we
1589 We use an array of integers to represent the character codes 0..255
1590 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1591 native representation of the character value as the key and IV's for the
1594 *TODO* If we keep track of how many times each character is used we can
1595 remap the columns so that the table compression later on is more
1596 efficient in terms of memory by ensuring the most common value is in the
1597 middle and the least common are on the outside. IMO this would be better
1598 than a most to least common mapping as theres a decent chance the most
1599 common letter will share a node with the least common, meaning the node
1600 will not be compressible. With a middle is most common approach the worst
1601 case is when we have the least common nodes twice.
1605 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1606 regnode *noper = NEXTOPER( cur );
1607 const U8 *uc = (U8*)STRING( noper );
1608 const U8 *e = uc + STR_LEN( noper );
1610 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1612 const U8 *scan = (U8*)NULL;
1613 U32 wordlen = 0; /* required init */
1615 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1617 if (OP(noper) == NOTHING) {
1618 regnode *noper_next= regnext(noper);
1619 if (noper_next != tail && OP(noper_next) == flags) {
1621 uc= (U8*)STRING(noper);
1622 e= uc + STR_LEN(noper);
1623 trie->minlen= STR_LEN(noper);
1630 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
1631 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1632 regardless of encoding */
1633 if (OP( noper ) == EXACTFU_SS) {
1634 /* false positives are ok, so just set this */
1635 TRIE_BITMAP_SET(trie,0xDF);
1638 for ( ; uc < e ; uc += len ) {
1639 TRIE_CHARCOUNT(trie)++;
1644 U8 folded= folder[ (U8) uvc ];
1645 if ( !trie->charmap[ folded ] ) {
1646 trie->charmap[ folded ]=( ++trie->uniquecharcount );
1647 TRIE_STORE_REVCHAR( folded );
1650 if ( !trie->charmap[ uvc ] ) {
1651 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1652 TRIE_STORE_REVCHAR( uvc );
1655 /* store the codepoint in the bitmap, and its folded
1657 TRIE_BITMAP_SET(trie, uvc);
1659 /* store the folded codepoint */
1660 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
1663 /* store first byte of utf8 representation of
1664 variant codepoints */
1665 if (! UNI_IS_INVARIANT(uvc)) {
1666 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1669 set_bit = 0; /* We've done our bit :-) */
1674 widecharmap = newHV();
1676 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1679 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1681 if ( !SvTRUE( *svpp ) ) {
1682 sv_setiv( *svpp, ++trie->uniquecharcount );
1683 TRIE_STORE_REVCHAR(uvc);
1687 if( cur == first ) {
1688 trie->minlen = chars;
1689 trie->maxlen = chars;
1690 } else if (chars < trie->minlen) {
1691 trie->minlen = chars;
1692 } else if (chars > trie->maxlen) {
1693 trie->maxlen = chars;
1695 if (OP( noper ) == EXACTFU_SS) {
1696 /* XXX: workaround - 'ss' could match "\x{DF}" so minlen could be 1 and not 2*/
1697 if (trie->minlen > 1)
1700 if (OP( noper ) == EXACTFU_TRICKYFOLD) {
1701 /* XXX: workround - things like "\x{1FBE}\x{0308}\x{0301}" can match "\x{0390}"
1702 * - We assume that any such sequence might match a 2 byte string */
1703 if (trie->minlen > 2 )
1707 } /* end first pass */
1708 DEBUG_TRIE_COMPILE_r(
1709 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1710 (int)depth * 2 + 2,"",
1711 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1712 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1713 (int)trie->minlen, (int)trie->maxlen )
1717 We now know what we are dealing with in terms of unique chars and
1718 string sizes so we can calculate how much memory a naive
1719 representation using a flat table will take. If it's over a reasonable
1720 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1721 conservative but potentially much slower representation using an array
1724 At the end we convert both representations into the same compressed
1725 form that will be used in regexec.c for matching with. The latter
1726 is a form that cannot be used to construct with but has memory
1727 properties similar to the list form and access properties similar
1728 to the table form making it both suitable for fast searches and
1729 small enough that its feasable to store for the duration of a program.
1731 See the comment in the code where the compressed table is produced
1732 inplace from the flat tabe representation for an explanation of how
1733 the compression works.
1738 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1741 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1743 Second Pass -- Array Of Lists Representation
1745 Each state will be represented by a list of charid:state records
1746 (reg_trie_trans_le) the first such element holds the CUR and LEN
1747 points of the allocated array. (See defines above).
1749 We build the initial structure using the lists, and then convert
1750 it into the compressed table form which allows faster lookups
1751 (but cant be modified once converted).
1754 STRLEN transcount = 1;
1756 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1757 "%*sCompiling trie using list compiler\n",
1758 (int)depth * 2 + 2, ""));
1760 trie->states = (reg_trie_state *)
1761 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1762 sizeof(reg_trie_state) );
1766 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1768 regnode *noper = NEXTOPER( cur );
1769 U8 *uc = (U8*)STRING( noper );
1770 const U8 *e = uc + STR_LEN( noper );
1771 U32 state = 1; /* required init */
1772 U16 charid = 0; /* sanity init */
1773 U8 *scan = (U8*)NULL; /* sanity init */
1774 STRLEN foldlen = 0; /* required init */
1775 U32 wordlen = 0; /* required init */
1776 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1779 if (OP(noper) == NOTHING) {
1780 regnode *noper_next= regnext(noper);
1781 if (noper_next != tail && OP(noper_next) == flags) {
1783 uc= (U8*)STRING(noper);
1784 e= uc + STR_LEN(noper);
1788 if (OP(noper) != NOTHING) {
1789 for ( ; uc < e ; uc += len ) {
1794 charid = trie->charmap[ uvc ];
1796 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1800 charid=(U16)SvIV( *svpp );
1803 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1810 if ( !trie->states[ state ].trans.list ) {
1811 TRIE_LIST_NEW( state );
1813 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1814 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1815 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1820 newstate = next_alloc++;
1821 prev_states[newstate] = state;
1822 TRIE_LIST_PUSH( state, charid, newstate );
1827 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1831 TRIE_HANDLE_WORD(state);
1833 } /* end second pass */
1835 /* next alloc is the NEXT state to be allocated */
1836 trie->statecount = next_alloc;
1837 trie->states = (reg_trie_state *)
1838 PerlMemShared_realloc( trie->states,
1840 * sizeof(reg_trie_state) );
1842 /* and now dump it out before we compress it */
1843 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1844 revcharmap, next_alloc,
1848 trie->trans = (reg_trie_trans *)
1849 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1856 for( state=1 ; state < next_alloc ; state ++ ) {
1860 DEBUG_TRIE_COMPILE_MORE_r(
1861 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1865 if (trie->states[state].trans.list) {
1866 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1870 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1871 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1872 if ( forid < minid ) {
1874 } else if ( forid > maxid ) {
1878 if ( transcount < tp + maxid - minid + 1) {
1880 trie->trans = (reg_trie_trans *)
1881 PerlMemShared_realloc( trie->trans,
1883 * sizeof(reg_trie_trans) );
1884 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1886 base = trie->uniquecharcount + tp - minid;
1887 if ( maxid == minid ) {
1889 for ( ; zp < tp ; zp++ ) {
1890 if ( ! trie->trans[ zp ].next ) {
1891 base = trie->uniquecharcount + zp - minid;
1892 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1893 trie->trans[ zp ].check = state;
1899 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1900 trie->trans[ tp ].check = state;
1905 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1906 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1907 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1908 trie->trans[ tid ].check = state;
1910 tp += ( maxid - minid + 1 );
1912 Safefree(trie->states[ state ].trans.list);
1915 DEBUG_TRIE_COMPILE_MORE_r(
1916 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1919 trie->states[ state ].trans.base=base;
1921 trie->lasttrans = tp + 1;
1925 Second Pass -- Flat Table Representation.
1927 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1928 We know that we will need Charcount+1 trans at most to store the data
1929 (one row per char at worst case) So we preallocate both structures
1930 assuming worst case.
1932 We then construct the trie using only the .next slots of the entry
1935 We use the .check field of the first entry of the node temporarily to
1936 make compression both faster and easier by keeping track of how many non
1937 zero fields are in the node.
1939 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1942 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1943 number representing the first entry of the node, and state as a
1944 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1945 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1946 are 2 entrys per node. eg:
1954 The table is internally in the right hand, idx form. However as we also
1955 have to deal with the states array which is indexed by nodenum we have to
1956 use TRIE_NODENUM() to convert.
1959 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1960 "%*sCompiling trie using table compiler\n",
1961 (int)depth * 2 + 2, ""));
1963 trie->trans = (reg_trie_trans *)
1964 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1965 * trie->uniquecharcount + 1,
1966 sizeof(reg_trie_trans) );
1967 trie->states = (reg_trie_state *)
1968 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1969 sizeof(reg_trie_state) );
1970 next_alloc = trie->uniquecharcount + 1;
1973 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1975 regnode *noper = NEXTOPER( cur );
1976 const U8 *uc = (U8*)STRING( noper );
1977 const U8 *e = uc + STR_LEN( noper );
1979 U32 state = 1; /* required init */
1981 U16 charid = 0; /* sanity init */
1982 U32 accept_state = 0; /* sanity init */
1983 U8 *scan = (U8*)NULL; /* sanity init */
1985 STRLEN foldlen = 0; /* required init */
1986 U32 wordlen = 0; /* required init */
1988 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1990 if (OP(noper) == NOTHING) {
1991 regnode *noper_next= regnext(noper);
1992 if (noper_next != tail && OP(noper_next) == flags) {
1994 uc= (U8*)STRING(noper);
1995 e= uc + STR_LEN(noper);
1999 if ( OP(noper) != NOTHING ) {
2000 for ( ; uc < e ; uc += len ) {
2005 charid = trie->charmap[ uvc ];
2007 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
2008 charid = svpp ? (U16)SvIV(*svpp) : 0;
2012 if ( !trie->trans[ state + charid ].next ) {
2013 trie->trans[ state + charid ].next = next_alloc;
2014 trie->trans[ state ].check++;
2015 prev_states[TRIE_NODENUM(next_alloc)]
2016 = TRIE_NODENUM(state);
2017 next_alloc += trie->uniquecharcount;
2019 state = trie->trans[ state + charid ].next;
2021 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2023 /* charid is now 0 if we dont know the char read, or nonzero if we do */
2026 accept_state = TRIE_NODENUM( state );
2027 TRIE_HANDLE_WORD(accept_state);
2029 } /* end second pass */
2031 /* and now dump it out before we compress it */
2032 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2034 next_alloc, depth+1));
2038 * Inplace compress the table.*
2040 For sparse data sets the table constructed by the trie algorithm will
2041 be mostly 0/FAIL transitions or to put it another way mostly empty.
2042 (Note that leaf nodes will not contain any transitions.)
2044 This algorithm compresses the tables by eliminating most such
2045 transitions, at the cost of a modest bit of extra work during lookup:
2047 - Each states[] entry contains a .base field which indicates the
2048 index in the state[] array wheres its transition data is stored.
2050 - If .base is 0 there are no valid transitions from that node.
2052 - If .base is nonzero then charid is added to it to find an entry in
2055 -If trans[states[state].base+charid].check!=state then the
2056 transition is taken to be a 0/Fail transition. Thus if there are fail
2057 transitions at the front of the node then the .base offset will point
2058 somewhere inside the previous nodes data (or maybe even into a node
2059 even earlier), but the .check field determines if the transition is
2063 The following process inplace converts the table to the compressed
2064 table: We first do not compress the root node 1,and mark all its
2065 .check pointers as 1 and set its .base pointer as 1 as well. This
2066 allows us to do a DFA construction from the compressed table later,
2067 and ensures that any .base pointers we calculate later are greater
2070 - We set 'pos' to indicate the first entry of the second node.
2072 - We then iterate over the columns of the node, finding the first and
2073 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2074 and set the .check pointers accordingly, and advance pos
2075 appropriately and repreat for the next node. Note that when we copy
2076 the next pointers we have to convert them from the original
2077 NODEIDX form to NODENUM form as the former is not valid post
2080 - If a node has no transitions used we mark its base as 0 and do not
2081 advance the pos pointer.
2083 - If a node only has one transition we use a second pointer into the
2084 structure to fill in allocated fail transitions from other states.
2085 This pointer is independent of the main pointer and scans forward
2086 looking for null transitions that are allocated to a state. When it
2087 finds one it writes the single transition into the "hole". If the
2088 pointer doesnt find one the single transition is appended as normal.
2090 - Once compressed we can Renew/realloc the structures to release the
2093 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2094 specifically Fig 3.47 and the associated pseudocode.
2098 const U32 laststate = TRIE_NODENUM( next_alloc );
2101 trie->statecount = laststate;
2103 for ( state = 1 ; state < laststate ; state++ ) {
2105 const U32 stateidx = TRIE_NODEIDX( state );
2106 const U32 o_used = trie->trans[ stateidx ].check;
2107 U32 used = trie->trans[ stateidx ].check;
2108 trie->trans[ stateidx ].check = 0;
2110 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2111 if ( flag || trie->trans[ stateidx + charid ].next ) {
2112 if ( trie->trans[ stateidx + charid ].next ) {
2114 for ( ; zp < pos ; zp++ ) {
2115 if ( ! trie->trans[ zp ].next ) {
2119 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2120 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2121 trie->trans[ zp ].check = state;
2122 if ( ++zp > pos ) pos = zp;
2129 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2131 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2132 trie->trans[ pos ].check = state;
2137 trie->lasttrans = pos + 1;
2138 trie->states = (reg_trie_state *)
2139 PerlMemShared_realloc( trie->states, laststate
2140 * sizeof(reg_trie_state) );
2141 DEBUG_TRIE_COMPILE_MORE_r(
2142 PerlIO_printf( Perl_debug_log,
2143 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2144 (int)depth * 2 + 2,"",
2145 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2148 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2151 } /* end table compress */
2153 DEBUG_TRIE_COMPILE_MORE_r(
2154 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2155 (int)depth * 2 + 2, "",
2156 (UV)trie->statecount,
2157 (UV)trie->lasttrans)
2159 /* resize the trans array to remove unused space */
2160 trie->trans = (reg_trie_trans *)
2161 PerlMemShared_realloc( trie->trans, trie->lasttrans
2162 * sizeof(reg_trie_trans) );
2164 { /* Modify the program and insert the new TRIE node */
2165 U8 nodetype =(U8)(flags & 0xFF);
2169 regnode *optimize = NULL;
2170 #ifdef RE_TRACK_PATTERN_OFFSETS
2173 U32 mjd_nodelen = 0;
2174 #endif /* RE_TRACK_PATTERN_OFFSETS */
2175 #endif /* DEBUGGING */
2177 This means we convert either the first branch or the first Exact,
2178 depending on whether the thing following (in 'last') is a branch
2179 or not and whther first is the startbranch (ie is it a sub part of
2180 the alternation or is it the whole thing.)
2181 Assuming its a sub part we convert the EXACT otherwise we convert
2182 the whole branch sequence, including the first.
2184 /* Find the node we are going to overwrite */
2185 if ( first != startbranch || OP( last ) == BRANCH ) {
2186 /* branch sub-chain */
2187 NEXT_OFF( first ) = (U16)(last - first);
2188 #ifdef RE_TRACK_PATTERN_OFFSETS
2190 mjd_offset= Node_Offset((convert));
2191 mjd_nodelen= Node_Length((convert));
2194 /* whole branch chain */
2196 #ifdef RE_TRACK_PATTERN_OFFSETS
2199 const regnode *nop = NEXTOPER( convert );
2200 mjd_offset= Node_Offset((nop));
2201 mjd_nodelen= Node_Length((nop));
2205 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2206 (int)depth * 2 + 2, "",
2207 (UV)mjd_offset, (UV)mjd_nodelen)
2210 /* But first we check to see if there is a common prefix we can
2211 split out as an EXACT and put in front of the TRIE node. */
2212 trie->startstate= 1;
2213 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2215 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2219 const U32 base = trie->states[ state ].trans.base;
2221 if ( trie->states[state].wordnum )
2224 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2225 if ( ( base + ofs >= trie->uniquecharcount ) &&
2226 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2227 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2229 if ( ++count > 1 ) {
2230 SV **tmp = av_fetch( revcharmap, ofs, 0);
2231 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2232 if ( state == 1 ) break;
2234 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2236 PerlIO_printf(Perl_debug_log,
2237 "%*sNew Start State=%"UVuf" Class: [",
2238 (int)depth * 2 + 2, "",
2241 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2242 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2244 TRIE_BITMAP_SET(trie,*ch);
2246 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2248 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2252 TRIE_BITMAP_SET(trie,*ch);
2254 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2255 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2261 SV **tmp = av_fetch( revcharmap, idx, 0);
2263 char *ch = SvPV( *tmp, len );
2265 SV *sv=sv_newmortal();
2266 PerlIO_printf( Perl_debug_log,
2267 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2268 (int)depth * 2 + 2, "",
2270 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2271 PL_colors[0], PL_colors[1],
2272 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2273 PERL_PV_ESCAPE_FIRSTCHAR
2278 OP( convert ) = nodetype;
2279 str=STRING(convert);
2282 STR_LEN(convert) += len;
2288 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2293 trie->prefixlen = (state-1);
2295 regnode *n = convert+NODE_SZ_STR(convert);
2296 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2297 trie->startstate = state;
2298 trie->minlen -= (state - 1);
2299 trie->maxlen -= (state - 1);
2301 /* At least the UNICOS C compiler choked on this
2302 * being argument to DEBUG_r(), so let's just have
2305 #ifdef PERL_EXT_RE_BUILD
2311 regnode *fix = convert;
2312 U32 word = trie->wordcount;
2314 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2315 while( ++fix < n ) {
2316 Set_Node_Offset_Length(fix, 0, 0);
2319 SV ** const tmp = av_fetch( trie_words, word, 0 );
2321 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2322 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2324 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2332 NEXT_OFF(convert) = (U16)(tail - convert);
2333 DEBUG_r(optimize= n);
2339 if ( trie->maxlen ) {
2340 NEXT_OFF( convert ) = (U16)(tail - convert);
2341 ARG_SET( convert, data_slot );
2342 /* Store the offset to the first unabsorbed branch in
2343 jump[0], which is otherwise unused by the jump logic.
2344 We use this when dumping a trie and during optimisation. */
2346 trie->jump[0] = (U16)(nextbranch - convert);
2348 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2349 * and there is a bitmap
2350 * and the first "jump target" node we found leaves enough room
2351 * then convert the TRIE node into a TRIEC node, with the bitmap
2352 * embedded inline in the opcode - this is hypothetically faster.
2354 if ( !trie->states[trie->startstate].wordnum
2356 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2358 OP( convert ) = TRIEC;
2359 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2360 PerlMemShared_free(trie->bitmap);
2363 OP( convert ) = TRIE;
2365 /* store the type in the flags */
2366 convert->flags = nodetype;
2370 + regarglen[ OP( convert ) ];
2372 /* XXX We really should free up the resource in trie now,
2373 as we won't use them - (which resources?) dmq */
2375 /* needed for dumping*/
2376 DEBUG_r(if (optimize) {
2377 regnode *opt = convert;
2379 while ( ++opt < optimize) {
2380 Set_Node_Offset_Length(opt,0,0);
2383 Try to clean up some of the debris left after the
2386 while( optimize < jumper ) {
2387 mjd_nodelen += Node_Length((optimize));
2388 OP( optimize ) = OPTIMIZED;
2389 Set_Node_Offset_Length(optimize,0,0);
2392 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2394 } /* end node insert */
2395 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, convert);
2397 /* Finish populating the prev field of the wordinfo array. Walk back
2398 * from each accept state until we find another accept state, and if
2399 * so, point the first word's .prev field at the second word. If the
2400 * second already has a .prev field set, stop now. This will be the
2401 * case either if we've already processed that word's accept state,
2402 * or that state had multiple words, and the overspill words were
2403 * already linked up earlier.
2410 for (word=1; word <= trie->wordcount; word++) {
2412 if (trie->wordinfo[word].prev)
2414 state = trie->wordinfo[word].accept;
2416 state = prev_states[state];
2419 prev = trie->states[state].wordnum;
2423 trie->wordinfo[word].prev = prev;
2425 Safefree(prev_states);
2429 /* and now dump out the compressed format */
2430 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2432 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2434 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2435 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2437 SvREFCNT_dec(revcharmap);
2441 : trie->startstate>1
2447 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2449 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2451 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2452 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2455 We find the fail state for each state in the trie, this state is the longest proper
2456 suffix of the current state's 'word' that is also a proper prefix of another word in our
2457 trie. State 1 represents the word '' and is thus the default fail state. This allows
2458 the DFA not to have to restart after its tried and failed a word at a given point, it
2459 simply continues as though it had been matching the other word in the first place.
2461 'abcdgu'=~/abcdefg|cdgu/
2462 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2463 fail, which would bring us to the state representing 'd' in the second word where we would
2464 try 'g' and succeed, proceeding to match 'cdgu'.
2466 /* add a fail transition */
2467 const U32 trie_offset = ARG(source);
2468 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2470 const U32 ucharcount = trie->uniquecharcount;
2471 const U32 numstates = trie->statecount;
2472 const U32 ubound = trie->lasttrans + ucharcount;
2476 U32 base = trie->states[ 1 ].trans.base;
2479 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2480 GET_RE_DEBUG_FLAGS_DECL;
2482 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2484 PERL_UNUSED_ARG(depth);
2488 ARG_SET( stclass, data_slot );
2489 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2490 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2491 aho->trie=trie_offset;
2492 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2493 Copy( trie->states, aho->states, numstates, reg_trie_state );
2494 Newxz( q, numstates, U32);
2495 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2498 /* initialize fail[0..1] to be 1 so that we always have
2499 a valid final fail state */
2500 fail[ 0 ] = fail[ 1 ] = 1;
2502 for ( charid = 0; charid < ucharcount ; charid++ ) {
2503 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2505 q[ q_write ] = newstate;
2506 /* set to point at the root */
2507 fail[ q[ q_write++ ] ]=1;
2510 while ( q_read < q_write) {
2511 const U32 cur = q[ q_read++ % numstates ];
2512 base = trie->states[ cur ].trans.base;
2514 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2515 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2517 U32 fail_state = cur;
2520 fail_state = fail[ fail_state ];
2521 fail_base = aho->states[ fail_state ].trans.base;
2522 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2524 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2525 fail[ ch_state ] = fail_state;
2526 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2528 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2530 q[ q_write++ % numstates] = ch_state;
2534 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2535 when we fail in state 1, this allows us to use the
2536 charclass scan to find a valid start char. This is based on the principle
2537 that theres a good chance the string being searched contains lots of stuff
2538 that cant be a start char.
2540 fail[ 0 ] = fail[ 1 ] = 0;
2541 DEBUG_TRIE_COMPILE_r({
2542 PerlIO_printf(Perl_debug_log,
2543 "%*sStclass Failtable (%"UVuf" states): 0",
2544 (int)(depth * 2), "", (UV)numstates
2546 for( q_read=1; q_read<numstates; q_read++ ) {
2547 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2549 PerlIO_printf(Perl_debug_log, "\n");
2552 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2557 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2558 * These need to be revisited when a newer toolchain becomes available.
2560 #if defined(__sparc64__) && defined(__GNUC__)
2561 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2562 # undef SPARC64_GCC_WORKAROUND
2563 # define SPARC64_GCC_WORKAROUND 1
2567 #define DEBUG_PEEP(str,scan,depth) \
2568 DEBUG_OPTIMISE_r({if (scan){ \
2569 SV * const mysv=sv_newmortal(); \
2570 regnode *Next = regnext(scan); \
2571 regprop(RExC_rx, mysv, scan); \
2572 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2573 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2574 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2578 /* The below joins as many adjacent EXACTish nodes as possible into a single
2579 * one, and looks for problematic sequences of characters whose folds vs.
2580 * non-folds have sufficiently different lengths, that the optimizer would be
2581 * fooled into rejecting legitimate matches of them, and the trie construction
2582 * code can't cope with them. The joining is only done if:
2583 * 1) there is room in the current conglomerated node to entirely contain the
2585 * 2) they are the exact same node type
2587 * The adjacent nodes actually may be separated by NOTHING kind nodes, and
2588 * these get optimized out
2590 * If there are problematic code sequences, *min_subtract is set to the delta
2591 * that the minimum size of the node can be less than its actual size. And,
2592 * the node type of the result is changed to reflect that it contains these
2595 * And *has_exactf_sharp_s is set to indicate whether or not the node is EXACTF
2596 * and contains LATIN SMALL LETTER SHARP S
2598 * This is as good a place as any to discuss the design of handling these
2599 * problematic sequences. It's been wrong in Perl for a very long time. There
2600 * are three code points in Unicode whose folded lengths differ so much from
2601 * the un-folded lengths that it causes problems for the optimizer and trie
2602 * construction. Why only these are problematic, and not others where lengths
2603 * also differ is something I (khw) do not understand. New versions of Unicode
2604 * might add more such code points. Hopefully the logic in fold_grind.t that
2605 * figures out what to test (in part by verifying that each size-combination
2606 * gets tested) will catch any that do come along, so they can be added to the
2607 * special handling below. The chances of new ones are actually rather small,
2608 * as most, if not all, of the world's scripts that have casefolding have
2609 * already been encoded by Unicode. Also, a number of Unicode's decisions were
2610 * made to allow compatibility with pre-existing standards, and almost all of
2611 * those have already been dealt with. These would otherwise be the most
2612 * likely candidates for generating further tricky sequences. In other words,
2613 * Unicode by itself is unlikely to add new ones unless it is for compatibility
2614 * with pre-existing standards, and there aren't many of those left.
2616 * The previous designs for dealing with these involved assigning a special
2617 * node for them. This approach doesn't work, as evidenced by this example:
2618 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
2619 * Both these fold to "sss", but if the pattern is parsed to create a node of
2620 * that would match just the \xDF, it won't be able to handle the case where a
2621 * successful match would have to cross the node's boundary. The new approach
2622 * that hopefully generally solves the problem generates an EXACTFU_SS node
2625 * There are a number of components to the approach (a lot of work for just
2626 * three code points!):
2627 * 1) This routine examines each EXACTFish node that could contain the
2628 * problematic sequences. It returns in *min_subtract how much to
2629 * subtract from the the actual length of the string to get a real minimum
2630 * for one that could match it. This number is usually 0 except for the
2631 * problematic sequences. This delta is used by the caller to adjust the
2632 * min length of the match, and the delta between min and max, so that the
2633 * optimizer doesn't reject these possibilities based on size constraints.
2634 * 2) These sequences are not currently correctly handled by the trie code
2635 * either, so it changes the joined node type to ops that are not handled
2636 * by trie's, those new ops being EXACTFU_SS and EXACTFU_TRICKYFOLD.
2637 * 3) This is sufficient for the two Greek sequences (described below), but
2638 * the one involving the Sharp s (\xDF) needs more. The node type
2639 * EXACTFU_SS is used for an EXACTFU node that contains at least one "ss"
2640 * sequence in it. For non-UTF-8 patterns and strings, this is the only
2641 * case where there is a possible fold length change. That means that a
2642 * regular EXACTFU node without UTF-8 involvement doesn't have to concern
2643 * itself with length changes, and so can be processed faster. regexec.c
2644 * takes advantage of this. Generally, an EXACTFish node that is in UTF-8
2645 * is pre-folded by regcomp.c. This saves effort in regex matching.
2646 * However, probably mostly for historical reasons, the pre-folding isn't
2647 * done for non-UTF8 patterns (and it can't be for EXACTF and EXACTFL
2648 * nodes, as what they fold to isn't known until runtime.) The fold
2649 * possibilities for the non-UTF8 patterns are quite simple, except for
2650 * the sharp s. All the ones that don't involve a UTF-8 target string
2651 * are members of a fold-pair, and arrays are set up for all of them
2652 * that quickly find the other member of the pair. It might actually
2653 * be faster to pre-fold these, but it isn't currently done, except for
2654 * the sharp s. Code elsewhere in this file makes sure that it gets
2655 * folded to 'ss', even if the pattern isn't UTF-8. This avoids the
2656 * issues described in the next item.
2657 * 4) A problem remains for the sharp s in EXACTF nodes. Whether it matches
2658 * 'ss' or not is not knowable at compile time. It will match iff the
2659 * target string is in UTF-8, unlike the EXACTFU nodes, where it always
2660 * matches; and the EXACTFL and EXACTFA nodes where it never does. Thus
2661 * it can't be folded to "ss" at compile time, unlike EXACTFU does as
2662 * described in item 3). An assumption that the optimizer part of
2663 * regexec.c (probably unwittingly) makes is that a character in the
2664 * pattern corresponds to at most a single character in the target string.
2665 * (And I do mean character, and not byte here, unlike other parts of the
2666 * documentation that have never been updated to account for multibyte
2667 * Unicode.) This assumption is wrong only in this case, as all other
2668 * cases are either 1-1 folds when no UTF-8 is involved; or is true by
2669 * virtue of having this file pre-fold UTF-8 patterns. I'm
2670 * reluctant to try to change this assumption, so instead the code punts.
2671 * This routine examines EXACTF nodes for the sharp s, and returns a
2672 * boolean indicating whether or not the node is an EXACTF node that
2673 * contains a sharp s. When it is true, the caller sets a flag that later
2674 * causes the optimizer in this file to not set values for the floating
2675 * and fixed string lengths, and thus avoids the optimizer code in
2676 * regexec.c that makes the invalid assumption. Thus, there is no
2677 * optimization based on string lengths for EXACTF nodes that contain the
2678 * sharp s. This only happens for /id rules (which means the pattern
2682 #define JOIN_EXACT(scan,min_subtract,has_exactf_sharp_s, flags) \
2683 if (PL_regkind[OP(scan)] == EXACT) \
2684 join_exact(pRExC_state,(scan),(min_subtract),has_exactf_sharp_s, (flags),NULL,depth+1)
2687 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, UV *min_subtract, bool *has_exactf_sharp_s, U32 flags,regnode *val, U32 depth) {
2688 /* Merge several consecutive EXACTish nodes into one. */
2689 regnode *n = regnext(scan);
2691 regnode *next = scan + NODE_SZ_STR(scan);
2695 regnode *stop = scan;
2696 GET_RE_DEBUG_FLAGS_DECL;
2698 PERL_UNUSED_ARG(depth);
2701 PERL_ARGS_ASSERT_JOIN_EXACT;
2702 #ifndef EXPERIMENTAL_INPLACESCAN
2703 PERL_UNUSED_ARG(flags);
2704 PERL_UNUSED_ARG(val);
2706 DEBUG_PEEP("join",scan,depth);
2708 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
2709 * EXACT ones that are mergeable to the current one. */
2711 && (PL_regkind[OP(n)] == NOTHING
2712 || (stringok && OP(n) == OP(scan)))
2714 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
2717 if (OP(n) == TAIL || n > next)
2719 if (PL_regkind[OP(n)] == NOTHING) {
2720 DEBUG_PEEP("skip:",n,depth);
2721 NEXT_OFF(scan) += NEXT_OFF(n);
2722 next = n + NODE_STEP_REGNODE;
2729 else if (stringok) {
2730 const unsigned int oldl = STR_LEN(scan);
2731 regnode * const nnext = regnext(n);
2733 if (oldl + STR_LEN(n) > U8_MAX)
2736 DEBUG_PEEP("merg",n,depth);
2739 NEXT_OFF(scan) += NEXT_OFF(n);
2740 STR_LEN(scan) += STR_LEN(n);
2741 next = n + NODE_SZ_STR(n);
2742 /* Now we can overwrite *n : */
2743 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2751 #ifdef EXPERIMENTAL_INPLACESCAN
2752 if (flags && !NEXT_OFF(n)) {
2753 DEBUG_PEEP("atch", val, depth);
2754 if (reg_off_by_arg[OP(n)]) {
2755 ARG_SET(n, val - n);
2758 NEXT_OFF(n) = val - n;
2766 *has_exactf_sharp_s = FALSE;
2768 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
2769 * can now analyze for sequences of problematic code points. (Prior to
2770 * this final joining, sequences could have been split over boundaries, and
2771 * hence missed). The sequences only happen in folding, hence for any
2772 * non-EXACT EXACTish node */
2773 if (OP(scan) != EXACT) {
2775 U8 * s0 = (U8*) STRING(scan);
2776 U8 * const s_end = s0 + STR_LEN(scan);
2778 /* The below is perhaps overboard, but this allows us to save a test
2779 * each time through the loop at the expense of a mask. This is
2780 * because on both EBCDIC and ASCII machines, 'S' and 's' differ by a
2781 * single bit. On ASCII they are 32 apart; on EBCDIC, they are 64.
2782 * This uses an exclusive 'or' to find that bit and then inverts it to
2783 * form a mask, with just a single 0, in the bit position where 'S' and
2785 const U8 S_or_s_mask = (U8) ~ ('S' ^ 's');
2786 const U8 s_masked = 's' & S_or_s_mask;
2788 /* One pass is made over the node's string looking for all the
2789 * possibilities. to avoid some tests in the loop, there are two main
2790 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
2794 /* There are two problematic Greek code points in Unicode
2797 * U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2798 * U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2804 * U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2805 * U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2807 * This means that in case-insensitive matching (or "loose
2808 * matching", as Unicode calls it), an EXACTF of length six (the
2809 * UTF-8 encoded byte length of the above casefolded versions) can
2810 * match a target string of length two (the byte length of UTF-8
2811 * encoded U+0390 or U+03B0). This would rather mess up the
2812 * minimum length computation. (there are other code points that
2813 * also fold to these two sequences, but the delta is smaller)
2815 * If these sequences are found, the minimum length is decreased by
2816 * four (six minus two).
2818 * Similarly, 'ss' may match the single char and byte LATIN SMALL
2819 * LETTER SHARP S. We decrease the min length by 1 for each
2820 * occurrence of 'ss' found */
2822 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2823 # define U390_first_byte 0xb4
2824 const U8 U390_tail[] = "\x68\xaf\x49\xaf\x42";
2825 # define U3B0_first_byte 0xb5
2826 const U8 U3B0_tail[] = "\x46\xaf\x49\xaf\x42";
2828 # define U390_first_byte 0xce
2829 const U8 U390_tail[] = "\xb9\xcc\x88\xcc\x81";
2830 # define U3B0_first_byte 0xcf
2831 const U8 U3B0_tail[] = "\x85\xcc\x88\xcc\x81";
2833 const U8 len = sizeof(U390_tail); /* (-1 for NUL; +1 for 1st byte;
2834 yields a net of 0 */
2835 /* Examine the string for one of the problematic sequences */
2837 s < s_end - 1; /* Can stop 1 before the end, as minimum length
2838 * sequence we are looking for is 2 */
2842 /* Look for the first byte in each problematic sequence */
2844 /* We don't have to worry about other things that fold to
2845 * 's' (such as the long s, U+017F), as all above-latin1
2846 * code points have been pre-folded */
2850 /* Current character is an 's' or 'S'. If next one is
2851 * as well, we have the dreaded sequence */
2852 if (((*(s+1) & S_or_s_mask) == s_masked)
2853 /* These two node types don't have special handling
2855 && OP(scan) != EXACTFL && OP(scan) != EXACTFA)
2858 OP(scan) = EXACTFU_SS;
2859 s++; /* No need to look at this character again */
2863 case U390_first_byte:
2864 if (s_end - s >= len
2866 /* The 1's are because are skipping comparing the
2868 && memEQ(s + 1, U390_tail, len - 1))
2870 goto greek_sequence;
2874 case U3B0_first_byte:
2875 if (! (s_end - s >= len
2876 && memEQ(s + 1, U3B0_tail, len - 1)))
2883 /* This can't currently be handled by trie's, so change
2884 * the node type to indicate this. If EXACTFA and
2885 * EXACTFL were ever to be handled by trie's, this
2886 * would have to be changed. If this node has already
2887 * been changed to EXACTFU_SS in this loop, leave it as
2888 * is. (I (khw) think it doesn't matter in regexec.c
2889 * for UTF patterns, but no need to change it */
2890 if (OP(scan) == EXACTFU) {
2891 OP(scan) = EXACTFU_TRICKYFOLD;
2893 s += 6; /* We already know what this sequence is. Skip
2899 else if (OP(scan) != EXACTFL && OP(scan) != EXACTFA) {
2901 /* Here, the pattern is not UTF-8. We need to look only for the
2902 * 'ss' sequence, and in the EXACTF case, the sharp s, which can be
2903 * in the final position. Otherwise we can stop looking 1 byte
2904 * earlier because have to find both the first and second 's' */
2905 const U8* upper = (OP(scan) == EXACTF) ? s_end : s_end -1;
2907 for (s = s0; s < upper; s++) {
2912 && ((*(s+1) & S_or_s_mask) == s_masked))
2916 /* EXACTF nodes need to know that the minimum
2917 * length changed so that a sharp s in the string
2918 * can match this ss in the pattern, but they
2919 * remain EXACTF nodes, as they are not trie'able,
2920 * so don't have to invent a new node type to
2921 * exclude them from the trie code */
2922 if (OP(scan) != EXACTF) {
2923 OP(scan) = EXACTFU_SS;
2928 case LATIN_SMALL_LETTER_SHARP_S:
2929 if (OP(scan) == EXACTF) {
2930 *has_exactf_sharp_s = TRUE;
2939 /* Allow dumping but overwriting the collection of skipped
2940 * ops and/or strings with fake optimized ops */
2941 n = scan + NODE_SZ_STR(scan);
2949 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2953 /* REx optimizer. Converts nodes into quicker variants "in place".
2954 Finds fixed substrings. */
2956 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2957 to the position after last scanned or to NULL. */
2959 #define INIT_AND_WITHP \
2960 assert(!and_withp); \
2961 Newx(and_withp,1,struct regnode_charclass_class); \
2962 SAVEFREEPV(and_withp)
2964 /* this is a chain of data about sub patterns we are processing that
2965 need to be handled separately/specially in study_chunk. Its so
2966 we can simulate recursion without losing state. */
2968 typedef struct scan_frame {
2969 regnode *last; /* last node to process in this frame */
2970 regnode *next; /* next node to process when last is reached */
2971 struct scan_frame *prev; /*previous frame*/
2972 I32 stop; /* what stopparen do we use */
2976 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2978 #define CASE_SYNST_FNC(nAmE) \
2980 if (flags & SCF_DO_STCLASS_AND) { \
2981 for (value = 0; value < 256; value++) \
2982 if (!is_ ## nAmE ## _cp(value)) \
2983 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2986 for (value = 0; value < 256; value++) \
2987 if (is_ ## nAmE ## _cp(value)) \
2988 ANYOF_BITMAP_SET(data->start_class, value); \
2992 if (flags & SCF_DO_STCLASS_AND) { \
2993 for (value = 0; value < 256; value++) \
2994 if (is_ ## nAmE ## _cp(value)) \
2995 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2998 for (value = 0; value < 256; value++) \
2999 if (!is_ ## nAmE ## _cp(value)) \
3000 ANYOF_BITMAP_SET(data->start_class, value); \
3007 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3008 I32 *minlenp, I32 *deltap,
3013 struct regnode_charclass_class *and_withp,
3014 U32 flags, U32 depth)
3015 /* scanp: Start here (read-write). */
3016 /* deltap: Write maxlen-minlen here. */
3017 /* last: Stop before this one. */
3018 /* data: string data about the pattern */
3019 /* stopparen: treat close N as END */
3020 /* recursed: which subroutines have we recursed into */
3021 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3024 I32 min = 0, pars = 0, code;
3025 regnode *scan = *scanp, *next;
3027 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3028 int is_inf_internal = 0; /* The studied chunk is infinite */
3029 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3030 scan_data_t data_fake;
3031 SV *re_trie_maxbuff = NULL;
3032 regnode *first_non_open = scan;
3033 I32 stopmin = I32_MAX;
3034 scan_frame *frame = NULL;
3035 GET_RE_DEBUG_FLAGS_DECL;
3037 PERL_ARGS_ASSERT_STUDY_CHUNK;
3040 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3044 while (first_non_open && OP(first_non_open) == OPEN)
3045 first_non_open=regnext(first_non_open);
3050 while ( scan && OP(scan) != END && scan < last ){
3051 UV min_subtract = 0; /* How much to subtract from the minimum node
3052 length to get a real minimum (because the
3053 folded version may be shorter) */
3054 bool has_exactf_sharp_s = FALSE;
3055 /* Peephole optimizer: */
3056 DEBUG_STUDYDATA("Peep:", data,depth);
3057 DEBUG_PEEP("Peep",scan,depth);
3059 /* Its not clear to khw or hv why this is done here, and not in the
3060 * clauses that deal with EXACT nodes. khw's guess is that it's
3061 * because of a previous design */
3062 JOIN_EXACT(scan,&min_subtract, &has_exactf_sharp_s, 0);
3064 /* Follow the next-chain of the current node and optimize
3065 away all the NOTHINGs from it. */
3066 if (OP(scan) != CURLYX) {
3067 const int max = (reg_off_by_arg[OP(scan)]
3069 /* I32 may be smaller than U16 on CRAYs! */
3070 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3071 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3075 /* Skip NOTHING and LONGJMP. */
3076 while ((n = regnext(n))
3077 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3078 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3079 && off + noff < max)
3081 if (reg_off_by_arg[OP(scan)])
3084 NEXT_OFF(scan) = off;
3089 /* The principal pseudo-switch. Cannot be a switch, since we
3090 look into several different things. */
3091 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
3092 || OP(scan) == IFTHEN) {
3093 next = regnext(scan);
3095 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
3097 if (OP(next) == code || code == IFTHEN) {
3098 /* NOTE - There is similar code to this block below for handling
3099 TRIE nodes on a re-study. If you change stuff here check there
3101 I32 max1 = 0, min1 = I32_MAX, num = 0;
3102 struct regnode_charclass_class accum;
3103 regnode * const startbranch=scan;
3105 if (flags & SCF_DO_SUBSTR)
3106 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
3107 if (flags & SCF_DO_STCLASS)
3108 cl_init_zero(pRExC_state, &accum);
3110 while (OP(scan) == code) {
3111 I32 deltanext, minnext, f = 0, fake;
3112 struct regnode_charclass_class this_class;
3115 data_fake.flags = 0;
3117 data_fake.whilem_c = data->whilem_c;
3118 data_fake.last_closep = data->last_closep;
3121 data_fake.last_closep = &fake;
3123 data_fake.pos_delta = delta;
3124 next = regnext(scan);
3125 scan = NEXTOPER(scan);
3127 scan = NEXTOPER(scan);
3128 if (flags & SCF_DO_STCLASS) {
3129 cl_init(pRExC_state, &this_class);
3130 data_fake.start_class = &this_class;
3131 f = SCF_DO_STCLASS_AND;
3133 if (flags & SCF_WHILEM_VISITED_POS)
3134 f |= SCF_WHILEM_VISITED_POS;
3136 /* we suppose the run is continuous, last=next...*/
3137 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3139 stopparen, recursed, NULL, f,depth+1);
3142 if (max1 < minnext + deltanext)
3143 max1 = minnext + deltanext;
3144 if (deltanext == I32_MAX)
3145 is_inf = is_inf_internal = 1;
3147 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3149 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3150 if ( stopmin > minnext)
3151 stopmin = min + min1;
3152 flags &= ~SCF_DO_SUBSTR;
3154 data->flags |= SCF_SEEN_ACCEPT;
3157 if (data_fake.flags & SF_HAS_EVAL)
3158 data->flags |= SF_HAS_EVAL;
3159 data->whilem_c = data_fake.whilem_c;
3161 if (flags & SCF_DO_STCLASS)
3162 cl_or(pRExC_state, &accum, &this_class);
3164 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3166 if (flags & SCF_DO_SUBSTR) {
3167 data->pos_min += min1;
3168 data->pos_delta += max1 - min1;
3169 if (max1 != min1 || is_inf)
3170 data->longest = &(data->longest_float);
3173 delta += max1 - min1;
3174 if (flags & SCF_DO_STCLASS_OR) {
3175 cl_or(pRExC_state, data->start_class, &accum);
3177 cl_and(data->start_class, and_withp);
3178 flags &= ~SCF_DO_STCLASS;
3181 else if (flags & SCF_DO_STCLASS_AND) {
3183 cl_and(data->start_class, &accum);
3184 flags &= ~SCF_DO_STCLASS;
3187 /* Switch to OR mode: cache the old value of
3188 * data->start_class */
3190 StructCopy(data->start_class, and_withp,
3191 struct regnode_charclass_class);
3192 flags &= ~SCF_DO_STCLASS_AND;
3193 StructCopy(&accum, data->start_class,
3194 struct regnode_charclass_class);
3195 flags |= SCF_DO_STCLASS_OR;
3196 data->start_class->flags |= ANYOF_EOS;
3200 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
3203 Assuming this was/is a branch we are dealing with: 'scan' now
3204 points at the item that follows the branch sequence, whatever
3205 it is. We now start at the beginning of the sequence and look
3212 which would be constructed from a pattern like /A|LIST|OF|WORDS/
3214 If we can find such a subsequence we need to turn the first
3215 element into a trie and then add the subsequent branch exact
3216 strings to the trie.
3220 1. patterns where the whole set of branches can be converted.
3222 2. patterns where only a subset can be converted.
3224 In case 1 we can replace the whole set with a single regop
3225 for the trie. In case 2 we need to keep the start and end
3228 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
3229 becomes BRANCH TRIE; BRANCH X;
3231 There is an additional case, that being where there is a
3232 common prefix, which gets split out into an EXACT like node
3233 preceding the TRIE node.
3235 If x(1..n)==tail then we can do a simple trie, if not we make
3236 a "jump" trie, such that when we match the appropriate word
3237 we "jump" to the appropriate tail node. Essentially we turn
3238 a nested if into a case structure of sorts.
3243 if (!re_trie_maxbuff) {
3244 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
3245 if (!SvIOK(re_trie_maxbuff))
3246 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
3248 if ( SvIV(re_trie_maxbuff)>=0 ) {
3250 regnode *first = (regnode *)NULL;
3251 regnode *last = (regnode *)NULL;
3252 regnode *tail = scan;
3257 SV * const mysv = sv_newmortal(); /* for dumping */
3259 /* var tail is used because there may be a TAIL
3260 regop in the way. Ie, the exacts will point to the
3261 thing following the TAIL, but the last branch will
3262 point at the TAIL. So we advance tail. If we
3263 have nested (?:) we may have to move through several
3267 while ( OP( tail ) == TAIL ) {
3268 /* this is the TAIL generated by (?:) */
3269 tail = regnext( tail );
3273 DEBUG_TRIE_COMPILE_r({
3274 regprop(RExC_rx, mysv, tail );
3275 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
3276 (int)depth * 2 + 2, "",
3277 "Looking for TRIE'able sequences. Tail node is: ",
3278 SvPV_nolen_const( mysv )
3284 Step through the branches
3285 cur represents each branch,
3286 noper is the first thing to be matched as part of that branch
3287 noper_next is the regnext() of that node.
3289 We normally handle a case like this /FOO[xyz]|BAR[pqr]/
3290 via a "jump trie" but we also support building with NOJUMPTRIE,
3291 which restricts the trie logic to structures like /FOO|BAR/.
3293 If noper is a trieable nodetype then the branch is a possible optimization
3294 target. If we are building under NOJUMPTRIE then we require that noper_next
3295 is the same as scan (our current position in the regex program).
3297 Once we have two or more consecutive such branches we can create a
3298 trie of the EXACT's contents and stitch it in place into the program.
3300 If the sequence represents all of the branches in the alternation we
3301 replace the entire thing with a single TRIE node.
3303 Otherwise when it is a subsequence we need to stitch it in place and
3304 replace only the relevant branches. This means the first branch has
3305 to remain as it is used by the alternation logic, and its next pointer,
3306 and needs to be repointed at the item on the branch chain following
3307 the last branch we have optimized away.
3309 This could be either a BRANCH, in which case the subsequence is internal,
3310 or it could be the item following the branch sequence in which case the
3311 subsequence is at the end (which does not necessarily mean the first node
3312 is the start of the alternation).
3314 TRIE_TYPE(X) is a define which maps the optype to a trietype.
3317 ----------------+-----------
3321 EXACTFU_SS | EXACTFU
3322 EXACTFU_TRICKYFOLD | EXACTFU
3327 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) ? NOTHING : \
3328 ( EXACT == (X) ) ? EXACT : \
3329 ( EXACTFU == (X) || EXACTFU_SS == (X) || EXACTFU_TRICKYFOLD == (X) ) ? EXACTFU : \
3332 /* dont use tail as the end marker for this traverse */
3333 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3334 regnode * const noper = NEXTOPER( cur );
3335 U8 noper_type = OP( noper );
3336 U8 noper_trietype = TRIE_TYPE( noper_type );
3337 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3338 regnode * const noper_next = regnext( noper );
3339 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
3340 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
3343 DEBUG_TRIE_COMPILE_r({
3344 regprop(RExC_rx, mysv, cur);
3345 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3346 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3348 regprop(RExC_rx, mysv, noper);
3349 PerlIO_printf( Perl_debug_log, " -> %s",
3350 SvPV_nolen_const(mysv));
3353 regprop(RExC_rx, mysv, noper_next );
3354 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3355 SvPV_nolen_const(mysv));
3357 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
3358 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
3359 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
3363 /* Is noper a trieable nodetype that can be merged with the
3364 * current trie (if there is one)? */
3368 ( noper_trietype == NOTHING)
3369 || ( trietype == NOTHING )
3370 || ( trietype == noper_trietype )
3373 && noper_next == tail
3377 /* Handle mergable triable node
3378 * Either we are the first node in a new trieable sequence,
3379 * in which case we do some bookkeeping, otherwise we update
3380 * the end pointer. */
3383 trietype = noper_trietype;
3384 if ( noper_trietype == NOTHING ) {
3385 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
3386 regnode * const noper_next = regnext( noper );
3387 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
3388 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
3391 if ( noper_next_trietype )
3392 trietype = noper_next_trietype;
3395 if ( trietype == NOTHING )
3396 trietype = noper_trietype;
3401 } /* end handle mergable triable node */
3403 /* handle unmergable node -
3404 * noper may either be a triable node which can not be tried
3405 * together with the current trie, or a non triable node */
3407 /* If last is set and trietype is not NOTHING then we have found
3408 * at least two triable branch sequences in a row of a similar
3409 * trietype so we can turn them into a trie. If/when we
3410 * allow NOTHING to start a trie sequence this condition will be
3411 * required, and it isn't expensive so we leave it in for now. */
3412 if ( trietype != NOTHING )
3413 make_trie( pRExC_state,
3414 startbranch, first, cur, tail, count,
3415 trietype, depth+1 );
3416 last = NULL; /* note: we clear/update first, trietype etc below, so we dont do it here */
3420 && noper_next == tail
3423 /* noper is triable, so we can start a new trie sequence */
3426 trietype = noper_trietype;
3428 /* if we already saw a first but the current node is not triable then we have
3429 * to reset the first information. */
3434 } /* end handle unmergable node */
3435 } /* loop over branches */
3436 DEBUG_TRIE_COMPILE_r({
3437 regprop(RExC_rx, mysv, cur);
3438 PerlIO_printf( Perl_debug_log,
3439 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3440 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3444 if ( trietype != NOTHING ) {
3445 /* the last branch of the sequence was part of a trie,
3446 * so we have to construct it here outside of the loop
3448 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, trietype, depth+1 );
3449 #ifdef TRIE_STUDY_OPT
3450 if ( ((made == MADE_EXACT_TRIE &&
3451 startbranch == first)
3452 || ( first_non_open == first )) &&
3454 flags |= SCF_TRIE_RESTUDY;
3455 if ( startbranch == first
3458 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3463 /* at this point we know whatever we have is a NOTHING sequence/branch
3464 * AND if 'startbranch' is 'first' then we can turn the whole thing into a NOTHING
3466 if ( startbranch == first ) {
3468 /* the entire thing is a NOTHING sequence, something like this:
3469 * (?:|) So we can turn it into a plain NOTHING op. */
3470 DEBUG_TRIE_COMPILE_r({
3471 regprop(RExC_rx, mysv, cur);
3472 PerlIO_printf( Perl_debug_log,
3473 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
3474 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3477 OP(startbranch)= NOTHING;
3478 NEXT_OFF(startbranch)= tail - startbranch;
3479 for ( opt= startbranch + 1; opt < tail ; opt++ )
3483 } /* end if ( last) */
3484 } /* TRIE_MAXBUF is non zero */
3489 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3490 scan = NEXTOPER(NEXTOPER(scan));
3491 } else /* single branch is optimized. */
3492 scan = NEXTOPER(scan);
3494 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3495 scan_frame *newframe = NULL;
3500 if (OP(scan) != SUSPEND) {
3501 /* set the pointer */
3502 if (OP(scan) == GOSUB) {
3504 RExC_recurse[ARG2L(scan)] = scan;
3505 start = RExC_open_parens[paren-1];
3506 end = RExC_close_parens[paren-1];
3509 start = RExC_rxi->program + 1;
3513 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3514 SAVEFREEPV(recursed);
3516 if (!PAREN_TEST(recursed,paren+1)) {
3517 PAREN_SET(recursed,paren+1);
3518 Newx(newframe,1,scan_frame);
3520 if (flags & SCF_DO_SUBSTR) {
3521 SCAN_COMMIT(pRExC_state,data,minlenp);
3522 data->longest = &(data->longest_float);
3524 is_inf = is_inf_internal = 1;
3525 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3526 cl_anything(pRExC_state, data->start_class);
3527 flags &= ~SCF_DO_STCLASS;
3530 Newx(newframe,1,scan_frame);
3533 end = regnext(scan);
3538 SAVEFREEPV(newframe);
3539 newframe->next = regnext(scan);
3540 newframe->last = last;
3541 newframe->stop = stopparen;
3542 newframe->prev = frame;
3552 else if (OP(scan) == EXACT) {
3553 I32 l = STR_LEN(scan);
3556 const U8 * const s = (U8*)STRING(scan);
3557 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3558 l = utf8_length(s, s + l);
3560 uc = *((U8*)STRING(scan));
3563 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3564 /* The code below prefers earlier match for fixed
3565 offset, later match for variable offset. */
3566 if (data->last_end == -1) { /* Update the start info. */
3567 data->last_start_min = data->pos_min;
3568 data->last_start_max = is_inf
3569 ? I32_MAX : data->pos_min + data->pos_delta;
3571 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3573 SvUTF8_on(data->last_found);
3575 SV * const sv = data->last_found;
3576 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3577 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3578 if (mg && mg->mg_len >= 0)
3579 mg->mg_len += utf8_length((U8*)STRING(scan),
3580 (U8*)STRING(scan)+STR_LEN(scan));
3582 data->last_end = data->pos_min + l;
3583 data->pos_min += l; /* As in the first entry. */
3584 data->flags &= ~SF_BEFORE_EOL;
3586 if (flags & SCF_DO_STCLASS_AND) {
3587 /* Check whether it is compatible with what we know already! */
3591 /* If compatible, we or it in below. It is compatible if is
3592 * in the bitmp and either 1) its bit or its fold is set, or 2)
3593 * it's for a locale. Even if there isn't unicode semantics
3594 * here, at runtime there may be because of matching against a
3595 * utf8 string, so accept a possible false positive for
3596 * latin1-range folds */
3598 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3599 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3600 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3601 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3606 ANYOF_CLASS_ZERO(data->start_class);
3607 ANYOF_BITMAP_ZERO(data->start_class);
3609 ANYOF_BITMAP_SET(data->start_class, uc);
3610 else if (uc >= 0x100) {
3613 /* Some Unicode code points fold to the Latin1 range; as
3614 * XXX temporary code, instead of figuring out if this is
3615 * one, just assume it is and set all the start class bits
3616 * that could be some such above 255 code point's fold
3617 * which will generate fals positives. As the code
3618 * elsewhere that does compute the fold settles down, it
3619 * can be extracted out and re-used here */
3620 for (i = 0; i < 256; i++){
3621 if (HAS_NONLATIN1_FOLD_CLOSURE(i)) {
3622 ANYOF_BITMAP_SET(data->start_class, i);
3626 data->start_class->flags &= ~ANYOF_EOS;
3628 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3630 else if (flags & SCF_DO_STCLASS_OR) {
3631 /* false positive possible if the class is case-folded */
3633 ANYOF_BITMAP_SET(data->start_class, uc);
3635 data->start_class->flags |= ANYOF_UNICODE_ALL;
3636 data->start_class->flags &= ~ANYOF_EOS;
3637 cl_and(data->start_class, and_withp);
3639 flags &= ~SCF_DO_STCLASS;
3641 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3642 I32 l = STR_LEN(scan);
3643 UV uc = *((U8*)STRING(scan));
3645 /* Search for fixed substrings supports EXACT only. */
3646 if (flags & SCF_DO_SUBSTR) {
3648 SCAN_COMMIT(pRExC_state, data, minlenp);
3651 const U8 * const s = (U8 *)STRING(scan);
3652 uc = utf8_to_uvchr_buf(s, s + l, NULL);
3653 l = utf8_length(s, s + l);
3655 else if (has_exactf_sharp_s) {
3656 RExC_seen |= REG_SEEN_EXACTF_SHARP_S;
3658 min += l - min_subtract;
3662 delta += min_subtract;
3663 if (flags & SCF_DO_SUBSTR) {
3664 data->pos_min += l - min_subtract;
3665 if (data->pos_min < 0) {
3668 data->pos_delta += min_subtract;
3670 data->longest = &(data->longest_float);
3673 if (flags & SCF_DO_STCLASS_AND) {
3674 /* Check whether it is compatible with what we know already! */
3677 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3678 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3679 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3683 ANYOF_CLASS_ZERO(data->start_class);
3684 ANYOF_BITMAP_ZERO(data->start_class);
3686 ANYOF_BITMAP_SET(data->start_class, uc);
3687 data->start_class->flags &= ~ANYOF_EOS;
3688 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3689 if (OP(scan) == EXACTFL) {
3690 /* XXX This set is probably no longer necessary, and
3691 * probably wrong as LOCALE now is on in the initial
3693 data->start_class->flags |= ANYOF_LOCALE;
3697 /* Also set the other member of the fold pair. In case
3698 * that unicode semantics is called for at runtime, use
3699 * the full latin1 fold. (Can't do this for locale,
3700 * because not known until runtime) */
3701 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3703 /* All other (EXACTFL handled above) folds except under
3704 * /iaa that include s, S, and sharp_s also may include
3706 if (OP(scan) != EXACTFA) {
3707 if (uc == 's' || uc == 'S') {
3708 ANYOF_BITMAP_SET(data->start_class,
3709 LATIN_SMALL_LETTER_SHARP_S);
3711 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3712 ANYOF_BITMAP_SET(data->start_class, 's');
3713 ANYOF_BITMAP_SET(data->start_class, 'S');
3718 else if (uc >= 0x100) {
3720 for (i = 0; i < 256; i++){
3721 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3722 ANYOF_BITMAP_SET(data->start_class, i);
3727 else if (flags & SCF_DO_STCLASS_OR) {
3728 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3729 /* false positive possible if the class is case-folded.
3730 Assume that the locale settings are the same... */
3732 ANYOF_BITMAP_SET(data->start_class, uc);
3733 if (OP(scan) != EXACTFL) {
3735 /* And set the other member of the fold pair, but
3736 * can't do that in locale because not known until
3738 ANYOF_BITMAP_SET(data->start_class,
3739 PL_fold_latin1[uc]);
3741 /* All folds except under /iaa that include s, S,
3742 * and sharp_s also may include the others */
3743 if (OP(scan) != EXACTFA) {
3744 if (uc == 's' || uc == 'S') {
3745 ANYOF_BITMAP_SET(data->start_class,
3746 LATIN_SMALL_LETTER_SHARP_S);
3748 else if (uc == LATIN_SMALL_LETTER_SHARP_S) {
3749 ANYOF_BITMAP_SET(data->start_class, 's');
3750 ANYOF_BITMAP_SET(data->start_class, 'S');
3755 data->start_class->flags &= ~ANYOF_EOS;
3757 cl_and(data->start_class, and_withp);
3759 flags &= ~SCF_DO_STCLASS;
3761 else if (REGNODE_VARIES(OP(scan))) {
3762 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3763 I32 f = flags, pos_before = 0;
3764 regnode * const oscan = scan;
3765 struct regnode_charclass_class this_class;
3766 struct regnode_charclass_class *oclass = NULL;
3767 I32 next_is_eval = 0;
3769 switch (PL_regkind[OP(scan)]) {
3770 case WHILEM: /* End of (?:...)* . */
3771 scan = NEXTOPER(scan);
3774 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3775 next = NEXTOPER(scan);
3776 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3778 maxcount = REG_INFTY;
3779 next = regnext(scan);
3780 scan = NEXTOPER(scan);
3784 if (flags & SCF_DO_SUBSTR)
3789 if (flags & SCF_DO_STCLASS) {
3791 maxcount = REG_INFTY;
3792 next = regnext(scan);
3793 scan = NEXTOPER(scan);
3796 is_inf = is_inf_internal = 1;
3797 scan = regnext(scan);
3798 if (flags & SCF_DO_SUBSTR) {
3799 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3800 data->longest = &(data->longest_float);
3802 goto optimize_curly_tail;
3804 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3805 && (scan->flags == stopparen))
3810 mincount = ARG1(scan);
3811 maxcount = ARG2(scan);
3813 next = regnext(scan);
3814 if (OP(scan) == CURLYX) {
3815 I32 lp = (data ? *(data->last_closep) : 0);
3816 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3818 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3819 next_is_eval = (OP(scan) == EVAL);
3821 if (flags & SCF_DO_SUBSTR) {
3822 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3823 pos_before = data->pos_min;
3827 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3829 data->flags |= SF_IS_INF;
3831 if (flags & SCF_DO_STCLASS) {
3832 cl_init(pRExC_state, &this_class);
3833 oclass = data->start_class;
3834 data->start_class = &this_class;
3835 f |= SCF_DO_STCLASS_AND;
3836 f &= ~SCF_DO_STCLASS_OR;
3838 /* Exclude from super-linear cache processing any {n,m}
3839 regops for which the combination of input pos and regex
3840 pos is not enough information to determine if a match
3843 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3844 regex pos at the \s*, the prospects for a match depend not
3845 only on the input position but also on how many (bar\s*)
3846 repeats into the {4,8} we are. */
3847 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3848 f &= ~SCF_WHILEM_VISITED_POS;
3850 /* This will finish on WHILEM, setting scan, or on NULL: */
3851 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3852 last, data, stopparen, recursed, NULL,
3854 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3856 if (flags & SCF_DO_STCLASS)
3857 data->start_class = oclass;
3858 if (mincount == 0 || minnext == 0) {
3859 if (flags & SCF_DO_STCLASS_OR) {
3860 cl_or(pRExC_state, data->start_class, &this_class);
3862 else if (flags & SCF_DO_STCLASS_AND) {
3863 /* Switch to OR mode: cache the old value of
3864 * data->start_class */
3866 StructCopy(data->start_class, and_withp,
3867 struct regnode_charclass_class);
3868 flags &= ~SCF_DO_STCLASS_AND;
3869 StructCopy(&this_class, data->start_class,
3870 struct regnode_charclass_class);
3871 flags |= SCF_DO_STCLASS_OR;
3872 data->start_class->flags |= ANYOF_EOS;
3874 } else { /* Non-zero len */
3875 if (flags & SCF_DO_STCLASS_OR) {
3876 cl_or(pRExC_state, data->start_class, &this_class);
3877 cl_and(data->start_class, and_withp);
3879 else if (flags & SCF_DO_STCLASS_AND)
3880 cl_and(data->start_class, &this_class);
3881 flags &= ~SCF_DO_STCLASS;
3883 if (!scan) /* It was not CURLYX, but CURLY. */
3885 if ( /* ? quantifier ok, except for (?{ ... }) */
3886 (next_is_eval || !(mincount == 0 && maxcount == 1))
3887 && (minnext == 0) && (deltanext == 0)
3888 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3889 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3891 ckWARNreg(RExC_parse,
3892 "Quantifier unexpected on zero-length expression");
3895 min += minnext * mincount;
3896 is_inf_internal |= ((maxcount == REG_INFTY
3897 && (minnext + deltanext) > 0)
3898 || deltanext == I32_MAX);
3899 is_inf |= is_inf_internal;
3900 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3902 /* Try powerful optimization CURLYX => CURLYN. */
3903 if ( OP(oscan) == CURLYX && data
3904 && data->flags & SF_IN_PAR
3905 && !(data->flags & SF_HAS_EVAL)
3906 && !deltanext && minnext == 1 ) {
3907 /* Try to optimize to CURLYN. */
3908 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3909 regnode * const nxt1 = nxt;
3916 if (!REGNODE_SIMPLE(OP(nxt))
3917 && !(PL_regkind[OP(nxt)] == EXACT
3918 && STR_LEN(nxt) == 1))
3924 if (OP(nxt) != CLOSE)
3926 if (RExC_open_parens) {
3927 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3928 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3930 /* Now we know that nxt2 is the only contents: */
3931 oscan->flags = (U8)ARG(nxt);
3933 OP(nxt1) = NOTHING; /* was OPEN. */
3936 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3937 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3938 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3939 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3940 OP(nxt + 1) = OPTIMIZED; /* was count. */
3941 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3946 /* Try optimization CURLYX => CURLYM. */
3947 if ( OP(oscan) == CURLYX && data
3948 && !(data->flags & SF_HAS_PAR)
3949 && !(data->flags & SF_HAS_EVAL)
3950 && !deltanext /* atom is fixed width */
3951 && minnext != 0 /* CURLYM can't handle zero width */
3953 /* XXXX How to optimize if data == 0? */
3954 /* Optimize to a simpler form. */
3955 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3959 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3960 && (OP(nxt2) != WHILEM))
3962 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3963 /* Need to optimize away parenths. */
3964 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3965 /* Set the parenth number. */
3966 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3968 oscan->flags = (U8)ARG(nxt);
3969 if (RExC_open_parens) {
3970 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3971 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3973 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3974 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3977 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3978 OP(nxt + 1) = OPTIMIZED; /* was count. */
3979 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3980 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3983 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3984 regnode *nnxt = regnext(nxt1);
3986 if (reg_off_by_arg[OP(nxt1)])
3987 ARG_SET(nxt1, nxt2 - nxt1);
3988 else if (nxt2 - nxt1 < U16_MAX)
3989 NEXT_OFF(nxt1) = nxt2 - nxt1;
3991 OP(nxt) = NOTHING; /* Cannot beautify */
3996 /* Optimize again: */
3997 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3998 NULL, stopparen, recursed, NULL, 0,depth+1);
4003 else if ((OP(oscan) == CURLYX)
4004 && (flags & SCF_WHILEM_VISITED_POS)
4005 /* See the comment on a similar expression above.
4006 However, this time it's not a subexpression
4007 we care about, but the expression itself. */
4008 && (maxcount == REG_INFTY)
4009 && data && ++data->whilem_c < 16) {
4010 /* This stays as CURLYX, we can put the count/of pair. */
4011 /* Find WHILEM (as in regexec.c) */
4012 regnode *nxt = oscan + NEXT_OFF(oscan);
4014 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4016 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4017 | (RExC_whilem_seen << 4)); /* On WHILEM */
4019 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4021 if (flags & SCF_DO_SUBSTR) {
4022 SV *last_str = NULL;
4023 int counted = mincount != 0;
4025 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
4026 #if defined(SPARC64_GCC_WORKAROUND)
4029 const char *s = NULL;
4032 if (pos_before >= data->last_start_min)
4035 b = data->last_start_min;
4038 s = SvPV_const(data->last_found, l);
4039 old = b - data->last_start_min;
4042 I32 b = pos_before >= data->last_start_min
4043 ? pos_before : data->last_start_min;
4045 const char * const s = SvPV_const(data->last_found, l);
4046 I32 old = b - data->last_start_min;
4050 old = utf8_hop((U8*)s, old) - (U8*)s;
4052 /* Get the added string: */
4053 last_str = newSVpvn_utf8(s + old, l, UTF);
4054 if (deltanext == 0 && pos_before == b) {
4055 /* What was added is a constant string */
4057 SvGROW(last_str, (mincount * l) + 1);
4058 repeatcpy(SvPVX(last_str) + l,
4059 SvPVX_const(last_str), l, mincount - 1);
4060 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4061 /* Add additional parts. */
4062 SvCUR_set(data->last_found,
4063 SvCUR(data->last_found) - l);
4064 sv_catsv(data->last_found, last_str);
4066 SV * sv = data->last_found;
4068 SvUTF8(sv) && SvMAGICAL(sv) ?
4069 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4070 if (mg && mg->mg_len >= 0)
4071 mg->mg_len += CHR_SVLEN(last_str) - l;
4073 data->last_end += l * (mincount - 1);
4076 /* start offset must point into the last copy */
4077 data->last_start_min += minnext * (mincount - 1);
4078 data->last_start_max += is_inf ? I32_MAX
4079 : (maxcount - 1) * (minnext + data->pos_delta);
4082 /* It is counted once already... */
4083 data->pos_min += minnext * (mincount - counted);
4084 data->pos_delta += - counted * deltanext +
4085 (minnext + deltanext) * maxcount - minnext * mincount;
4086 if (mincount != maxcount) {
4087 /* Cannot extend fixed substrings found inside
4089 SCAN_COMMIT(pRExC_state,data,minlenp);
4090 if (mincount && last_str) {
4091 SV * const sv = data->last_found;
4092 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4093 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4097 sv_setsv(sv, last_str);
4098 data->last_end = data->pos_min;
4099 data->last_start_min =
4100 data->pos_min - CHR_SVLEN(last_str);
4101 data->last_start_max = is_inf
4103 : data->pos_min + data->pos_delta
4104 - CHR_SVLEN(last_str);
4106 data->longest = &(data->longest_float);
4108 SvREFCNT_dec(last_str);
4110 if (data && (fl & SF_HAS_EVAL))
4111 data->flags |= SF_HAS_EVAL;
4112 optimize_curly_tail:
4113 if (OP(oscan) != CURLYX) {
4114 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4116 NEXT_OFF(oscan) += NEXT_OFF(next);
4119 default: /* REF, ANYOFV, and CLUMP only? */
4120 if (flags & SCF_DO_SUBSTR) {
4121 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4122 data->longest = &(data->longest_float);
4124 is_inf = is_inf_internal = 1;
4125 if (flags & SCF_DO_STCLASS_OR)
4126 cl_anything(pRExC_state, data->start_class);
4127 flags &= ~SCF_DO_STCLASS;
4131 else if (OP(scan) == LNBREAK) {
4132 if (flags & SCF_DO_STCLASS) {
4134 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
4135 if (flags & SCF_DO_STCLASS_AND) {
4136 for (value = 0; value < 256; value++)
4137 if (!is_VERTWS_cp(value))
4138 ANYOF_BITMAP_CLEAR(data->start_class, value);
4141 for (value = 0; value < 256; value++)
4142 if (is_VERTWS_cp(value))
4143 ANYOF_BITMAP_SET(data->start_class, value);
4145 if (flags & SCF_DO_STCLASS_OR)
4146 cl_and(data->start_class, and_withp);
4147 flags &= ~SCF_DO_STCLASS;
4151 if (flags & SCF_DO_SUBSTR) {
4152 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4154 data->pos_delta += 1;
4155 data->longest = &(data->longest_float);
4158 else if (REGNODE_SIMPLE(OP(scan))) {
4161 if (flags & SCF_DO_SUBSTR) {
4162 SCAN_COMMIT(pRExC_state,data,minlenp);
4166 if (flags & SCF_DO_STCLASS) {
4167 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
4169 /* Some of the logic below assumes that switching
4170 locale on will only add false positives. */
4171 switch (PL_regkind[OP(scan)]) {
4175 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
4176 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4177 cl_anything(pRExC_state, data->start_class);
4180 if (OP(scan) == SANY)
4182 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
4183 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
4184 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
4185 cl_anything(pRExC_state, data->start_class);
4187 if (flags & SCF_DO_STCLASS_AND || !value)
4188 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
4191 if (flags & SCF_DO_STCLASS_AND)
4192 cl_and(data->start_class,
4193 (struct regnode_charclass_class*)scan);
4195 cl_or(pRExC_state, data->start_class,
4196 (struct regnode_charclass_class*)scan);
4199 if (flags & SCF_DO_STCLASS_AND) {
4200 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4201 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
4202 if (OP(scan) == ALNUMU) {
4203 for (value = 0; value < 256; value++) {
4204 if (!isWORDCHAR_L1(value)) {
4205 ANYOF_BITMAP_CLEAR(data->start_class, value);
4209 for (value = 0; value < 256; value++) {
4210 if (!isALNUM(value)) {
4211 ANYOF_BITMAP_CLEAR(data->start_class, value);
4218 if (data->start_class->flags & ANYOF_LOCALE)
4219 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
4221 /* Even if under locale, set the bits for non-locale
4222 * in case it isn't a true locale-node. This will
4223 * create false positives if it truly is locale */
4224 if (OP(scan) == ALNUMU) {
4225 for (value = 0; value < 256; value++) {
4226 if (isWORDCHAR_L1(value)) {
4227 ANYOF_BITMAP_SET(data->start_class, value);
4231 for (value = 0; value < 256; value++) {
4232 if (isALNUM(value)) {
4233 ANYOF_BITMAP_SET(data->start_class, value);
4240 if (flags & SCF_DO_STCLASS_AND) {
4241 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4242 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
4243 if (OP(scan) == NALNUMU) {
4244 for (value = 0; value < 256; value++) {
4245 if (isWORDCHAR_L1(value)) {
4246 ANYOF_BITMAP_CLEAR(data->start_class, value);
4250 for (value = 0; value < 256; value++) {
4251 if (isALNUM(value)) {
4252 ANYOF_BITMAP_CLEAR(data->start_class, value);
4259 if (data->start_class->flags & ANYOF_LOCALE)
4260 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
4262 /* Even if under locale, set the bits for non-locale in
4263 * case it isn't a true locale-node. This will create
4264 * false positives if it truly is locale */
4265 if (OP(scan) == NALNUMU) {
4266 for (value = 0; value < 256; value++) {
4267 if (! isWORDCHAR_L1(value)) {
4268 ANYOF_BITMAP_SET(data->start_class, value);
4272 for (value = 0; value < 256; value++) {
4273 if (! isALNUM(value)) {
4274 ANYOF_BITMAP_SET(data->start_class, value);
4281 if (flags & SCF_DO_STCLASS_AND) {
4282 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4283 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
4284 if (OP(scan) == SPACEU) {
4285 for (value = 0; value < 256; value++) {
4286 if (!isSPACE_L1(value)) {
4287 ANYOF_BITMAP_CLEAR(data->start_class, value);
4291 for (value = 0; value < 256; value++) {
4292 if (!isSPACE(value)) {
4293 ANYOF_BITMAP_CLEAR(data->start_class, value);
4300 if (data->start_class->flags & ANYOF_LOCALE) {
4301 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
4303 if (OP(scan) == SPACEU) {
4304 for (value = 0; value < 256; value++) {
4305 if (isSPACE_L1(value)) {
4306 ANYOF_BITMAP_SET(data->start_class, value);
4310 for (value = 0; value < 256; value++) {
4311 if (isSPACE(value)) {
4312 ANYOF_BITMAP_SET(data->start_class, value);
4319 if (flags & SCF_DO_STCLASS_AND) {
4320 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4321 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
4322 if (OP(scan) == NSPACEU) {
4323 for (value = 0; value < 256; value++) {
4324 if (isSPACE_L1(value)) {
4325 ANYOF_BITMAP_CLEAR(data->start_class, value);
4329 for (value = 0; value < 256; value++) {
4330 if (isSPACE(value)) {
4331 ANYOF_BITMAP_CLEAR(data->start_class, value);
4338 if (data->start_class->flags & ANYOF_LOCALE)
4339 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
4340 if (OP(scan) == NSPACEU) {
4341 for (value = 0; value < 256; value++) {
4342 if (!isSPACE_L1(value)) {
4343 ANYOF_BITMAP_SET(data->start_class, value);
4348 for (value = 0; value < 256; value++) {
4349 if (!isSPACE(value)) {
4350 ANYOF_BITMAP_SET(data->start_class, value);
4357 if (flags & SCF_DO_STCLASS_AND) {
4358 if (!(data->start_class->flags & ANYOF_LOCALE)) {
4359 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
4360 for (value = 0; value < 256; value++)
4361 if (!isDIGIT(value))
4362 ANYOF_BITMAP_CLEAR(data->start_class, value);
4366 if (data->start_class->flags & ANYOF_LOCALE)
4367 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
4368 for (value = 0; value < 256; value++)
4370 ANYOF_BITMAP_SET(data->start_class, value);
4374 if (flags & SCF_DO_STCLASS_AND) {
4375 if (!(data->start_class->flags & ANYOF_LOCALE))
4376 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
4377 for (value = 0; value < 256; value++)
4379 ANYOF_BITMAP_CLEAR(data->start_class, value);
4382 if (data->start_class->flags & ANYOF_LOCALE)
4383 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
4384 for (value = 0; value < 256; value++)
4385 if (!isDIGIT(value))
4386 ANYOF_BITMAP_SET(data->start_class, value);
4389 CASE_SYNST_FNC(VERTWS);
4390 CASE_SYNST_FNC(HORIZWS);
4393 if (flags & SCF_DO_STCLASS_OR)
4394 cl_and(data->start_class, and_withp);
4395 flags &= ~SCF_DO_STCLASS;
4398 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
4399 data->flags |= (OP(scan) == MEOL
4403 else if ( PL_regkind[OP(scan)] == BRANCHJ
4404 /* Lookbehind, or need to calculate parens/evals/stclass: */
4405 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4406 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4407 if ( OP(scan) == UNLESSM &&
4409 OP(NEXTOPER(NEXTOPER(scan))) == NOTHING &&
4410 OP(regnext(NEXTOPER(NEXTOPER(scan)))) == SUCCEED
4413 regnode *upto= regnext(scan);
4415 SV * const mysv_val=sv_newmortal();
4416 DEBUG_STUDYDATA("OPFAIL",data,depth);
4418 /*DEBUG_PARSE_MSG("opfail");*/
4419 regprop(RExC_rx, mysv_val, upto);
4420 PerlIO_printf(Perl_debug_log, "~ replace with OPFAIL pointed at %s (%"IVdf") offset %"IVdf"\n",
4421 SvPV_nolen_const(mysv_val),
4422 (IV)REG_NODE_NUM(upto),
4427 NEXT_OFF(scan) = upto - scan;
4428 for (opt= scan + 1; opt < upto ; opt++)
4429 OP(opt) = OPTIMIZED;
4433 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4434 || OP(scan) == UNLESSM )
4436 /* Negative Lookahead/lookbehind
4437 In this case we can't do fixed string optimisation.
4440 I32 deltanext, minnext, fake = 0;
4442 struct regnode_charclass_class intrnl;
4445 data_fake.flags = 0;
4447 data_fake.whilem_c = data->whilem_c;
4448 data_fake.last_closep = data->last_closep;
4451 data_fake.last_closep = &fake;
4452 data_fake.pos_delta = delta;
4453 if ( flags & SCF_DO_STCLASS && !scan->flags
4454 && OP(scan) == IFMATCH ) { /* Lookahead */
4455 cl_init(pRExC_state, &intrnl);
4456 data_fake.start_class = &intrnl;
4457 f |= SCF_DO_STCLASS_AND;
4459 if (flags & SCF_WHILEM_VISITED_POS)
4460 f |= SCF_WHILEM_VISITED_POS;
4461 next = regnext(scan);
4462 nscan = NEXTOPER(NEXTOPER(scan));
4463 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4464 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4467 FAIL("Variable length lookbehind not implemented");
4469 else if (minnext > (I32)U8_MAX) {
4470 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4472 scan->flags = (U8)minnext;
4475 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4477 if (data_fake.flags & SF_HAS_EVAL)
4478 data->flags |= SF_HAS_EVAL;
4479 data->whilem_c = data_fake.whilem_c;
4481 if (f & SCF_DO_STCLASS_AND) {
4482 if (flags & SCF_DO_STCLASS_OR) {
4483 /* OR before, AND after: ideally we would recurse with
4484 * data_fake to get the AND applied by study of the
4485 * remainder of the pattern, and then derecurse;
4486 * *** HACK *** for now just treat as "no information".
4487 * See [perl #56690].
4489 cl_init(pRExC_state, data->start_class);
4491 /* AND before and after: combine and continue */
4492 const int was = (data->start_class->flags & ANYOF_EOS);
4494 cl_and(data->start_class, &intrnl);
4496 data->start_class->flags |= ANYOF_EOS;
4500 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4502 /* Positive Lookahead/lookbehind
4503 In this case we can do fixed string optimisation,
4504 but we must be careful about it. Note in the case of
4505 lookbehind the positions will be offset by the minimum
4506 length of the pattern, something we won't know about
4507 until after the recurse.
4509 I32 deltanext, fake = 0;
4511 struct regnode_charclass_class intrnl;
4513 /* We use SAVEFREEPV so that when the full compile
4514 is finished perl will clean up the allocated
4515 minlens when it's all done. This way we don't
4516 have to worry about freeing them when we know
4517 they wont be used, which would be a pain.
4520 Newx( minnextp, 1, I32 );
4521 SAVEFREEPV(minnextp);
4524 StructCopy(data, &data_fake, scan_data_t);
4525 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4528 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4529 data_fake.last_found=newSVsv(data->last_found);
4533 data_fake.last_closep = &fake;
4534 data_fake.flags = 0;
4535 data_fake.pos_delta = delta;
4537 data_fake.flags |= SF_IS_INF;
4538 if ( flags & SCF_DO_STCLASS && !scan->flags
4539 && OP(scan) == IFMATCH ) { /* Lookahead */
4540 cl_init(pRExC_state, &intrnl);
4541 data_fake.start_class = &intrnl;
4542 f |= SCF_DO_STCLASS_AND;
4544 if (flags & SCF_WHILEM_VISITED_POS)
4545 f |= SCF_WHILEM_VISITED_POS;
4546 next = regnext(scan);
4547 nscan = NEXTOPER(NEXTOPER(scan));
4549 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4550 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4553 FAIL("Variable length lookbehind not implemented");
4555 else if (*minnextp > (I32)U8_MAX) {
4556 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4558 scan->flags = (U8)*minnextp;
4563 if (f & SCF_DO_STCLASS_AND) {
4564 const int was = (data->start_class->flags & ANYOF_EOS);
4566 cl_and(data->start_class, &intrnl);
4568 data->start_class->flags |= ANYOF_EOS;
4571 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4573 if (data_fake.flags & SF_HAS_EVAL)
4574 data->flags |= SF_HAS_EVAL;
4575 data->whilem_c = data_fake.whilem_c;
4576 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4577 if (RExC_rx->minlen<*minnextp)
4578 RExC_rx->minlen=*minnextp;
4579 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4580 SvREFCNT_dec(data_fake.last_found);
4582 if ( data_fake.minlen_fixed != minlenp )
4584 data->offset_fixed= data_fake.offset_fixed;
4585 data->minlen_fixed= data_fake.minlen_fixed;
4586 data->lookbehind_fixed+= scan->flags;
4588 if ( data_fake.minlen_float != minlenp )
4590 data->minlen_float= data_fake.minlen_float;
4591 data->offset_float_min=data_fake.offset_float_min;
4592 data->offset_float_max=data_fake.offset_float_max;
4593 data->lookbehind_float+= scan->flags;
4600 else if (OP(scan) == OPEN) {
4601 if (stopparen != (I32)ARG(scan))
4604 else if (OP(scan) == CLOSE) {
4605 if (stopparen == (I32)ARG(scan)) {
4608 if ((I32)ARG(scan) == is_par) {
4609 next = regnext(scan);
4611 if ( next && (OP(next) != WHILEM) && next < last)
4612 is_par = 0; /* Disable optimization */
4615 *(data->last_closep) = ARG(scan);
4617 else if (OP(scan) == EVAL) {
4619 data->flags |= SF_HAS_EVAL;
4621 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4622 if (flags & SCF_DO_SUBSTR) {
4623 SCAN_COMMIT(pRExC_state,data,minlenp);
4624 flags &= ~SCF_DO_SUBSTR;
4626 if (data && OP(scan)==ACCEPT) {
4627 data->flags |= SCF_SEEN_ACCEPT;
4632 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4634 if (flags & SCF_DO_SUBSTR) {
4635 SCAN_COMMIT(pRExC_state,data,minlenp);
4636 data->longest = &(data->longest_float);
4638 is_inf = is_inf_internal = 1;
4639 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4640 cl_anything(pRExC_state, data->start_class);
4641 flags &= ~SCF_DO_STCLASS;
4643 else if (OP(scan) == GPOS) {
4644 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4645 !(delta || is_inf || (data && data->pos_delta)))
4647 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4648 RExC_rx->extflags |= RXf_ANCH_GPOS;
4649 if (RExC_rx->gofs < (U32)min)
4650 RExC_rx->gofs = min;
4652 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4656 #ifdef TRIE_STUDY_OPT
4657 #ifdef FULL_TRIE_STUDY
4658 else if (PL_regkind[OP(scan)] == TRIE) {
4659 /* NOTE - There is similar code to this block above for handling
4660 BRANCH nodes on the initial study. If you change stuff here
4662 regnode *trie_node= scan;
4663 regnode *tail= regnext(scan);
4664 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4665 I32 max1 = 0, min1 = I32_MAX;
4666 struct regnode_charclass_class accum;
4668 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4669 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4670 if (flags & SCF_DO_STCLASS)
4671 cl_init_zero(pRExC_state, &accum);
4677 const regnode *nextbranch= NULL;
4680 for ( word=1 ; word <= trie->wordcount ; word++)
4682 I32 deltanext=0, minnext=0, f = 0, fake;
4683 struct regnode_charclass_class this_class;
4685 data_fake.flags = 0;
4687 data_fake.whilem_c = data->whilem_c;
4688 data_fake.last_closep = data->last_closep;
4691 data_fake.last_closep = &fake;
4692 data_fake.pos_delta = delta;
4693 if (flags & SCF_DO_STCLASS) {
4694 cl_init(pRExC_state, &this_class);
4695 data_fake.start_class = &this_class;
4696 f = SCF_DO_STCLASS_AND;
4698 if (flags & SCF_WHILEM_VISITED_POS)
4699 f |= SCF_WHILEM_VISITED_POS;
4701 if (trie->jump[word]) {
4703 nextbranch = trie_node + trie->jump[0];
4704 scan= trie_node + trie->jump[word];
4705 /* We go from the jump point to the branch that follows
4706 it. Note this means we need the vestigal unused branches
4707 even though they arent otherwise used.
4709 minnext = study_chunk(pRExC_state, &scan, minlenp,
4710 &deltanext, (regnode *)nextbranch, &data_fake,
4711 stopparen, recursed, NULL, f,depth+1);
4713 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4714 nextbranch= regnext((regnode*)nextbranch);
4716 if (min1 > (I32)(minnext + trie->minlen))
4717 min1 = minnext + trie->minlen;
4718 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4719 max1 = minnext + deltanext + trie->maxlen;
4720 if (deltanext == I32_MAX)
4721 is_inf = is_inf_internal = 1;
4723 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4725 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4726 if ( stopmin > min + min1)
4727 stopmin = min + min1;
4728 flags &= ~SCF_DO_SUBSTR;
4730 data->flags |= SCF_SEEN_ACCEPT;
4733 if (data_fake.flags & SF_HAS_EVAL)
4734 data->flags |= SF_HAS_EVAL;
4735 data->whilem_c = data_fake.whilem_c;
4737 if (flags & SCF_DO_STCLASS)
4738 cl_or(pRExC_state, &accum, &this_class);
4741 if (flags & SCF_DO_SUBSTR) {
4742 data->pos_min += min1;
4743 data->pos_delta += max1 - min1;
4744 if (max1 != min1 || is_inf)
4745 data->longest = &(data->longest_float);
4748 delta += max1 - min1;
4749 if (flags & SCF_DO_STCLASS_OR) {
4750 cl_or(pRExC_state, data->start_class, &accum);
4752 cl_and(data->start_class, and_withp);
4753 flags &= ~SCF_DO_STCLASS;
4756 else if (flags & SCF_DO_STCLASS_AND) {
4758 cl_and(data->start_class, &accum);
4759 flags &= ~SCF_DO_STCLASS;
4762 /* Switch to OR mode: cache the old value of
4763 * data->start_class */
4765 StructCopy(data->start_class, and_withp,
4766 struct regnode_charclass_class);
4767 flags &= ~SCF_DO_STCLASS_AND;
4768 StructCopy(&accum, data->start_class,
4769 struct regnode_charclass_class);
4770 flags |= SCF_DO_STCLASS_OR;
4771 data->start_class->flags |= ANYOF_EOS;
4778 else if (PL_regkind[OP(scan)] == TRIE) {
4779 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4782 min += trie->minlen;
4783 delta += (trie->maxlen - trie->minlen);
4784 flags &= ~SCF_DO_STCLASS; /* xxx */
4785 if (flags & SCF_DO_SUBSTR) {
4786 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4787 data->pos_min += trie->minlen;
4788 data->pos_delta += (trie->maxlen - trie->minlen);
4789 if (trie->maxlen != trie->minlen)
4790 data->longest = &(data->longest_float);
4792 if (trie->jump) /* no more substrings -- for now /grr*/
4793 flags &= ~SCF_DO_SUBSTR;
4795 #endif /* old or new */
4796 #endif /* TRIE_STUDY_OPT */
4798 /* Else: zero-length, ignore. */
4799 scan = regnext(scan);
4804 stopparen = frame->stop;
4805 frame = frame->prev;
4806 goto fake_study_recurse;
4811 DEBUG_STUDYDATA("pre-fin:",data,depth);
4814 *deltap = is_inf_internal ? I32_MAX : delta;
4815 if (flags & SCF_DO_SUBSTR && is_inf)
4816 data->pos_delta = I32_MAX - data->pos_min;
4817 if (is_par > (I32)U8_MAX)
4819 if (is_par && pars==1 && data) {
4820 data->flags |= SF_IN_PAR;
4821 data->flags &= ~SF_HAS_PAR;
4823 else if (pars && data) {
4824 data->flags |= SF_HAS_PAR;
4825 data->flags &= ~SF_IN_PAR;
4827 if (flags & SCF_DO_STCLASS_OR)
4828 cl_and(data->start_class, and_withp);
4829 if (flags & SCF_TRIE_RESTUDY)
4830 data->flags |= SCF_TRIE_RESTUDY;
4832 DEBUG_STUDYDATA("post-fin:",data,depth);
4834 return min < stopmin ? min : stopmin;
4838 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4840 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4842 PERL_ARGS_ASSERT_ADD_DATA;
4844 Renewc(RExC_rxi->data,
4845 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4846 char, struct reg_data);
4848 Renew(RExC_rxi->data->what, count + n, U8);
4850 Newx(RExC_rxi->data->what, n, U8);
4851 RExC_rxi->data->count = count + n;
4852 Copy(s, RExC_rxi->data->what + count, n, U8);
4856 /*XXX: todo make this not included in a non debugging perl */
4857 #ifndef PERL_IN_XSUB_RE
4859 Perl_reginitcolors(pTHX)
4862 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4864 char *t = savepv(s);
4868 t = strchr(t, '\t');
4874 PL_colors[i] = t = (char *)"";
4879 PL_colors[i++] = (char *)"";
4886 #ifdef TRIE_STUDY_OPT
4887 #define CHECK_RESTUDY_GOTO \
4889 (data.flags & SCF_TRIE_RESTUDY) \
4893 #define CHECK_RESTUDY_GOTO
4897 * pregcomp - compile a regular expression into internal code
4899 * Decides which engine's compiler to call based on the hint currently in
4903 #ifndef PERL_IN_XSUB_RE
4905 /* return the currently in-scope regex engine (or the default if none) */
4907 regexp_engine const *
4908 Perl_current_re_engine(pTHX)
4912 if (IN_PERL_COMPILETIME) {
4913 HV * const table = GvHV(PL_hintgv);
4917 return &PL_core_reg_engine;
4918 ptr = hv_fetchs(table, "regcomp", FALSE);
4919 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
4920 return &PL_core_reg_engine;
4921 return INT2PTR(regexp_engine*,SvIV(*ptr));
4925 if (!PL_curcop->cop_hints_hash)
4926 return &PL_core_reg_engine;
4927 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
4928 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
4929 return &PL_core_reg_engine;
4930 return INT2PTR(regexp_engine*,SvIV(ptr));
4936 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4939 regexp_engine const *eng = current_re_engine();
4940 GET_RE_DEBUG_FLAGS_DECL;
4942 PERL_ARGS_ASSERT_PREGCOMP;
4944 /* Dispatch a request to compile a regexp to correct regexp engine. */
4946 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4949 return CALLREGCOMP_ENG(eng, pattern, flags);
4953 /* public(ish) wrapper for Perl_re_op_compile that only takes an SV
4954 * pattern rather than a list of OPs */
4957 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
4959 SV *pat = pattern; /* defeat constness! */
4960 PERL_ARGS_ASSERT_RE_COMPILE;
4961 return Perl_re_op_compile(aTHX_ &pat, 1, NULL, current_re_engine(),
4962 NULL, NULL, rx_flags, 0);
4965 /* see if there are any run-time code blocks in the pattern.
4966 * False positives are allowed */
4969 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state, OP *expr,
4970 U32 pm_flags, char *pat, STRLEN plen)
4975 /* avoid infinitely recursing when we recompile the pattern parcelled up
4976 * as qr'...'. A single constant qr// string can't have have any
4977 * run-time component in it, and thus, no runtime code. (A non-qr
4978 * string, however, can, e.g. $x =~ '(?{})') */
4979 if ((pm_flags & PMf_IS_QR) && expr && expr->op_type == OP_CONST)
4982 for (s = 0; s < plen; s++) {
4983 if (n < pRExC_state->num_code_blocks
4984 && s == pRExC_state->code_blocks[n].start)
4986 s = pRExC_state->code_blocks[n].end;
4990 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
4992 if (pat[s] == '(' && pat[s+1] == '?' &&
4993 (pat[s+2] == '{' || (pat[s+2] == '?' && pat[s+3] == '{'))
5000 /* Handle run-time code blocks. We will already have compiled any direct
5001 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
5002 * copy of it, but with any literal code blocks blanked out and
5003 * appropriate chars escaped; then feed it into
5005 * eval "qr'modified_pattern'"
5009 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
5013 * qr'a\\bc def\'ghi\\\\jkl(?{"this is runtime"})mno'
5015 * After eval_sv()-ing that, grab any new code blocks from the returned qr
5016 * and merge them with any code blocks of the original regexp.
5018 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
5019 * instead, just save the qr and return FALSE; this tells our caller that
5020 * the original pattern needs upgrading to utf8.
5024 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
5025 char *pat, STRLEN plen)
5029 GET_RE_DEBUG_FLAGS_DECL;
5031 if (pRExC_state->runtime_code_qr) {
5032 /* this is the second time we've been called; this should
5033 * only happen if the main pattern got upgraded to utf8
5034 * during compilation; re-use the qr we compiled first time
5035 * round (which should be utf8 too)
5037 qr = pRExC_state->runtime_code_qr;
5038 pRExC_state->runtime_code_qr = NULL;
5039 assert(RExC_utf8 && SvUTF8(qr));
5045 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
5049 /* determine how many extra chars we need for ' and \ escaping */
5050 for (s = 0; s < plen; s++) {
5051 if (pat[s] == '\'' || pat[s] == '\\')
5055 Newx(newpat, newlen, char);
5057 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
5059 for (s = 0; s < plen; s++) {
5060 if (n < pRExC_state->num_code_blocks
5061 && s == pRExC_state->code_blocks[n].start)
5063 /* blank out literal code block */
5064 assert(pat[s] == '(');
5065 while (s <= pRExC_state->code_blocks[n].end) {
5073 if (pat[s] == '\'' || pat[s] == '\\')
5078 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
5082 PerlIO_printf(Perl_debug_log,
5083 "%sre-parsing pattern for runtime code:%s %s\n",
5084 PL_colors[4],PL_colors[5],newpat);
5087 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
5093 PUSHSTACKi(PERLSI_REQUIRE);
5094 /* this causes the toker to collapse \\ into \ when parsing
5095 * qr''; normally only q'' does this. It also alters hints
5097 PL_reg_state.re_reparsing = TRUE;
5098 eval_sv(sv, G_SCALAR);
5104 Perl_croak(aTHX_ "%s", SvPVx_nolen_const(ERRSV));
5105 assert(SvROK(qr_ref));
5107 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
5108 /* the leaving below frees the tmp qr_ref.
5109 * Give qr a life of its own */
5117 if (!RExC_utf8 && SvUTF8(qr)) {
5118 /* first time through; the pattern got upgraded; save the
5119 * qr for the next time through */
5120 assert(!pRExC_state->runtime_code_qr);
5121 pRExC_state->runtime_code_qr = qr;
5126 /* extract any code blocks within the returned qr// */
5129 /* merge the main (r1) and run-time (r2) code blocks into one */
5131 RXi_GET_DECL(((struct regexp*)SvANY(qr)), r2);
5132 struct reg_code_block *new_block, *dst;
5133 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
5136 if (!r2->num_code_blocks) /* we guessed wrong */
5140 r1->num_code_blocks + r2->num_code_blocks,
5141 struct reg_code_block);
5144 while ( i1 < r1->num_code_blocks
5145 || i2 < r2->num_code_blocks)
5147 struct reg_code_block *src;
5150 if (i1 == r1->num_code_blocks) {
5151 src = &r2->code_blocks[i2++];
5154 else if (i2 == r2->num_code_blocks)
5155 src = &r1->code_blocks[i1++];
5156 else if ( r1->code_blocks[i1].start
5157 < r2->code_blocks[i2].start)
5159 src = &r1->code_blocks[i1++];
5160 assert(src->end < r2->code_blocks[i2].start);
5163 assert( r1->code_blocks[i1].start
5164 > r2->code_blocks[i2].start);
5165 src = &r2->code_blocks[i2++];
5167 assert(src->end < r1->code_blocks[i1].start);
5170 assert(pat[src->start] == '(');
5171 assert(pat[src->end] == ')');
5172 dst->start = src->start;
5173 dst->end = src->end;
5174 dst->block = src->block;
5175 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
5179 r1->num_code_blocks += r2->num_code_blocks;
5180 Safefree(r1->code_blocks);
5181 r1->code_blocks = new_block;
5190 * Perl_re_op_compile - the perl internal RE engine's function to compile a
5191 * regular expression into internal code.
5192 * The pattern may be passed either as:
5193 * a list of SVs (patternp plus pat_count)
5194 * a list of OPs (expr)
5195 * If both are passed, the SV list is used, but the OP list indicates
5196 * which SVs are actually pre-compiled code blocks
5198 * The SVs in the list have magic and qr overloading applied to them (and
5199 * the list may be modified in-place with replacement SVs in the latter
5202 * If the pattern hasn't changed from old_re, then old_re will be
5205 * eng is the current engine. If that engine has an op_comp method, then
5206 * handle directly (i.e. we assume that op_comp was us); otherwise, just
5207 * do the initial concatenation of arguments and pass on to the external
5210 * If is_bare_re is not null, set it to a boolean indicating whether the
5211 * arg list reduced (after overloading) to a single bare regex which has
5212 * been returned (i.e. /$qr/).
5214 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
5216 * pm_flags contains the PMf_* flags, typically based on those from the
5217 * pm_flags field of the related PMOP. Currently we're only interested in
5218 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
5220 * We can't allocate space until we know how big the compiled form will be,
5221 * but we can't compile it (and thus know how big it is) until we've got a
5222 * place to put the code. So we cheat: we compile it twice, once with code
5223 * generation turned off and size counting turned on, and once "for real".
5224 * This also means that we don't allocate space until we are sure that the
5225 * thing really will compile successfully, and we never have to move the
5226 * code and thus invalidate pointers into it. (Note that it has to be in
5227 * one piece because free() must be able to free it all.) [NB: not true in perl]
5229 * Beware that the optimization-preparation code in here knows about some
5230 * of the structure of the compiled regexp. [I'll say.]
5234 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
5235 OP *expr, const regexp_engine* eng, REGEXP *VOL old_re,
5236 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
5241 register regexp_internal *ri;
5251 /* these are all flags - maybe they should be turned
5252 * into a single int with different bit masks */
5253 I32 sawlookahead = 0;
5256 bool used_setjump = FALSE;
5257 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
5258 bool code_is_utf8 = 0;
5259 bool VOL recompile = 0;
5260 bool runtime_code = 0;
5264 RExC_state_t RExC_state;
5265 RExC_state_t * const pRExC_state = &RExC_state;
5266 #ifdef TRIE_STUDY_OPT
5268 RExC_state_t copyRExC_state;
5270 GET_RE_DEBUG_FLAGS_DECL;
5272 PERL_ARGS_ASSERT_RE_OP_COMPILE;
5274 DEBUG_r(if (!PL_colorset) reginitcolors());
5276 #ifndef PERL_IN_XSUB_RE
5277 /* Initialize these here instead of as-needed, as is quick and avoids
5278 * having to test them each time otherwise */
5279 if (! PL_AboveLatin1) {
5280 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
5281 PL_ASCII = _new_invlist_C_array(ASCII_invlist);
5282 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
5284 PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
5285 PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
5287 PL_L1PosixAlpha = _new_invlist_C_array(L1PosixAlpha_invlist);
5288 PL_PosixAlpha = _new_invlist_C_array(PosixAlpha_invlist);
5290 PL_PosixBlank = _new_invlist_C_array(PosixBlank_invlist);
5291 PL_XPosixBlank = _new_invlist_C_array(XPosixBlank_invlist);
5293 PL_L1Cased = _new_invlist_C_array(L1Cased_invlist);
5295 PL_PosixCntrl = _new_invlist_C_array(PosixCntrl_invlist);
5296 PL_XPosixCntrl = _new_invlist_C_array(XPosixCntrl_invlist);
5298 PL_PosixDigit = _new_invlist_C_array(PosixDigit_invlist);
5300 PL_L1PosixGraph = _new_invlist_C_array(L1PosixGraph_invlist);
5301 PL_PosixGraph = _new_invlist_C_array(PosixGraph_invlist);
5303 PL_L1PosixAlnum = _new_invlist_C_array(L1PosixAlnum_invlist);
5304 PL_PosixAlnum = _new_invlist_C_array(PosixAlnum_invlist);
5306 PL_L1PosixLower = _new_invlist_C_array(L1PosixLower_invlist);
5307 PL_PosixLower = _new_invlist_C_array(PosixLower_invlist);
5309 PL_L1PosixPrint = _new_invlist_C_array(L1PosixPrint_invlist);
5310 PL_PosixPrint = _new_invlist_C_array(PosixPrint_invlist);
5312 PL_L1PosixPunct = _new_invlist_C_array(L1PosixPunct_invlist);
5313 PL_PosixPunct = _new_invlist_C_array(PosixPunct_invlist);
5315 PL_PerlSpace = _new_invlist_C_array(PerlSpace_invlist);
5316 PL_XPerlSpace = _new_invlist_C_array(XPerlSpace_invlist);
5318 PL_PosixSpace = _new_invlist_C_array(PosixSpace_invlist);
5319 PL_XPosixSpace = _new_invlist_C_array(XPosixSpace_invlist);
5321 PL_L1PosixUpper = _new_invlist_C_array(L1PosixUpper_invlist);
5322 PL_PosixUpper = _new_invlist_C_array(PosixUpper_invlist);
5324 PL_VertSpace = _new_invlist_C_array(VertSpace_invlist);
5326 PL_PosixWord = _new_invlist_C_array(PosixWord_invlist);
5327 PL_L1PosixWord = _new_invlist_C_array(L1PosixWord_invlist);
5329 PL_PosixXDigit = _new_invlist_C_array(PosixXDigit_invlist);
5330 PL_XPosixXDigit = _new_invlist_C_array(XPosixXDigit_invlist);
5334 pRExC_state->code_blocks = NULL;
5335 pRExC_state->num_code_blocks = 0;
5338 *is_bare_re = FALSE;
5340 if (expr && (expr->op_type == OP_LIST ||
5341 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
5343 /* is the source UTF8, and how many code blocks are there? */
5347 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5348 if (o->op_type == OP_CONST && SvUTF8(cSVOPo_sv))
5350 else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
5351 /* count of DO blocks */
5355 pRExC_state->num_code_blocks = ncode;
5356 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
5361 /* handle a list of SVs */
5365 /* apply magic and RE overloading to each arg */
5366 for (svp = patternp; svp < patternp + pat_count; svp++) {
5369 if (SvROK(rx) && SvAMAGIC(rx)) {
5370 SV *sv = AMG_CALLunary(rx, regexp_amg);
5374 if (SvTYPE(sv) != SVt_REGEXP)
5375 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5381 if (pat_count > 1) {
5382 /* concat multiple args and find any code block indexes */
5387 STRLEN orig_patlen = 0;
5389 if (pRExC_state->num_code_blocks) {
5390 o = cLISTOPx(expr)->op_first;
5391 assert(o->op_type == OP_PUSHMARK);
5395 pat = newSVpvn("", 0);
5398 /* determine if the pattern is going to be utf8 (needed
5399 * in advance to align code block indices correctly).
5400 * XXX This could fail to be detected for an arg with
5401 * overloading but not concat overloading; but the main effect
5402 * in this obscure case is to need a 'use re eval' for a
5403 * literal code block */
5404 for (svp = patternp; svp < patternp + pat_count; svp++) {
5411 for (svp = patternp; svp < patternp + pat_count; svp++) {
5412 SV *sv, *msv = *svp;
5416 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) {
5417 assert(n < pRExC_state->num_code_blocks);
5418 pRExC_state->code_blocks[n].start = SvCUR(pat);
5419 pRExC_state->code_blocks[n].block = o;
5420 pRExC_state->code_blocks[n].src_regex = NULL;
5423 o = o->op_sibling; /* skip CONST */
5429 if ((SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5430 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5433 /* overloading involved: all bets are off over literal
5434 * code. Pretend we haven't seen it */
5435 pRExC_state->num_code_blocks -= n;
5441 while (SvAMAGIC(msv)
5442 && (sv = AMG_CALLunary(msv, string_amg))
5448 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5450 orig_patlen = SvCUR(pat);
5451 sv_catsv_nomg(pat, msv);
5454 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
5457 /* extract any code blocks within any embedded qr//'s */
5458 if (rx && SvTYPE(rx) == SVt_REGEXP
5459 && RX_ENGINE((REGEXP*)rx)->op_comp)
5462 RXi_GET_DECL(((struct regexp*)SvANY(rx)), ri);
5463 if (ri->num_code_blocks) {
5465 /* the presence of an embedded qr// with code means
5466 * we should always recompile: the text of the
5467 * qr// may not have changed, but it may be a
5468 * different closure than last time */
5470 Renew(pRExC_state->code_blocks,
5471 pRExC_state->num_code_blocks + ri->num_code_blocks,
5472 struct reg_code_block);
5473 pRExC_state->num_code_blocks += ri->num_code_blocks;
5474 for (i=0; i < ri->num_code_blocks; i++) {
5475 struct reg_code_block *src, *dst;
5476 STRLEN offset = orig_patlen
5477 + ((struct regexp *)SvANY(rx))->pre_prefix;
5478 assert(n < pRExC_state->num_code_blocks);
5479 src = &ri->code_blocks[i];
5480 dst = &pRExC_state->code_blocks[n];
5481 dst->start = src->start + offset;
5482 dst->end = src->end + offset;
5483 dst->block = src->block;
5484 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
5498 while (SvAMAGIC(pat)
5499 && (sv = AMG_CALLunary(pat, string_amg))
5507 /* handle bare regex: foo =~ $re */
5512 if (SvTYPE(re) == SVt_REGEXP) {
5516 Safefree(pRExC_state->code_blocks);
5522 /* not a list of SVs, so must be a list of OPs */
5524 if (expr->op_type == OP_LIST) {
5529 pat = newSVpvn("", 0);
5534 /* given a list of CONSTs and DO blocks in expr, append all
5535 * the CONSTs to pat, and record the start and end of each
5536 * code block in code_blocks[] (each DO{} op is followed by an
5537 * OP_CONST containing the corresponding literal '(?{...})
5540 for (o = cLISTOPx(expr)->op_first; o; o = o->op_sibling) {
5541 if (o->op_type == OP_CONST) {
5542 sv_catsv(pat, cSVOPo_sv);
5544 pRExC_state->code_blocks[i].end = SvCUR(pat)-1;
5548 else if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL)) {
5549 assert(i+1 < pRExC_state->num_code_blocks);
5550 pRExC_state->code_blocks[++i].start = SvCUR(pat);
5551 pRExC_state->code_blocks[i].block = o;
5552 pRExC_state->code_blocks[i].src_regex = NULL;
5558 assert(expr->op_type == OP_CONST);
5559 pat = cSVOPx_sv(expr);
5563 exp = SvPV_nomg(pat, plen);
5565 if (!eng->op_comp) {
5566 if ((SvUTF8(pat) && IN_BYTES)
5567 || SvGMAGICAL(pat) || SvAMAGIC(pat))
5569 /* make a temporary copy; either to convert to bytes,
5570 * or to avoid repeating get-magic / overloaded stringify */
5571 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
5572 (IN_BYTES ? 0 : SvUTF8(pat)));
5574 Safefree(pRExC_state->code_blocks);
5575 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
5578 /* ignore the utf8ness if the pattern is 0 length */
5579 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
5580 RExC_uni_semantics = 0;
5581 RExC_contains_locale = 0;
5582 pRExC_state->runtime_code_qr = NULL;
5584 /****************** LONG JUMP TARGET HERE***********************/
5585 /* Longjmp back to here if have to switch in midstream to utf8 */
5586 if (! RExC_orig_utf8) {
5587 JMPENV_PUSH(jump_ret);
5588 used_setjump = TRUE;
5591 if (jump_ret == 0) { /* First time through */
5595 SV *dsv= sv_newmortal();
5596 RE_PV_QUOTED_DECL(s, RExC_utf8,
5597 dsv, exp, plen, 60);
5598 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
5599 PL_colors[4],PL_colors[5],s);
5602 else { /* longjumped back */
5605 STRLEN s = 0, d = 0;
5608 /* If the cause for the longjmp was other than changing to utf8, pop
5609 * our own setjmp, and longjmp to the correct handler */
5610 if (jump_ret != UTF8_LONGJMP) {
5612 JMPENV_JUMP(jump_ret);
5617 /* It's possible to write a regexp in ascii that represents Unicode
5618 codepoints outside of the byte range, such as via \x{100}. If we
5619 detect such a sequence we have to convert the entire pattern to utf8
5620 and then recompile, as our sizing calculation will have been based
5621 on 1 byte == 1 character, but we will need to use utf8 to encode
5622 at least some part of the pattern, and therefore must convert the whole
5625 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5626 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
5628 /* upgrade pattern to UTF8, and if there are code blocks,
5629 * recalculate the indices.
5630 * This is essentially an unrolled Perl_bytes_to_utf8() */
5632 src = (U8*)SvPV_nomg(pat, plen);
5633 Newx(dst, plen * 2 + 1, U8);
5636 const UV uv = NATIVE_TO_ASCII(src[s]);
5637 if (UNI_IS_INVARIANT(uv))
5638 dst[d] = (U8)UTF_TO_NATIVE(uv);
5640 dst[d++] = (U8)UTF8_EIGHT_BIT_HI(uv);
5641 dst[d] = (U8)UTF8_EIGHT_BIT_LO(uv);
5643 if (n < pRExC_state->num_code_blocks) {
5644 if (!do_end && pRExC_state->code_blocks[n].start == s) {
5645 pRExC_state->code_blocks[n].start = d;
5646 assert(dst[d] == '(');
5649 else if (do_end && pRExC_state->code_blocks[n].end == s) {
5650 pRExC_state->code_blocks[n].end = d;
5651 assert(dst[d] == ')');
5664 RExC_orig_utf8 = RExC_utf8 = 1;
5667 /* return old regex if pattern hasn't changed */
5671 && !!RX_UTF8(old_re) == !!RExC_utf8
5672 && RX_PRECOMP(old_re)
5673 && RX_PRELEN(old_re) == plen
5674 && memEQ(RX_PRECOMP(old_re), exp, plen))
5676 /* with runtime code, always recompile */
5677 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags,
5679 if (!runtime_code) {
5680 ReREFCNT_inc(old_re);
5684 Safefree(pRExC_state->code_blocks);
5688 else if ((pm_flags & PMf_USE_RE_EVAL)
5689 /* this second condition covers the non-regex literal case,
5690 * i.e. $foo =~ '(?{})'. */
5691 || ( !PL_reg_state.re_reparsing && IN_PERL_COMPILETIME
5692 && (PL_hints & HINT_RE_EVAL))
5694 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, expr, pm_flags,
5697 #ifdef TRIE_STUDY_OPT
5701 rx_flags = orig_rx_flags;
5703 if (initial_charset == REGEX_LOCALE_CHARSET) {
5704 RExC_contains_locale = 1;
5706 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
5708 /* Set to use unicode semantics if the pattern is in utf8 and has the
5709 * 'depends' charset specified, as it means unicode when utf8 */
5710 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5714 RExC_flags = rx_flags;
5715 RExC_pm_flags = pm_flags;
5718 if (PL_tainting && PL_tainted)
5719 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
5721 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
5722 /* whoops, we have a non-utf8 pattern, whilst run-time code
5723 * got compiled as utf8. Try again with a utf8 pattern */
5724 JMPENV_JUMP(UTF8_LONGJMP);
5727 assert(!pRExC_state->runtime_code_qr);
5732 RExC_in_lookbehind = 0;
5733 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
5735 RExC_override_recoding = 0;
5737 /* First pass: determine size, legality. */
5745 RExC_emit = &PL_regdummy;
5746 RExC_whilem_seen = 0;
5747 RExC_open_parens = NULL;
5748 RExC_close_parens = NULL;
5750 RExC_paren_names = NULL;
5752 RExC_paren_name_list = NULL;
5754 RExC_recurse = NULL;
5755 RExC_recurse_count = 0;
5756 pRExC_state->code_index = 0;
5758 #if 0 /* REGC() is (currently) a NOP at the first pass.
5759 * Clever compilers notice this and complain. --jhi */
5760 REGC((U8)REG_MAGIC, (char*)RExC_emit);
5763 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
5765 RExC_lastparse=NULL;
5767 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5768 RExC_precomp = NULL;
5769 Safefree(pRExC_state->code_blocks);
5773 /* Here, finished first pass. Get rid of any added setjmp */
5779 PerlIO_printf(Perl_debug_log,
5780 "Required size %"IVdf" nodes\n"
5781 "Starting second pass (creation)\n",
5784 RExC_lastparse=NULL;
5787 /* The first pass could have found things that force Unicode semantics */
5788 if ((RExC_utf8 || RExC_uni_semantics)
5789 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
5791 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
5794 /* Small enough for pointer-storage convention?
5795 If extralen==0, this means that we will not need long jumps. */
5796 if (RExC_size >= 0x10000L && RExC_extralen)
5797 RExC_size += RExC_extralen;
5800 if (RExC_whilem_seen > 15)
5801 RExC_whilem_seen = 15;
5803 /* Allocate space and zero-initialize. Note, the two step process
5804 of zeroing when in debug mode, thus anything assigned has to
5805 happen after that */
5806 rx = (REGEXP*) newSV_type(SVt_REGEXP);
5807 r = (struct regexp*)SvANY(rx);
5808 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
5809 char, regexp_internal);
5810 if ( r == NULL || ri == NULL )
5811 FAIL("Regexp out of space");
5813 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
5814 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
5816 /* bulk initialize base fields with 0. */
5817 Zero(ri, sizeof(regexp_internal), char);
5820 /* non-zero initialization begins here */
5823 r->extflags = rx_flags;
5824 if (pm_flags & PMf_IS_QR) {
5825 ri->code_blocks = pRExC_state->code_blocks;
5826 ri->num_code_blocks = pRExC_state->num_code_blocks;
5829 SAVEFREEPV(pRExC_state->code_blocks);
5832 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
5833 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
5835 /* The caret is output if there are any defaults: if not all the STD
5836 * flags are set, or if no character set specifier is needed */
5838 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
5840 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
5841 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
5842 >> RXf_PMf_STD_PMMOD_SHIFT);
5843 const char *fptr = STD_PAT_MODS; /*"msix"*/
5845 /* Allocate for the worst case, which is all the std flags are turned
5846 * on. If more precision is desired, we could do a population count of
5847 * the flags set. This could be done with a small lookup table, or by
5848 * shifting, masking and adding, or even, when available, assembly
5849 * language for a machine-language population count.
5850 * We never output a minus, as all those are defaults, so are
5851 * covered by the caret */
5852 const STRLEN wraplen = plen + has_p + has_runon
5853 + has_default /* If needs a caret */
5855 /* If needs a character set specifier */
5856 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
5857 + (sizeof(STD_PAT_MODS) - 1)
5858 + (sizeof("(?:)") - 1);
5860 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
5863 SvFLAGS(rx) |= SVf_UTF8;
5866 /* If a default, cover it using the caret */
5868 *p++= DEFAULT_PAT_MOD;
5872 const char* const name = get_regex_charset_name(r->extflags, &len);
5873 Copy(name, p, len, char);
5877 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
5880 while((ch = *fptr++)) {
5888 Copy(RExC_precomp, p, plen, char);
5889 assert ((RX_WRAPPED(rx) - p) < 16);
5890 r->pre_prefix = p - RX_WRAPPED(rx);
5896 SvCUR_set(rx, p - SvPVX_const(rx));
5900 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
5902 if (RExC_seen & REG_SEEN_RECURSE) {
5903 Newxz(RExC_open_parens, RExC_npar,regnode *);
5904 SAVEFREEPV(RExC_open_parens);
5905 Newxz(RExC_close_parens,RExC_npar,regnode *);
5906 SAVEFREEPV(RExC_close_parens);
5909 /* Useful during FAIL. */
5910 #ifdef RE_TRACK_PATTERN_OFFSETS
5911 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
5912 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
5913 "%s %"UVuf" bytes for offset annotations.\n",
5914 ri->u.offsets ? "Got" : "Couldn't get",
5915 (UV)((2*RExC_size+1) * sizeof(U32))));
5917 SetProgLen(ri,RExC_size);
5921 REH_CALL_COMP_BEGIN_HOOK(pRExC_state->rx);
5923 /* Second pass: emit code. */
5924 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
5925 RExC_pm_flags = pm_flags;
5930 RExC_emit_start = ri->program;
5931 RExC_emit = ri->program;
5932 RExC_emit_bound = ri->program + RExC_size + 1;
5933 pRExC_state->code_index = 0;
5935 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
5936 if (reg(pRExC_state, 0, &flags,1) == NULL) {
5940 /* XXXX To minimize changes to RE engine we always allocate
5941 3-units-long substrs field. */
5942 Newx(r->substrs, 1, struct reg_substr_data);
5943 if (RExC_recurse_count) {
5944 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
5945 SAVEFREEPV(RExC_recurse);
5949 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
5950 Zero(r->substrs, 1, struct reg_substr_data);
5952 #ifdef TRIE_STUDY_OPT
5954 StructCopy(&zero_scan_data, &data, scan_data_t);
5955 copyRExC_state = RExC_state;
5958 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
5960 RExC_state = copyRExC_state;
5961 if (seen & REG_TOP_LEVEL_BRANCHES)
5962 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
5964 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
5965 if (data.last_found) {
5966 SvREFCNT_dec(data.longest_fixed);
5967 SvREFCNT_dec(data.longest_float);
5968 SvREFCNT_dec(data.last_found);
5970 StructCopy(&zero_scan_data, &data, scan_data_t);
5973 StructCopy(&zero_scan_data, &data, scan_data_t);
5976 /* Dig out information for optimizations. */
5977 r->extflags = RExC_flags; /* was pm_op */
5978 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
5981 SvUTF8_on(rx); /* Unicode in it? */
5982 ri->regstclass = NULL;
5983 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
5984 r->intflags |= PREGf_NAUGHTY;
5985 scan = ri->program + 1; /* First BRANCH. */
5987 /* testing for BRANCH here tells us whether there is "must appear"
5988 data in the pattern. If there is then we can use it for optimisations */
5989 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
5991 STRLEN longest_float_length, longest_fixed_length;
5992 struct regnode_charclass_class ch_class; /* pointed to by data */
5994 I32 last_close = 0; /* pointed to by data */
5995 regnode *first= scan;
5996 regnode *first_next= regnext(first);
5998 * Skip introductions and multiplicators >= 1
5999 * so that we can extract the 'meat' of the pattern that must
6000 * match in the large if() sequence following.
6001 * NOTE that EXACT is NOT covered here, as it is normally
6002 * picked up by the optimiser separately.
6004 * This is unfortunate as the optimiser isnt handling lookahead
6005 * properly currently.
6008 while ((OP(first) == OPEN && (sawopen = 1)) ||
6009 /* An OR of *one* alternative - should not happen now. */
6010 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6011 /* for now we can't handle lookbehind IFMATCH*/
6012 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6013 (OP(first) == PLUS) ||
6014 (OP(first) == MINMOD) ||
6015 /* An {n,m} with n>0 */
6016 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6017 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6020 * the only op that could be a regnode is PLUS, all the rest
6021 * will be regnode_1 or regnode_2.
6024 if (OP(first) == PLUS)
6027 first += regarglen[OP(first)];
6029 first = NEXTOPER(first);
6030 first_next= regnext(first);
6033 /* Starting-point info. */
6035 DEBUG_PEEP("first:",first,0);
6036 /* Ignore EXACT as we deal with it later. */
6037 if (PL_regkind[OP(first)] == EXACT) {
6038 if (OP(first) == EXACT)
6039 NOOP; /* Empty, get anchored substr later. */
6041 ri->regstclass = first;
6044 else if (PL_regkind[OP(first)] == TRIE &&
6045 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6048 /* this can happen only on restudy */
6049 if ( OP(first) == TRIE ) {
6050 struct regnode_1 *trieop = (struct regnode_1 *)
6051 PerlMemShared_calloc(1, sizeof(struct regnode_1));
6052 StructCopy(first,trieop,struct regnode_1);
6053 trie_op=(regnode *)trieop;
6055 struct regnode_charclass *trieop = (struct regnode_charclass *)
6056 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
6057 StructCopy(first,trieop,struct regnode_charclass);
6058 trie_op=(regnode *)trieop;
6061 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
6062 ri->regstclass = trie_op;
6065 else if (REGNODE_SIMPLE(OP(first)))
6066 ri->regstclass = first;
6067 else if (PL_regkind[OP(first)] == BOUND ||
6068 PL_regkind[OP(first)] == NBOUND)
6069 ri->regstclass = first;
6070 else if (PL_regkind[OP(first)] == BOL) {
6071 r->extflags |= (OP(first) == MBOL
6073 : (OP(first) == SBOL
6076 first = NEXTOPER(first);
6079 else if (OP(first) == GPOS) {
6080 r->extflags |= RXf_ANCH_GPOS;
6081 first = NEXTOPER(first);
6084 else if ((!sawopen || !RExC_sawback) &&
6085 (OP(first) == STAR &&
6086 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
6087 !(r->extflags & RXf_ANCH) && !pRExC_state->num_code_blocks)
6089 /* turn .* into ^.* with an implied $*=1 */
6091 (OP(NEXTOPER(first)) == REG_ANY)
6094 r->extflags |= type;
6095 r->intflags |= PREGf_IMPLICIT;
6096 first = NEXTOPER(first);
6099 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
6100 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
6101 /* x+ must match at the 1st pos of run of x's */
6102 r->intflags |= PREGf_SKIP;
6104 /* Scan is after the zeroth branch, first is atomic matcher. */
6105 #ifdef TRIE_STUDY_OPT
6108 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6109 (IV)(first - scan + 1))
6113 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
6114 (IV)(first - scan + 1))
6120 * If there's something expensive in the r.e., find the
6121 * longest literal string that must appear and make it the
6122 * regmust. Resolve ties in favor of later strings, since
6123 * the regstart check works with the beginning of the r.e.
6124 * and avoiding duplication strengthens checking. Not a
6125 * strong reason, but sufficient in the absence of others.
6126 * [Now we resolve ties in favor of the earlier string if
6127 * it happens that c_offset_min has been invalidated, since the
6128 * earlier string may buy us something the later one won't.]
6131 data.longest_fixed = newSVpvs("");
6132 data.longest_float = newSVpvs("");
6133 data.last_found = newSVpvs("");
6134 data.longest = &(data.longest_fixed);
6136 if (!ri->regstclass) {
6137 cl_init(pRExC_state, &ch_class);
6138 data.start_class = &ch_class;
6139 stclass_flag = SCF_DO_STCLASS_AND;
6140 } else /* XXXX Check for BOUND? */
6142 data.last_closep = &last_close;
6144 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
6145 &data, -1, NULL, NULL,
6146 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
6152 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
6153 && data.last_start_min == 0 && data.last_end > 0
6154 && !RExC_seen_zerolen
6155 && !(RExC_seen & REG_SEEN_VERBARG)
6156 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
6157 r->extflags |= RXf_CHECK_ALL;
6158 scan_commit(pRExC_state, &data,&minlen,0);
6159 SvREFCNT_dec(data.last_found);
6161 /* Note that code very similar to this but for anchored string
6162 follows immediately below, changes may need to be made to both.
6165 longest_float_length = CHR_SVLEN(data.longest_float);
6166 if (longest_float_length
6167 || (data.flags & SF_FL_BEFORE_EOL
6168 && (!(data.flags & SF_FL_BEFORE_MEOL)
6169 || (RExC_flags & RXf_PMf_MULTILINE))))
6173 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
6174 if ((RExC_seen & REG_SEEN_EXACTF_SHARP_S)
6175 || (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
6176 && data.offset_fixed == data.offset_float_min
6177 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
6178 goto remove_float; /* As in (a)+. */
6180 /* copy the information about the longest float from the reg_scan_data
6181 over to the program. */
6182 if (SvUTF8(data.longest_float)) {
6183 r->float_utf8 = data.longest_float;
6184 r->float_substr = NULL;
6186 r->float_substr = data.longest_float;
6187 r->float_utf8 = NULL;
6189 /* float_end_shift is how many chars that must be matched that
6190 follow this item. We calculate it ahead of time as once the
6191 lookbehind offset is added in we lose the ability to correctly
6193 ml = data.minlen_float ? *(data.minlen_float)
6194 : (I32)longest_float_length;
6195 r->float_end_shift = ml - data.offset_float_min
6196 - longest_float_length + (SvTAIL(data.longest_float) != 0)
6197 + data.lookbehind_float;
6198 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
6199 r->float_max_offset = data.offset_float_max;
6200 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
6201 r->float_max_offset -= data.lookbehind_float;
6203 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
6204 && (!(data.flags & SF_FL_BEFORE_MEOL)
6205 || (RExC_flags & RXf_PMf_MULTILINE)));
6206 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
6210 r->float_substr = r->float_utf8 = NULL;
6211 SvREFCNT_dec(data.longest_float);
6212 longest_float_length = 0;
6215 /* Note that code very similar to this but for floating string
6216 is immediately above, changes may need to be made to both.
6219 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
6221 /* See comments for join_exact for why REG_SEEN_EXACTF_SHARP_S */
6222 if (! (RExC_seen & REG_SEEN_EXACTF_SHARP_S)
6223 && (longest_fixed_length
6224 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
6225 && (!(data.flags & SF_FIX_BEFORE_MEOL)
6226 || (RExC_flags & RXf_PMf_MULTILINE)))) )
6230 /* copy the information about the longest fixed
6231 from the reg_scan_data over to the program. */
6232 if (SvUTF8(data.longest_fixed)) {
6233 r->anchored_utf8 = data.longest_fixed;
6234 r->anchored_substr = NULL;
6236 r->anchored_substr = data.longest_fixed;
6237 r->anchored_utf8 = NULL;
6239 /* fixed_end_shift is how many chars that must be matched that
6240 follow this item. We calculate it ahead of time as once the
6241 lookbehind offset is added in we lose the ability to correctly
6243 ml = data.minlen_fixed ? *(data.minlen_fixed)
6244 : (I32)longest_fixed_length;
6245 r->anchored_end_shift = ml - data.offset_fixed
6246 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
6247 + data.lookbehind_fixed;
6248 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
6250 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
6251 && (!(data.flags & SF_FIX_BEFORE_MEOL)
6252 || (RExC_flags & RXf_PMf_MULTILINE)));
6253 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
6256 r->anchored_substr = r->anchored_utf8 = NULL;
6257 SvREFCNT_dec(data.longest_fixed);
6258 longest_fixed_length = 0;
6261 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
6262 ri->regstclass = NULL;
6264 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
6266 && !(data.start_class->flags & ANYOF_EOS)
6267 && !cl_is_anything(data.start_class))
6269 const U32 n = add_data(pRExC_state, 1, "f");
6270 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
6272 Newx(RExC_rxi->data->data[n], 1,
6273 struct regnode_charclass_class);
6274 StructCopy(data.start_class,
6275 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6276 struct regnode_charclass_class);
6277 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6278 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6279 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
6280 regprop(r, sv, (regnode*)data.start_class);
6281 PerlIO_printf(Perl_debug_log,
6282 "synthetic stclass \"%s\".\n",
6283 SvPVX_const(sv));});
6286 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
6287 if (longest_fixed_length > longest_float_length) {
6288 r->check_end_shift = r->anchored_end_shift;
6289 r->check_substr = r->anchored_substr;
6290 r->check_utf8 = r->anchored_utf8;
6291 r->check_offset_min = r->check_offset_max = r->anchored_offset;
6292 if (r->extflags & RXf_ANCH_SINGLE)
6293 r->extflags |= RXf_NOSCAN;
6296 r->check_end_shift = r->float_end_shift;
6297 r->check_substr = r->float_substr;
6298 r->check_utf8 = r->float_utf8;
6299 r->check_offset_min = r->float_min_offset;
6300 r->check_offset_max = r->float_max_offset;
6302 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
6303 This should be changed ASAP! */
6304 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
6305 r->extflags |= RXf_USE_INTUIT;
6306 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
6307 r->extflags |= RXf_INTUIT_TAIL;
6309 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
6310 if ( (STRLEN)minlen < longest_float_length )
6311 minlen= longest_float_length;
6312 if ( (STRLEN)minlen < longest_fixed_length )
6313 minlen= longest_fixed_length;
6317 /* Several toplevels. Best we can is to set minlen. */
6319 struct regnode_charclass_class ch_class;
6322 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
6324 scan = ri->program + 1;
6325 cl_init(pRExC_state, &ch_class);
6326 data.start_class = &ch_class;
6327 data.last_closep = &last_close;
6330 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
6331 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
6335 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
6336 = r->float_substr = r->float_utf8 = NULL;
6338 if (!(data.start_class->flags & ANYOF_EOS)
6339 && !cl_is_anything(data.start_class))
6341 const U32 n = add_data(pRExC_state, 1, "f");
6342 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
6344 Newx(RExC_rxi->data->data[n], 1,
6345 struct regnode_charclass_class);
6346 StructCopy(data.start_class,
6347 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
6348 struct regnode_charclass_class);
6349 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
6350 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
6351 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
6352 regprop(r, sv, (regnode*)data.start_class);
6353 PerlIO_printf(Perl_debug_log,
6354 "synthetic stclass \"%s\".\n",
6355 SvPVX_const(sv));});
6359 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
6360 the "real" pattern. */
6362 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
6363 (IV)minlen, (IV)r->minlen);
6365 r->minlenret = minlen;
6366 if (r->minlen < minlen)
6369 if (RExC_seen & REG_SEEN_GPOS)
6370 r->extflags |= RXf_GPOS_SEEN;
6371 if (RExC_seen & REG_SEEN_LOOKBEHIND)
6372 r->extflags |= RXf_LOOKBEHIND_SEEN;
6373 if (pRExC_state->num_code_blocks)
6374 r->extflags |= RXf_EVAL_SEEN;
6375 if (RExC_seen & REG_SEEN_CANY)
6376 r->extflags |= RXf_CANY_SEEN;
6377 if (RExC_seen & REG_SEEN_VERBARG)
6378 r->intflags |= PREGf_VERBARG_SEEN;
6379 if (RExC_seen & REG_SEEN_CUTGROUP)
6380 r->intflags |= PREGf_CUTGROUP_SEEN;
6381 if (pm_flags & PMf_USE_RE_EVAL)
6382 r->intflags |= PREGf_USE_RE_EVAL;
6383 if (RExC_paren_names)
6384 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
6386 RXp_PAREN_NAMES(r) = NULL;
6388 #ifdef STUPID_PATTERN_CHECKS
6389 if (RX_PRELEN(rx) == 0)
6390 r->extflags |= RXf_NULL;
6391 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
6392 /* XXX: this should happen BEFORE we compile */
6393 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6394 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
6395 r->extflags |= RXf_WHITE;
6396 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
6397 r->extflags |= RXf_START_ONLY;
6399 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
6400 /* XXX: this should happen BEFORE we compile */
6401 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
6403 regnode *first = ri->program + 1;
6406 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
6407 r->extflags |= RXf_NULL;
6408 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
6409 r->extflags |= RXf_START_ONLY;
6410 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
6411 && OP(regnext(first)) == END)
6412 r->extflags |= RXf_WHITE;
6416 if (RExC_paren_names) {
6417 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
6418 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
6421 ri->name_list_idx = 0;
6423 if (RExC_recurse_count) {
6424 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
6425 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
6426 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
6429 Newxz(r->offs, RExC_npar, regexp_paren_pair);
6430 /* assume we don't need to swap parens around before we match */
6433 PerlIO_printf(Perl_debug_log,"Final program:\n");
6436 #ifdef RE_TRACK_PATTERN_OFFSETS
6437 DEBUG_OFFSETS_r(if (ri->u.offsets) {
6438 const U32 len = ri->u.offsets[0];
6440 GET_RE_DEBUG_FLAGS_DECL;
6441 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
6442 for (i = 1; i <= len; i++) {
6443 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
6444 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
6445 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
6447 PerlIO_printf(Perl_debug_log, "\n");
6455 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
6458 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
6460 PERL_UNUSED_ARG(value);
6462 if (flags & RXapif_FETCH) {
6463 return reg_named_buff_fetch(rx, key, flags);
6464 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
6465 Perl_croak_no_modify(aTHX);
6467 } else if (flags & RXapif_EXISTS) {
6468 return reg_named_buff_exists(rx, key, flags)
6471 } else if (flags & RXapif_REGNAMES) {
6472 return reg_named_buff_all(rx, flags);
6473 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
6474 return reg_named_buff_scalar(rx, flags);
6476 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
6482 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
6485 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
6486 PERL_UNUSED_ARG(lastkey);
6488 if (flags & RXapif_FIRSTKEY)
6489 return reg_named_buff_firstkey(rx, flags);
6490 else if (flags & RXapif_NEXTKEY)
6491 return reg_named_buff_nextkey(rx, flags);
6493 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
6499 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
6502 AV *retarray = NULL;
6504 struct regexp *const rx = (struct regexp *)SvANY(r);
6506 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
6508 if (flags & RXapif_ALL)
6511 if (rx && RXp_PAREN_NAMES(rx)) {
6512 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
6515 SV* sv_dat=HeVAL(he_str);
6516 I32 *nums=(I32*)SvPVX(sv_dat);
6517 for ( i=0; i<SvIVX(sv_dat); i++ ) {
6518 if ((I32)(rx->nparens) >= nums[i]
6519 && rx->offs[nums[i]].start != -1
6520 && rx->offs[nums[i]].end != -1)
6523 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
6528 ret = newSVsv(&PL_sv_undef);
6531 av_push(retarray, ret);
6534 return newRV_noinc(MUTABLE_SV(retarray));
6541 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
6544 struct regexp *const rx = (struct regexp *)SvANY(r);
6546 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
6548 if (rx && RXp_PAREN_NAMES(rx)) {
6549 if (flags & RXapif_ALL) {
6550 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
6552 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
6566 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
6568 struct regexp *const rx = (struct regexp *)SvANY(r);
6570 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
6572 if ( rx && RXp_PAREN_NAMES(rx) ) {
6573 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
6575 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
6582 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
6584 struct regexp *const rx = (struct regexp *)SvANY(r);
6585 GET_RE_DEBUG_FLAGS_DECL;
6587 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
6589 if (rx && RXp_PAREN_NAMES(rx)) {
6590 HV *hv = RXp_PAREN_NAMES(rx);
6592 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6595 SV* sv_dat = HeVAL(temphe);
6596 I32 *nums = (I32*)SvPVX(sv_dat);
6597 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6598 if ((I32)(rx->lastparen) >= nums[i] &&
6599 rx->offs[nums[i]].start != -1 &&
6600 rx->offs[nums[i]].end != -1)
6606 if (parno || flags & RXapif_ALL) {
6607 return newSVhek(HeKEY_hek(temphe));
6615 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
6620 struct regexp *const rx = (struct regexp *)SvANY(r);
6622 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
6624 if (rx && RXp_PAREN_NAMES(rx)) {
6625 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
6626 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
6627 } else if (flags & RXapif_ONE) {
6628 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
6629 av = MUTABLE_AV(SvRV(ret));
6630 length = av_len(av);
6632 return newSViv(length + 1);
6634 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
6638 return &PL_sv_undef;
6642 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
6644 struct regexp *const rx = (struct regexp *)SvANY(r);
6647 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
6649 if (rx && RXp_PAREN_NAMES(rx)) {
6650 HV *hv= RXp_PAREN_NAMES(rx);
6652 (void)hv_iterinit(hv);
6653 while ( (temphe = hv_iternext_flags(hv,0)) ) {
6656 SV* sv_dat = HeVAL(temphe);
6657 I32 *nums = (I32*)SvPVX(sv_dat);
6658 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
6659 if ((I32)(rx->lastparen) >= nums[i] &&
6660 rx->offs[nums[i]].start != -1 &&
6661 rx->offs[nums[i]].end != -1)
6667 if (parno || flags & RXapif_ALL) {
6668 av_push(av, newSVhek(HeKEY_hek(temphe)));
6673 return newRV_noinc(MUTABLE_SV(av));
6677 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
6680 struct regexp *const rx = (struct regexp *)SvANY(r);
6685 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
6688 sv_setsv(sv,&PL_sv_undef);
6692 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
6694 i = rx->offs[0].start;
6698 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
6700 s = rx->subbeg + rx->offs[0].end;
6701 i = rx->sublen - rx->offs[0].end;
6704 if ( 0 <= paren && paren <= (I32)rx->nparens &&
6705 (s1 = rx->offs[paren].start) != -1 &&
6706 (t1 = rx->offs[paren].end) != -1)
6710 s = rx->subbeg + s1;
6712 sv_setsv(sv,&PL_sv_undef);
6715 assert(rx->sublen >= (s - rx->subbeg) + i );
6717 const int oldtainted = PL_tainted;
6719 sv_setpvn(sv, s, i);
6720 PL_tainted = oldtainted;
6721 if ( (rx->extflags & RXf_CANY_SEEN)
6722 ? (RXp_MATCH_UTF8(rx)
6723 && (!i || is_utf8_string((U8*)s, i)))
6724 : (RXp_MATCH_UTF8(rx)) )
6731 if (RXp_MATCH_TAINTED(rx)) {
6732 if (SvTYPE(sv) >= SVt_PVMG) {
6733 MAGIC* const mg = SvMAGIC(sv);
6736 SvMAGIC_set(sv, mg->mg_moremagic);
6738 if ((mgt = SvMAGIC(sv))) {
6739 mg->mg_moremagic = mgt;
6740 SvMAGIC_set(sv, mg);
6750 sv_setsv(sv,&PL_sv_undef);
6756 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
6757 SV const * const value)
6759 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
6761 PERL_UNUSED_ARG(rx);
6762 PERL_UNUSED_ARG(paren);
6763 PERL_UNUSED_ARG(value);
6766 Perl_croak_no_modify(aTHX);
6770 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
6773 struct regexp *const rx = (struct regexp *)SvANY(r);
6777 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
6779 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
6781 /* $` / ${^PREMATCH} */
6782 case RX_BUFF_IDX_PREMATCH:
6783 if (rx->offs[0].start != -1) {
6784 i = rx->offs[0].start;
6792 /* $' / ${^POSTMATCH} */
6793 case RX_BUFF_IDX_POSTMATCH:
6794 if (rx->offs[0].end != -1) {
6795 i = rx->sublen - rx->offs[0].end;
6797 s1 = rx->offs[0].end;
6803 /* $& / ${^MATCH}, $1, $2, ... */
6805 if (paren <= (I32)rx->nparens &&
6806 (s1 = rx->offs[paren].start) != -1 &&
6807 (t1 = rx->offs[paren].end) != -1)
6812 if (ckWARN(WARN_UNINITIALIZED))
6813 report_uninit((const SV *)sv);
6818 if (i > 0 && RXp_MATCH_UTF8(rx)) {
6819 const char * const s = rx->subbeg + s1;
6824 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
6831 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
6833 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
6834 PERL_UNUSED_ARG(rx);
6838 return newSVpvs("Regexp");
6841 /* Scans the name of a named buffer from the pattern.
6842 * If flags is REG_RSN_RETURN_NULL returns null.
6843 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
6844 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
6845 * to the parsed name as looked up in the RExC_paren_names hash.
6846 * If there is an error throws a vFAIL().. type exception.
6849 #define REG_RSN_RETURN_NULL 0
6850 #define REG_RSN_RETURN_NAME 1
6851 #define REG_RSN_RETURN_DATA 2
6854 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
6856 char *name_start = RExC_parse;
6858 PERL_ARGS_ASSERT_REG_SCAN_NAME;
6860 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
6861 /* skip IDFIRST by using do...while */
6864 RExC_parse += UTF8SKIP(RExC_parse);
6865 } while (isALNUM_utf8((U8*)RExC_parse));
6869 } while (isALNUM(*RExC_parse));
6874 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
6875 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
6876 if ( flags == REG_RSN_RETURN_NAME)
6878 else if (flags==REG_RSN_RETURN_DATA) {
6881 if ( ! sv_name ) /* should not happen*/
6882 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
6883 if (RExC_paren_names)
6884 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
6886 sv_dat = HeVAL(he_str);
6888 vFAIL("Reference to nonexistent named group");
6892 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
6893 (unsigned long) flags);
6895 assert(0); /* NOT REACHED */
6900 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
6901 int rem=(int)(RExC_end - RExC_parse); \
6910 if (RExC_lastparse!=RExC_parse) \
6911 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
6914 iscut ? "..." : "<" \
6917 PerlIO_printf(Perl_debug_log,"%16s",""); \
6920 num = RExC_size + 1; \
6922 num=REG_NODE_NUM(RExC_emit); \
6923 if (RExC_lastnum!=num) \
6924 PerlIO_printf(Perl_debug_log,"|%4d",num); \
6926 PerlIO_printf(Perl_debug_log,"|%4s",""); \
6927 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
6928 (int)((depth*2)), "", \
6932 RExC_lastparse=RExC_parse; \
6937 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
6938 DEBUG_PARSE_MSG((funcname)); \
6939 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
6941 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
6942 DEBUG_PARSE_MSG((funcname)); \
6943 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
6946 /* This section of code defines the inversion list object and its methods. The
6947 * interfaces are highly subject to change, so as much as possible is static to
6948 * this file. An inversion list is here implemented as a malloc'd C UV array
6949 * with some added info that is placed as UVs at the beginning in a header
6950 * portion. An inversion list for Unicode is an array of code points, sorted
6951 * by ordinal number. The zeroth element is the first code point in the list.
6952 * The 1th element is the first element beyond that not in the list. In other
6953 * words, the first range is
6954 * invlist[0]..(invlist[1]-1)
6955 * The other ranges follow. Thus every element whose index is divisible by two
6956 * marks the beginning of a range that is in the list, and every element not
6957 * divisible by two marks the beginning of a range not in the list. A single
6958 * element inversion list that contains the single code point N generally
6959 * consists of two elements
6962 * (The exception is when N is the highest representable value on the
6963 * machine, in which case the list containing just it would be a single
6964 * element, itself. By extension, if the last range in the list extends to
6965 * infinity, then the first element of that range will be in the inversion list
6966 * at a position that is divisible by two, and is the final element in the
6968 * Taking the complement (inverting) an inversion list is quite simple, if the
6969 * first element is 0, remove it; otherwise add a 0 element at the beginning.
6970 * This implementation reserves an element at the beginning of each inversion list
6971 * to contain 0 when the list contains 0, and contains 1 otherwise. The actual
6972 * beginning of the list is either that element if 0, or the next one if 1.
6974 * More about inversion lists can be found in "Unicode Demystified"
6975 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
6976 * More will be coming when functionality is added later.
6978 * The inversion list data structure is currently implemented as an SV pointing
6979 * to an array of UVs that the SV thinks are bytes. This allows us to have an
6980 * array of UV whose memory management is automatically handled by the existing
6981 * facilities for SV's.
6983 * Some of the methods should always be private to the implementation, and some
6984 * should eventually be made public */
6986 #define INVLIST_LEN_OFFSET 0 /* Number of elements in the inversion list */
6987 #define INVLIST_ITER_OFFSET 1 /* Current iteration position */
6989 /* This is a combination of a version and data structure type, so that one
6990 * being passed in can be validated to be an inversion list of the correct
6991 * vintage. When the structure of the header is changed, a new random number
6992 * in the range 2**31-1 should be generated and the new() method changed to
6993 * insert that at this location. Then, if an auxiliary program doesn't change
6994 * correspondingly, it will be discovered immediately */
6995 #define INVLIST_VERSION_ID_OFFSET 2
6996 #define INVLIST_VERSION_ID 1064334010
6998 /* For safety, when adding new elements, remember to #undef them at the end of
6999 * the inversion list code section */
7001 #define INVLIST_ZERO_OFFSET 3 /* 0 or 1; must be last element in header */
7002 /* The UV at position ZERO contains either 0 or 1. If 0, the inversion list
7003 * contains the code point U+00000, and begins here. If 1, the inversion list
7004 * doesn't contain U+0000, and it begins at the next UV in the array.
7005 * Inverting an inversion list consists of adding or removing the 0 at the
7006 * beginning of it. By reserving a space for that 0, inversion can be made
7009 #define HEADER_LENGTH (INVLIST_ZERO_OFFSET + 1)
7011 /* Internally things are UVs */
7012 #define TO_INTERNAL_SIZE(x) ((x + HEADER_LENGTH) * sizeof(UV))
7013 #define FROM_INTERNAL_SIZE(x) ((x / sizeof(UV)) - HEADER_LENGTH)
7015 #define INVLIST_INITIAL_LEN 10
7017 PERL_STATIC_INLINE UV*
7018 S__invlist_array_init(pTHX_ SV* const invlist, const bool will_have_0)
7020 /* Returns a pointer to the first element in the inversion list's array.
7021 * This is called upon initialization of an inversion list. Where the
7022 * array begins depends on whether the list has the code point U+0000
7023 * in it or not. The other parameter tells it whether the code that
7024 * follows this call is about to put a 0 in the inversion list or not.
7025 * The first element is either the element with 0, if 0, or the next one,
7028 UV* zero = get_invlist_zero_addr(invlist);
7030 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
7033 assert(! *get_invlist_len_addr(invlist));
7035 /* 1^1 = 0; 1^0 = 1 */
7036 *zero = 1 ^ will_have_0;
7037 return zero + *zero;
7040 PERL_STATIC_INLINE UV*
7041 S_invlist_array(pTHX_ SV* const invlist)
7043 /* Returns the pointer to the inversion list's array. Every time the
7044 * length changes, this needs to be called in case malloc or realloc moved
7047 PERL_ARGS_ASSERT_INVLIST_ARRAY;
7049 /* Must not be empty. If these fail, you probably didn't check for <len>
7050 * being non-zero before trying to get the array */
7051 assert(*get_invlist_len_addr(invlist));
7052 assert(*get_invlist_zero_addr(invlist) == 0
7053 || *get_invlist_zero_addr(invlist) == 1);
7055 /* The array begins either at the element reserved for zero if the
7056 * list contains 0 (that element will be set to 0), or otherwise the next
7057 * element (in which case the reserved element will be set to 1). */
7058 return (UV *) (get_invlist_zero_addr(invlist)
7059 + *get_invlist_zero_addr(invlist));
7062 PERL_STATIC_INLINE UV*
7063 S_get_invlist_len_addr(pTHX_ SV* invlist)
7065 /* Return the address of the UV that contains the current number
7066 * of used elements in the inversion list */
7068 PERL_ARGS_ASSERT_GET_INVLIST_LEN_ADDR;
7070 return (UV *) (SvPVX(invlist) + (INVLIST_LEN_OFFSET * sizeof (UV)));
7073 PERL_STATIC_INLINE UV
7074 S_invlist_len(pTHX_ SV* const invlist)
7076 /* Returns the current number of elements stored in the inversion list's
7079 PERL_ARGS_ASSERT_INVLIST_LEN;
7081 return *get_invlist_len_addr(invlist);
7084 PERL_STATIC_INLINE void
7085 S_invlist_set_len(pTHX_ SV* const invlist, const UV len)
7087 /* Sets the current number of elements stored in the inversion list */
7089 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
7091 *get_invlist_len_addr(invlist) = len;
7093 assert(len <= SvLEN(invlist));
7095 SvCUR_set(invlist, TO_INTERNAL_SIZE(len));
7096 /* If the list contains U+0000, that element is part of the header,
7097 * and should not be counted as part of the array. It will contain
7098 * 0 in that case, and 1 otherwise. So we could flop 0=>1, 1=>0 and
7100 * SvCUR_set(invlist,
7101 * TO_INTERNAL_SIZE(len
7102 * - (*get_invlist_zero_addr(inv_list) ^ 1)));
7103 * But, this is only valid if len is not 0. The consequences of not doing
7104 * this is that the memory allocation code may think that 1 more UV is
7105 * being used than actually is, and so might do an unnecessary grow. That
7106 * seems worth not bothering to make this the precise amount.
7108 * Note that when inverting, SvCUR shouldn't change */
7111 PERL_STATIC_INLINE UV
7112 S_invlist_max(pTHX_ SV* const invlist)
7114 /* Returns the maximum number of elements storable in the inversion list's
7115 * array, without having to realloc() */
7117 PERL_ARGS_ASSERT_INVLIST_MAX;
7119 return FROM_INTERNAL_SIZE(SvLEN(invlist));
7122 PERL_STATIC_INLINE UV*
7123 S_get_invlist_zero_addr(pTHX_ SV* invlist)
7125 /* Return the address of the UV that is reserved to hold 0 if the inversion
7126 * list contains 0. This has to be the last element of the heading, as the
7127 * list proper starts with either it if 0, or the next element if not.
7128 * (But we force it to contain either 0 or 1) */
7130 PERL_ARGS_ASSERT_GET_INVLIST_ZERO_ADDR;
7132 return (UV *) (SvPVX(invlist) + (INVLIST_ZERO_OFFSET * sizeof (UV)));
7135 #ifndef PERL_IN_XSUB_RE
7137 Perl__new_invlist(pTHX_ IV initial_size)
7140 /* Return a pointer to a newly constructed inversion list, with enough
7141 * space to store 'initial_size' elements. If that number is negative, a
7142 * system default is used instead */
7146 if (initial_size < 0) {
7147 initial_size = INVLIST_INITIAL_LEN;
7150 /* Allocate the initial space */
7151 new_list = newSV(TO_INTERNAL_SIZE(initial_size));
7152 invlist_set_len(new_list, 0);
7154 /* Force iterinit() to be used to get iteration to work */
7155 *get_invlist_iter_addr(new_list) = UV_MAX;
7157 /* This should force a segfault if a method doesn't initialize this
7159 *get_invlist_zero_addr(new_list) = UV_MAX;
7161 *get_invlist_version_id_addr(new_list) = INVLIST_VERSION_ID;
7162 #if HEADER_LENGTH != 4
7163 # error Need to regenerate VERSION_ID by running perl -E 'say int(rand 2**31-1)', and then changing the #if to the new length
7171 S__new_invlist_C_array(pTHX_ UV* list)
7173 /* Return a pointer to a newly constructed inversion list, initialized to
7174 * point to <list>, which has to be in the exact correct inversion list
7175 * form, including internal fields. Thus this is a dangerous routine that
7176 * should not be used in the wrong hands */
7178 SV* invlist = newSV_type(SVt_PV);
7180 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
7182 SvPV_set(invlist, (char *) list);
7183 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
7184 shouldn't touch it */
7185 SvCUR_set(invlist, TO_INTERNAL_SIZE(invlist_len(invlist)));
7187 if (*get_invlist_version_id_addr(invlist) != INVLIST_VERSION_ID) {
7188 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
7195 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
7197 /* Grow the maximum size of an inversion list */
7199 PERL_ARGS_ASSERT_INVLIST_EXTEND;
7201 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max));
7204 PERL_STATIC_INLINE void
7205 S_invlist_trim(pTHX_ SV* const invlist)
7207 PERL_ARGS_ASSERT_INVLIST_TRIM;
7209 /* Change the length of the inversion list to how many entries it currently
7212 SvPV_shrink_to_cur((SV *) invlist);
7215 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
7217 #define ELEMENT_RANGE_MATCHES_INVLIST(i) (! ((i) & 1))
7218 #define PREV_RANGE_MATCHES_INVLIST(i) (! ELEMENT_RANGE_MATCHES_INVLIST(i))
7220 #define _invlist_union_complement_2nd(a, b, output) _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
7223 S__append_range_to_invlist(pTHX_ SV* const invlist, const UV start, const UV end)
7225 /* Subject to change or removal. Append the range from 'start' to 'end' at
7226 * the end of the inversion list. The range must be above any existing
7230 UV max = invlist_max(invlist);
7231 UV len = invlist_len(invlist);
7233 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
7235 if (len == 0) { /* Empty lists must be initialized */
7236 array = _invlist_array_init(invlist, start == 0);
7239 /* Here, the existing list is non-empty. The current max entry in the
7240 * list is generally the first value not in the set, except when the
7241 * set extends to the end of permissible values, in which case it is
7242 * the first entry in that final set, and so this call is an attempt to
7243 * append out-of-order */
7245 UV final_element = len - 1;
7246 array = invlist_array(invlist);
7247 if (array[final_element] > start
7248 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
7250 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
7251 array[final_element], start,
7252 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
7255 /* Here, it is a legal append. If the new range begins with the first
7256 * value not in the set, it is extending the set, so the new first
7257 * value not in the set is one greater than the newly extended range.
7259 if (array[final_element] == start) {
7260 if (end != UV_MAX) {
7261 array[final_element] = end + 1;
7264 /* But if the end is the maximum representable on the machine,
7265 * just let the range that this would extend to have no end */
7266 invlist_set_len(invlist, len - 1);
7272 /* Here the new range doesn't extend any existing set. Add it */
7274 len += 2; /* Includes an element each for the start and end of range */
7276 /* If overflows the existing space, extend, which may cause the array to be
7279 invlist_extend(invlist, len);
7280 invlist_set_len(invlist, len); /* Have to set len here to avoid assert
7281 failure in invlist_array() */
7282 array = invlist_array(invlist);
7285 invlist_set_len(invlist, len);
7288 /* The next item on the list starts the range, the one after that is
7289 * one past the new range. */
7290 array[len - 2] = start;
7291 if (end != UV_MAX) {
7292 array[len - 1] = end + 1;
7295 /* But if the end is the maximum representable on the machine, just let
7296 * the range have no end */
7297 invlist_set_len(invlist, len - 1);
7301 #ifndef PERL_IN_XSUB_RE
7304 S_invlist_search(pTHX_ SV* const invlist, const UV cp)
7306 /* Searches the inversion list for the entry that contains the input code
7307 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
7308 * return value is the index into the list's array of the range that
7312 IV high = invlist_len(invlist);
7313 const UV * const array = invlist_array(invlist);
7315 PERL_ARGS_ASSERT_INVLIST_SEARCH;
7317 /* If list is empty or the code point is before the first element, return
7319 if (high == 0 || cp < array[0]) {
7323 /* Binary search. What we are looking for is <i> such that
7324 * array[i] <= cp < array[i+1]
7325 * The loop below converges on the i+1. */
7326 while (low < high) {
7327 IV mid = (low + high) / 2;
7328 if (array[mid] <= cp) {
7331 /* We could do this extra test to exit the loop early.
7332 if (cp < array[low]) {
7337 else { /* cp < array[mid] */
7346 Perl__invlist_populate_swatch(pTHX_ SV* const invlist, const UV start, const UV end, U8* swatch)
7348 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
7349 * but is used when the swash has an inversion list. This makes this much
7350 * faster, as it uses a binary search instead of a linear one. This is
7351 * intimately tied to that function, and perhaps should be in utf8.c,
7352 * except it is intimately tied to inversion lists as well. It assumes
7353 * that <swatch> is all 0's on input */
7356 const IV len = invlist_len(invlist);
7360 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
7362 if (len == 0) { /* Empty inversion list */
7366 array = invlist_array(invlist);
7368 /* Find which element it is */
7369 i = invlist_search(invlist, start);
7371 /* We populate from <start> to <end> */
7372 while (current < end) {
7375 /* The inversion list gives the results for every possible code point
7376 * after the first one in the list. Only those ranges whose index is
7377 * even are ones that the inversion list matches. For the odd ones,
7378 * and if the initial code point is not in the list, we have to skip
7379 * forward to the next element */
7380 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
7382 if (i >= len) { /* Finished if beyond the end of the array */
7386 if (current >= end) { /* Finished if beyond the end of what we
7391 assert(current >= start);
7393 /* The current range ends one below the next one, except don't go past
7396 upper = (i < len && array[i] < end) ? array[i] : end;
7398 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
7399 * for each code point in it */
7400 for (; current < upper; current++) {
7401 const STRLEN offset = (STRLEN)(current - start);
7402 swatch[offset >> 3] |= 1 << (offset & 7);
7405 /* Quit if at the end of the list */
7408 /* But first, have to deal with the highest possible code point on
7409 * the platform. The previous code assumes that <end> is one
7410 * beyond where we want to populate, but that is impossible at the
7411 * platform's infinity, so have to handle it specially */
7412 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
7414 const STRLEN offset = (STRLEN)(end - start);
7415 swatch[offset >> 3] |= 1 << (offset & 7);
7420 /* Advance to the next range, which will be for code points not in the
7430 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** output)
7432 /* Take the union of two inversion lists and point <output> to it. *output
7433 * should be defined upon input, and if it points to one of the two lists,
7434 * the reference count to that list will be decremented. The first list,
7435 * <a>, may be NULL, in which case a copy of the second list is returned.
7436 * If <complement_b> is TRUE, the union is taken of the complement
7437 * (inversion) of <b> instead of b itself.
7439 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7440 * Richard Gillam, published by Addison-Wesley, and explained at some
7441 * length there. The preface says to incorporate its examples into your
7442 * code at your own risk.
7444 * The algorithm is like a merge sort.
7446 * XXX A potential performance improvement is to keep track as we go along
7447 * if only one of the inputs contributes to the result, meaning the other
7448 * is a subset of that one. In that case, we can skip the final copy and
7449 * return the larger of the input lists, but then outside code might need
7450 * to keep track of whether to free the input list or not */
7452 UV* array_a; /* a's array */
7454 UV len_a; /* length of a's array */
7457 SV* u; /* the resulting union */
7461 UV i_a = 0; /* current index into a's array */
7465 /* running count, as explained in the algorithm source book; items are
7466 * stopped accumulating and are output when the count changes to/from 0.
7467 * The count is incremented when we start a range that's in the set, and
7468 * decremented when we start a range that's not in the set. So its range
7469 * is 0 to 2. Only when the count is zero is something not in the set.
7473 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
7476 /* If either one is empty, the union is the other one */
7477 if (a == NULL || ((len_a = invlist_len(a)) == 0)) {
7484 *output = invlist_clone(b);
7486 _invlist_invert(*output);
7488 } /* else *output already = b; */
7491 else if ((len_b = invlist_len(b)) == 0) {
7496 /* The complement of an empty list is a list that has everything in it,
7497 * so the union with <a> includes everything too */
7502 *output = _new_invlist(1);
7503 _append_range_to_invlist(*output, 0, UV_MAX);
7505 else if (*output != a) {
7506 *output = invlist_clone(a);
7508 /* else *output already = a; */
7512 /* Here both lists exist and are non-empty */
7513 array_a = invlist_array(a);
7514 array_b = invlist_array(b);
7516 /* If are to take the union of 'a' with the complement of b, set it
7517 * up so are looking at b's complement. */
7520 /* To complement, we invert: if the first element is 0, remove it. To
7521 * do this, we just pretend the array starts one later, and clear the
7522 * flag as we don't have to do anything else later */
7523 if (array_b[0] == 0) {
7526 complement_b = FALSE;
7530 /* But if the first element is not zero, we unshift a 0 before the
7531 * array. The data structure reserves a space for that 0 (which
7532 * should be a '1' right now), so physical shifting is unneeded,
7533 * but temporarily change that element to 0. Before exiting the
7534 * routine, we must restore the element to '1' */
7541 /* Size the union for the worst case: that the sets are completely
7543 u = _new_invlist(len_a + len_b);
7545 /* Will contain U+0000 if either component does */
7546 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
7547 || (len_b > 0 && array_b[0] == 0));
7549 /* Go through each list item by item, stopping when exhausted one of
7551 while (i_a < len_a && i_b < len_b) {
7552 UV cp; /* The element to potentially add to the union's array */
7553 bool cp_in_set; /* is it in the the input list's set or not */
7555 /* We need to take one or the other of the two inputs for the union.
7556 * Since we are merging two sorted lists, we take the smaller of the
7557 * next items. In case of a tie, we take the one that is in its set
7558 * first. If we took one not in the set first, it would decrement the
7559 * count, possibly to 0 which would cause it to be output as ending the
7560 * range, and the next time through we would take the same number, and
7561 * output it again as beginning the next range. By doing it the
7562 * opposite way, there is no possibility that the count will be
7563 * momentarily decremented to 0, and thus the two adjoining ranges will
7564 * be seamlessly merged. (In a tie and both are in the set or both not
7565 * in the set, it doesn't matter which we take first.) */
7566 if (array_a[i_a] < array_b[i_b]
7567 || (array_a[i_a] == array_b[i_b]
7568 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7570 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7574 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7578 /* Here, have chosen which of the two inputs to look at. Only output
7579 * if the running count changes to/from 0, which marks the
7580 * beginning/end of a range in that's in the set */
7583 array_u[i_u++] = cp;
7590 array_u[i_u++] = cp;
7595 /* Here, we are finished going through at least one of the lists, which
7596 * means there is something remaining in at most one. We check if the list
7597 * that hasn't been exhausted is positioned such that we are in the middle
7598 * of a range in its set or not. (i_a and i_b point to the element beyond
7599 * the one we care about.) If in the set, we decrement 'count'; if 0, there
7600 * is potentially more to output.
7601 * There are four cases:
7602 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
7603 * in the union is entirely from the non-exhausted set.
7604 * 2) Both were in their sets, count is 2. Nothing further should
7605 * be output, as everything that remains will be in the exhausted
7606 * list's set, hence in the union; decrementing to 1 but not 0 insures
7608 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
7609 * Nothing further should be output because the union includes
7610 * everything from the exhausted set. Not decrementing ensures that.
7611 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
7612 * decrementing to 0 insures that we look at the remainder of the
7613 * non-exhausted set */
7614 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7615 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7620 /* The final length is what we've output so far, plus what else is about to
7621 * be output. (If 'count' is non-zero, then the input list we exhausted
7622 * has everything remaining up to the machine's limit in its set, and hence
7623 * in the union, so there will be no further output. */
7626 /* At most one of the subexpressions will be non-zero */
7627 len_u += (len_a - i_a) + (len_b - i_b);
7630 /* Set result to final length, which can change the pointer to array_u, so
7632 if (len_u != invlist_len(u)) {
7633 invlist_set_len(u, len_u);
7635 array_u = invlist_array(u);
7638 /* When 'count' is 0, the list that was exhausted (if one was shorter than
7639 * the other) ended with everything above it not in its set. That means
7640 * that the remaining part of the union is precisely the same as the
7641 * non-exhausted list, so can just copy it unchanged. (If both list were
7642 * exhausted at the same time, then the operations below will be both 0.)
7645 IV copy_count; /* At most one will have a non-zero copy count */
7646 if ((copy_count = len_a - i_a) > 0) {
7647 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
7649 else if ((copy_count = len_b - i_b) > 0) {
7650 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
7654 /* We may be removing a reference to one of the inputs */
7655 if (a == *output || b == *output) {
7656 SvREFCNT_dec(*output);
7659 /* If we've changed b, restore it */
7669 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b, bool complement_b, SV** i)
7671 /* Take the intersection of two inversion lists and point <i> to it. *i
7672 * should be defined upon input, and if it points to one of the two lists,
7673 * the reference count to that list will be decremented.
7674 * If <complement_b> is TRUE, the result will be the intersection of <a>
7675 * and the complement (or inversion) of <b> instead of <b> directly.
7677 * The basis for this comes from "Unicode Demystified" Chapter 13 by
7678 * Richard Gillam, published by Addison-Wesley, and explained at some
7679 * length there. The preface says to incorporate its examples into your
7680 * code at your own risk. In fact, it had bugs
7682 * The algorithm is like a merge sort, and is essentially the same as the
7686 UV* array_a; /* a's array */
7688 UV len_a; /* length of a's array */
7691 SV* r; /* the resulting intersection */
7695 UV i_a = 0; /* current index into a's array */
7699 /* running count, as explained in the algorithm source book; items are
7700 * stopped accumulating and are output when the count changes to/from 2.
7701 * The count is incremented when we start a range that's in the set, and
7702 * decremented when we start a range that's not in the set. So its range
7703 * is 0 to 2. Only when the count is 2 is something in the intersection.
7707 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
7710 /* Special case if either one is empty */
7711 len_a = invlist_len(a);
7712 if ((len_a == 0) || ((len_b = invlist_len(b)) == 0)) {
7714 if (len_a != 0 && complement_b) {
7716 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
7717 * be empty. Here, also we are using 'b's complement, which hence
7718 * must be every possible code point. Thus the intersection is
7721 *i = invlist_clone(a);
7727 /* else *i is already 'a' */
7731 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
7732 * intersection must be empty */
7739 *i = _new_invlist(0);
7743 /* Here both lists exist and are non-empty */
7744 array_a = invlist_array(a);
7745 array_b = invlist_array(b);
7747 /* If are to take the intersection of 'a' with the complement of b, set it
7748 * up so are looking at b's complement. */
7751 /* To complement, we invert: if the first element is 0, remove it. To
7752 * do this, we just pretend the array starts one later, and clear the
7753 * flag as we don't have to do anything else later */
7754 if (array_b[0] == 0) {
7757 complement_b = FALSE;
7761 /* But if the first element is not zero, we unshift a 0 before the
7762 * array. The data structure reserves a space for that 0 (which
7763 * should be a '1' right now), so physical shifting is unneeded,
7764 * but temporarily change that element to 0. Before exiting the
7765 * routine, we must restore the element to '1' */
7772 /* Size the intersection for the worst case: that the intersection ends up
7773 * fragmenting everything to be completely disjoint */
7774 r= _new_invlist(len_a + len_b);
7776 /* Will contain U+0000 iff both components do */
7777 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
7778 && len_b > 0 && array_b[0] == 0);
7780 /* Go through each list item by item, stopping when exhausted one of
7782 while (i_a < len_a && i_b < len_b) {
7783 UV cp; /* The element to potentially add to the intersection's
7785 bool cp_in_set; /* Is it in the input list's set or not */
7787 /* We need to take one or the other of the two inputs for the
7788 * intersection. Since we are merging two sorted lists, we take the
7789 * smaller of the next items. In case of a tie, we take the one that
7790 * is not in its set first (a difference from the union algorithm). If
7791 * we took one in the set first, it would increment the count, possibly
7792 * to 2 which would cause it to be output as starting a range in the
7793 * intersection, and the next time through we would take that same
7794 * number, and output it again as ending the set. By doing it the
7795 * opposite of this, there is no possibility that the count will be
7796 * momentarily incremented to 2. (In a tie and both are in the set or
7797 * both not in the set, it doesn't matter which we take first.) */
7798 if (array_a[i_a] < array_b[i_b]
7799 || (array_a[i_a] == array_b[i_b]
7800 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
7802 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
7806 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
7810 /* Here, have chosen which of the two inputs to look at. Only output
7811 * if the running count changes to/from 2, which marks the
7812 * beginning/end of a range that's in the intersection */
7816 array_r[i_r++] = cp;
7821 array_r[i_r++] = cp;
7827 /* Here, we are finished going through at least one of the lists, which
7828 * means there is something remaining in at most one. We check if the list
7829 * that has been exhausted is positioned such that we are in the middle
7830 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
7831 * the ones we care about.) There are four cases:
7832 * 1) Both weren't in their sets, count is 0, and remains 0. There's
7833 * nothing left in the intersection.
7834 * 2) Both were in their sets, count is 2 and perhaps is incremented to
7835 * above 2. What should be output is exactly that which is in the
7836 * non-exhausted set, as everything it has is also in the intersection
7837 * set, and everything it doesn't have can't be in the intersection
7838 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
7839 * gets incremented to 2. Like the previous case, the intersection is
7840 * everything that remains in the non-exhausted set.
7841 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
7842 * remains 1. And the intersection has nothing more. */
7843 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
7844 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
7849 /* The final length is what we've output so far plus what else is in the
7850 * intersection. At most one of the subexpressions below will be non-zero */
7853 len_r += (len_a - i_a) + (len_b - i_b);
7856 /* Set result to final length, which can change the pointer to array_r, so
7858 if (len_r != invlist_len(r)) {
7859 invlist_set_len(r, len_r);
7861 array_r = invlist_array(r);
7864 /* Finish outputting any remaining */
7865 if (count >= 2) { /* At most one will have a non-zero copy count */
7867 if ((copy_count = len_a - i_a) > 0) {
7868 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
7870 else if ((copy_count = len_b - i_b) > 0) {
7871 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
7875 /* We may be removing a reference to one of the inputs */
7876 if (a == *i || b == *i) {
7880 /* If we've changed b, restore it */
7890 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
7892 /* Add the range from 'start' to 'end' inclusive to the inversion list's
7893 * set. A pointer to the inversion list is returned. This may actually be
7894 * a new list, in which case the passed in one has been destroyed. The
7895 * passed in inversion list can be NULL, in which case a new one is created
7896 * with just the one range in it */
7901 if (invlist == NULL) {
7902 invlist = _new_invlist(2);
7906 len = invlist_len(invlist);
7909 /* If comes after the final entry, can just append it to the end */
7911 || start >= invlist_array(invlist)
7912 [invlist_len(invlist) - 1])
7914 _append_range_to_invlist(invlist, start, end);
7918 /* Here, can't just append things, create and return a new inversion list
7919 * which is the union of this range and the existing inversion list */
7920 range_invlist = _new_invlist(2);
7921 _append_range_to_invlist(range_invlist, start, end);
7923 _invlist_union(invlist, range_invlist, &invlist);
7925 /* The temporary can be freed */
7926 SvREFCNT_dec(range_invlist);
7933 PERL_STATIC_INLINE SV*
7934 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
7935 return _add_range_to_invlist(invlist, cp, cp);
7938 #ifndef PERL_IN_XSUB_RE
7940 Perl__invlist_invert(pTHX_ SV* const invlist)
7942 /* Complement the input inversion list. This adds a 0 if the list didn't
7943 * have a zero; removes it otherwise. As described above, the data
7944 * structure is set up so that this is very efficient */
7946 UV* len_pos = get_invlist_len_addr(invlist);
7948 PERL_ARGS_ASSERT__INVLIST_INVERT;
7950 /* The inverse of matching nothing is matching everything */
7951 if (*len_pos == 0) {
7952 _append_range_to_invlist(invlist, 0, UV_MAX);
7956 /* The exclusive or complents 0 to 1; and 1 to 0. If the result is 1, the
7957 * zero element was a 0, so it is being removed, so the length decrements
7958 * by 1; and vice-versa. SvCUR is unaffected */
7959 if (*get_invlist_zero_addr(invlist) ^= 1) {
7968 Perl__invlist_invert_prop(pTHX_ SV* const invlist)
7970 /* Complement the input inversion list (which must be a Unicode property,
7971 * all of which don't match above the Unicode maximum code point.) And
7972 * Perl has chosen to not have the inversion match above that either. This
7973 * adds a 0x110000 if the list didn't end with it, and removes it if it did
7979 PERL_ARGS_ASSERT__INVLIST_INVERT_PROP;
7981 _invlist_invert(invlist);
7983 len = invlist_len(invlist);
7985 if (len != 0) { /* If empty do nothing */
7986 array = invlist_array(invlist);
7987 if (array[len - 1] != PERL_UNICODE_MAX + 1) {
7988 /* Add 0x110000. First, grow if necessary */
7990 if (invlist_max(invlist) < len) {
7991 invlist_extend(invlist, len);
7992 array = invlist_array(invlist);
7994 invlist_set_len(invlist, len);
7995 array[len - 1] = PERL_UNICODE_MAX + 1;
7997 else { /* Remove the 0x110000 */
7998 invlist_set_len(invlist, len - 1);
8006 PERL_STATIC_INLINE SV*
8007 S_invlist_clone(pTHX_ SV* const invlist)
8010 /* Return a new inversion list that is a copy of the input one, which is
8013 /* Need to allocate extra space to accommodate Perl's addition of a
8014 * trailing NUL to SvPV's, since it thinks they are always strings */
8015 SV* new_invlist = _new_invlist(invlist_len(invlist) + 1);
8016 STRLEN length = SvCUR(invlist);
8018 PERL_ARGS_ASSERT_INVLIST_CLONE;
8020 SvCUR_set(new_invlist, length); /* This isn't done automatically */
8021 Copy(SvPVX(invlist), SvPVX(new_invlist), length, char);
8026 PERL_STATIC_INLINE UV*
8027 S_get_invlist_iter_addr(pTHX_ SV* invlist)
8029 /* Return the address of the UV that contains the current iteration
8032 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
8034 return (UV *) (SvPVX(invlist) + (INVLIST_ITER_OFFSET * sizeof (UV)));
8037 PERL_STATIC_INLINE UV*
8038 S_get_invlist_version_id_addr(pTHX_ SV* invlist)
8040 /* Return the address of the UV that contains the version id. */
8042 PERL_ARGS_ASSERT_GET_INVLIST_VERSION_ID_ADDR;
8044 return (UV *) (SvPVX(invlist) + (INVLIST_VERSION_ID_OFFSET * sizeof (UV)));
8047 PERL_STATIC_INLINE void
8048 S_invlist_iterinit(pTHX_ SV* invlist) /* Initialize iterator for invlist */
8050 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
8052 *get_invlist_iter_addr(invlist) = 0;
8056 S_invlist_iternext(pTHX_ SV* invlist, UV* start, UV* end)
8058 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
8059 * This call sets in <*start> and <*end>, the next range in <invlist>.
8060 * Returns <TRUE> if successful and the next call will return the next
8061 * range; <FALSE> if was already at the end of the list. If the latter,
8062 * <*start> and <*end> are unchanged, and the next call to this function
8063 * will start over at the beginning of the list */
8065 UV* pos = get_invlist_iter_addr(invlist);
8066 UV len = invlist_len(invlist);
8069 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
8072 *pos = UV_MAX; /* Force iternit() to be required next time */
8076 array = invlist_array(invlist);
8078 *start = array[(*pos)++];
8084 *end = array[(*pos)++] - 1;
8090 #ifndef PERL_IN_XSUB_RE
8092 Perl__invlist_contents(pTHX_ SV* const invlist)
8094 /* Get the contents of an inversion list into a string SV so that they can
8095 * be printed out. It uses the format traditionally done for debug tracing
8099 SV* output = newSVpvs("\n");
8101 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
8103 invlist_iterinit(invlist);
8104 while (invlist_iternext(invlist, &start, &end)) {
8105 if (end == UV_MAX) {
8106 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
8108 else if (end != start) {
8109 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
8113 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
8123 S_invlist_dump(pTHX_ SV* const invlist, const char * const header)
8125 /* Dumps out the ranges in an inversion list. The string 'header'
8126 * if present is output on a line before the first range */
8130 if (header && strlen(header)) {
8131 PerlIO_printf(Perl_debug_log, "%s\n", header);
8133 invlist_iterinit(invlist);
8134 while (invlist_iternext(invlist, &start, &end)) {
8135 if (end == UV_MAX) {
8136 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. INFINITY\n", start);
8139 PerlIO_printf(Perl_debug_log, "0x%04"UVXf" .. 0x%04"UVXf"\n", start, end);
8145 #undef HEADER_LENGTH
8146 #undef INVLIST_INITIAL_LENGTH
8147 #undef TO_INTERNAL_SIZE
8148 #undef FROM_INTERNAL_SIZE
8149 #undef INVLIST_LEN_OFFSET
8150 #undef INVLIST_ZERO_OFFSET
8151 #undef INVLIST_ITER_OFFSET
8152 #undef INVLIST_VERSION_ID
8154 /* End of inversion list object */
8157 - reg - regular expression, i.e. main body or parenthesized thing
8159 * Caller must absorb opening parenthesis.
8161 * Combining parenthesis handling with the base level of regular expression
8162 * is a trifle forced, but the need to tie the tails of the branches to what
8163 * follows makes it hard to avoid.
8165 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
8167 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
8169 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
8173 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
8174 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
8177 register regnode *ret; /* Will be the head of the group. */
8178 register regnode *br;
8179 register regnode *lastbr;
8180 register regnode *ender = NULL;
8181 register I32 parno = 0;
8183 U32 oregflags = RExC_flags;
8184 bool have_branch = 0;
8186 I32 freeze_paren = 0;
8187 I32 after_freeze = 0;
8189 /* for (?g), (?gc), and (?o) warnings; warning
8190 about (?c) will warn about (?g) -- japhy */
8192 #define WASTED_O 0x01
8193 #define WASTED_G 0x02
8194 #define WASTED_C 0x04
8195 #define WASTED_GC (0x02|0x04)
8196 I32 wastedflags = 0x00;
8198 char * parse_start = RExC_parse; /* MJD */
8199 char * const oregcomp_parse = RExC_parse;
8201 GET_RE_DEBUG_FLAGS_DECL;
8203 PERL_ARGS_ASSERT_REG;
8204 DEBUG_PARSE("reg ");
8206 *flagp = 0; /* Tentatively. */
8209 /* Make an OPEN node, if parenthesized. */
8211 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
8212 char *start_verb = RExC_parse;
8213 STRLEN verb_len = 0;
8214 char *start_arg = NULL;
8215 unsigned char op = 0;
8217 int internal_argval = 0; /* internal_argval is only useful if !argok */
8218 while ( *RExC_parse && *RExC_parse != ')' ) {
8219 if ( *RExC_parse == ':' ) {
8220 start_arg = RExC_parse + 1;
8226 verb_len = RExC_parse - start_verb;
8229 while ( *RExC_parse && *RExC_parse != ')' )
8231 if ( *RExC_parse != ')' )
8232 vFAIL("Unterminated verb pattern argument");
8233 if ( RExC_parse == start_arg )
8236 if ( *RExC_parse != ')' )
8237 vFAIL("Unterminated verb pattern");
8240 switch ( *start_verb ) {
8241 case 'A': /* (*ACCEPT) */
8242 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
8244 internal_argval = RExC_nestroot;
8247 case 'C': /* (*COMMIT) */
8248 if ( memEQs(start_verb,verb_len,"COMMIT") )
8251 case 'F': /* (*FAIL) */
8252 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
8257 case ':': /* (*:NAME) */
8258 case 'M': /* (*MARK:NAME) */
8259 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
8264 case 'P': /* (*PRUNE) */
8265 if ( memEQs(start_verb,verb_len,"PRUNE") )
8268 case 'S': /* (*SKIP) */
8269 if ( memEQs(start_verb,verb_len,"SKIP") )
8272 case 'T': /* (*THEN) */
8273 /* [19:06] <TimToady> :: is then */
8274 if ( memEQs(start_verb,verb_len,"THEN") ) {
8276 RExC_seen |= REG_SEEN_CUTGROUP;
8282 vFAIL3("Unknown verb pattern '%.*s'",
8283 verb_len, start_verb);
8286 if ( start_arg && internal_argval ) {
8287 vFAIL3("Verb pattern '%.*s' may not have an argument",
8288 verb_len, start_verb);
8289 } else if ( argok < 0 && !start_arg ) {
8290 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
8291 verb_len, start_verb);
8293 ret = reganode(pRExC_state, op, internal_argval);
8294 if ( ! internal_argval && ! SIZE_ONLY ) {
8296 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
8297 ARG(ret) = add_data( pRExC_state, 1, "S" );
8298 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
8305 if (!internal_argval)
8306 RExC_seen |= REG_SEEN_VERBARG;
8307 } else if ( start_arg ) {
8308 vFAIL3("Verb pattern '%.*s' may not have an argument",
8309 verb_len, start_verb);
8311 ret = reg_node(pRExC_state, op);
8313 nextchar(pRExC_state);
8316 if (*RExC_parse == '?') { /* (?...) */
8317 bool is_logical = 0;
8318 const char * const seqstart = RExC_parse;
8319 bool has_use_defaults = FALSE;
8322 paren = *RExC_parse++;
8323 ret = NULL; /* For look-ahead/behind. */
8326 case 'P': /* (?P...) variants for those used to PCRE/Python */
8327 paren = *RExC_parse++;
8328 if ( paren == '<') /* (?P<...>) named capture */
8330 else if (paren == '>') { /* (?P>name) named recursion */
8331 goto named_recursion;
8333 else if (paren == '=') { /* (?P=...) named backref */
8334 /* this pretty much dupes the code for \k<NAME> in regatom(), if
8335 you change this make sure you change that */
8336 char* name_start = RExC_parse;
8338 SV *sv_dat = reg_scan_name(pRExC_state,
8339 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8340 if (RExC_parse == name_start || *RExC_parse != ')')
8341 vFAIL2("Sequence %.3s... not terminated",parse_start);
8344 num = add_data( pRExC_state, 1, "S" );
8345 RExC_rxi->data->data[num]=(void*)sv_dat;
8346 SvREFCNT_inc_simple_void(sv_dat);
8349 ret = reganode(pRExC_state,
8352 : (MORE_ASCII_RESTRICTED)
8354 : (AT_LEAST_UNI_SEMANTICS)
8362 Set_Node_Offset(ret, parse_start+1);
8363 Set_Node_Cur_Length(ret); /* MJD */
8365 nextchar(pRExC_state);
8369 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8371 case '<': /* (?<...) */
8372 if (*RExC_parse == '!')
8374 else if (*RExC_parse != '=')
8380 case '\'': /* (?'...') */
8381 name_start= RExC_parse;
8382 svname = reg_scan_name(pRExC_state,
8383 SIZE_ONLY ? /* reverse test from the others */
8384 REG_RSN_RETURN_NAME :
8385 REG_RSN_RETURN_NULL);
8386 if (RExC_parse == name_start) {
8388 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8391 if (*RExC_parse != paren)
8392 vFAIL2("Sequence (?%c... not terminated",
8393 paren=='>' ? '<' : paren);
8397 if (!svname) /* shouldn't happen */
8399 "panic: reg_scan_name returned NULL");
8400 if (!RExC_paren_names) {
8401 RExC_paren_names= newHV();
8402 sv_2mortal(MUTABLE_SV(RExC_paren_names));
8404 RExC_paren_name_list= newAV();
8405 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
8408 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
8410 sv_dat = HeVAL(he_str);
8412 /* croak baby croak */
8414 "panic: paren_name hash element allocation failed");
8415 } else if ( SvPOK(sv_dat) ) {
8416 /* (?|...) can mean we have dupes so scan to check
8417 its already been stored. Maybe a flag indicating
8418 we are inside such a construct would be useful,
8419 but the arrays are likely to be quite small, so
8420 for now we punt -- dmq */
8421 IV count = SvIV(sv_dat);
8422 I32 *pv = (I32*)SvPVX(sv_dat);
8424 for ( i = 0 ; i < count ; i++ ) {
8425 if ( pv[i] == RExC_npar ) {
8431 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
8432 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
8433 pv[count] = RExC_npar;
8434 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
8437 (void)SvUPGRADE(sv_dat,SVt_PVNV);
8438 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
8440 SvIV_set(sv_dat, 1);
8443 /* Yes this does cause a memory leak in debugging Perls */
8444 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
8445 SvREFCNT_dec(svname);
8448 /*sv_dump(sv_dat);*/
8450 nextchar(pRExC_state);
8452 goto capturing_parens;
8454 RExC_seen |= REG_SEEN_LOOKBEHIND;
8455 RExC_in_lookbehind++;
8457 case '=': /* (?=...) */
8458 RExC_seen_zerolen++;
8460 case '!': /* (?!...) */
8461 RExC_seen_zerolen++;
8462 if (*RExC_parse == ')') {
8463 ret=reg_node(pRExC_state, OPFAIL);
8464 nextchar(pRExC_state);
8468 case '|': /* (?|...) */
8469 /* branch reset, behave like a (?:...) except that
8470 buffers in alternations share the same numbers */
8472 after_freeze = freeze_paren = RExC_npar;
8474 case ':': /* (?:...) */
8475 case '>': /* (?>...) */
8477 case '$': /* (?$...) */
8478 case '@': /* (?@...) */
8479 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
8481 case '#': /* (?#...) */
8482 while (*RExC_parse && *RExC_parse != ')')
8484 if (*RExC_parse != ')')
8485 FAIL("Sequence (?#... not terminated");
8486 nextchar(pRExC_state);
8489 case '0' : /* (?0) */
8490 case 'R' : /* (?R) */
8491 if (*RExC_parse != ')')
8492 FAIL("Sequence (?R) not terminated");
8493 ret = reg_node(pRExC_state, GOSTART);
8494 *flagp |= POSTPONED;
8495 nextchar(pRExC_state);
8498 { /* named and numeric backreferences */
8500 case '&': /* (?&NAME) */
8501 parse_start = RExC_parse - 1;
8504 SV *sv_dat = reg_scan_name(pRExC_state,
8505 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8506 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8508 goto gen_recurse_regop;
8509 assert(0); /* NOT REACHED */
8511 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8513 vFAIL("Illegal pattern");
8515 goto parse_recursion;
8517 case '-': /* (?-1) */
8518 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
8519 RExC_parse--; /* rewind to let it be handled later */
8523 case '1': case '2': case '3': case '4': /* (?1) */
8524 case '5': case '6': case '7': case '8': case '9':
8527 num = atoi(RExC_parse);
8528 parse_start = RExC_parse - 1; /* MJD */
8529 if (*RExC_parse == '-')
8531 while (isDIGIT(*RExC_parse))
8533 if (*RExC_parse!=')')
8534 vFAIL("Expecting close bracket");
8537 if ( paren == '-' ) {
8539 Diagram of capture buffer numbering.
8540 Top line is the normal capture buffer numbers
8541 Bottom line is the negative indexing as from
8545 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
8549 num = RExC_npar + num;
8552 vFAIL("Reference to nonexistent group");
8554 } else if ( paren == '+' ) {
8555 num = RExC_npar + num - 1;
8558 ret = reganode(pRExC_state, GOSUB, num);
8560 if (num > (I32)RExC_rx->nparens) {
8562 vFAIL("Reference to nonexistent group");
8564 ARG2L_SET( ret, RExC_recurse_count++);
8566 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
8567 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
8571 RExC_seen |= REG_SEEN_RECURSE;
8572 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
8573 Set_Node_Offset(ret, parse_start); /* MJD */
8575 *flagp |= POSTPONED;
8576 nextchar(pRExC_state);
8578 } /* named and numeric backreferences */
8579 assert(0); /* NOT REACHED */
8581 case '?': /* (??...) */
8583 if (*RExC_parse != '{') {
8585 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8588 *flagp |= POSTPONED;
8589 paren = *RExC_parse++;
8591 case '{': /* (?{...}) */
8594 struct reg_code_block *cb;
8596 RExC_seen_zerolen++;
8598 if ( !pRExC_state->num_code_blocks
8599 || pRExC_state->code_index >= pRExC_state->num_code_blocks
8600 || pRExC_state->code_blocks[pRExC_state->code_index].start
8601 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
8604 if (RExC_pm_flags & PMf_USE_RE_EVAL)
8605 FAIL("panic: Sequence (?{...}): no code block found\n");
8606 FAIL("Eval-group not allowed at runtime, use re 'eval'");
8608 /* this is a pre-compiled code block (?{...}) */
8609 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
8610 RExC_parse = RExC_start + cb->end;
8613 if (cb->src_regex) {
8614 n = add_data(pRExC_state, 2, "rl");
8615 RExC_rxi->data->data[n] =
8616 (void*)SvREFCNT_inc((SV*)cb->src_regex);
8617 RExC_rxi->data->data[n+1] = (void*)o;
8620 n = add_data(pRExC_state, 1,
8621 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l");
8622 RExC_rxi->data->data[n] = (void*)o;
8625 pRExC_state->code_index++;
8626 nextchar(pRExC_state);
8630 ret = reg_node(pRExC_state, LOGICAL);
8631 eval = reganode(pRExC_state, EVAL, n);
8634 /* for later propagation into (??{}) return value */
8635 eval->flags = (U8) (RExC_flags & RXf_PMf_COMPILETIME);
8637 REGTAIL(pRExC_state, ret, eval);
8638 /* deal with the length of this later - MJD */
8641 ret = reganode(pRExC_state, EVAL, n);
8642 Set_Node_Length(ret, RExC_parse - parse_start + 1);
8643 Set_Node_Offset(ret, parse_start);
8646 case '(': /* (?(?{...})...) and (?(?=...)...) */
8649 if (RExC_parse[0] == '?') { /* (?(?...)) */
8650 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
8651 || RExC_parse[1] == '<'
8652 || RExC_parse[1] == '{') { /* Lookahead or eval. */
8655 ret = reg_node(pRExC_state, LOGICAL);
8658 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
8662 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
8663 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
8665 char ch = RExC_parse[0] == '<' ? '>' : '\'';
8666 char *name_start= RExC_parse++;
8668 SV *sv_dat=reg_scan_name(pRExC_state,
8669 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8670 if (RExC_parse == name_start || *RExC_parse != ch)
8671 vFAIL2("Sequence (?(%c... not terminated",
8672 (ch == '>' ? '<' : ch));
8675 num = add_data( pRExC_state, 1, "S" );
8676 RExC_rxi->data->data[num]=(void*)sv_dat;
8677 SvREFCNT_inc_simple_void(sv_dat);
8679 ret = reganode(pRExC_state,NGROUPP,num);
8680 goto insert_if_check_paren;
8682 else if (RExC_parse[0] == 'D' &&
8683 RExC_parse[1] == 'E' &&
8684 RExC_parse[2] == 'F' &&
8685 RExC_parse[3] == 'I' &&
8686 RExC_parse[4] == 'N' &&
8687 RExC_parse[5] == 'E')
8689 ret = reganode(pRExC_state,DEFINEP,0);
8692 goto insert_if_check_paren;
8694 else if (RExC_parse[0] == 'R') {
8697 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
8698 parno = atoi(RExC_parse++);
8699 while (isDIGIT(*RExC_parse))
8701 } else if (RExC_parse[0] == '&') {
8704 sv_dat = reg_scan_name(pRExC_state,
8705 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8706 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
8708 ret = reganode(pRExC_state,INSUBP,parno);
8709 goto insert_if_check_paren;
8711 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
8714 parno = atoi(RExC_parse++);
8716 while (isDIGIT(*RExC_parse))
8718 ret = reganode(pRExC_state, GROUPP, parno);
8720 insert_if_check_paren:
8721 if ((c = *nextchar(pRExC_state)) != ')')
8722 vFAIL("Switch condition not recognized");
8724 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
8725 br = regbranch(pRExC_state, &flags, 1,depth+1);
8727 br = reganode(pRExC_state, LONGJMP, 0);
8729 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
8730 c = *nextchar(pRExC_state);
8735 vFAIL("(?(DEFINE)....) does not allow branches");
8736 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
8737 regbranch(pRExC_state, &flags, 1,depth+1);
8738 REGTAIL(pRExC_state, ret, lastbr);
8741 c = *nextchar(pRExC_state);
8746 vFAIL("Switch (?(condition)... contains too many branches");
8747 ender = reg_node(pRExC_state, TAIL);
8748 REGTAIL(pRExC_state, br, ender);
8750 REGTAIL(pRExC_state, lastbr, ender);
8751 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
8754 REGTAIL(pRExC_state, ret, ender);
8755 RExC_size++; /* XXX WHY do we need this?!!
8756 For large programs it seems to be required
8757 but I can't figure out why. -- dmq*/
8761 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
8765 RExC_parse--; /* for vFAIL to print correctly */
8766 vFAIL("Sequence (? incomplete");
8768 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
8770 has_use_defaults = TRUE;
8771 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
8772 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
8773 ? REGEX_UNICODE_CHARSET
8774 : REGEX_DEPENDS_CHARSET);
8778 parse_flags: /* (?i) */
8780 U32 posflags = 0, negflags = 0;
8781 U32 *flagsp = &posflags;
8782 char has_charset_modifier = '\0';
8783 regex_charset cs = get_regex_charset(RExC_flags);
8784 if (cs == REGEX_DEPENDS_CHARSET
8785 && (RExC_utf8 || RExC_uni_semantics))
8787 cs = REGEX_UNICODE_CHARSET;
8790 while (*RExC_parse) {
8791 /* && strchr("iogcmsx", *RExC_parse) */
8792 /* (?g), (?gc) and (?o) are useless here
8793 and must be globally applied -- japhy */
8794 switch (*RExC_parse) {
8795 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
8796 case LOCALE_PAT_MOD:
8797 if (has_charset_modifier) {
8798 goto excess_modifier;
8800 else if (flagsp == &negflags) {
8803 cs = REGEX_LOCALE_CHARSET;
8804 has_charset_modifier = LOCALE_PAT_MOD;
8805 RExC_contains_locale = 1;
8807 case UNICODE_PAT_MOD:
8808 if (has_charset_modifier) {
8809 goto excess_modifier;
8811 else if (flagsp == &negflags) {
8814 cs = REGEX_UNICODE_CHARSET;
8815 has_charset_modifier = UNICODE_PAT_MOD;
8817 case ASCII_RESTRICT_PAT_MOD:
8818 if (flagsp == &negflags) {
8821 if (has_charset_modifier) {
8822 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
8823 goto excess_modifier;
8825 /* Doubled modifier implies more restricted */
8826 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
8829 cs = REGEX_ASCII_RESTRICTED_CHARSET;
8831 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
8833 case DEPENDS_PAT_MOD:
8834 if (has_use_defaults) {
8835 goto fail_modifiers;
8837 else if (flagsp == &negflags) {
8840 else if (has_charset_modifier) {
8841 goto excess_modifier;
8844 /* The dual charset means unicode semantics if the
8845 * pattern (or target, not known until runtime) are
8846 * utf8, or something in the pattern indicates unicode
8848 cs = (RExC_utf8 || RExC_uni_semantics)
8849 ? REGEX_UNICODE_CHARSET
8850 : REGEX_DEPENDS_CHARSET;
8851 has_charset_modifier = DEPENDS_PAT_MOD;
8855 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
8856 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
8858 else if (has_charset_modifier == *(RExC_parse - 1)) {
8859 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
8862 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
8867 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
8869 case ONCE_PAT_MOD: /* 'o' */
8870 case GLOBAL_PAT_MOD: /* 'g' */
8871 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8872 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
8873 if (! (wastedflags & wflagbit) ) {
8874 wastedflags |= wflagbit;
8877 "Useless (%s%c) - %suse /%c modifier",
8878 flagsp == &negflags ? "?-" : "?",
8880 flagsp == &negflags ? "don't " : "",
8887 case CONTINUE_PAT_MOD: /* 'c' */
8888 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
8889 if (! (wastedflags & WASTED_C) ) {
8890 wastedflags |= WASTED_GC;
8893 "Useless (%sc) - %suse /gc modifier",
8894 flagsp == &negflags ? "?-" : "?",
8895 flagsp == &negflags ? "don't " : ""
8900 case KEEPCOPY_PAT_MOD: /* 'p' */
8901 if (flagsp == &negflags) {
8903 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
8905 *flagsp |= RXf_PMf_KEEPCOPY;
8909 /* A flag is a default iff it is following a minus, so
8910 * if there is a minus, it means will be trying to
8911 * re-specify a default which is an error */
8912 if (has_use_defaults || flagsp == &negflags) {
8915 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8919 wastedflags = 0; /* reset so (?g-c) warns twice */
8925 RExC_flags |= posflags;
8926 RExC_flags &= ~negflags;
8927 set_regex_charset(&RExC_flags, cs);
8929 oregflags |= posflags;
8930 oregflags &= ~negflags;
8931 set_regex_charset(&oregflags, cs);
8933 nextchar(pRExC_state);
8944 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
8949 }} /* one for the default block, one for the switch */
8956 ret = reganode(pRExC_state, OPEN, parno);
8959 RExC_nestroot = parno;
8960 if (RExC_seen & REG_SEEN_RECURSE
8961 && !RExC_open_parens[parno-1])
8963 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
8964 "Setting open paren #%"IVdf" to %d\n",
8965 (IV)parno, REG_NODE_NUM(ret)));
8966 RExC_open_parens[parno-1]= ret;
8969 Set_Node_Length(ret, 1); /* MJD */
8970 Set_Node_Offset(ret, RExC_parse); /* MJD */
8978 /* Pick up the branches, linking them together. */
8979 parse_start = RExC_parse; /* MJD */
8980 br = regbranch(pRExC_state, &flags, 1,depth+1);
8982 /* branch_len = (paren != 0); */
8986 if (*RExC_parse == '|') {
8987 if (!SIZE_ONLY && RExC_extralen) {
8988 reginsert(pRExC_state, BRANCHJ, br, depth+1);
8991 reginsert(pRExC_state, BRANCH, br, depth+1);
8992 Set_Node_Length(br, paren != 0);
8993 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
8997 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
8999 else if (paren == ':') {
9000 *flagp |= flags&SIMPLE;
9002 if (is_open) { /* Starts with OPEN. */
9003 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
9005 else if (paren != '?') /* Not Conditional */
9007 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9009 while (*RExC_parse == '|') {
9010 if (!SIZE_ONLY && RExC_extralen) {
9011 ender = reganode(pRExC_state, LONGJMP,0);
9012 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
9015 RExC_extralen += 2; /* Account for LONGJMP. */
9016 nextchar(pRExC_state);
9018 if (RExC_npar > after_freeze)
9019 after_freeze = RExC_npar;
9020 RExC_npar = freeze_paren;
9022 br = regbranch(pRExC_state, &flags, 0, depth+1);
9026 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
9028 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
9031 if (have_branch || paren != ':') {
9032 /* Make a closing node, and hook it on the end. */
9035 ender = reg_node(pRExC_state, TAIL);
9038 ender = reganode(pRExC_state, CLOSE, parno);
9039 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
9040 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
9041 "Setting close paren #%"IVdf" to %d\n",
9042 (IV)parno, REG_NODE_NUM(ender)));
9043 RExC_close_parens[parno-1]= ender;
9044 if (RExC_nestroot == parno)
9047 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
9048 Set_Node_Length(ender,1); /* MJD */
9054 *flagp &= ~HASWIDTH;
9057 ender = reg_node(pRExC_state, SUCCEED);
9060 ender = reg_node(pRExC_state, END);
9062 assert(!RExC_opend); /* there can only be one! */
9067 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9068 SV * const mysv_val1=sv_newmortal();
9069 SV * const mysv_val2=sv_newmortal();
9070 DEBUG_PARSE_MSG("lsbr");
9071 regprop(RExC_rx, mysv_val1, lastbr);
9072 regprop(RExC_rx, mysv_val2, ender);
9073 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9074 SvPV_nolen_const(mysv_val1),
9075 (IV)REG_NODE_NUM(lastbr),
9076 SvPV_nolen_const(mysv_val2),
9077 (IV)REG_NODE_NUM(ender),
9078 (IV)(ender - lastbr)
9081 REGTAIL(pRExC_state, lastbr, ender);
9083 if (have_branch && !SIZE_ONLY) {
9086 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
9088 /* Hook the tails of the branches to the closing node. */
9089 for (br = ret; br; br = regnext(br)) {
9090 const U8 op = PL_regkind[OP(br)];
9092 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
9093 if (OP(NEXTOPER(br)) != NOTHING || regnext(NEXTOPER(br)) != ender)
9096 else if (op == BRANCHJ) {
9097 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
9098 /* for now we always disable this optimisation * /
9099 if (OP(NEXTOPER(NEXTOPER(br))) != NOTHING || regnext(NEXTOPER(NEXTOPER(br))) != ender)
9105 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
9106 DEBUG_PARSE_r(if (!SIZE_ONLY) {
9107 SV * const mysv_val1=sv_newmortal();
9108 SV * const mysv_val2=sv_newmortal();
9109 DEBUG_PARSE_MSG("NADA");
9110 regprop(RExC_rx, mysv_val1, ret);
9111 regprop(RExC_rx, mysv_val2, ender);
9112 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
9113 SvPV_nolen_const(mysv_val1),
9114 (IV)REG_NODE_NUM(ret),
9115 SvPV_nolen_const(mysv_val2),
9116 (IV)REG_NODE_NUM(ender),
9121 if (OP(ender) == TAIL) {
9126 for ( opt= br + 1; opt < ender ; opt++ )
9128 NEXT_OFF(br)= ender - br;
9136 static const char parens[] = "=!<,>";
9138 if (paren && (p = strchr(parens, paren))) {
9139 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
9140 int flag = (p - parens) > 1;
9143 node = SUSPEND, flag = 0;
9144 reginsert(pRExC_state, node,ret, depth+1);
9145 Set_Node_Cur_Length(ret);
9146 Set_Node_Offset(ret, parse_start + 1);
9148 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
9152 /* Check for proper termination. */
9154 RExC_flags = oregflags;
9155 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
9156 RExC_parse = oregcomp_parse;
9157 vFAIL("Unmatched (");
9160 else if (!paren && RExC_parse < RExC_end) {
9161 if (*RExC_parse == ')') {
9163 vFAIL("Unmatched )");
9166 FAIL("Junk on end of regexp"); /* "Can't happen". */
9167 assert(0); /* NOTREACHED */
9170 if (RExC_in_lookbehind) {
9171 RExC_in_lookbehind--;
9173 if (after_freeze > RExC_npar)
9174 RExC_npar = after_freeze;
9179 - regbranch - one alternative of an | operator
9181 * Implements the concatenation operator.
9184 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
9187 register regnode *ret;
9188 register regnode *chain = NULL;
9189 register regnode *latest;
9190 I32 flags = 0, c = 0;
9191 GET_RE_DEBUG_FLAGS_DECL;
9193 PERL_ARGS_ASSERT_REGBRANCH;
9195 DEBUG_PARSE("brnc");
9200 if (!SIZE_ONLY && RExC_extralen)
9201 ret = reganode(pRExC_state, BRANCHJ,0);
9203 ret = reg_node(pRExC_state, BRANCH);
9204 Set_Node_Length(ret, 1);
9208 if (!first && SIZE_ONLY)
9209 RExC_extralen += 1; /* BRANCHJ */
9211 *flagp = WORST; /* Tentatively. */
9214 nextchar(pRExC_state);
9215 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
9217 latest = regpiece(pRExC_state, &flags,depth+1);
9218 if (latest == NULL) {
9219 if (flags & TRYAGAIN)
9223 else if (ret == NULL)
9225 *flagp |= flags&(HASWIDTH|POSTPONED);
9226 if (chain == NULL) /* First piece. */
9227 *flagp |= flags&SPSTART;
9230 REGTAIL(pRExC_state, chain, latest);
9235 if (chain == NULL) { /* Loop ran zero times. */
9236 chain = reg_node(pRExC_state, NOTHING);
9241 *flagp |= flags&SIMPLE;
9248 - regpiece - something followed by possible [*+?]
9250 * Note that the branching code sequences used for ? and the general cases
9251 * of * and + are somewhat optimized: they use the same NOTHING node as
9252 * both the endmarker for their branch list and the body of the last branch.
9253 * It might seem that this node could be dispensed with entirely, but the
9254 * endmarker role is not redundant.
9257 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9260 register regnode *ret;
9262 register char *next;
9264 const char * const origparse = RExC_parse;
9266 I32 max = REG_INFTY;
9267 #ifdef RE_TRACK_PATTERN_OFFSETS
9270 const char *maxpos = NULL;
9271 GET_RE_DEBUG_FLAGS_DECL;
9273 PERL_ARGS_ASSERT_REGPIECE;
9275 DEBUG_PARSE("piec");
9277 ret = regatom(pRExC_state, &flags,depth+1);
9279 if (flags & TRYAGAIN)
9286 if (op == '{' && regcurly(RExC_parse)) {
9288 #ifdef RE_TRACK_PATTERN_OFFSETS
9289 parse_start = RExC_parse; /* MJD */
9291 next = RExC_parse + 1;
9292 while (isDIGIT(*next) || *next == ',') {
9301 if (*next == '}') { /* got one */
9305 min = atoi(RExC_parse);
9309 maxpos = RExC_parse;
9311 if (!max && *maxpos != '0')
9312 max = REG_INFTY; /* meaning "infinity" */
9313 else if (max >= REG_INFTY)
9314 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
9316 nextchar(pRExC_state);
9319 if ((flags&SIMPLE)) {
9320 RExC_naughty += 2 + RExC_naughty / 2;
9321 reginsert(pRExC_state, CURLY, ret, depth+1);
9322 Set_Node_Offset(ret, parse_start+1); /* MJD */
9323 Set_Node_Cur_Length(ret);
9326 regnode * const w = reg_node(pRExC_state, WHILEM);
9329 REGTAIL(pRExC_state, ret, w);
9330 if (!SIZE_ONLY && RExC_extralen) {
9331 reginsert(pRExC_state, LONGJMP,ret, depth+1);
9332 reginsert(pRExC_state, NOTHING,ret, depth+1);
9333 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
9335 reginsert(pRExC_state, CURLYX,ret, depth+1);
9337 Set_Node_Offset(ret, parse_start+1);
9338 Set_Node_Length(ret,
9339 op == '{' ? (RExC_parse - parse_start) : 1);
9341 if (!SIZE_ONLY && RExC_extralen)
9342 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
9343 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
9345 RExC_whilem_seen++, RExC_extralen += 3;
9346 RExC_naughty += 4 + RExC_naughty; /* compound interest */
9355 vFAIL("Can't do {n,m} with n > m");
9357 ARG1_SET(ret, (U16)min);
9358 ARG2_SET(ret, (U16)max);
9370 #if 0 /* Now runtime fix should be reliable. */
9372 /* if this is reinstated, don't forget to put this back into perldiag:
9374 =item Regexp *+ operand could be empty at {#} in regex m/%s/
9376 (F) The part of the regexp subject to either the * or + quantifier
9377 could match an empty string. The {#} shows in the regular
9378 expression about where the problem was discovered.
9382 if (!(flags&HASWIDTH) && op != '?')
9383 vFAIL("Regexp *+ operand could be empty");
9386 #ifdef RE_TRACK_PATTERN_OFFSETS
9387 parse_start = RExC_parse;
9389 nextchar(pRExC_state);
9391 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
9393 if (op == '*' && (flags&SIMPLE)) {
9394 reginsert(pRExC_state, STAR, ret, depth+1);
9398 else if (op == '*') {
9402 else if (op == '+' && (flags&SIMPLE)) {
9403 reginsert(pRExC_state, PLUS, ret, depth+1);
9407 else if (op == '+') {
9411 else if (op == '?') {
9416 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
9417 ckWARN3reg(RExC_parse,
9418 "%.*s matches null string many times",
9419 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
9423 if (RExC_parse < RExC_end && *RExC_parse == '?') {
9424 nextchar(pRExC_state);
9425 reginsert(pRExC_state, MINMOD, ret, depth+1);
9426 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
9428 #ifndef REG_ALLOW_MINMOD_SUSPEND
9431 if (RExC_parse < RExC_end && *RExC_parse == '+') {
9433 nextchar(pRExC_state);
9434 ender = reg_node(pRExC_state, SUCCEED);
9435 REGTAIL(pRExC_state, ret, ender);
9436 reginsert(pRExC_state, SUSPEND, ret, depth+1);
9438 ender = reg_node(pRExC_state, TAIL);
9439 REGTAIL(pRExC_state, ret, ender);
9443 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
9445 vFAIL("Nested quantifiers");
9452 /* reg_namedseq(pRExC_state,UVp, UV depth)
9454 This is expected to be called by a parser routine that has
9455 recognized '\N' and needs to handle the rest. RExC_parse is
9456 expected to point at the first char following the N at the time
9459 The \N may be inside (indicated by valuep not being NULL) or outside a
9462 \N may begin either a named sequence, or if outside a character class, mean
9463 to match a non-newline. For non single-quoted regexes, the tokenizer has
9464 attempted to decide which, and in the case of a named sequence converted it
9465 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
9466 where c1... are the characters in the sequence. For single-quoted regexes,
9467 the tokenizer passes the \N sequence through unchanged; this code will not
9468 attempt to determine this nor expand those. The net effect is that if the
9469 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
9470 signals that this \N occurrence means to match a non-newline.
9472 Only the \N{U+...} form should occur in a character class, for the same
9473 reason that '.' inside a character class means to just match a period: it
9474 just doesn't make sense.
9476 If valuep is non-null then it is assumed that we are parsing inside
9477 of a charclass definition and the first codepoint in the resolved
9478 string is returned via *valuep and the routine will return NULL.
9479 In this mode if a multichar string is returned from the charnames
9480 handler, a warning will be issued, and only the first char in the
9481 sequence will be examined. If the string returned is zero length
9482 then the value of *valuep is undefined and NON-NULL will
9483 be returned to indicate failure. (This will NOT be a valid pointer
9486 If valuep is null then it is assumed that we are parsing normal text and a
9487 new EXACT node is inserted into the program containing the resolved string,
9488 and a pointer to the new node is returned. But if the string is zero length
9489 a NOTHING node is emitted instead.
9491 On success RExC_parse is set to the char following the endbrace.
9492 Parsing failures will generate a fatal error via vFAIL(...)
9495 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
9497 char * endbrace; /* '}' following the name */
9498 regnode *ret = NULL;
9501 GET_RE_DEBUG_FLAGS_DECL;
9503 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
9507 /* The [^\n] meaning of \N ignores spaces and comments under the /x
9508 * modifier. The other meaning does not */
9509 p = (RExC_flags & RXf_PMf_EXTENDED)
9510 ? regwhite( pRExC_state, RExC_parse )
9513 /* Disambiguate between \N meaning a named character versus \N meaning
9514 * [^\n]. The former is assumed when it can't be the latter. */
9515 if (*p != '{' || regcurly(p)) {
9518 /* no bare \N in a charclass */
9519 vFAIL("\\N in a character class must be a named character: \\N{...}");
9521 nextchar(pRExC_state);
9522 ret = reg_node(pRExC_state, REG_ANY);
9523 *flagp |= HASWIDTH|SIMPLE;
9526 Set_Node_Length(ret, 1); /* MJD */
9530 /* Here, we have decided it should be a named sequence */
9532 /* The test above made sure that the next real character is a '{', but
9533 * under the /x modifier, it could be separated by space (or a comment and
9534 * \n) and this is not allowed (for consistency with \x{...} and the
9535 * tokenizer handling of \N{NAME}). */
9536 if (*RExC_parse != '{') {
9537 vFAIL("Missing braces on \\N{}");
9540 RExC_parse++; /* Skip past the '{' */
9542 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
9543 || ! (endbrace == RExC_parse /* nothing between the {} */
9544 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
9545 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
9547 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
9548 vFAIL("\\N{NAME} must be resolved by the lexer");
9551 if (endbrace == RExC_parse) { /* empty: \N{} */
9553 RExC_parse = endbrace + 1;
9554 return reg_node(pRExC_state,NOTHING);
9558 ckWARNreg(RExC_parse,
9559 "Ignoring zero length \\N{} in character class"
9561 RExC_parse = endbrace + 1;
9564 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
9567 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
9568 RExC_parse += 2; /* Skip past the 'U+' */
9570 if (valuep) { /* In a bracketed char class */
9571 /* We only pay attention to the first char of
9572 multichar strings being returned. I kinda wonder
9573 if this makes sense as it does change the behaviour
9574 from earlier versions, OTOH that behaviour was broken
9575 as well. XXX Solution is to recharacterize as
9576 [rest-of-class]|multi1|multi2... */
9578 STRLEN length_of_hex;
9579 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
9580 | PERL_SCAN_DISALLOW_PREFIX
9581 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
9583 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
9584 if (endchar < endbrace) {
9585 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
9588 length_of_hex = (STRLEN)(endchar - RExC_parse);
9589 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
9591 /* The tokenizer should have guaranteed validity, but it's possible to
9592 * bypass it by using single quoting, so check */
9593 if (length_of_hex == 0
9594 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
9596 RExC_parse += length_of_hex; /* Includes all the valid */
9597 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
9598 ? UTF8SKIP(RExC_parse)
9600 /* Guard against malformed utf8 */
9601 if (RExC_parse >= endchar) RExC_parse = endchar;
9602 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9605 RExC_parse = endbrace + 1;
9606 if (endchar == endbrace) return NULL;
9608 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
9610 else { /* Not a char class */
9612 /* What is done here is to convert this to a sub-pattern of the form
9613 * (?:\x{char1}\x{char2}...)
9614 * and then call reg recursively. That way, it retains its atomicness,
9615 * while not having to worry about special handling that some code
9616 * points may have. toke.c has converted the original Unicode values
9617 * to native, so that we can just pass on the hex values unchanged. We
9618 * do have to set a flag to keep recoding from happening in the
9621 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
9623 char *endchar; /* Points to '.' or '}' ending cur char in the input
9625 char *orig_end = RExC_end;
9627 while (RExC_parse < endbrace) {
9629 /* Code points are separated by dots. If none, there is only one
9630 * code point, and is terminated by the brace */
9631 endchar = RExC_parse + strcspn(RExC_parse, ".}");
9633 /* Convert to notation the rest of the code understands */
9634 sv_catpv(substitute_parse, "\\x{");
9635 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
9636 sv_catpv(substitute_parse, "}");
9638 /* Point to the beginning of the next character in the sequence. */
9639 RExC_parse = endchar + 1;
9641 sv_catpv(substitute_parse, ")");
9643 RExC_parse = SvPV(substitute_parse, len);
9645 /* Don't allow empty number */
9647 vFAIL("Invalid hexadecimal number in \\N{U+...}");
9649 RExC_end = RExC_parse + len;
9651 /* The values are Unicode, and therefore not subject to recoding */
9652 RExC_override_recoding = 1;
9654 ret = reg(pRExC_state, 1, flagp, depth+1);
9656 RExC_parse = endbrace;
9657 RExC_end = orig_end;
9658 RExC_override_recoding = 0;
9660 nextchar(pRExC_state);
9670 * It returns the code point in utf8 for the value in *encp.
9671 * value: a code value in the source encoding
9672 * encp: a pointer to an Encode object
9674 * If the result from Encode is not a single character,
9675 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
9678 S_reg_recode(pTHX_ const char value, SV **encp)
9681 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
9682 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
9683 const STRLEN newlen = SvCUR(sv);
9684 UV uv = UNICODE_REPLACEMENT;
9686 PERL_ARGS_ASSERT_REG_RECODE;
9690 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
9693 if (!newlen || numlen != newlen) {
9694 uv = UNICODE_REPLACEMENT;
9702 - regatom - the lowest level
9704 Try to identify anything special at the start of the pattern. If there
9705 is, then handle it as required. This may involve generating a single regop,
9706 such as for an assertion; or it may involve recursing, such as to
9707 handle a () structure.
9709 If the string doesn't start with something special then we gobble up
9710 as much literal text as we can.
9712 Once we have been able to handle whatever type of thing started the
9713 sequence, we return.
9715 Note: we have to be careful with escapes, as they can be both literal
9716 and special, and in the case of \10 and friends, context determines which.
9718 A summary of the code structure is:
9720 switch (first_byte) {
9721 cases for each special:
9722 handle this special;
9726 cases for each unambiguous special:
9727 handle this special;
9729 cases for each ambigous special/literal:
9731 if (special) handle here
9733 default: // unambiguously literal:
9736 default: // is a literal char
9739 create EXACTish node for literal;
9740 while (more input and node isn't full) {
9741 switch (input_byte) {
9742 cases for each special;
9743 make sure parse pointer is set so that the next call to
9744 regatom will see this special first
9745 goto loopdone; // EXACTish node terminated by prev. char
9747 append char to EXACTISH node;
9749 get next input byte;
9753 return the generated node;
9755 Specifically there are two separate switches for handling
9756 escape sequences, with the one for handling literal escapes requiring
9757 a dummy entry for all of the special escapes that are actually handled
9762 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
9765 register regnode *ret = NULL;
9767 char *parse_start = RExC_parse;
9769 GET_RE_DEBUG_FLAGS_DECL;
9770 DEBUG_PARSE("atom");
9771 *flagp = WORST; /* Tentatively. */
9773 PERL_ARGS_ASSERT_REGATOM;
9776 switch ((U8)*RExC_parse) {
9778 RExC_seen_zerolen++;
9779 nextchar(pRExC_state);
9780 if (RExC_flags & RXf_PMf_MULTILINE)
9781 ret = reg_node(pRExC_state, MBOL);
9782 else if (RExC_flags & RXf_PMf_SINGLELINE)
9783 ret = reg_node(pRExC_state, SBOL);
9785 ret = reg_node(pRExC_state, BOL);
9786 Set_Node_Length(ret, 1); /* MJD */
9789 nextchar(pRExC_state);
9791 RExC_seen_zerolen++;
9792 if (RExC_flags & RXf_PMf_MULTILINE)
9793 ret = reg_node(pRExC_state, MEOL);
9794 else if (RExC_flags & RXf_PMf_SINGLELINE)
9795 ret = reg_node(pRExC_state, SEOL);
9797 ret = reg_node(pRExC_state, EOL);
9798 Set_Node_Length(ret, 1); /* MJD */
9801 nextchar(pRExC_state);
9802 if (RExC_flags & RXf_PMf_SINGLELINE)
9803 ret = reg_node(pRExC_state, SANY);
9805 ret = reg_node(pRExC_state, REG_ANY);
9806 *flagp |= HASWIDTH|SIMPLE;
9808 Set_Node_Length(ret, 1); /* MJD */
9812 char * const oregcomp_parse = ++RExC_parse;
9813 ret = regclass(pRExC_state,depth+1);
9814 if (*RExC_parse != ']') {
9815 RExC_parse = oregcomp_parse;
9816 vFAIL("Unmatched [");
9818 nextchar(pRExC_state);
9819 *flagp |= HASWIDTH|SIMPLE;
9820 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
9824 nextchar(pRExC_state);
9825 ret = reg(pRExC_state, 1, &flags,depth+1);
9827 if (flags & TRYAGAIN) {
9828 if (RExC_parse == RExC_end) {
9829 /* Make parent create an empty node if needed. */
9837 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
9841 if (flags & TRYAGAIN) {
9845 vFAIL("Internal urp");
9846 /* Supposed to be caught earlier. */
9852 vFAIL("Quantifier follows nothing");
9857 This switch handles escape sequences that resolve to some kind
9858 of special regop and not to literal text. Escape sequnces that
9859 resolve to literal text are handled below in the switch marked
9862 Every entry in this switch *must* have a corresponding entry
9863 in the literal escape switch. However, the opposite is not
9864 required, as the default for this switch is to jump to the
9865 literal text handling code.
9867 switch ((U8)*++RExC_parse) {
9868 /* Special Escapes */
9870 RExC_seen_zerolen++;
9871 ret = reg_node(pRExC_state, SBOL);
9873 goto finish_meta_pat;
9875 ret = reg_node(pRExC_state, GPOS);
9876 RExC_seen |= REG_SEEN_GPOS;
9878 goto finish_meta_pat;
9880 RExC_seen_zerolen++;
9881 ret = reg_node(pRExC_state, KEEPS);
9883 /* XXX:dmq : disabling in-place substitution seems to
9884 * be necessary here to avoid cases of memory corruption, as
9885 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
9887 RExC_seen |= REG_SEEN_LOOKBEHIND;
9888 goto finish_meta_pat;
9890 ret = reg_node(pRExC_state, SEOL);
9892 RExC_seen_zerolen++; /* Do not optimize RE away */
9893 goto finish_meta_pat;
9895 ret = reg_node(pRExC_state, EOS);
9897 RExC_seen_zerolen++; /* Do not optimize RE away */
9898 goto finish_meta_pat;
9900 ret = reg_node(pRExC_state, CANY);
9901 RExC_seen |= REG_SEEN_CANY;
9902 *flagp |= HASWIDTH|SIMPLE;
9903 goto finish_meta_pat;
9905 ret = reg_node(pRExC_state, CLUMP);
9907 goto finish_meta_pat;
9909 switch (get_regex_charset(RExC_flags)) {
9910 case REGEX_LOCALE_CHARSET:
9913 case REGEX_UNICODE_CHARSET:
9916 case REGEX_ASCII_RESTRICTED_CHARSET:
9917 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
9920 case REGEX_DEPENDS_CHARSET:
9926 ret = reg_node(pRExC_state, op);
9927 *flagp |= HASWIDTH|SIMPLE;
9928 goto finish_meta_pat;
9930 switch (get_regex_charset(RExC_flags)) {
9931 case REGEX_LOCALE_CHARSET:
9934 case REGEX_UNICODE_CHARSET:
9937 case REGEX_ASCII_RESTRICTED_CHARSET:
9938 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
9941 case REGEX_DEPENDS_CHARSET:
9947 ret = reg_node(pRExC_state, op);
9948 *flagp |= HASWIDTH|SIMPLE;
9949 goto finish_meta_pat;
9951 RExC_seen_zerolen++;
9952 RExC_seen |= REG_SEEN_LOOKBEHIND;
9953 switch (get_regex_charset(RExC_flags)) {
9954 case REGEX_LOCALE_CHARSET:
9957 case REGEX_UNICODE_CHARSET:
9960 case REGEX_ASCII_RESTRICTED_CHARSET:
9961 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
9964 case REGEX_DEPENDS_CHARSET:
9970 ret = reg_node(pRExC_state, op);
9971 FLAGS(ret) = get_regex_charset(RExC_flags);
9973 goto finish_meta_pat;
9975 RExC_seen_zerolen++;
9976 RExC_seen |= REG_SEEN_LOOKBEHIND;
9977 switch (get_regex_charset(RExC_flags)) {
9978 case REGEX_LOCALE_CHARSET:
9981 case REGEX_UNICODE_CHARSET:
9984 case REGEX_ASCII_RESTRICTED_CHARSET:
9985 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
9988 case REGEX_DEPENDS_CHARSET:
9994 ret = reg_node(pRExC_state, op);
9995 FLAGS(ret) = get_regex_charset(RExC_flags);
9997 goto finish_meta_pat;
9999 switch (get_regex_charset(RExC_flags)) {
10000 case REGEX_LOCALE_CHARSET:
10003 case REGEX_UNICODE_CHARSET:
10006 case REGEX_ASCII_RESTRICTED_CHARSET:
10007 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10010 case REGEX_DEPENDS_CHARSET:
10016 ret = reg_node(pRExC_state, op);
10017 *flagp |= HASWIDTH|SIMPLE;
10018 goto finish_meta_pat;
10020 switch (get_regex_charset(RExC_flags)) {
10021 case REGEX_LOCALE_CHARSET:
10024 case REGEX_UNICODE_CHARSET:
10027 case REGEX_ASCII_RESTRICTED_CHARSET:
10028 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10031 case REGEX_DEPENDS_CHARSET:
10037 ret = reg_node(pRExC_state, op);
10038 *flagp |= HASWIDTH|SIMPLE;
10039 goto finish_meta_pat;
10041 switch (get_regex_charset(RExC_flags)) {
10042 case REGEX_LOCALE_CHARSET:
10045 case REGEX_ASCII_RESTRICTED_CHARSET:
10046 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10049 case REGEX_DEPENDS_CHARSET: /* No difference between these */
10050 case REGEX_UNICODE_CHARSET:
10056 ret = reg_node(pRExC_state, op);
10057 *flagp |= HASWIDTH|SIMPLE;
10058 goto finish_meta_pat;
10060 switch (get_regex_charset(RExC_flags)) {
10061 case REGEX_LOCALE_CHARSET:
10064 case REGEX_ASCII_RESTRICTED_CHARSET:
10065 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10068 case REGEX_DEPENDS_CHARSET: /* No difference between these */
10069 case REGEX_UNICODE_CHARSET:
10075 ret = reg_node(pRExC_state, op);
10076 *flagp |= HASWIDTH|SIMPLE;
10077 goto finish_meta_pat;
10079 ret = reg_node(pRExC_state, LNBREAK);
10080 *flagp |= HASWIDTH|SIMPLE;
10081 goto finish_meta_pat;
10083 ret = reg_node(pRExC_state, HORIZWS);
10084 *flagp |= HASWIDTH|SIMPLE;
10085 goto finish_meta_pat;
10087 ret = reg_node(pRExC_state, NHORIZWS);
10088 *flagp |= HASWIDTH|SIMPLE;
10089 goto finish_meta_pat;
10091 ret = reg_node(pRExC_state, VERTWS);
10092 *flagp |= HASWIDTH|SIMPLE;
10093 goto finish_meta_pat;
10095 ret = reg_node(pRExC_state, NVERTWS);
10096 *flagp |= HASWIDTH|SIMPLE;
10098 nextchar(pRExC_state);
10099 Set_Node_Length(ret, 2); /* MJD */
10104 char* const oldregxend = RExC_end;
10106 char* parse_start = RExC_parse - 2;
10109 if (RExC_parse[1] == '{') {
10110 /* a lovely hack--pretend we saw [\pX] instead */
10111 RExC_end = strchr(RExC_parse, '}');
10113 const U8 c = (U8)*RExC_parse;
10115 RExC_end = oldregxend;
10116 vFAIL2("Missing right brace on \\%c{}", c);
10121 RExC_end = RExC_parse + 2;
10122 if (RExC_end > oldregxend)
10123 RExC_end = oldregxend;
10127 ret = regclass(pRExC_state,depth+1);
10129 RExC_end = oldregxend;
10132 Set_Node_Offset(ret, parse_start + 2);
10133 Set_Node_Cur_Length(ret);
10134 nextchar(pRExC_state);
10135 *flagp |= HASWIDTH|SIMPLE;
10139 /* Handle \N and \N{NAME} here and not below because it can be
10140 multicharacter. join_exact() will join them up later on.
10141 Also this makes sure that things like /\N{BLAH}+/ and
10142 \N{BLAH} being multi char Just Happen. dmq*/
10144 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
10146 case 'k': /* Handle \k<NAME> and \k'NAME' */
10149 char ch= RExC_parse[1];
10150 if (ch != '<' && ch != '\'' && ch != '{') {
10152 vFAIL2("Sequence %.2s... not terminated",parse_start);
10154 /* this pretty much dupes the code for (?P=...) in reg(), if
10155 you change this make sure you change that */
10156 char* name_start = (RExC_parse += 2);
10158 SV *sv_dat = reg_scan_name(pRExC_state,
10159 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10160 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
10161 if (RExC_parse == name_start || *RExC_parse != ch)
10162 vFAIL2("Sequence %.3s... not terminated",parse_start);
10165 num = add_data( pRExC_state, 1, "S" );
10166 RExC_rxi->data->data[num]=(void*)sv_dat;
10167 SvREFCNT_inc_simple_void(sv_dat);
10171 ret = reganode(pRExC_state,
10174 : (MORE_ASCII_RESTRICTED)
10176 : (AT_LEAST_UNI_SEMANTICS)
10182 *flagp |= HASWIDTH;
10184 /* override incorrect value set in reganode MJD */
10185 Set_Node_Offset(ret, parse_start+1);
10186 Set_Node_Cur_Length(ret); /* MJD */
10187 nextchar(pRExC_state);
10193 case '1': case '2': case '3': case '4':
10194 case '5': case '6': case '7': case '8': case '9':
10197 bool isg = *RExC_parse == 'g';
10202 if (*RExC_parse == '{') {
10206 if (*RExC_parse == '-') {
10210 if (hasbrace && !isDIGIT(*RExC_parse)) {
10211 if (isrel) RExC_parse--;
10213 goto parse_named_seq;
10215 num = atoi(RExC_parse);
10216 if (isg && num == 0)
10217 vFAIL("Reference to invalid group 0");
10219 num = RExC_npar - num;
10221 vFAIL("Reference to nonexistent or unclosed group");
10223 if (!isg && num > 9 && num >= RExC_npar)
10224 /* Probably a character specified in octal, e.g. \35 */
10227 char * const parse_start = RExC_parse - 1; /* MJD */
10228 while (isDIGIT(*RExC_parse))
10230 if (parse_start == RExC_parse - 1)
10231 vFAIL("Unterminated \\g... pattern");
10233 if (*RExC_parse != '}')
10234 vFAIL("Unterminated \\g{...} pattern");
10238 if (num > (I32)RExC_rx->nparens)
10239 vFAIL("Reference to nonexistent group");
10242 ret = reganode(pRExC_state,
10245 : (MORE_ASCII_RESTRICTED)
10247 : (AT_LEAST_UNI_SEMANTICS)
10253 *flagp |= HASWIDTH;
10255 /* override incorrect value set in reganode MJD */
10256 Set_Node_Offset(ret, parse_start+1);
10257 Set_Node_Cur_Length(ret); /* MJD */
10259 nextchar(pRExC_state);
10264 if (RExC_parse >= RExC_end)
10265 FAIL("Trailing \\");
10268 /* Do not generate "unrecognized" warnings here, we fall
10269 back into the quick-grab loop below */
10276 if (RExC_flags & RXf_PMf_EXTENDED) {
10277 if ( reg_skipcomment( pRExC_state ) )
10284 parse_start = RExC_parse - 1;
10289 register STRLEN len;
10294 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
10297 /* Is this a LATIN LOWER CASE SHARP S in an EXACTFU node? If so,
10298 * it is folded to 'ss' even if not utf8 */
10299 bool is_exactfu_sharp_s;
10302 node_type = ((! FOLD) ? EXACT
10305 : (MORE_ASCII_RESTRICTED)
10307 : (AT_LEAST_UNI_SEMANTICS)
10310 ret = reg_node(pRExC_state, node_type);
10313 /* XXX The node can hold up to 255 bytes, yet this only goes to
10314 * 127. I (khw) do not know why. Keeping it somewhat less than
10315 * 255 allows us to not have to worry about overflow due to
10316 * converting to utf8 and fold expansion, but that value is
10317 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
10318 * split up by this limit into a single one using the real max of
10319 * 255. Even at 127, this breaks under rare circumstances. If
10320 * folding, we do not want to split a node at a character that is a
10321 * non-final in a multi-char fold, as an input string could just
10322 * happen to want to match across the node boundary. The join
10323 * would solve that problem if the join actually happens. But a
10324 * series of more than two nodes in a row each of 127 would cause
10325 * the first join to succeed to get to 254, but then there wouldn't
10326 * be room for the next one, which could at be one of those split
10327 * multi-char folds. I don't know of any fool-proof solution. One
10328 * could back off to end with only a code point that isn't such a
10329 * non-final, but it is possible for there not to be any in the
10331 for (len = 0, p = RExC_parse - 1;
10332 len < 127 && p < RExC_end;
10335 char * const oldp = p;
10337 if (RExC_flags & RXf_PMf_EXTENDED)
10338 p = regwhite( pRExC_state, p );
10349 /* Literal Escapes Switch
10351 This switch is meant to handle escape sequences that
10352 resolve to a literal character.
10354 Every escape sequence that represents something
10355 else, like an assertion or a char class, is handled
10356 in the switch marked 'Special Escapes' above in this
10357 routine, but also has an entry here as anything that
10358 isn't explicitly mentioned here will be treated as
10359 an unescaped equivalent literal.
10362 switch ((U8)*++p) {
10363 /* These are all the special escapes. */
10364 case 'A': /* Start assertion */
10365 case 'b': case 'B': /* Word-boundary assertion*/
10366 case 'C': /* Single char !DANGEROUS! */
10367 case 'd': case 'D': /* digit class */
10368 case 'g': case 'G': /* generic-backref, pos assertion */
10369 case 'h': case 'H': /* HORIZWS */
10370 case 'k': case 'K': /* named backref, keep marker */
10371 case 'N': /* named char sequence */
10372 case 'p': case 'P': /* Unicode property */
10373 case 'R': /* LNBREAK */
10374 case 's': case 'S': /* space class */
10375 case 'v': case 'V': /* VERTWS */
10376 case 'w': case 'W': /* word class */
10377 case 'X': /* eXtended Unicode "combining character sequence" */
10378 case 'z': case 'Z': /* End of line/string assertion */
10382 /* Anything after here is an escape that resolves to a
10383 literal. (Except digits, which may or may not)
10402 ender = ASCII_TO_NATIVE('\033');
10406 ender = ASCII_TO_NATIVE('\007');
10411 STRLEN brace_len = len;
10413 const char* error_msg;
10415 bool valid = grok_bslash_o(p,
10422 RExC_parse = p; /* going to die anyway; point
10423 to exact spot of failure */
10430 if (PL_encoding && ender < 0x100) {
10431 goto recode_encoding;
10433 if (ender > 0xff) {
10440 char* const e = strchr(p, '}');
10443 RExC_parse = p + 1;
10444 vFAIL("Missing right brace on \\x{}");
10447 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
10448 | PERL_SCAN_DISALLOW_PREFIX;
10449 STRLEN numlen = e - p - 1;
10450 ender = grok_hex(p + 1, &numlen, &flags, NULL);
10457 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
10459 ender = grok_hex(p, &numlen, &flags, NULL);
10462 if (PL_encoding && ender < 0x100)
10463 goto recode_encoding;
10467 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
10469 case '0': case '1': case '2': case '3':case '4':
10470 case '5': case '6': case '7':
10472 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
10474 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
10476 ender = grok_oct(p, &numlen, &flags, NULL);
10477 if (ender > 0xff) {
10486 if (PL_encoding && ender < 0x100)
10487 goto recode_encoding;
10490 if (! RExC_override_recoding) {
10491 SV* enc = PL_encoding;
10492 ender = reg_recode((const char)(U8)ender, &enc);
10493 if (!enc && SIZE_ONLY)
10494 ckWARNreg(p, "Invalid escape in the specified encoding");
10500 FAIL("Trailing \\");
10503 if (!SIZE_ONLY&& isALNUMC(*p)) {
10504 ckWARN2reg(p + 1, "Unrecognized escape \\%.1s passed through", p);
10506 goto normal_default;
10510 /* Currently we don't warn when the lbrace is at the start
10511 * of a construct. This catches it in the middle of a
10512 * literal string, or when its the first thing after
10513 * something like "\b" */
10515 && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
10517 ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
10522 if (UTF8_IS_START(*p) && UTF) {
10524 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
10525 &numlen, UTF8_ALLOW_DEFAULT);
10531 } /* End of switch on the literal */
10533 is_exactfu_sharp_s = (node_type == EXACTFU
10534 && ender == LATIN_SMALL_LETTER_SHARP_S);
10535 if ( RExC_flags & RXf_PMf_EXTENDED)
10536 p = regwhite( pRExC_state, p );
10537 if ((UTF && FOLD) || is_exactfu_sharp_s) {
10538 /* Prime the casefolded buffer. Locale rules, which apply
10539 * only to code points < 256, aren't known until execution,
10540 * so for them, just output the original character using
10541 * utf8. If we start to fold non-UTF patterns, be sure to
10542 * update join_exact() */
10543 if (LOC && ender < 256) {
10544 if (UNI_IS_INVARIANT(ender)) {
10545 *tmpbuf = (U8) ender;
10548 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
10549 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
10553 else if (isASCII(ender)) { /* Note: Here can't also be LOC
10555 ender = toLOWER(ender);
10556 *tmpbuf = (U8) ender;
10559 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
10561 /* Locale and /aa require more selectivity about the
10562 * fold, so are handled below. Otherwise, here, just
10564 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
10567 /* Under locale rules or /aa we are not to mix,
10568 * respectively, ords < 256 or ASCII with non-. So
10569 * reject folds that mix them, using only the
10570 * non-folded code point. So do the fold to a
10571 * temporary, and inspect each character in it. */
10572 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
10574 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
10575 U8* e = s + foldlen;
10576 bool fold_ok = TRUE;
10580 || (LOC && (UTF8_IS_INVARIANT(*s)
10581 || UTF8_IS_DOWNGRADEABLE_START(*s))))
10589 Copy(trialbuf, tmpbuf, foldlen, U8);
10593 uvuni_to_utf8(tmpbuf, ender);
10594 foldlen = UNISKIP(ender);
10598 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
10601 else if (UTF || is_exactfu_sharp_s) {
10603 /* Emit all the Unicode characters. */
10605 for (foldbuf = tmpbuf;
10607 foldlen -= numlen) {
10609 /* tmpbuf has been constructed by us, so we
10610 * know it is valid utf8 */
10611 ender = valid_utf8_to_uvchr(foldbuf, &numlen);
10613 const STRLEN unilen = reguni(pRExC_state, ender, s);
10616 /* In EBCDIC the numlen
10617 * and unilen can differ. */
10619 if (numlen >= foldlen)
10623 break; /* "Can't happen." */
10627 const STRLEN unilen = reguni(pRExC_state, ender, s);
10636 REGC((char)ender, s++);
10640 if (UTF || is_exactfu_sharp_s) {
10642 /* Emit all the Unicode characters. */
10644 for (foldbuf = tmpbuf;
10646 foldlen -= numlen) {
10647 ender = valid_utf8_to_uvchr(foldbuf, &numlen);
10649 const STRLEN unilen = reguni(pRExC_state, ender, s);
10652 /* In EBCDIC the numlen
10653 * and unilen can differ. */
10655 if (numlen >= foldlen)
10663 const STRLEN unilen = reguni(pRExC_state, ender, s);
10672 REGC((char)ender, s++);
10675 loopdone: /* Jumped to when encounters something that shouldn't be in
10677 RExC_parse = p - 1;
10678 Set_Node_Cur_Length(ret); /* MJD */
10679 nextchar(pRExC_state);
10681 /* len is STRLEN which is unsigned, need to copy to signed */
10684 vFAIL("Internal disaster");
10687 *flagp |= HASWIDTH;
10688 if (len == 1 && UNI_IS_INVARIANT(ender))
10692 RExC_size += STR_SZ(len);
10694 STR_LEN(ret) = len;
10695 RExC_emit += STR_SZ(len);
10703 /* Jumped to when an unrecognized character set is encountered */
10705 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
10710 S_regwhite( RExC_state_t *pRExC_state, char *p )
10712 const char *e = RExC_end;
10714 PERL_ARGS_ASSERT_REGWHITE;
10719 else if (*p == '#') {
10722 if (*p++ == '\n') {
10728 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10736 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
10737 Character classes ([:foo:]) can also be negated ([:^foo:]).
10738 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
10739 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
10740 but trigger failures because they are currently unimplemented. */
10742 #define POSIXCC_DONE(c) ((c) == ':')
10743 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
10744 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
10747 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
10750 I32 namedclass = OOB_NAMEDCLASS;
10752 PERL_ARGS_ASSERT_REGPPOSIXCC;
10754 if (value == '[' && RExC_parse + 1 < RExC_end &&
10755 /* I smell either [: or [= or [. -- POSIX has been here, right? */
10756 POSIXCC(UCHARAT(RExC_parse))) {
10757 const char c = UCHARAT(RExC_parse);
10758 char* const s = RExC_parse++;
10760 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
10762 if (RExC_parse == RExC_end)
10763 /* Grandfather lone [:, [=, [. */
10766 const char* const t = RExC_parse++; /* skip over the c */
10769 if (UCHARAT(RExC_parse) == ']') {
10770 const char *posixcc = s + 1;
10771 RExC_parse++; /* skip over the ending ] */
10774 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
10775 const I32 skip = t - posixcc;
10777 /* Initially switch on the length of the name. */
10780 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
10781 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
10784 /* Names all of length 5. */
10785 /* alnum alpha ascii blank cntrl digit graph lower
10786 print punct space upper */
10787 /* Offset 4 gives the best switch position. */
10788 switch (posixcc[4]) {
10790 if (memEQ(posixcc, "alph", 4)) /* alpha */
10791 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
10794 if (memEQ(posixcc, "spac", 4)) /* space */
10795 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
10798 if (memEQ(posixcc, "grap", 4)) /* graph */
10799 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
10802 if (memEQ(posixcc, "asci", 4)) /* ascii */
10803 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
10806 if (memEQ(posixcc, "blan", 4)) /* blank */
10807 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
10810 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
10811 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
10814 if (memEQ(posixcc, "alnu", 4)) /* alnum */
10815 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
10818 if (memEQ(posixcc, "lowe", 4)) /* lower */
10819 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
10820 else if (memEQ(posixcc, "uppe", 4)) /* upper */
10821 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
10824 if (memEQ(posixcc, "digi", 4)) /* digit */
10825 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
10826 else if (memEQ(posixcc, "prin", 4)) /* print */
10827 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
10828 else if (memEQ(posixcc, "punc", 4)) /* punct */
10829 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
10834 if (memEQ(posixcc, "xdigit", 6))
10835 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
10839 if (namedclass == OOB_NAMEDCLASS)
10840 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
10842 assert (posixcc[skip] == ':');
10843 assert (posixcc[skip+1] == ']');
10844 } else if (!SIZE_ONLY) {
10845 /* [[=foo=]] and [[.foo.]] are still future. */
10847 /* adjust RExC_parse so the warning shows after
10848 the class closes */
10849 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
10851 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
10854 /* Maternal grandfather:
10855 * "[:" ending in ":" but not in ":]" */
10865 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
10869 PERL_ARGS_ASSERT_CHECKPOSIXCC;
10871 if (POSIXCC(UCHARAT(RExC_parse))) {
10872 const char *s = RExC_parse;
10873 const char c = *s++;
10875 while (isALNUM(*s))
10877 if (*s && c == *s && s[1] == ']') {
10879 "POSIX syntax [%c %c] belongs inside character classes",
10882 /* [[=foo=]] and [[.foo.]] are still future. */
10883 if (POSIXCC_NOTYET(c)) {
10884 /* adjust RExC_parse so the error shows after
10885 the class closes */
10886 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
10888 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
10894 /* Generate the code to add a full posix character <class> to the bracketed
10895 * character class given by <node>. (<node> is needed only under locale rules)
10896 * destlist is the inversion list for non-locale rules that this class is
10898 * sourcelist is the ASCII-range inversion list to add under /a rules
10899 * Xsourcelist is the full Unicode range list to use otherwise. */
10900 #define DO_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
10902 SV* scratch_list = NULL; \
10904 /* Set this class in the node for runtime matching */ \
10905 ANYOF_CLASS_SET(node, class); \
10907 /* For above Latin1 code points, we use the full Unicode range */ \
10908 _invlist_intersection(PL_AboveLatin1, \
10911 /* And set the output to it, adding instead if there already is an \
10912 * output. Checking if <destlist> is NULL first saves an extra \
10913 * clone. Its reference count will be decremented at the next \
10914 * union, etc, or if this is the only instance, at the end of the \
10916 if (! destlist) { \
10917 destlist = scratch_list; \
10920 _invlist_union(destlist, scratch_list, &destlist); \
10921 SvREFCNT_dec(scratch_list); \
10925 /* For non-locale, just add it to any existing list */ \
10926 _invlist_union(destlist, \
10927 (AT_LEAST_ASCII_RESTRICTED) \
10933 /* Like DO_POSIX, but matches the complement of <sourcelist> and <Xsourcelist>.
10935 #define DO_N_POSIX(node, class, destlist, sourcelist, Xsourcelist) \
10937 SV* scratch_list = NULL; \
10938 ANYOF_CLASS_SET(node, class); \
10939 _invlist_subtract(PL_AboveLatin1, Xsourcelist, &scratch_list); \
10940 if (! destlist) { \
10941 destlist = scratch_list; \
10944 _invlist_union(destlist, scratch_list, &destlist); \
10945 SvREFCNT_dec(scratch_list); \
10949 _invlist_union_complement_2nd(destlist, \
10950 (AT_LEAST_ASCII_RESTRICTED) \
10954 /* Under /d, everything in the upper half of the Latin1 range \
10955 * matches this complement */ \
10956 if (DEPENDS_SEMANTICS) { \
10957 ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
10961 /* Generate the code to add a posix character <class> to the bracketed
10962 * character class given by <node>. (<node> is needed only under locale rules)
10963 * destlist is the inversion list for non-locale rules that this class is
10965 * sourcelist is the ASCII-range inversion list to add under /a rules
10966 * l1_sourcelist is the Latin1 range list to use otherwise.
10967 * Xpropertyname is the name to add to <run_time_list> of the property to
10968 * specify the code points above Latin1 that will have to be
10969 * determined at run-time
10970 * run_time_list is a SV* that contains text names of properties that are to
10971 * be computed at run time. This concatenates <Xpropertyname>
10972 * to it, apppropriately
10973 * This is essentially DO_POSIX, but we know only the Latin1 values at compile
10975 #define DO_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
10976 l1_sourcelist, Xpropertyname, run_time_list) \
10977 /* First, resolve whether to use the ASCII-only list or the L1 \
10979 DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, \
10980 ((AT_LEAST_ASCII_RESTRICTED) ? sourcelist : l1_sourcelist),\
10981 Xpropertyname, run_time_list)
10983 #define DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(node, class, destlist, sourcelist, \
10984 Xpropertyname, run_time_list) \
10985 /* If not /a matching, there are going to be code points we will have \
10986 * to defer to runtime to look-up */ \
10987 if (! AT_LEAST_ASCII_RESTRICTED) { \
10988 Perl_sv_catpvf(aTHX_ run_time_list, "+utf8::%s\n", Xpropertyname); \
10991 ANYOF_CLASS_SET(node, class); \
10994 _invlist_union(destlist, sourcelist, &destlist); \
10997 /* Like DO_POSIX_LATIN1_ONLY_KNOWN, but for the complement. A combination of
10998 * this and DO_N_POSIX */
10999 #define DO_N_POSIX_LATIN1_ONLY_KNOWN(node, class, destlist, sourcelist, \
11000 l1_sourcelist, Xpropertyname, run_time_list) \
11001 if (AT_LEAST_ASCII_RESTRICTED) { \
11002 _invlist_union_complement_2nd(destlist, sourcelist, &destlist); \
11005 Perl_sv_catpvf(aTHX_ run_time_list, "!utf8::%s\n", Xpropertyname); \
11007 ANYOF_CLASS_SET(node, namedclass); \
11010 SV* scratch_list = NULL; \
11011 _invlist_subtract(PL_Latin1, l1_sourcelist, &scratch_list); \
11012 if (! destlist) { \
11013 destlist = scratch_list; \
11016 _invlist_union(destlist, scratch_list, &destlist); \
11017 SvREFCNT_dec(scratch_list); \
11019 if (DEPENDS_SEMANTICS) { \
11020 ANYOF_FLAGS(node) |= ANYOF_NON_UTF8_LATIN1_ALL; \
11026 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
11029 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
11030 * Locale folding is done at run-time, so this function should not be
11031 * called for nodes that are for locales.
11033 * This function sets the bit corresponding to the fold of the input
11034 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
11037 * It also knows about the characters that are in the bitmap that have
11038 * folds that are matchable only outside it, and sets the appropriate lists
11041 * It returns the number of bits that actually changed from 0 to 1 */
11046 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
11048 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
11051 /* It assumes the bit for 'value' has already been set */
11052 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
11053 ANYOF_BITMAP_SET(node, fold);
11056 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
11057 /* Certain Latin1 characters have matches outside the bitmap. To get
11058 * here, 'value' is one of those characters. None of these matches is
11059 * valid for ASCII characters under /aa, which have been excluded by
11060 * the 'if' above. The matches fall into three categories:
11061 * 1) They are singly folded-to or -from an above 255 character, as
11062 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
11064 * 2) They are part of a multi-char fold with another character in the
11065 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
11066 * 3) They are part of a multi-char fold with a character not in the
11067 * bitmap, such as various ligatures.
11068 * We aren't dealing fully with multi-char folds, except we do deal
11069 * with the pattern containing a character that has a multi-char fold
11070 * (not so much the inverse).
11071 * For types 1) and 3), the matches only happen when the target string
11072 * is utf8; that's not true for 2), and we set a flag for it.
11074 * The code below adds to the passed in inversion list the single fold
11075 * closures for 'value'. The values are hard-coded here so that an
11076 * innocent-looking character class, like /[ks]/i won't have to go out
11077 * to disk to find the possible matches. XXX It would be better to
11078 * generate these via regen, in case a new version of the Unicode
11079 * standard adds new mappings, though that is not really likely. */
11084 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
11088 /* LATIN SMALL LETTER LONG S */
11089 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
11092 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
11093 GREEK_SMALL_LETTER_MU);
11094 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
11095 GREEK_CAPITAL_LETTER_MU);
11097 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
11098 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
11099 /* ANGSTROM SIGN */
11100 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
11101 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
11102 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
11103 PL_fold_latin1[value]);
11106 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
11107 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
11108 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
11110 case LATIN_SMALL_LETTER_SHARP_S:
11111 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
11112 LATIN_CAPITAL_LETTER_SHARP_S);
11114 /* Under /a, /d, and /u, this can match the two chars "ss" */
11115 if (! MORE_ASCII_RESTRICTED) {
11116 add_alternate(alternate_ptr, (U8 *) "ss", 2);
11118 /* And under /u or /a, it can match even if the target is
11120 if (AT_LEAST_UNI_SEMANTICS) {
11121 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
11125 case 'F': case 'f':
11126 case 'I': case 'i':
11127 case 'L': case 'l':
11128 case 'T': case 't':
11129 case 'A': case 'a':
11130 case 'H': case 'h':
11131 case 'J': case 'j':
11132 case 'N': case 'n':
11133 case 'W': case 'w':
11134 case 'Y': case 'y':
11135 /* These all are targets of multi-character folds from code
11136 * points that require UTF8 to express, so they can't match
11137 * unless the target string is in UTF-8, so no action here is
11138 * necessary, as regexec.c properly handles the general case
11139 * for UTF-8 matching */
11142 /* Use deprecated warning to increase the chances of this
11144 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
11148 else if (DEPENDS_SEMANTICS
11149 && ! isASCII(value)
11150 && PL_fold_latin1[value] != value)
11152 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
11153 * folds only when the target string is in UTF-8. We add the fold
11154 * here to the list of things to match outside the bitmap, which
11155 * won't be looked at unless it is UTF8 (or else if something else
11156 * says to look even if not utf8, but those things better not happen
11157 * under DEPENDS semantics. */
11158 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
11165 PERL_STATIC_INLINE U8
11166 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, SV** invlist_ptr, AV** alternate_ptr)
11168 /* This inline function sets a bit in the bitmap if not already set, and if
11169 * appropriate, its fold, returning the number of bits that actually
11170 * changed from 0 to 1 */
11174 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
11176 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
11180 ANYOF_BITMAP_SET(node, value);
11183 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
11184 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
11191 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
11193 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
11194 * alternate list, pointed to by 'alternate_ptr'. This is an array of
11195 * the multi-character folds of characters in the node */
11198 PERL_ARGS_ASSERT_ADD_ALTERNATE;
11200 if (! *alternate_ptr) {
11201 *alternate_ptr = newAV();
11203 sv = newSVpvn_utf8((char*)string, len, TRUE);
11204 av_push(*alternate_ptr, sv);
11209 parse a class specification and produce either an ANYOF node that
11210 matches the pattern or perhaps will be optimized into an EXACTish node
11211 instead. The node contains a bit map for the first 256 characters, with the
11212 corresponding bit set if that character is in the list. For characters
11213 above 255, a range list is used */
11216 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
11219 register UV nextvalue;
11220 register IV prevvalue = OOB_UNICODE;
11221 register IV range = 0;
11222 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
11223 register regnode *ret;
11226 char *rangebegin = NULL;
11227 bool need_class = 0;
11228 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
11230 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
11231 than just initialized. */
11232 SV* properties = NULL; /* Code points that match \p{} \P{} */
11233 UV element_count = 0; /* Number of distinct elements in the class.
11234 Optimizations may be possible if this is tiny */
11237 /* Unicode properties are stored in a swash; this holds the current one
11238 * being parsed. If this swash is the only above-latin1 component of the
11239 * character class, an optimization is to pass it directly on to the
11240 * execution engine. Otherwise, it is set to NULL to indicate that there
11241 * are other things in the class that have to be dealt with at execution
11243 SV* swash = NULL; /* Code points that match \p{} \P{} */
11245 /* Set if a component of this character class is user-defined; just passed
11246 * on to the engine */
11247 UV has_user_defined_property = 0;
11249 /* code points this node matches that can't be stored in the bitmap */
11250 SV* nonbitmap = NULL;
11252 /* The items that are to match that aren't stored in the bitmap, but are a
11253 * result of things that are stored there. This is the fold closure of
11254 * such a character, either because it has DEPENDS semantics and shouldn't
11255 * be matched unless the target string is utf8, or is a code point that is
11256 * too large for the bit map, as for example, the fold of the MICRO SIGN is
11257 * above 255. This all is solely for performance reasons. By having this
11258 * code know the outside-the-bitmap folds that the bitmapped characters are
11259 * involved with, we don't have to go out to disk to find the list of
11260 * matches, unless the character class includes code points that aren't
11261 * storable in the bit map. That means that a character class with an 's'
11262 * in it, for example, doesn't need to go out to disk to find everything
11263 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
11264 * empty unless there is something whose fold we don't know about, and will
11265 * have to go out to the disk to find. */
11266 SV* l1_fold_invlist = NULL;
11268 /* List of multi-character folds that are matched by this node */
11269 AV* unicode_alternate = NULL;
11271 UV literal_endpoint = 0;
11273 UV stored = 0; /* how many chars stored in the bitmap */
11275 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
11276 case we need to change the emitted regop to an EXACT. */
11277 const char * orig_parse = RExC_parse;
11278 GET_RE_DEBUG_FLAGS_DECL;
11280 PERL_ARGS_ASSERT_REGCLASS;
11282 PERL_UNUSED_ARG(depth);
11285 DEBUG_PARSE("clas");
11287 /* Assume we are going to generate an ANYOF node. */
11288 ret = reganode(pRExC_state, ANYOF, 0);
11292 ANYOF_FLAGS(ret) = 0;
11295 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
11299 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
11301 /* We have decided to not allow multi-char folds in inverted character
11302 * classes, due to the confusion that can happen, especially with
11303 * classes that are designed for a non-Unicode world: You have the
11304 * peculiar case that:
11305 "s s" =~ /^[^\xDF]+$/i => Y
11306 "ss" =~ /^[^\xDF]+$/i => N
11308 * See [perl #89750] */
11309 allow_full_fold = FALSE;
11313 RExC_size += ANYOF_SKIP;
11314 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
11317 RExC_emit += ANYOF_SKIP;
11319 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
11321 ANYOF_BITMAP_ZERO(ret);
11322 listsv = newSVpvs("# comment\n");
11323 initial_listsv_len = SvCUR(listsv);
11326 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
11328 if (!SIZE_ONLY && POSIXCC(nextvalue))
11329 checkposixcc(pRExC_state);
11331 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
11332 if (UCHARAT(RExC_parse) == ']')
11333 goto charclassloop;
11336 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
11340 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
11343 rangebegin = RExC_parse;
11347 value = utf8n_to_uvchr((U8*)RExC_parse,
11348 RExC_end - RExC_parse,
11349 &numlen, UTF8_ALLOW_DEFAULT);
11350 RExC_parse += numlen;
11353 value = UCHARAT(RExC_parse++);
11355 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
11356 if (value == '[' && POSIXCC(nextvalue))
11357 namedclass = regpposixcc(pRExC_state, value);
11358 else if (value == '\\') {
11360 value = utf8n_to_uvchr((U8*)RExC_parse,
11361 RExC_end - RExC_parse,
11362 &numlen, UTF8_ALLOW_DEFAULT);
11363 RExC_parse += numlen;
11366 value = UCHARAT(RExC_parse++);
11367 /* Some compilers cannot handle switching on 64-bit integer
11368 * values, therefore value cannot be an UV. Yes, this will
11369 * be a problem later if we want switch on Unicode.
11370 * A similar issue a little bit later when switching on
11371 * namedclass. --jhi */
11372 switch ((I32)value) {
11373 case 'w': namedclass = ANYOF_ALNUM; break;
11374 case 'W': namedclass = ANYOF_NALNUM; break;
11375 case 's': namedclass = ANYOF_SPACE; break;
11376 case 'S': namedclass = ANYOF_NSPACE; break;
11377 case 'd': namedclass = ANYOF_DIGIT; break;
11378 case 'D': namedclass = ANYOF_NDIGIT; break;
11379 case 'v': namedclass = ANYOF_VERTWS; break;
11380 case 'V': namedclass = ANYOF_NVERTWS; break;
11381 case 'h': namedclass = ANYOF_HORIZWS; break;
11382 case 'H': namedclass = ANYOF_NHORIZWS; break;
11383 case 'N': /* Handle \N{NAME} in class */
11385 /* We only pay attention to the first char of
11386 multichar strings being returned. I kinda wonder
11387 if this makes sense as it does change the behaviour
11388 from earlier versions, OTOH that behaviour was broken
11390 UV v; /* value is register so we cant & it /grrr */
11391 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
11401 if (RExC_parse >= RExC_end)
11402 vFAIL2("Empty \\%c{}", (U8)value);
11403 if (*RExC_parse == '{') {
11404 const U8 c = (U8)value;
11405 e = strchr(RExC_parse++, '}');
11407 vFAIL2("Missing right brace on \\%c{}", c);
11408 while (isSPACE(UCHARAT(RExC_parse)))
11410 if (e == RExC_parse)
11411 vFAIL2("Empty \\%c{}", c);
11412 n = e - RExC_parse;
11413 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
11424 if (UCHARAT(RExC_parse) == '^') {
11427 value = value == 'p' ? 'P' : 'p'; /* toggle */
11428 while (isSPACE(UCHARAT(RExC_parse))) {
11433 /* Try to get the definition of the property into
11434 * <invlist>. If /i is in effect, the effective property
11435 * will have its name be <__NAME_i>. The design is
11436 * discussed in commit
11437 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
11438 Newx(name, n + sizeof("_i__\n"), char);
11440 sprintf(name, "%s%.*s%s\n",
11441 (FOLD) ? "__" : "",
11447 /* Look up the property name, and get its swash and
11448 * inversion list, if the property is found */
11450 SvREFCNT_dec(swash);
11452 swash = _core_swash_init("utf8", name, &PL_sv_undef,
11455 TRUE, /* this routine will handle
11456 undefined properties */
11457 NULL, FALSE /* No inversion list */
11461 || ! SvTYPE(SvRV(swash)) == SVt_PVHV
11463 hv_fetchs(MUTABLE_HV(SvRV(swash)),
11465 || ! (invlist = *invlistsvp))
11468 SvREFCNT_dec(swash);
11472 /* Here didn't find it. It could be a user-defined
11473 * property that will be available at run-time. Add it
11474 * to the list to look up then */
11475 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s\n",
11476 (value == 'p' ? '+' : '!'),
11478 has_user_defined_property = 1;
11480 /* We don't know yet, so have to assume that the
11481 * property could match something in the Latin1 range,
11482 * hence something that isn't utf8 */
11483 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
11487 /* Here, did get the swash and its inversion list. If
11488 * the swash is from a user-defined property, then this
11489 * whole character class should be regarded as such */
11490 SV** user_defined_svp =
11491 hv_fetchs(MUTABLE_HV(SvRV(swash)),
11492 "USER_DEFINED", FALSE);
11493 if (user_defined_svp) {
11494 has_user_defined_property
11495 |= SvUV(*user_defined_svp);
11498 /* Invert if asking for the complement */
11499 if (value == 'P') {
11500 _invlist_union_complement_2nd(properties, invlist, &properties);
11502 /* The swash can't be used as-is, because we've
11503 * inverted things; delay removing it to here after
11504 * have copied its invlist above */
11505 SvREFCNT_dec(swash);
11509 _invlist_union(properties, invlist, &properties);
11514 RExC_parse = e + 1;
11515 namedclass = ANYOF_MAX; /* no official name, but it's named */
11517 /* \p means they want Unicode semantics */
11518 RExC_uni_semantics = 1;
11521 case 'n': value = '\n'; break;
11522 case 'r': value = '\r'; break;
11523 case 't': value = '\t'; break;
11524 case 'f': value = '\f'; break;
11525 case 'b': value = '\b'; break;
11526 case 'e': value = ASCII_TO_NATIVE('\033');break;
11527 case 'a': value = ASCII_TO_NATIVE('\007');break;
11529 RExC_parse--; /* function expects to be pointed at the 'o' */
11531 const char* error_msg;
11532 bool valid = grok_bslash_o(RExC_parse,
11537 RExC_parse += numlen;
11542 if (PL_encoding && value < 0x100) {
11543 goto recode_encoding;
11547 if (*RExC_parse == '{') {
11548 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
11549 | PERL_SCAN_DISALLOW_PREFIX;
11550 char * const e = strchr(RExC_parse++, '}');
11552 vFAIL("Missing right brace on \\x{}");
11554 numlen = e - RExC_parse;
11555 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
11556 RExC_parse = e + 1;
11559 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
11561 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
11562 RExC_parse += numlen;
11564 if (PL_encoding && value < 0x100)
11565 goto recode_encoding;
11568 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
11570 case '0': case '1': case '2': case '3': case '4':
11571 case '5': case '6': case '7':
11573 /* Take 1-3 octal digits */
11574 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
11576 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
11577 RExC_parse += numlen;
11578 if (PL_encoding && value < 0x100)
11579 goto recode_encoding;
11583 if (! RExC_override_recoding) {
11584 SV* enc = PL_encoding;
11585 value = reg_recode((const char)(U8)value, &enc);
11586 if (!enc && SIZE_ONLY)
11587 ckWARNreg(RExC_parse,
11588 "Invalid escape in the specified encoding");
11592 /* Allow \_ to not give an error */
11593 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
11594 ckWARN2reg(RExC_parse,
11595 "Unrecognized escape \\%c in character class passed through",
11600 } /* end of \blah */
11603 literal_endpoint++;
11606 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
11608 /* What matches in a locale is not known until runtime, so need to
11609 * (one time per class) allocate extra space to pass to regexec.
11610 * The space will contain a bit for each named class that is to be
11611 * matched against. This isn't needed for \p{} and pseudo-classes,
11612 * as they are not affected by locale, and hence are dealt with
11614 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
11617 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
11620 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
11621 ANYOF_CLASS_ZERO(ret);
11623 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
11626 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
11627 * literal, as is the character that began the false range, i.e.
11628 * the 'a' in the examples */
11632 RExC_parse >= rangebegin ?
11633 RExC_parse - rangebegin : 0;
11634 ckWARN4reg(RExC_parse,
11635 "False [] range \"%*.*s\"",
11639 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
11640 if (prevvalue < 256) {
11642 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
11645 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
11649 range = 0; /* this was not a true range */
11654 /* Possible truncation here but in some 64-bit environments
11655 * the compiler gets heartburn about switch on 64-bit values.
11656 * A similar issue a little earlier when switching on value.
11658 switch ((I32)namedclass) {
11660 case ANYOF_ALNUMC: /* C's alnum, in contrast to \w */
11661 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11662 PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
11664 case ANYOF_NALNUMC:
11665 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11666 PL_PosixAlnum, PL_L1PosixAlnum, "XPosixAlnum", listsv);
11669 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11670 PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
11673 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11674 PL_PosixAlpha, PL_L1PosixAlpha, "XPosixAlpha", listsv);
11678 ANYOF_CLASS_SET(ret, namedclass);
11681 _invlist_union(properties, PL_ASCII, &properties);
11686 ANYOF_CLASS_SET(ret, namedclass);
11689 _invlist_union_complement_2nd(properties,
11690 PL_ASCII, &properties);
11691 if (DEPENDS_SEMANTICS) {
11692 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL;
11697 DO_POSIX(ret, namedclass, properties,
11698 PL_PosixBlank, PL_XPosixBlank);
11701 DO_N_POSIX(ret, namedclass, properties,
11702 PL_PosixBlank, PL_XPosixBlank);
11705 DO_POSIX(ret, namedclass, properties,
11706 PL_PosixCntrl, PL_XPosixCntrl);
11709 DO_N_POSIX(ret, namedclass, properties,
11710 PL_PosixCntrl, PL_XPosixCntrl);
11713 /* There are no digits in the Latin1 range outside of
11714 * ASCII, so call the macro that doesn't have to resolve
11716 DO_POSIX_LATIN1_ONLY_KNOWN_L1_RESOLVED(ret, namedclass, properties,
11717 PL_PosixDigit, "XPosixDigit", listsv);
11720 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11721 PL_PosixDigit, PL_PosixDigit, "XPosixDigit", listsv);
11724 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11725 PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
11728 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11729 PL_PosixGraph, PL_L1PosixGraph, "XPosixGraph", listsv);
11731 case ANYOF_HORIZWS:
11732 /* For these, we use the nonbitmap, as /d doesn't make a
11733 * difference in what these match. There would be problems
11734 * if these characters had folds other than themselves, as
11735 * nonbitmap is subject to folding. It turns out that \h
11736 * is just a synonym for XPosixBlank */
11737 _invlist_union(nonbitmap, PL_XPosixBlank, &nonbitmap);
11739 case ANYOF_NHORIZWS:
11740 _invlist_union_complement_2nd(nonbitmap,
11741 PL_XPosixBlank, &nonbitmap);
11745 { /* These require special handling, as they differ under
11746 folding, matching Cased there (which in the ASCII range
11747 is the same as Alpha */
11753 if (FOLD && ! LOC) {
11754 ascii_source = PL_PosixAlpha;
11755 l1_source = PL_L1Cased;
11759 ascii_source = PL_PosixLower;
11760 l1_source = PL_L1PosixLower;
11761 Xname = "XPosixLower";
11763 if (namedclass == ANYOF_LOWER) {
11764 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11765 ascii_source, l1_source, Xname, listsv);
11768 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
11769 properties, ascii_source, l1_source, Xname, listsv);
11774 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11775 PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
11778 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11779 PL_PosixPrint, PL_L1PosixPrint, "XPosixPrint", listsv);
11782 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11783 PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
11786 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11787 PL_PosixPunct, PL_L1PosixPunct, "XPosixPunct", listsv);
11790 DO_POSIX(ret, namedclass, properties,
11791 PL_PosixSpace, PL_XPosixSpace);
11793 case ANYOF_NPSXSPC:
11794 DO_N_POSIX(ret, namedclass, properties,
11795 PL_PosixSpace, PL_XPosixSpace);
11798 DO_POSIX(ret, namedclass, properties,
11799 PL_PerlSpace, PL_XPerlSpace);
11802 DO_N_POSIX(ret, namedclass, properties,
11803 PL_PerlSpace, PL_XPerlSpace);
11805 case ANYOF_UPPER: /* Same as LOWER, above */
11812 if (FOLD && ! LOC) {
11813 ascii_source = PL_PosixAlpha;
11814 l1_source = PL_L1Cased;
11818 ascii_source = PL_PosixUpper;
11819 l1_source = PL_L1PosixUpper;
11820 Xname = "XPosixUpper";
11822 if (namedclass == ANYOF_UPPER) {
11823 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11824 ascii_source, l1_source, Xname, listsv);
11827 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass,
11828 properties, ascii_source, l1_source, Xname, listsv);
11832 case ANYOF_ALNUM: /* Really is 'Word' */
11833 DO_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11834 PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
11837 DO_N_POSIX_LATIN1_ONLY_KNOWN(ret, namedclass, properties,
11838 PL_PosixWord, PL_L1PosixWord, "XPosixWord", listsv);
11841 /* For these, we use the nonbitmap, as /d doesn't make a
11842 * difference in what these match. There would be problems
11843 * if these characters had folds other than themselves, as
11844 * nonbitmap is subject to folding */
11845 _invlist_union(nonbitmap, PL_VertSpace, &nonbitmap);
11847 case ANYOF_NVERTWS:
11848 _invlist_union_complement_2nd(nonbitmap,
11849 PL_VertSpace, &nonbitmap);
11852 DO_POSIX(ret, namedclass, properties,
11853 PL_PosixXDigit, PL_XPosixXDigit);
11855 case ANYOF_NXDIGIT:
11856 DO_N_POSIX(ret, namedclass, properties,
11857 PL_PosixXDigit, PL_XPosixXDigit);
11860 /* this is to handle \p and \P */
11863 vFAIL("Invalid [::] class");
11869 } /* end of namedclass \blah */
11872 if (prevvalue > (IV)value) /* b-a */ {
11873 const int w = RExC_parse - rangebegin;
11874 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
11875 range = 0; /* not a valid range */
11879 prevvalue = value; /* save the beginning of the range */
11880 if (RExC_parse+1 < RExC_end
11881 && *RExC_parse == '-'
11882 && RExC_parse[1] != ']')
11886 /* a bad range like \w-, [:word:]- ? */
11887 if (namedclass > OOB_NAMEDCLASS) {
11888 if (ckWARN(WARN_REGEXP)) {
11890 RExC_parse >= rangebegin ?
11891 RExC_parse - rangebegin : 0;
11893 "False [] range \"%*.*s\"",
11898 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
11900 range = 1; /* yeah, it's a range! */
11901 continue; /* but do it the next time */
11905 /* non-Latin1 code point implies unicode semantics. Must be set in
11906 * pass1 so is there for the whole of pass 2 */
11908 RExC_uni_semantics = 1;
11911 /* now is the next time */
11913 if (prevvalue < 256) {
11914 const IV ceilvalue = value < 256 ? value : 255;
11917 /* In EBCDIC [\x89-\x91] should include
11918 * the \x8e but [i-j] should not. */
11919 if (literal_endpoint == 2 &&
11920 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
11921 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
11923 if (isLOWER(prevvalue)) {
11924 for (i = prevvalue; i <= ceilvalue; i++)
11925 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
11927 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
11930 for (i = prevvalue; i <= ceilvalue; i++)
11931 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
11933 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
11939 for (i = prevvalue; i <= ceilvalue; i++) {
11940 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
11944 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
11945 const UV natvalue = NATIVE_TO_UNI(value);
11946 nonbitmap = _add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
11949 literal_endpoint = 0;
11953 range = 0; /* this range (if it was one) is done now */
11960 /****** !SIZE_ONLY AFTER HERE *********/
11962 /* If folding and there are code points above 255, we calculate all
11963 * characters that could fold to or from the ones already on the list */
11964 if (FOLD && nonbitmap) {
11965 UV start, end; /* End points of code point ranges */
11967 SV* fold_intersection = NULL;
11969 /* This is a list of all the characters that participate in folds
11970 * (except marks, etc in multi-char folds */
11971 if (! PL_utf8_foldable) {
11972 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
11973 PL_utf8_foldable = _swash_to_invlist(swash);
11974 SvREFCNT_dec(swash);
11977 /* This is a hash that for a particular fold gives all characters
11978 * that are involved in it */
11979 if (! PL_utf8_foldclosures) {
11981 /* If we were unable to find any folds, then we likely won't be
11982 * able to find the closures. So just create an empty list.
11983 * Folding will effectively be restricted to the non-Unicode rules
11984 * hard-coded into Perl. (This case happens legitimately during
11985 * compilation of Perl itself before the Unicode tables are
11987 if (invlist_len(PL_utf8_foldable) == 0) {
11988 PL_utf8_foldclosures = newHV();
11990 /* If the folds haven't been read in, call a fold function
11992 if (! PL_utf8_tofold) {
11993 U8 dummy[UTF8_MAXBYTES+1];
11996 /* This particular string is above \xff in both UTF-8 and
11998 to_utf8_fold((U8*) "\xC8\x80", dummy, &dummy_len);
11999 assert(PL_utf8_tofold); /* Verify that worked */
12001 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
12005 /* Only the characters in this class that participate in folds need be
12006 * checked. Get the intersection of this class and all the possible
12007 * characters that are foldable. This can quickly narrow down a large
12009 _invlist_intersection(PL_utf8_foldable, nonbitmap, &fold_intersection);
12011 /* Now look at the foldable characters in this class individually */
12012 invlist_iterinit(fold_intersection);
12013 while (invlist_iternext(fold_intersection, &start, &end)) {
12016 /* Look at every character in the range */
12017 for (j = start; j <= end; j++) {
12020 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
12023 _to_uni_fold_flags(j, foldbuf, &foldlen,
12024 (allow_full_fold) ? FOLD_FLAGS_FULL : 0);
12026 if (foldlen > (STRLEN)UNISKIP(f)) {
12028 /* Any multicharacter foldings (disallowed in lookbehind
12029 * patterns) require the following transform: [ABCDEF] ->
12030 * (?:[ABCabcDEFd]|pq|rst) where E folds into "pq" and F
12031 * folds into "rst", all other characters fold to single
12032 * characters. We save away these multicharacter foldings,
12033 * to be later saved as part of the additional "s" data. */
12034 if (! RExC_in_lookbehind) {
12036 U8* e = foldbuf + foldlen;
12038 /* If any of the folded characters of this are in the
12039 * Latin1 range, tell the regex engine that this can
12040 * match a non-utf8 target string. The only multi-byte
12041 * fold whose source is in the Latin1 range (U+00DF)
12042 * applies only when the target string is utf8, or
12043 * under unicode rules */
12044 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
12047 /* Can't mix ascii with non- under /aa */
12048 if (MORE_ASCII_RESTRICTED
12049 && (isASCII(*loc) != isASCII(j)))
12051 goto end_multi_fold;
12053 if (UTF8_IS_INVARIANT(*loc)
12054 || UTF8_IS_DOWNGRADEABLE_START(*loc))
12056 /* Can't mix above and below 256 under LOC
12059 goto end_multi_fold;
12062 |= ANYOF_NONBITMAP_NON_UTF8;
12065 loc += UTF8SKIP(loc);
12069 add_alternate(&unicode_alternate, foldbuf, foldlen);
12073 /* This is special-cased, as it is the only letter which
12074 * has both a multi-fold and single-fold in Latin1. All
12075 * the other chars that have single and multi-folds are
12076 * always in utf8, and the utf8 folding algorithm catches
12078 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
12079 stored += set_regclass_bit(pRExC_state,
12081 LATIN_SMALL_LETTER_SHARP_S,
12082 &l1_fold_invlist, &unicode_alternate);
12086 /* Single character fold. Add everything in its fold
12087 * closure to the list that this node should match */
12090 /* The fold closures data structure is a hash with the keys
12091 * being every character that is folded to, like 'k', and
12092 * the values each an array of everything that folds to its
12093 * key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
12094 if ((listp = hv_fetch(PL_utf8_foldclosures,
12095 (char *) foldbuf, foldlen, FALSE)))
12097 AV* list = (AV*) *listp;
12099 for (k = 0; k <= av_len(list); k++) {
12100 SV** c_p = av_fetch(list, k, FALSE);
12103 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
12107 /* /aa doesn't allow folds between ASCII and non-;
12108 * /l doesn't allow them between above and below
12110 if ((MORE_ASCII_RESTRICTED
12111 && (isASCII(c) != isASCII(j)))
12112 || (LOC && ((c < 256) != (j < 256))))
12117 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
12118 stored += set_regclass_bit(pRExC_state,
12121 &l1_fold_invlist, &unicode_alternate);
12123 /* It may be that the code point is already in
12124 * this range or already in the bitmap, in
12125 * which case we need do nothing */
12126 else if ((c < start || c > end)
12128 || ! ANYOF_BITMAP_TEST(ret, c)))
12130 nonbitmap = add_cp_to_invlist(nonbitmap, c);
12137 SvREFCNT_dec(fold_intersection);
12140 /* Combine the two lists into one. */
12141 if (l1_fold_invlist) {
12143 _invlist_union(nonbitmap, l1_fold_invlist, &nonbitmap);
12144 SvREFCNT_dec(l1_fold_invlist);
12147 nonbitmap = l1_fold_invlist;
12151 /* And combine the result (if any) with any inversion list from properties.
12152 * The lists are kept separate up to now because we don't want to fold the
12156 _invlist_union(nonbitmap, properties, &nonbitmap);
12157 SvREFCNT_dec(properties);
12160 nonbitmap = properties;
12164 /* Here, <nonbitmap> contains all the code points we can determine at
12165 * compile time that we haven't put into the bitmap. Go through it, and
12166 * for things that belong in the bitmap, put them there, and delete from
12170 /* Above-ASCII code points in /d have to stay in <nonbitmap>, as they
12171 * possibly only should match when the target string is UTF-8 */
12172 UV max_cp_to_set = (DEPENDS_SEMANTICS) ? 127 : 255;
12174 /* This gets set if we actually need to modify things */
12175 bool change_invlist = FALSE;
12179 /* Start looking through <nonbitmap> */
12180 invlist_iterinit(nonbitmap);
12181 while (invlist_iternext(nonbitmap, &start, &end)) {
12185 /* Quit if are above what we should change */
12186 if (start > max_cp_to_set) {
12190 change_invlist = TRUE;
12192 /* Set all the bits in the range, up to the max that we are doing */
12193 high = (end < max_cp_to_set) ? end : max_cp_to_set;
12194 for (i = start; i <= (int) high; i++) {
12195 if (! ANYOF_BITMAP_TEST(ret, i)) {
12196 ANYOF_BITMAP_SET(ret, i);
12204 /* Done with loop; remove any code points that are in the bitmap from
12206 if (change_invlist) {
12207 _invlist_subtract(nonbitmap,
12208 (DEPENDS_SEMANTICS)
12214 /* If have completely emptied it, remove it completely */
12215 if (invlist_len(nonbitmap) == 0) {
12216 SvREFCNT_dec(nonbitmap);
12221 /* Here, we have calculated what code points should be in the character
12222 * class. <nonbitmap> does not overlap the bitmap except possibly in the
12223 * case of DEPENDS rules.
12225 * Now we can see about various optimizations. Fold calculation (which we
12226 * did above) needs to take place before inversion. Otherwise /[^k]/i
12227 * would invert to include K, which under /i would match k, which it
12230 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
12231 * set the FOLD flag yet, so this does optimize those. It doesn't
12232 * optimize locale. Doing so perhaps could be done as long as there is
12233 * nothing like \w in it; some thought also would have to be given to the
12234 * interaction with above 0x100 chars */
12235 if ((ANYOF_FLAGS(ret) & ANYOF_INVERT)
12237 && ! unicode_alternate
12238 /* In case of /d, there are some things that should match only when in
12239 * not in the bitmap, i.e., they require UTF8 to match. These are
12240 * listed in nonbitmap, but if ANYOF_NONBITMAP_NON_UTF8 is set in this
12241 * case, they don't require UTF8, so can invert here */
12243 || ! DEPENDS_SEMANTICS
12244 || (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
12245 && SvCUR(listsv) == initial_listsv_len)
12249 for (i = 0; i < 256; ++i) {
12250 if (ANYOF_BITMAP_TEST(ret, i)) {
12251 ANYOF_BITMAP_CLEAR(ret, i);
12254 ANYOF_BITMAP_SET(ret, i);
12259 /* The inversion means that everything above 255 is matched */
12260 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
12263 /* Here, also has things outside the bitmap that may overlap with
12264 * the bitmap. We have to sync them up, so that they get inverted
12265 * in both places. Earlier, we removed all overlaps except in the
12266 * case of /d rules, so no syncing is needed except for this case
12268 SV *remove_list = NULL;
12270 if (DEPENDS_SEMANTICS) {
12273 /* Set the bits that correspond to the ones that aren't in the
12274 * bitmap. Otherwise, when we invert, we'll miss these.
12275 * Earlier, we removed from the nonbitmap all code points
12276 * < 128, so there is no extra work here */
12277 invlist_iterinit(nonbitmap);
12278 while (invlist_iternext(nonbitmap, &start, &end)) {
12279 if (start > 255) { /* The bit map goes to 255 */
12285 for (i = start; i <= (int) end; ++i) {
12286 ANYOF_BITMAP_SET(ret, i);
12293 /* Now invert both the bitmap and the nonbitmap. Anything in the
12294 * bitmap has to also be removed from the non-bitmap, but again,
12295 * there should not be overlap unless is /d rules. */
12296 _invlist_invert(nonbitmap);
12298 /* Any swash can't be used as-is, because we've inverted things */
12300 SvREFCNT_dec(swash);
12304 for (i = 0; i < 256; ++i) {
12305 if (ANYOF_BITMAP_TEST(ret, i)) {
12306 ANYOF_BITMAP_CLEAR(ret, i);
12307 if (DEPENDS_SEMANTICS) {
12308 if (! remove_list) {
12309 remove_list = _new_invlist(2);
12311 remove_list = add_cp_to_invlist(remove_list, i);
12315 ANYOF_BITMAP_SET(ret, i);
12321 /* And do the removal */
12322 if (DEPENDS_SEMANTICS) {
12324 _invlist_subtract(nonbitmap, remove_list, &nonbitmap);
12325 SvREFCNT_dec(remove_list);
12329 /* There is no overlap for non-/d, so just delete anything
12331 _invlist_intersection(nonbitmap, PL_AboveLatin1, &nonbitmap);
12335 stored = 256 - stored;
12337 /* Clear the invert flag since have just done it here */
12338 ANYOF_FLAGS(ret) &= ~ANYOF_INVERT;
12341 /* Folding in the bitmap is taken care of above, but not for locale (for
12342 * which we have to wait to see what folding is in effect at runtime), and
12343 * for some things not in the bitmap (only the upper latin folds in this
12344 * case, as all other single-char folding has been set above). Set
12345 * run-time fold flag for these */
12347 || (DEPENDS_SEMANTICS
12349 && ! (ANYOF_FLAGS(ret) & ANYOF_NONBITMAP_NON_UTF8))
12350 || unicode_alternate))
12352 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
12355 /* A single character class can be "optimized" into an EXACTish node.
12356 * Note that since we don't currently count how many characters there are
12357 * outside the bitmap, we are XXX missing optimization possibilities for
12358 * them. This optimization can't happen unless this is a truly single
12359 * character class, which means that it can't be an inversion into a
12360 * many-character class, and there must be no possibility of there being
12361 * things outside the bitmap. 'stored' (only) for locales doesn't include
12362 * \w, etc, so have to make a special test that they aren't present
12364 * Similarly A 2-character class of the very special form like [bB] can be
12365 * optimized into an EXACTFish node, but only for non-locales, and for
12366 * characters which only have the two folds; so things like 'fF' and 'Ii'
12367 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
12370 && ! unicode_alternate
12371 && SvCUR(listsv) == initial_listsv_len
12372 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
12373 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
12374 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
12375 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
12376 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
12377 /* If the latest code point has a fold whose
12378 * bit is set, it must be the only other one */
12379 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
12380 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
12382 /* Note that the information needed to decide to do this optimization
12383 * is not currently available until the 2nd pass, and that the actually
12384 * used EXACTish node takes less space than the calculated ANYOF node,
12385 * and hence the amount of space calculated in the first pass is larger
12386 * than actually used, so this optimization doesn't gain us any space.
12387 * But an EXACT node is faster than an ANYOF node, and can be combined
12388 * with any adjacent EXACT nodes later by the optimizer for further
12389 * gains. The speed of executing an EXACTF is similar to an ANYOF
12390 * node, so the optimization advantage comes from the ability to join
12391 * it to adjacent EXACT nodes */
12393 const char * cur_parse= RExC_parse;
12395 RExC_emit = (regnode *)orig_emit;
12396 RExC_parse = (char *)orig_parse;
12400 /* A locale node with one point can be folded; all the other cases
12401 * with folding will have two points, since we calculate them above
12403 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
12410 else { /* else 2 chars in the bit map: the folds of each other */
12412 /* Use the folded value, which for the cases where we get here,
12413 * is just the lower case of the current one (which may resolve to
12414 * itself, or to the other one */
12415 value = toLOWER_LATIN1(value);
12417 /* To join adjacent nodes, they must be the exact EXACTish type.
12418 * Try to use the most likely type, by using EXACTFA if possible,
12419 * then EXACTFU if the regex calls for it, or is required because
12420 * the character is non-ASCII. (If <value> is ASCII, its fold is
12421 * also ASCII for the cases where we get here.) */
12422 if (MORE_ASCII_RESTRICTED && isASCII(value)) {
12425 else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
12428 else { /* Otherwise, more likely to be EXACTF type */
12433 ret = reg_node(pRExC_state, op);
12434 RExC_parse = (char *)cur_parse;
12435 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
12436 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
12437 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
12439 RExC_emit += STR_SZ(2);
12442 *STRING(ret)= (char)value;
12444 RExC_emit += STR_SZ(1);
12446 SvREFCNT_dec(listsv);
12450 /* If there is a swash and more than one element, we can't use the swash in
12451 * the optimization below. */
12452 if (swash && element_count > 1) {
12453 SvREFCNT_dec(swash);
12457 && SvCUR(listsv) == initial_listsv_len
12458 && ! unicode_alternate)
12460 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
12461 SvREFCNT_dec(listsv);
12462 SvREFCNT_dec(unicode_alternate);
12465 /* av[0] stores the character class description in its textual form:
12466 * used later (regexec.c:Perl_regclass_swash()) to initialize the
12467 * appropriate swash, and is also useful for dumping the regnode.
12468 * av[1] if NULL, is a placeholder to later contain the swash computed
12469 * from av[0]. But if no further computation need be done, the
12470 * swash is stored there now.
12471 * av[2] stores the multicharacter foldings, used later in
12472 * regexec.c:S_reginclass().
12473 * av[3] stores the nonbitmap inversion list for use in addition or
12474 * instead of av[0]; not used if av[1] isn't NULL
12475 * av[4] is set if any component of the class is from a user-defined
12476 * property; not used if av[1] isn't NULL */
12477 AV * const av = newAV();
12480 av_store(av, 0, (SvCUR(listsv) == initial_listsv_len)
12484 av_store(av, 1, swash);
12485 SvREFCNT_dec(nonbitmap);
12488 av_store(av, 1, NULL);
12490 av_store(av, 3, nonbitmap);
12491 av_store(av, 4, newSVuv(has_user_defined_property));
12495 /* Store any computed multi-char folds only if we are allowing
12497 if (allow_full_fold) {
12498 av_store(av, 2, MUTABLE_SV(unicode_alternate));
12499 if (unicode_alternate) { /* This node is variable length */
12504 av_store(av, 2, NULL);
12506 rv = newRV_noinc(MUTABLE_SV(av));
12507 n = add_data(pRExC_state, 1, "s");
12508 RExC_rxi->data->data[n] = (void*)rv;
12515 /* reg_skipcomment()
12517 Absorbs an /x style # comments from the input stream.
12518 Returns true if there is more text remaining in the stream.
12519 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
12520 terminates the pattern without including a newline.
12522 Note its the callers responsibility to ensure that we are
12523 actually in /x mode
12528 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
12532 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
12534 while (RExC_parse < RExC_end)
12535 if (*RExC_parse++ == '\n') {
12540 /* we ran off the end of the pattern without ending
12541 the comment, so we have to add an \n when wrapping */
12542 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
12550 Advances the parse position, and optionally absorbs
12551 "whitespace" from the inputstream.
12553 Without /x "whitespace" means (?#...) style comments only,
12554 with /x this means (?#...) and # comments and whitespace proper.
12556 Returns the RExC_parse point from BEFORE the scan occurs.
12558 This is the /x friendly way of saying RExC_parse++.
12562 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
12564 char* const retval = RExC_parse++;
12566 PERL_ARGS_ASSERT_NEXTCHAR;
12569 if (RExC_end - RExC_parse >= 3
12570 && *RExC_parse == '('
12571 && RExC_parse[1] == '?'
12572 && RExC_parse[2] == '#')
12574 while (*RExC_parse != ')') {
12575 if (RExC_parse == RExC_end)
12576 FAIL("Sequence (?#... not terminated");
12582 if (RExC_flags & RXf_PMf_EXTENDED) {
12583 if (isSPACE(*RExC_parse)) {
12587 else if (*RExC_parse == '#') {
12588 if ( reg_skipcomment( pRExC_state ) )
12597 - reg_node - emit a node
12599 STATIC regnode * /* Location. */
12600 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
12603 register regnode *ptr;
12604 regnode * const ret = RExC_emit;
12605 GET_RE_DEBUG_FLAGS_DECL;
12607 PERL_ARGS_ASSERT_REG_NODE;
12610 SIZE_ALIGN(RExC_size);
12614 if (RExC_emit >= RExC_emit_bound)
12615 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
12616 op, RExC_emit, RExC_emit_bound);
12618 NODE_ALIGN_FILL(ret);
12620 FILL_ADVANCE_NODE(ptr, op);
12621 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 1);
12622 #ifdef RE_TRACK_PATTERN_OFFSETS
12623 if (RExC_offsets) { /* MJD */
12624 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
12625 "reg_node", __LINE__,
12627 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
12628 ? "Overwriting end of array!\n" : "OK",
12629 (UV)(RExC_emit - RExC_emit_start),
12630 (UV)(RExC_parse - RExC_start),
12631 (UV)RExC_offsets[0]));
12632 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
12640 - reganode - emit a node with an argument
12642 STATIC regnode * /* Location. */
12643 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
12646 register regnode *ptr;
12647 regnode * const ret = RExC_emit;
12648 GET_RE_DEBUG_FLAGS_DECL;
12650 PERL_ARGS_ASSERT_REGANODE;
12653 SIZE_ALIGN(RExC_size);
12658 assert(2==regarglen[op]+1);
12660 Anything larger than this has to allocate the extra amount.
12661 If we changed this to be:
12663 RExC_size += (1 + regarglen[op]);
12665 then it wouldn't matter. Its not clear what side effect
12666 might come from that so its not done so far.
12671 if (RExC_emit >= RExC_emit_bound)
12672 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
12673 op, RExC_emit, RExC_emit_bound);
12675 NODE_ALIGN_FILL(ret);
12677 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
12678 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (ptr) - 2);
12679 #ifdef RE_TRACK_PATTERN_OFFSETS
12680 if (RExC_offsets) { /* MJD */
12681 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
12685 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
12686 "Overwriting end of array!\n" : "OK",
12687 (UV)(RExC_emit - RExC_emit_start),
12688 (UV)(RExC_parse - RExC_start),
12689 (UV)RExC_offsets[0]));
12690 Set_Cur_Node_Offset;
12698 - reguni - emit (if appropriate) a Unicode character
12701 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
12705 PERL_ARGS_ASSERT_REGUNI;
12707 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
12711 - reginsert - insert an operator in front of already-emitted operand
12713 * Means relocating the operand.
12716 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
12719 register regnode *src;
12720 register regnode *dst;
12721 register regnode *place;
12722 const int offset = regarglen[(U8)op];
12723 const int size = NODE_STEP_REGNODE + offset;
12724 GET_RE_DEBUG_FLAGS_DECL;
12726 PERL_ARGS_ASSERT_REGINSERT;
12727 PERL_UNUSED_ARG(depth);
12728 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
12729 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
12738 if (RExC_open_parens) {
12740 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
12741 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
12742 if ( RExC_open_parens[paren] >= opnd ) {
12743 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
12744 RExC_open_parens[paren] += size;
12746 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
12748 if ( RExC_close_parens[paren] >= opnd ) {
12749 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
12750 RExC_close_parens[paren] += size;
12752 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
12757 while (src > opnd) {
12758 StructCopy(--src, --dst, regnode);
12759 #ifdef RE_TRACK_PATTERN_OFFSETS
12760 if (RExC_offsets) { /* MJD 20010112 */
12761 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
12765 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
12766 ? "Overwriting end of array!\n" : "OK",
12767 (UV)(src - RExC_emit_start),
12768 (UV)(dst - RExC_emit_start),
12769 (UV)RExC_offsets[0]));
12770 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
12771 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
12777 place = opnd; /* Op node, where operand used to be. */
12778 #ifdef RE_TRACK_PATTERN_OFFSETS
12779 if (RExC_offsets) { /* MJD */
12780 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
12784 (UV)(place - RExC_emit_start) > RExC_offsets[0]
12785 ? "Overwriting end of array!\n" : "OK",
12786 (UV)(place - RExC_emit_start),
12787 (UV)(RExC_parse - RExC_start),
12788 (UV)RExC_offsets[0]));
12789 Set_Node_Offset(place, RExC_parse);
12790 Set_Node_Length(place, 1);
12793 src = NEXTOPER(place);
12794 FILL_ADVANCE_NODE(place, op);
12795 REH_CALL_COMP_NODE_HOOK(pRExC_state->rx, (place) - 1);
12796 Zero(src, offset, regnode);
12800 - regtail - set the next-pointer at the end of a node chain of p to val.
12801 - SEE ALSO: regtail_study
12803 /* TODO: All three parms should be const */
12805 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
12808 register regnode *scan;
12809 GET_RE_DEBUG_FLAGS_DECL;
12811 PERL_ARGS_ASSERT_REGTAIL;
12813 PERL_UNUSED_ARG(depth);
12819 /* Find last node. */
12822 regnode * const temp = regnext(scan);
12824 SV * const mysv=sv_newmortal();
12825 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
12826 regprop(RExC_rx, mysv, scan);
12827 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
12828 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
12829 (temp == NULL ? "->" : ""),
12830 (temp == NULL ? PL_reg_name[OP(val)] : "")
12838 if (reg_off_by_arg[OP(scan)]) {
12839 ARG_SET(scan, val - scan);
12842 NEXT_OFF(scan) = val - scan;
12848 - regtail_study - set the next-pointer at the end of a node chain of p to val.
12849 - Look for optimizable sequences at the same time.
12850 - currently only looks for EXACT chains.
12852 This is experimental code. The idea is to use this routine to perform
12853 in place optimizations on branches and groups as they are constructed,
12854 with the long term intention of removing optimization from study_chunk so
12855 that it is purely analytical.
12857 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
12858 to control which is which.
12861 /* TODO: All four parms should be const */
12864 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
12867 register regnode *scan;
12869 #ifdef EXPERIMENTAL_INPLACESCAN
12872 GET_RE_DEBUG_FLAGS_DECL;
12874 PERL_ARGS_ASSERT_REGTAIL_STUDY;
12880 /* Find last node. */
12884 regnode * const temp = regnext(scan);
12885 #ifdef EXPERIMENTAL_INPLACESCAN
12886 if (PL_regkind[OP(scan)] == EXACT) {
12887 bool has_exactf_sharp_s; /* Unexamined in this routine */
12888 if (join_exact(pRExC_state,scan,&min, &has_exactf_sharp_s, 1,val,depth+1))
12893 switch (OP(scan)) {
12899 case EXACTFU_TRICKYFOLD:
12901 if( exact == PSEUDO )
12903 else if ( exact != OP(scan) )
12912 SV * const mysv=sv_newmortal();
12913 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
12914 regprop(RExC_rx, mysv, scan);
12915 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
12916 SvPV_nolen_const(mysv),
12917 REG_NODE_NUM(scan),
12918 PL_reg_name[exact]);
12925 SV * const mysv_val=sv_newmortal();
12926 DEBUG_PARSE_MSG("");
12927 regprop(RExC_rx, mysv_val, val);
12928 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
12929 SvPV_nolen_const(mysv_val),
12930 (IV)REG_NODE_NUM(val),
12934 if (reg_off_by_arg[OP(scan)]) {
12935 ARG_SET(scan, val - scan);
12938 NEXT_OFF(scan) = val - scan;
12946 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
12950 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
12956 for (bit=0; bit<32; bit++) {
12957 if (flags & (1<<bit)) {
12958 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
12961 if (!set++ && lead)
12962 PerlIO_printf(Perl_debug_log, "%s",lead);
12963 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
12966 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
12967 if (!set++ && lead) {
12968 PerlIO_printf(Perl_debug_log, "%s",lead);
12971 case REGEX_UNICODE_CHARSET:
12972 PerlIO_printf(Perl_debug_log, "UNICODE");
12974 case REGEX_LOCALE_CHARSET:
12975 PerlIO_printf(Perl_debug_log, "LOCALE");
12977 case REGEX_ASCII_RESTRICTED_CHARSET:
12978 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
12980 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
12981 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
12984 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
12990 PerlIO_printf(Perl_debug_log, "\n");
12992 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
12998 Perl_regdump(pTHX_ const regexp *r)
13002 SV * const sv = sv_newmortal();
13003 SV *dsv= sv_newmortal();
13004 RXi_GET_DECL(r,ri);
13005 GET_RE_DEBUG_FLAGS_DECL;
13007 PERL_ARGS_ASSERT_REGDUMP;
13009 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
13011 /* Header fields of interest. */
13012 if (r->anchored_substr) {
13013 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
13014 RE_SV_DUMPLEN(r->anchored_substr), 30);
13015 PerlIO_printf(Perl_debug_log,
13016 "anchored %s%s at %"IVdf" ",
13017 s, RE_SV_TAIL(r->anchored_substr),
13018 (IV)r->anchored_offset);
13019 } else if (r->anchored_utf8) {
13020 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
13021 RE_SV_DUMPLEN(r->anchored_utf8), 30);
13022 PerlIO_printf(Perl_debug_log,
13023 "anchored utf8 %s%s at %"IVdf" ",
13024 s, RE_SV_TAIL(r->anchored_utf8),
13025 (IV)r->anchored_offset);
13027 if (r->float_substr) {
13028 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
13029 RE_SV_DUMPLEN(r->float_substr), 30);
13030 PerlIO_printf(Perl_debug_log,
13031 "floating %s%s at %"IVdf"..%"UVuf" ",
13032 s, RE_SV_TAIL(r->float_substr),
13033 (IV)r->float_min_offset, (UV)r->float_max_offset);
13034 } else if (r->float_utf8) {
13035 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
13036 RE_SV_DUMPLEN(r->float_utf8), 30);
13037 PerlIO_printf(Perl_debug_log,
13038 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
13039 s, RE_SV_TAIL(r->float_utf8),
13040 (IV)r->float_min_offset, (UV)r->float_max_offset);
13042 if (r->check_substr || r->check_utf8)
13043 PerlIO_printf(Perl_debug_log,
13045 (r->check_substr == r->float_substr
13046 && r->check_utf8 == r->float_utf8
13047 ? "(checking floating" : "(checking anchored"));
13048 if (r->extflags & RXf_NOSCAN)
13049 PerlIO_printf(Perl_debug_log, " noscan");
13050 if (r->extflags & RXf_CHECK_ALL)
13051 PerlIO_printf(Perl_debug_log, " isall");
13052 if (r->check_substr || r->check_utf8)
13053 PerlIO_printf(Perl_debug_log, ") ");
13055 if (ri->regstclass) {
13056 regprop(r, sv, ri->regstclass);
13057 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
13059 if (r->extflags & RXf_ANCH) {
13060 PerlIO_printf(Perl_debug_log, "anchored");
13061 if (r->extflags & RXf_ANCH_BOL)
13062 PerlIO_printf(Perl_debug_log, "(BOL)");
13063 if (r->extflags & RXf_ANCH_MBOL)
13064 PerlIO_printf(Perl_debug_log, "(MBOL)");
13065 if (r->extflags & RXf_ANCH_SBOL)
13066 PerlIO_printf(Perl_debug_log, "(SBOL)");
13067 if (r->extflags & RXf_ANCH_GPOS)
13068 PerlIO_printf(Perl_debug_log, "(GPOS)");
13069 PerlIO_putc(Perl_debug_log, ' ');
13071 if (r->extflags & RXf_GPOS_SEEN)
13072 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
13073 if (r->intflags & PREGf_SKIP)
13074 PerlIO_printf(Perl_debug_log, "plus ");
13075 if (r->intflags & PREGf_IMPLICIT)
13076 PerlIO_printf(Perl_debug_log, "implicit ");
13077 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
13078 if (r->extflags & RXf_EVAL_SEEN)
13079 PerlIO_printf(Perl_debug_log, "with eval ");
13080 PerlIO_printf(Perl_debug_log, "\n");
13081 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
13083 PERL_ARGS_ASSERT_REGDUMP;
13084 PERL_UNUSED_CONTEXT;
13085 PERL_UNUSED_ARG(r);
13086 #endif /* DEBUGGING */
13090 - regprop - printable representation of opcode
13092 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
13095 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
13096 if (flags & ANYOF_INVERT) \
13097 /*make sure the invert info is in each */ \
13098 sv_catpvs(sv, "^"); \
13104 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
13109 RXi_GET_DECL(prog,progi);
13110 GET_RE_DEBUG_FLAGS_DECL;
13112 PERL_ARGS_ASSERT_REGPROP;
13116 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
13117 /* It would be nice to FAIL() here, but this may be called from
13118 regexec.c, and it would be hard to supply pRExC_state. */
13119 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
13120 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
13122 k = PL_regkind[OP(o)];
13125 sv_catpvs(sv, " ");
13126 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
13127 * is a crude hack but it may be the best for now since
13128 * we have no flag "this EXACTish node was UTF-8"
13130 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
13131 PERL_PV_ESCAPE_UNI_DETECT |
13132 PERL_PV_ESCAPE_NONASCII |
13133 PERL_PV_PRETTY_ELLIPSES |
13134 PERL_PV_PRETTY_LTGT |
13135 PERL_PV_PRETTY_NOCLEAR
13137 } else if (k == TRIE) {
13138 /* print the details of the trie in dumpuntil instead, as
13139 * progi->data isn't available here */
13140 const char op = OP(o);
13141 const U32 n = ARG(o);
13142 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
13143 (reg_ac_data *)progi->data->data[n] :
13145 const reg_trie_data * const trie
13146 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
13148 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
13149 DEBUG_TRIE_COMPILE_r(
13150 Perl_sv_catpvf(aTHX_ sv,
13151 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
13152 (UV)trie->startstate,
13153 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
13154 (UV)trie->wordcount,
13157 (UV)TRIE_CHARCOUNT(trie),
13158 (UV)trie->uniquecharcount
13161 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
13163 int rangestart = -1;
13164 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
13165 sv_catpvs(sv, "[");
13166 for (i = 0; i <= 256; i++) {
13167 if (i < 256 && BITMAP_TEST(bitmap,i)) {
13168 if (rangestart == -1)
13170 } else if (rangestart != -1) {
13171 if (i <= rangestart + 3)
13172 for (; rangestart < i; rangestart++)
13173 put_byte(sv, rangestart);
13175 put_byte(sv, rangestart);
13176 sv_catpvs(sv, "-");
13177 put_byte(sv, i - 1);
13182 sv_catpvs(sv, "]");
13185 } else if (k == CURLY) {
13186 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
13187 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
13188 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
13190 else if (k == WHILEM && o->flags) /* Ordinal/of */
13191 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
13192 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
13193 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
13194 if ( RXp_PAREN_NAMES(prog) ) {
13195 if ( k != REF || (OP(o) < NREF)) {
13196 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
13197 SV **name= av_fetch(list, ARG(o), 0 );
13199 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
13202 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
13203 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
13204 I32 *nums=(I32*)SvPVX(sv_dat);
13205 SV **name= av_fetch(list, nums[0], 0 );
13208 for ( n=0; n<SvIVX(sv_dat); n++ ) {
13209 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
13210 (n ? "," : ""), (IV)nums[n]);
13212 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
13216 } else if (k == GOSUB)
13217 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
13218 else if (k == VERB) {
13220 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
13221 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
13222 } else if (k == LOGICAL)
13223 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
13224 else if (k == ANYOF) {
13225 int i, rangestart = -1;
13226 const U8 flags = ANYOF_FLAGS(o);
13229 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
13230 static const char * const anyofs[] = {
13263 if (flags & ANYOF_LOCALE)
13264 sv_catpvs(sv, "{loc}");
13265 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
13266 sv_catpvs(sv, "{i}");
13267 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
13268 if (flags & ANYOF_INVERT)
13269 sv_catpvs(sv, "^");
13271 /* output what the standard cp 0-255 bitmap matches */
13272 for (i = 0; i <= 256; i++) {
13273 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
13274 if (rangestart == -1)
13276 } else if (rangestart != -1) {
13277 if (i <= rangestart + 3)
13278 for (; rangestart < i; rangestart++)
13279 put_byte(sv, rangestart);
13281 put_byte(sv, rangestart);
13282 sv_catpvs(sv, "-");
13283 put_byte(sv, i - 1);
13290 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
13291 /* output any special charclass tests (used entirely under use locale) */
13292 if (ANYOF_CLASS_TEST_ANY_SET(o))
13293 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
13294 if (ANYOF_CLASS_TEST(o,i)) {
13295 sv_catpv(sv, anyofs[i]);
13299 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
13301 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
13302 sv_catpvs(sv, "{non-utf8-latin1-all}");
13305 /* output information about the unicode matching */
13306 if (flags & ANYOF_UNICODE_ALL)
13307 sv_catpvs(sv, "{unicode_all}");
13308 else if (ANYOF_NONBITMAP(o))
13309 sv_catpvs(sv, "{unicode}");
13310 if (flags & ANYOF_NONBITMAP_NON_UTF8)
13311 sv_catpvs(sv, "{outside bitmap}");
13313 if (ANYOF_NONBITMAP(o)) {
13314 SV *lv; /* Set if there is something outside the bit map */
13315 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
13316 bool byte_output = FALSE; /* If something in the bitmap has been
13319 if (lv && lv != &PL_sv_undef) {
13321 U8 s[UTF8_MAXBYTES_CASE+1];
13323 for (i = 0; i <= 256; i++) { /* Look at chars in bitmap */
13324 uvchr_to_utf8(s, i);
13327 && ! ANYOF_BITMAP_TEST(o, i) /* Don't duplicate
13331 && swash_fetch(sw, s, TRUE))
13333 if (rangestart == -1)
13335 } else if (rangestart != -1) {
13336 byte_output = TRUE;
13337 if (i <= rangestart + 3)
13338 for (; rangestart < i; rangestart++) {
13339 put_byte(sv, rangestart);
13342 put_byte(sv, rangestart);
13343 sv_catpvs(sv, "-");
13352 char *s = savesvpv(lv);
13353 char * const origs = s;
13355 while (*s && *s != '\n')
13359 const char * const t = ++s;
13362 sv_catpvs(sv, " ");
13368 /* Truncate very long output */
13369 if (s - origs > 256) {
13370 Perl_sv_catpvf(aTHX_ sv,
13372 (int) (s - origs - 1),
13378 else if (*s == '\t') {
13397 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
13399 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
13400 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
13402 PERL_UNUSED_CONTEXT;
13403 PERL_UNUSED_ARG(sv);
13404 PERL_UNUSED_ARG(o);
13405 PERL_UNUSED_ARG(prog);
13406 #endif /* DEBUGGING */
13410 Perl_re_intuit_string(pTHX_ REGEXP * const r)
13411 { /* Assume that RE_INTUIT is set */
13413 struct regexp *const prog = (struct regexp *)SvANY(r);
13414 GET_RE_DEBUG_FLAGS_DECL;
13416 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
13417 PERL_UNUSED_CONTEXT;
13421 const char * const s = SvPV_nolen_const(prog->check_substr
13422 ? prog->check_substr : prog->check_utf8);
13424 if (!PL_colorset) reginitcolors();
13425 PerlIO_printf(Perl_debug_log,
13426 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
13428 prog->check_substr ? "" : "utf8 ",
13429 PL_colors[5],PL_colors[0],
13432 (strlen(s) > 60 ? "..." : ""));
13435 return prog->check_substr ? prog->check_substr : prog->check_utf8;
13441 handles refcounting and freeing the perl core regexp structure. When
13442 it is necessary to actually free the structure the first thing it
13443 does is call the 'free' method of the regexp_engine associated to
13444 the regexp, allowing the handling of the void *pprivate; member
13445 first. (This routine is not overridable by extensions, which is why
13446 the extensions free is called first.)
13448 See regdupe and regdupe_internal if you change anything here.
13450 #ifndef PERL_IN_XSUB_RE
13452 Perl_pregfree(pTHX_ REGEXP *r)
13458 Perl_pregfree2(pTHX_ REGEXP *rx)
13461 struct regexp *const r = (struct regexp *)SvANY(rx);
13462 GET_RE_DEBUG_FLAGS_DECL;
13464 PERL_ARGS_ASSERT_PREGFREE2;
13466 if (r->mother_re) {
13467 ReREFCNT_dec(r->mother_re);
13469 CALLREGFREE_PVT(rx); /* free the private data */
13470 SvREFCNT_dec(RXp_PAREN_NAMES(r));
13473 SvREFCNT_dec(r->anchored_substr);
13474 SvREFCNT_dec(r->anchored_utf8);
13475 SvREFCNT_dec(r->float_substr);
13476 SvREFCNT_dec(r->float_utf8);
13477 Safefree(r->substrs);
13479 RX_MATCH_COPY_FREE(rx);
13480 #ifdef PERL_OLD_COPY_ON_WRITE
13481 SvREFCNT_dec(r->saved_copy);
13484 SvREFCNT_dec(r->qr_anoncv);
13489 This is a hacky workaround to the structural issue of match results
13490 being stored in the regexp structure which is in turn stored in
13491 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
13492 could be PL_curpm in multiple contexts, and could require multiple
13493 result sets being associated with the pattern simultaneously, such
13494 as when doing a recursive match with (??{$qr})
13496 The solution is to make a lightweight copy of the regexp structure
13497 when a qr// is returned from the code executed by (??{$qr}) this
13498 lightweight copy doesn't actually own any of its data except for
13499 the starp/end and the actual regexp structure itself.
13505 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
13507 struct regexp *ret;
13508 struct regexp *const r = (struct regexp *)SvANY(rx);
13509 register const I32 npar = r->nparens+1;
13511 PERL_ARGS_ASSERT_REG_TEMP_COPY;
13514 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
13515 ret = (struct regexp *)SvANY(ret_x);
13517 (void)ReREFCNT_inc(rx);
13518 /* We can take advantage of the existing "copied buffer" mechanism in SVs
13519 by pointing directly at the buffer, but flagging that the allocated
13520 space in the copy is zero. As we've just done a struct copy, it's now
13521 a case of zero-ing that, rather than copying the current length. */
13522 SvPV_set(ret_x, RX_WRAPPED(rx));
13523 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
13524 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
13525 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
13526 SvLEN_set(ret_x, 0);
13527 SvSTASH_set(ret_x, NULL);
13528 SvMAGIC_set(ret_x, NULL);
13529 Newx(ret->offs, npar, regexp_paren_pair);
13530 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
13532 Newx(ret->substrs, 1, struct reg_substr_data);
13533 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
13535 SvREFCNT_inc_void(ret->anchored_substr);
13536 SvREFCNT_inc_void(ret->anchored_utf8);
13537 SvREFCNT_inc_void(ret->float_substr);
13538 SvREFCNT_inc_void(ret->float_utf8);
13540 /* check_substr and check_utf8, if non-NULL, point to either their
13541 anchored or float namesakes, and don't hold a second reference. */
13543 RX_MATCH_COPIED_off(ret_x);
13544 #ifdef PERL_OLD_COPY_ON_WRITE
13545 ret->saved_copy = NULL;
13547 ret->mother_re = rx;
13548 SvREFCNT_inc_void(ret->qr_anoncv);
13554 /* regfree_internal()
13556 Free the private data in a regexp. This is overloadable by
13557 extensions. Perl takes care of the regexp structure in pregfree(),
13558 this covers the *pprivate pointer which technically perl doesn't
13559 know about, however of course we have to handle the
13560 regexp_internal structure when no extension is in use.
13562 Note this is called before freeing anything in the regexp
13567 Perl_regfree_internal(pTHX_ REGEXP * const rx)
13570 struct regexp *const r = (struct regexp *)SvANY(rx);
13571 RXi_GET_DECL(r,ri);
13572 GET_RE_DEBUG_FLAGS_DECL;
13574 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
13580 SV *dsv= sv_newmortal();
13581 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
13582 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
13583 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
13584 PL_colors[4],PL_colors[5],s);
13587 #ifdef RE_TRACK_PATTERN_OFFSETS
13589 Safefree(ri->u.offsets); /* 20010421 MJD */
13591 if (ri->code_blocks) {
13593 for (n = 0; n < ri->num_code_blocks; n++)
13594 SvREFCNT_dec(ri->code_blocks[n].src_regex);
13595 Safefree(ri->code_blocks);
13599 int n = ri->data->count;
13602 /* If you add a ->what type here, update the comment in regcomp.h */
13603 switch (ri->data->what[n]) {
13609 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
13612 Safefree(ri->data->data[n]);
13618 { /* Aho Corasick add-on structure for a trie node.
13619 Used in stclass optimization only */
13621 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
13623 refcount = --aho->refcount;
13626 PerlMemShared_free(aho->states);
13627 PerlMemShared_free(aho->fail);
13628 /* do this last!!!! */
13629 PerlMemShared_free(ri->data->data[n]);
13630 PerlMemShared_free(ri->regstclass);
13636 /* trie structure. */
13638 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
13640 refcount = --trie->refcount;
13643 PerlMemShared_free(trie->charmap);
13644 PerlMemShared_free(trie->states);
13645 PerlMemShared_free(trie->trans);
13647 PerlMemShared_free(trie->bitmap);
13649 PerlMemShared_free(trie->jump);
13650 PerlMemShared_free(trie->wordinfo);
13651 /* do this last!!!! */
13652 PerlMemShared_free(ri->data->data[n]);
13657 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
13660 Safefree(ri->data->what);
13661 Safefree(ri->data);
13667 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
13668 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
13669 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
13672 re_dup - duplicate a regexp.
13674 This routine is expected to clone a given regexp structure. It is only
13675 compiled under USE_ITHREADS.
13677 After all of the core data stored in struct regexp is duplicated
13678 the regexp_engine.dupe method is used to copy any private data
13679 stored in the *pprivate pointer. This allows extensions to handle
13680 any duplication it needs to do.
13682 See pregfree() and regfree_internal() if you change anything here.
13684 #if defined(USE_ITHREADS)
13685 #ifndef PERL_IN_XSUB_RE
13687 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
13691 const struct regexp *r = (const struct regexp *)SvANY(sstr);
13692 struct regexp *ret = (struct regexp *)SvANY(dstr);
13694 PERL_ARGS_ASSERT_RE_DUP_GUTS;
13696 npar = r->nparens+1;
13697 Newx(ret->offs, npar, regexp_paren_pair);
13698 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
13700 /* no need to copy these */
13701 Newx(ret->swap, npar, regexp_paren_pair);
13704 if (ret->substrs) {
13705 /* Do it this way to avoid reading from *r after the StructCopy().
13706 That way, if any of the sv_dup_inc()s dislodge *r from the L1
13707 cache, it doesn't matter. */
13708 const bool anchored = r->check_substr
13709 ? r->check_substr == r->anchored_substr
13710 : r->check_utf8 == r->anchored_utf8;
13711 Newx(ret->substrs, 1, struct reg_substr_data);
13712 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
13714 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
13715 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
13716 ret->float_substr = sv_dup_inc(ret->float_substr, param);
13717 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
13719 /* check_substr and check_utf8, if non-NULL, point to either their
13720 anchored or float namesakes, and don't hold a second reference. */
13722 if (ret->check_substr) {
13724 assert(r->check_utf8 == r->anchored_utf8);
13725 ret->check_substr = ret->anchored_substr;
13726 ret->check_utf8 = ret->anchored_utf8;
13728 assert(r->check_substr == r->float_substr);
13729 assert(r->check_utf8 == r->float_utf8);
13730 ret->check_substr = ret->float_substr;
13731 ret->check_utf8 = ret->float_utf8;
13733 } else if (ret->check_utf8) {
13735 ret->check_utf8 = ret->anchored_utf8;
13737 ret->check_utf8 = ret->float_utf8;
13742 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
13743 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
13746 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
13748 if (RX_MATCH_COPIED(dstr))
13749 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
13751 ret->subbeg = NULL;
13752 #ifdef PERL_OLD_COPY_ON_WRITE
13753 ret->saved_copy = NULL;
13756 if (ret->mother_re) {
13757 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
13758 /* Our storage points directly to our mother regexp, but that's
13759 1: a buffer in a different thread
13760 2: something we no longer hold a reference on
13761 so we need to copy it locally. */
13762 /* Note we need to use SvCUR(), rather than
13763 SvLEN(), on our mother_re, because it, in
13764 turn, may well be pointing to its own mother_re. */
13765 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
13766 SvCUR(ret->mother_re)+1));
13767 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
13769 ret->mother_re = NULL;
13773 #endif /* PERL_IN_XSUB_RE */
13778 This is the internal complement to regdupe() which is used to copy
13779 the structure pointed to by the *pprivate pointer in the regexp.
13780 This is the core version of the extension overridable cloning hook.
13781 The regexp structure being duplicated will be copied by perl prior
13782 to this and will be provided as the regexp *r argument, however
13783 with the /old/ structures pprivate pointer value. Thus this routine
13784 may override any copying normally done by perl.
13786 It returns a pointer to the new regexp_internal structure.
13790 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
13793 struct regexp *const r = (struct regexp *)SvANY(rx);
13794 regexp_internal *reti;
13796 RXi_GET_DECL(r,ri);
13798 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
13802 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
13803 Copy(ri->program, reti->program, len+1, regnode);
13805 reti->num_code_blocks = ri->num_code_blocks;
13806 if (ri->code_blocks) {
13808 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
13809 struct reg_code_block);
13810 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
13811 struct reg_code_block);
13812 for (n = 0; n < ri->num_code_blocks; n++)
13813 reti->code_blocks[n].src_regex = (REGEXP*)
13814 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
13817 reti->code_blocks = NULL;
13819 reti->regstclass = NULL;
13822 struct reg_data *d;
13823 const int count = ri->data->count;
13826 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
13827 char, struct reg_data);
13828 Newx(d->what, count, U8);
13831 for (i = 0; i < count; i++) {
13832 d->what[i] = ri->data->what[i];
13833 switch (d->what[i]) {
13834 /* see also regcomp.h and regfree_internal() */
13835 case 'a': /* actually an AV, but the dup function is identical. */
13839 case 'u': /* actually an HV, but the dup function is identical. */
13840 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
13843 /* This is cheating. */
13844 Newx(d->data[i], 1, struct regnode_charclass_class);
13845 StructCopy(ri->data->data[i], d->data[i],
13846 struct regnode_charclass_class);
13847 reti->regstclass = (regnode*)d->data[i];
13850 /* Trie stclasses are readonly and can thus be shared
13851 * without duplication. We free the stclass in pregfree
13852 * when the corresponding reg_ac_data struct is freed.
13854 reti->regstclass= ri->regstclass;
13858 ((reg_trie_data*)ri->data->data[i])->refcount++;
13863 d->data[i] = ri->data->data[i];
13866 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
13875 reti->name_list_idx = ri->name_list_idx;
13877 #ifdef RE_TRACK_PATTERN_OFFSETS
13878 if (ri->u.offsets) {
13879 Newx(reti->u.offsets, 2*len+1, U32);
13880 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
13883 SetProgLen(reti,len);
13886 return (void*)reti;
13889 #endif /* USE_ITHREADS */
13891 #ifndef PERL_IN_XSUB_RE
13894 - regnext - dig the "next" pointer out of a node
13897 Perl_regnext(pTHX_ register regnode *p)
13900 register I32 offset;
13905 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
13906 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
13909 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
13918 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
13921 STRLEN l1 = strlen(pat1);
13922 STRLEN l2 = strlen(pat2);
13925 const char *message;
13927 PERL_ARGS_ASSERT_RE_CROAK2;
13933 Copy(pat1, buf, l1 , char);
13934 Copy(pat2, buf + l1, l2 , char);
13935 buf[l1 + l2] = '\n';
13936 buf[l1 + l2 + 1] = '\0';
13938 /* ANSI variant takes additional second argument */
13939 va_start(args, pat2);
13943 msv = vmess(buf, &args);
13945 message = SvPV_const(msv,l1);
13948 Copy(message, buf, l1 , char);
13949 buf[l1-1] = '\0'; /* Overwrite \n */
13950 Perl_croak(aTHX_ "%s", buf);
13953 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
13955 #ifndef PERL_IN_XSUB_RE
13957 Perl_save_re_context(pTHX)
13961 struct re_save_state *state;
13963 SAVEVPTR(PL_curcop);
13964 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
13966 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
13967 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
13968 SSPUSHUV(SAVEt_RE_STATE);
13970 Copy(&PL_reg_state, state, 1, struct re_save_state);
13972 PL_reg_oldsaved = NULL;
13973 PL_reg_oldsavedlen = 0;
13974 PL_reg_maxiter = 0;
13975 PL_reg_leftiter = 0;
13976 PL_reg_poscache = NULL;
13977 PL_reg_poscache_size = 0;
13978 #ifdef PERL_OLD_COPY_ON_WRITE
13982 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
13984 const REGEXP * const rx = PM_GETRE(PL_curpm);
13987 for (i = 1; i <= RX_NPARENS(rx); i++) {
13988 char digits[TYPE_CHARS(long)];
13989 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
13990 GV *const *const gvp
13991 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
13994 GV * const gv = *gvp;
13995 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
14005 clear_re(pTHX_ void *r)
14008 ReREFCNT_dec((REGEXP *)r);
14014 S_put_byte(pTHX_ SV *sv, int c)
14016 PERL_ARGS_ASSERT_PUT_BYTE;
14018 /* Our definition of isPRINT() ignores locales, so only bytes that are
14019 not part of UTF-8 are considered printable. I assume that the same
14020 holds for UTF-EBCDIC.
14021 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
14022 which Wikipedia says:
14024 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
14025 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
14026 identical, to the ASCII delete (DEL) or rubout control character.
14027 ) So the old condition can be simplified to !isPRINT(c) */
14030 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
14033 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
14037 const char string = c;
14038 if (c == '-' || c == ']' || c == '\\' || c == '^')
14039 sv_catpvs(sv, "\\");
14040 sv_catpvn(sv, &string, 1);
14045 #define CLEAR_OPTSTART \
14046 if (optstart) STMT_START { \
14047 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
14051 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
14053 STATIC const regnode *
14054 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
14055 const regnode *last, const regnode *plast,
14056 SV* sv, I32 indent, U32 depth)
14059 register U8 op = PSEUDO; /* Arbitrary non-END op. */
14060 register const regnode *next;
14061 const regnode *optstart= NULL;
14063 RXi_GET_DECL(r,ri);
14064 GET_RE_DEBUG_FLAGS_DECL;
14066 PERL_ARGS_ASSERT_DUMPUNTIL;
14068 #ifdef DEBUG_DUMPUNTIL
14069 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
14070 last ? last-start : 0,plast ? plast-start : 0);
14073 if (plast && plast < last)
14076 while (PL_regkind[op] != END && (!last || node < last)) {
14077 /* While that wasn't END last time... */
14080 if (op == CLOSE || op == WHILEM)
14082 next = regnext((regnode *)node);
14085 if (OP(node) == OPTIMIZED) {
14086 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
14093 regprop(r, sv, node);
14094 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
14095 (int)(2*indent + 1), "", SvPVX_const(sv));
14097 if (OP(node) != OPTIMIZED) {
14098 if (next == NULL) /* Next ptr. */
14099 PerlIO_printf(Perl_debug_log, " (0)");
14100 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
14101 PerlIO_printf(Perl_debug_log, " (FAIL)");
14103 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
14104 (void)PerlIO_putc(Perl_debug_log, '\n');
14108 if (PL_regkind[(U8)op] == BRANCHJ) {
14111 register const regnode *nnode = (OP(next) == LONGJMP
14112 ? regnext((regnode *)next)
14114 if (last && nnode > last)
14116 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
14119 else if (PL_regkind[(U8)op] == BRANCH) {
14121 DUMPUNTIL(NEXTOPER(node), next);
14123 else if ( PL_regkind[(U8)op] == TRIE ) {
14124 const regnode *this_trie = node;
14125 const char op = OP(node);
14126 const U32 n = ARG(node);
14127 const reg_ac_data * const ac = op>=AHOCORASICK ?
14128 (reg_ac_data *)ri->data->data[n] :
14130 const reg_trie_data * const trie =
14131 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
14133 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
14135 const regnode *nextbranch= NULL;
14138 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
14139 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
14141 PerlIO_printf(Perl_debug_log, "%*s%s ",
14142 (int)(2*(indent+3)), "",
14143 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
14144 PL_colors[0], PL_colors[1],
14145 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
14146 PERL_PV_PRETTY_ELLIPSES |
14147 PERL_PV_PRETTY_LTGT
14152 U16 dist= trie->jump[word_idx+1];
14153 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
14154 (UV)((dist ? this_trie + dist : next) - start));
14157 nextbranch= this_trie + trie->jump[0];
14158 DUMPUNTIL(this_trie + dist, nextbranch);
14160 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
14161 nextbranch= regnext((regnode *)nextbranch);
14163 PerlIO_printf(Perl_debug_log, "\n");
14166 if (last && next > last)
14171 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
14172 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
14173 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
14175 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
14177 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
14179 else if ( op == PLUS || op == STAR) {
14180 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
14182 else if (PL_regkind[(U8)op] == ANYOF) {
14183 /* arglen 1 + class block */
14184 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
14185 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
14186 node = NEXTOPER(node);
14188 else if (PL_regkind[(U8)op] == EXACT) {
14189 /* Literal string, where present. */
14190 node += NODE_SZ_STR(node) - 1;
14191 node = NEXTOPER(node);
14194 node = NEXTOPER(node);
14195 node += regarglen[(U8)op];
14197 if (op == CURLYX || op == OPEN)
14201 #ifdef DEBUG_DUMPUNTIL
14202 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
14207 #endif /* DEBUGGING */
14211 * c-indentation-style: bsd
14212 * c-basic-offset: 4
14213 * indent-tabs-mode: nil
14216 * ex: set ts=8 sts=4 sw=4 et: