5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
84 EXTERN_C const struct regexp_engine my_reg_engine;
89 #include "dquote_static.c"
90 #include "inline_invlist.c"
91 #include "unicode_constants.h"
93 #define HAS_NONLATIN1_FOLD_CLOSURE(i) \
94 _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
95 #define HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(i) \
96 _HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)
97 #define IS_NON_FINAL_FOLD(c) _IS_NON_FINAL_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
98 #define IS_IN_SOME_FOLD_L1(c) _IS_IN_SOME_FOLD_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
101 #define STATIC static
105 #define MIN(a,b) ((a) < (b) ? (a) : (b))
108 /* this is a chain of data about sub patterns we are processing that
109 need to be handled separately/specially in study_chunk. Its so
110 we can simulate recursion without losing state. */
112 typedef struct scan_frame {
113 regnode *last_regnode; /* last node to process in this frame */
114 regnode *next_regnode; /* next node to process when last is reached */
115 U32 prev_recursed_depth;
116 I32 stopparen; /* what stopparen do we use */
117 U32 is_top_frame; /* what flags do we use? */
119 struct scan_frame *this_prev_frame; /* this previous frame */
120 struct scan_frame *prev_frame; /* previous frame */
121 struct scan_frame *next_frame; /* next frame */
124 /* Certain characters are output as a sequence with the first being a
126 #define isBACKSLASHED_PUNCT(c) \
127 ((c) == '-' || (c) == ']' || (c) == '\\' || (c) == '^')
130 struct RExC_state_t {
131 U32 flags; /* RXf_* are we folding, multilining? */
132 U32 pm_flags; /* PMf_* stuff from the calling PMOP */
133 char *precomp; /* uncompiled string. */
134 REGEXP *rx_sv; /* The SV that is the regexp. */
135 regexp *rx; /* perl core regexp structure */
136 regexp_internal *rxi; /* internal data for regexp object
138 char *start; /* Start of input for compile */
139 char *end; /* End of input for compile */
140 char *parse; /* Input-scan pointer. */
141 SSize_t whilem_seen; /* number of WHILEM in this expr */
142 regnode *emit_start; /* Start of emitted-code area */
143 regnode *emit_bound; /* First regnode outside of the
145 regnode *emit; /* Code-emit pointer; if = &emit_dummy,
146 implies compiling, so don't emit */
147 regnode_ssc emit_dummy; /* placeholder for emit to point to;
148 large enough for the largest
149 non-EXACTish node, so can use it as
151 I32 naughty; /* How bad is this pattern? */
152 I32 sawback; /* Did we see \1, ...? */
154 SSize_t size; /* Code size. */
155 I32 npar; /* Capture buffer count, (OPEN) plus
156 one. ("par" 0 is the whole
158 I32 nestroot; /* root parens we are in - used by
162 regnode **open_parens; /* pointers to open parens */
163 regnode **close_parens; /* pointers to close parens */
164 regnode *opend; /* END node in program */
165 I32 utf8; /* whether the pattern is utf8 or not */
166 I32 orig_utf8; /* whether the pattern was originally in utf8 */
167 /* XXX use this for future optimisation of case
168 * where pattern must be upgraded to utf8. */
169 I32 uni_semantics; /* If a d charset modifier should use unicode
170 rules, even if the pattern is not in
172 HV *paren_names; /* Paren names */
174 regnode **recurse; /* Recurse regops */
175 I32 recurse_count; /* Number of recurse regops */
176 U8 *study_chunk_recursed; /* bitmap of which subs we have moved
178 U32 study_chunk_recursed_bytes; /* bytes in bitmap */
182 I32 override_recoding;
184 I32 recode_x_to_native;
186 I32 in_multi_char_class;
187 struct reg_code_block *code_blocks; /* positions of literal (?{})
189 int num_code_blocks; /* size of code_blocks[] */
190 int code_index; /* next code_blocks[] slot */
191 SSize_t maxlen; /* mininum possible number of chars in string to match */
192 scan_frame *frame_head;
193 scan_frame *frame_last;
196 #ifdef ADD_TO_REGEXEC
197 char *starttry; /* -Dr: where regtry was called. */
198 #define RExC_starttry (pRExC_state->starttry)
200 SV *runtime_code_qr; /* qr with the runtime code blocks */
202 const char *lastparse;
204 AV *paren_name_list; /* idx -> name */
205 U32 study_chunk_recursed_count;
208 #define RExC_lastparse (pRExC_state->lastparse)
209 #define RExC_lastnum (pRExC_state->lastnum)
210 #define RExC_paren_name_list (pRExC_state->paren_name_list)
211 #define RExC_study_chunk_recursed_count (pRExC_state->study_chunk_recursed_count)
212 #define RExC_mysv (pRExC_state->mysv1)
213 #define RExC_mysv1 (pRExC_state->mysv1)
214 #define RExC_mysv2 (pRExC_state->mysv2)
219 #define RExC_flags (pRExC_state->flags)
220 #define RExC_pm_flags (pRExC_state->pm_flags)
221 #define RExC_precomp (pRExC_state->precomp)
222 #define RExC_rx_sv (pRExC_state->rx_sv)
223 #define RExC_rx (pRExC_state->rx)
224 #define RExC_rxi (pRExC_state->rxi)
225 #define RExC_start (pRExC_state->start)
226 #define RExC_end (pRExC_state->end)
227 #define RExC_parse (pRExC_state->parse)
228 #define RExC_whilem_seen (pRExC_state->whilem_seen)
229 #ifdef RE_TRACK_PATTERN_OFFSETS
230 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the
233 #define RExC_emit (pRExC_state->emit)
234 #define RExC_emit_dummy (pRExC_state->emit_dummy)
235 #define RExC_emit_start (pRExC_state->emit_start)
236 #define RExC_emit_bound (pRExC_state->emit_bound)
237 #define RExC_sawback (pRExC_state->sawback)
238 #define RExC_seen (pRExC_state->seen)
239 #define RExC_size (pRExC_state->size)
240 #define RExC_maxlen (pRExC_state->maxlen)
241 #define RExC_npar (pRExC_state->npar)
242 #define RExC_nestroot (pRExC_state->nestroot)
243 #define RExC_extralen (pRExC_state->extralen)
244 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
245 #define RExC_utf8 (pRExC_state->utf8)
246 #define RExC_uni_semantics (pRExC_state->uni_semantics)
247 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
248 #define RExC_open_parens (pRExC_state->open_parens)
249 #define RExC_close_parens (pRExC_state->close_parens)
250 #define RExC_opend (pRExC_state->opend)
251 #define RExC_paren_names (pRExC_state->paren_names)
252 #define RExC_recurse (pRExC_state->recurse)
253 #define RExC_recurse_count (pRExC_state->recurse_count)
254 #define RExC_study_chunk_recursed (pRExC_state->study_chunk_recursed)
255 #define RExC_study_chunk_recursed_bytes \
256 (pRExC_state->study_chunk_recursed_bytes)
257 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
258 #define RExC_contains_locale (pRExC_state->contains_locale)
259 #define RExC_contains_i (pRExC_state->contains_i)
260 #define RExC_override_recoding (pRExC_state->override_recoding)
262 # define RExC_recode_x_to_native (pRExC_state->recode_x_to_native)
264 #define RExC_in_multi_char_class (pRExC_state->in_multi_char_class)
265 #define RExC_frame_head (pRExC_state->frame_head)
266 #define RExC_frame_last (pRExC_state->frame_last)
267 #define RExC_frame_count (pRExC_state->frame_count)
268 #define RExC_strict (pRExC_state->strict)
270 /* Heuristic check on the complexity of the pattern: if TOO_NAUGHTY, we set
271 * a flag to disable back-off on the fixed/floating substrings - if it's
272 * a high complexity pattern we assume the benefit of avoiding a full match
273 * is worth the cost of checking for the substrings even if they rarely help.
275 #define RExC_naughty (pRExC_state->naughty)
276 #define TOO_NAUGHTY (10)
277 #define MARK_NAUGHTY(add) \
278 if (RExC_naughty < TOO_NAUGHTY) \
279 RExC_naughty += (add)
280 #define MARK_NAUGHTY_EXP(exp, add) \
281 if (RExC_naughty < TOO_NAUGHTY) \
282 RExC_naughty += RExC_naughty / (exp) + (add)
284 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
285 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
286 ((*s) == '{' && regcurly(s)))
289 * Flags to be passed up and down.
291 #define WORST 0 /* Worst case. */
292 #define HASWIDTH 0x01 /* Known to match non-null strings. */
294 /* Simple enough to be STAR/PLUS operand; in an EXACTish node must be a single
295 * character. (There needs to be a case: in the switch statement in regexec.c
296 * for any node marked SIMPLE.) Note that this is not the same thing as
299 #define SPSTART 0x04 /* Starts with * or + */
300 #define POSTPONED 0x08 /* (?1),(?&name), (??{...}) or similar */
301 #define TRYAGAIN 0x10 /* Weeded out a declaration. */
302 #define RESTART_UTF8 0x20 /* Restart, need to calcuate sizes as UTF-8 */
304 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
306 /* whether trie related optimizations are enabled */
307 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
308 #define TRIE_STUDY_OPT
309 #define FULL_TRIE_STUDY
315 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
316 #define PBITVAL(paren) (1 << ((paren) & 7))
317 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
318 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
319 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
321 #define REQUIRE_UTF8 STMT_START { \
323 *flagp = RESTART_UTF8; \
328 /* This converts the named class defined in regcomp.h to its equivalent class
329 * number defined in handy.h. */
330 #define namedclass_to_classnum(class) ((int) ((class) / 2))
331 #define classnum_to_namedclass(classnum) ((classnum) * 2)
333 #define _invlist_union_complement_2nd(a, b, output) \
334 _invlist_union_maybe_complement_2nd(a, b, TRUE, output)
335 #define _invlist_intersection_complement_2nd(a, b, output) \
336 _invlist_intersection_maybe_complement_2nd(a, b, TRUE, output)
338 /* About scan_data_t.
340 During optimisation we recurse through the regexp program performing
341 various inplace (keyhole style) optimisations. In addition study_chunk
342 and scan_commit populate this data structure with information about
343 what strings MUST appear in the pattern. We look for the longest
344 string that must appear at a fixed location, and we look for the
345 longest string that may appear at a floating location. So for instance
350 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
351 strings (because they follow a .* construct). study_chunk will identify
352 both FOO and BAR as being the longest fixed and floating strings respectively.
354 The strings can be composites, for instance
358 will result in a composite fixed substring 'foo'.
360 For each string some basic information is maintained:
362 - offset or min_offset
363 This is the position the string must appear at, or not before.
364 It also implicitly (when combined with minlenp) tells us how many
365 characters must match before the string we are searching for.
366 Likewise when combined with minlenp and the length of the string it
367 tells us how many characters must appear after the string we have
371 Only used for floating strings. This is the rightmost point that
372 the string can appear at. If set to SSize_t_MAX it indicates that the
373 string can occur infinitely far to the right.
376 A pointer to the minimum number of characters of the pattern that the
377 string was found inside. This is important as in the case of positive
378 lookahead or positive lookbehind we can have multiple patterns
383 The minimum length of the pattern overall is 3, the minimum length
384 of the lookahead part is 3, but the minimum length of the part that
385 will actually match is 1. So 'FOO's minimum length is 3, but the
386 minimum length for the F is 1. This is important as the minimum length
387 is used to determine offsets in front of and behind the string being
388 looked for. Since strings can be composites this is the length of the
389 pattern at the time it was committed with a scan_commit. Note that
390 the length is calculated by study_chunk, so that the minimum lengths
391 are not known until the full pattern has been compiled, thus the
392 pointer to the value.
396 In the case of lookbehind the string being searched for can be
397 offset past the start point of the final matching string.
398 If this value was just blithely removed from the min_offset it would
399 invalidate some of the calculations for how many chars must match
400 before or after (as they are derived from min_offset and minlen and
401 the length of the string being searched for).
402 When the final pattern is compiled and the data is moved from the
403 scan_data_t structure into the regexp structure the information
404 about lookbehind is factored in, with the information that would
405 have been lost precalculated in the end_shift field for the
408 The fields pos_min and pos_delta are used to store the minimum offset
409 and the delta to the maximum offset at the current point in the pattern.
413 typedef struct scan_data_t {
414 /*I32 len_min; unused */
415 /*I32 len_delta; unused */
419 SSize_t last_end; /* min value, <0 unless valid. */
420 SSize_t last_start_min;
421 SSize_t last_start_max;
422 SV **longest; /* Either &l_fixed, or &l_float. */
423 SV *longest_fixed; /* longest fixed string found in pattern */
424 SSize_t offset_fixed; /* offset where it starts */
425 SSize_t *minlen_fixed; /* pointer to the minlen relevant to the string */
426 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
427 SV *longest_float; /* longest floating string found in pattern */
428 SSize_t offset_float_min; /* earliest point in string it can appear */
429 SSize_t offset_float_max; /* latest point in string it can appear */
430 SSize_t *minlen_float; /* pointer to the minlen relevant to the string */
431 SSize_t lookbehind_float; /* is the pos of the string modified by LB */
434 SSize_t *last_closep;
435 regnode_ssc *start_class;
439 * Forward declarations for pregcomp()'s friends.
442 static const scan_data_t zero_scan_data =
443 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
445 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
446 #define SF_BEFORE_SEOL 0x0001
447 #define SF_BEFORE_MEOL 0x0002
448 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
449 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
451 #define SF_FIX_SHIFT_EOL (+2)
452 #define SF_FL_SHIFT_EOL (+4)
454 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
455 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
457 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
458 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
459 #define SF_IS_INF 0x0040
460 #define SF_HAS_PAR 0x0080
461 #define SF_IN_PAR 0x0100
462 #define SF_HAS_EVAL 0x0200
463 #define SCF_DO_SUBSTR 0x0400
464 #define SCF_DO_STCLASS_AND 0x0800
465 #define SCF_DO_STCLASS_OR 0x1000
466 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
467 #define SCF_WHILEM_VISITED_POS 0x2000
469 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
470 #define SCF_SEEN_ACCEPT 0x8000
471 #define SCF_TRIE_DOING_RESTUDY 0x10000
472 #define SCF_IN_DEFINE 0x20000
477 #define UTF cBOOL(RExC_utf8)
479 /* The enums for all these are ordered so things work out correctly */
480 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
481 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) \
482 == REGEX_DEPENDS_CHARSET)
483 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
484 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) \
485 >= REGEX_UNICODE_CHARSET)
486 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
487 == REGEX_ASCII_RESTRICTED_CHARSET)
488 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) \
489 >= REGEX_ASCII_RESTRICTED_CHARSET)
490 #define ASCII_FOLD_RESTRICTED (get_regex_charset(RExC_flags) \
491 == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
493 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
495 /* For programs that want to be strictly Unicode compatible by dying if any
496 * attempt is made to match a non-Unicode code point against a Unicode
498 #define ALWAYS_WARN_SUPER ckDEAD(packWARN(WARN_NON_UNICODE))
500 #define OOB_NAMEDCLASS -1
502 /* There is no code point that is out-of-bounds, so this is problematic. But
503 * its only current use is to initialize a variable that is always set before
505 #define OOB_UNICODE 0xDEADBEEF
507 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
508 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
511 /* length of regex to show in messages that don't mark a position within */
512 #define RegexLengthToShowInErrorMessages 127
515 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
516 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
517 * op/pragma/warn/regcomp.
519 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
520 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
522 #define REPORT_LOCATION " in regex; marked by " MARKER1 \
523 " in m/%"UTF8f MARKER2 "%"UTF8f"/"
525 #define REPORT_LOCATION_ARGS(offset) \
526 UTF8fARG(UTF, offset, RExC_precomp), \
527 UTF8fARG(UTF, RExC_end - RExC_precomp - offset, RExC_precomp + offset)
529 /* Used to point after bad bytes for an error message, but avoid skipping
530 * past a nul byte. */
531 #define SKIP_IF_CHAR(s) (!*(s) ? 0 : UTF ? UTF8SKIP(s) : 1)
534 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
535 * arg. Show regex, up to a maximum length. If it's too long, chop and add
538 #define _FAIL(code) STMT_START { \
539 const char *ellipses = ""; \
540 IV len = RExC_end - RExC_precomp; \
543 SAVEFREESV(RExC_rx_sv); \
544 if (len > RegexLengthToShowInErrorMessages) { \
545 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
546 len = RegexLengthToShowInErrorMessages - 10; \
552 #define FAIL(msg) _FAIL( \
553 Perl_croak(aTHX_ "%s in regex m/%"UTF8f"%s/", \
554 msg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
556 #define FAIL2(msg,arg) _FAIL( \
557 Perl_croak(aTHX_ msg " in regex m/%"UTF8f"%s/", \
558 arg, UTF8fARG(UTF, len, RExC_precomp), ellipses))
561 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
563 #define Simple_vFAIL(m) STMT_START { \
565 (RExC_parse > RExC_end ? RExC_end : RExC_parse) - RExC_precomp; \
566 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
567 m, REPORT_LOCATION_ARGS(offset)); \
571 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
573 #define vFAIL(m) STMT_START { \
575 SAVEFREESV(RExC_rx_sv); \
580 * Like Simple_vFAIL(), but accepts two arguments.
582 #define Simple_vFAIL2(m,a1) STMT_START { \
583 const IV offset = RExC_parse - RExC_precomp; \
584 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
585 REPORT_LOCATION_ARGS(offset)); \
589 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
591 #define vFAIL2(m,a1) STMT_START { \
593 SAVEFREESV(RExC_rx_sv); \
594 Simple_vFAIL2(m, a1); \
599 * Like Simple_vFAIL(), but accepts three arguments.
601 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
602 const IV offset = RExC_parse - RExC_precomp; \
603 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, \
604 REPORT_LOCATION_ARGS(offset)); \
608 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
610 #define vFAIL3(m,a1,a2) STMT_START { \
612 SAVEFREESV(RExC_rx_sv); \
613 Simple_vFAIL3(m, a1, a2); \
617 * Like Simple_vFAIL(), but accepts four arguments.
619 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
620 const IV offset = RExC_parse - RExC_precomp; \
621 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, a2, a3, \
622 REPORT_LOCATION_ARGS(offset)); \
625 #define vFAIL4(m,a1,a2,a3) STMT_START { \
627 SAVEFREESV(RExC_rx_sv); \
628 Simple_vFAIL4(m, a1, a2, a3); \
631 /* A specialized version of vFAIL2 that works with UTF8f */
632 #define vFAIL2utf8f(m, a1) STMT_START { \
633 const IV offset = RExC_parse - RExC_precomp; \
635 SAVEFREESV(RExC_rx_sv); \
636 S_re_croak2(aTHX_ UTF, m, REPORT_LOCATION, a1, \
637 REPORT_LOCATION_ARGS(offset)); \
640 /* These have asserts in them because of [perl #122671] Many warnings in
641 * regcomp.c can occur twice. If they get output in pass1 and later in that
642 * pass, the pattern has to be converted to UTF-8 and the pass restarted, they
643 * would get output again. So they should be output in pass2, and these
644 * asserts make sure new warnings follow that paradigm. */
646 /* m is not necessarily a "literal string", in this macro */
647 #define reg_warn_non_literal_string(loc, m) STMT_START { \
648 const IV offset = loc - RExC_precomp; \
649 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), "%s" REPORT_LOCATION, \
650 m, REPORT_LOCATION_ARGS(offset)); \
653 #define ckWARNreg(loc,m) STMT_START { \
654 const IV offset = loc - RExC_precomp; \
655 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
656 REPORT_LOCATION_ARGS(offset)); \
659 #define vWARN(loc, m) STMT_START { \
660 const IV offset = loc - RExC_precomp; \
661 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
662 REPORT_LOCATION_ARGS(offset)); \
665 #define vWARN_dep(loc, m) STMT_START { \
666 const IV offset = loc - RExC_precomp; \
667 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_DEPRECATED), m REPORT_LOCATION, \
668 REPORT_LOCATION_ARGS(offset)); \
671 #define ckWARNdep(loc,m) STMT_START { \
672 const IV offset = loc - RExC_precomp; \
673 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_DEPRECATED), \
675 REPORT_LOCATION_ARGS(offset)); \
678 #define ckWARNregdep(loc,m) STMT_START { \
679 const IV offset = loc - RExC_precomp; \
680 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
682 REPORT_LOCATION_ARGS(offset)); \
685 #define ckWARN2reg_d(loc,m, a1) STMT_START { \
686 const IV offset = loc - RExC_precomp; \
687 __ASSERT_(PASS2) Perl_ck_warner_d(aTHX_ packWARN(WARN_REGEXP), \
689 a1, REPORT_LOCATION_ARGS(offset)); \
692 #define ckWARN2reg(loc, m, a1) STMT_START { \
693 const IV offset = loc - RExC_precomp; \
694 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
695 a1, REPORT_LOCATION_ARGS(offset)); \
698 #define vWARN3(loc, m, a1, a2) STMT_START { \
699 const IV offset = loc - RExC_precomp; \
700 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
701 a1, a2, REPORT_LOCATION_ARGS(offset)); \
704 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
705 const IV offset = loc - RExC_precomp; \
706 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
707 a1, a2, REPORT_LOCATION_ARGS(offset)); \
710 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
711 const IV offset = loc - RExC_precomp; \
712 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
713 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
716 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
717 const IV offset = loc - RExC_precomp; \
718 __ASSERT_(PASS2) Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
719 a1, a2, a3, REPORT_LOCATION_ARGS(offset)); \
722 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
723 const IV offset = loc - RExC_precomp; \
724 __ASSERT_(PASS2) Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
725 a1, a2, a3, a4, REPORT_LOCATION_ARGS(offset)); \
728 /* Macros for recording node offsets. 20001227 mjd@plover.com
729 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
730 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
731 * Element 0 holds the number n.
732 * Position is 1 indexed.
734 #ifndef RE_TRACK_PATTERN_OFFSETS
735 #define Set_Node_Offset_To_R(node,byte)
736 #define Set_Node_Offset(node,byte)
737 #define Set_Cur_Node_Offset
738 #define Set_Node_Length_To_R(node,len)
739 #define Set_Node_Length(node,len)
740 #define Set_Node_Cur_Length(node,start)
741 #define Node_Offset(n)
742 #define Node_Length(n)
743 #define Set_Node_Offset_Length(node,offset,len)
744 #define ProgLen(ri) ri->u.proglen
745 #define SetProgLen(ri,x) ri->u.proglen = x
747 #define ProgLen(ri) ri->u.offsets[0]
748 #define SetProgLen(ri,x) ri->u.offsets[0] = x
749 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
751 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
752 __LINE__, (int)(node), (int)(byte))); \
754 Perl_croak(aTHX_ "value of node is %d in Offset macro", \
757 RExC_offsets[2*(node)-1] = (byte); \
762 #define Set_Node_Offset(node,byte) \
763 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
764 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
766 #define Set_Node_Length_To_R(node,len) STMT_START { \
768 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
769 __LINE__, (int)(node), (int)(len))); \
771 Perl_croak(aTHX_ "value of node is %d in Length macro", \
774 RExC_offsets[2*(node)] = (len); \
779 #define Set_Node_Length(node,len) \
780 Set_Node_Length_To_R((node)-RExC_emit_start, len)
781 #define Set_Node_Cur_Length(node, start) \
782 Set_Node_Length(node, RExC_parse - start)
784 /* Get offsets and lengths */
785 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
786 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
788 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
789 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
790 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
794 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
795 #define EXPERIMENTAL_INPLACESCAN
796 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
798 #define DEBUG_RExC_seen() \
799 DEBUG_OPTIMISE_MORE_r({ \
800 PerlIO_printf(Perl_debug_log,"RExC_seen: "); \
802 if (RExC_seen & REG_ZERO_LEN_SEEN) \
803 PerlIO_printf(Perl_debug_log,"REG_ZERO_LEN_SEEN "); \
805 if (RExC_seen & REG_LOOKBEHIND_SEEN) \
806 PerlIO_printf(Perl_debug_log,"REG_LOOKBEHIND_SEEN "); \
808 if (RExC_seen & REG_GPOS_SEEN) \
809 PerlIO_printf(Perl_debug_log,"REG_GPOS_SEEN "); \
811 if (RExC_seen & REG_RECURSE_SEEN) \
812 PerlIO_printf(Perl_debug_log,"REG_RECURSE_SEEN "); \
814 if (RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN) \
815 PerlIO_printf(Perl_debug_log,"REG_TOP_LEVEL_BRANCHES_SEEN "); \
817 if (RExC_seen & REG_VERBARG_SEEN) \
818 PerlIO_printf(Perl_debug_log,"REG_VERBARG_SEEN "); \
820 if (RExC_seen & REG_CUTGROUP_SEEN) \
821 PerlIO_printf(Perl_debug_log,"REG_CUTGROUP_SEEN "); \
823 if (RExC_seen & REG_RUN_ON_COMMENT_SEEN) \
824 PerlIO_printf(Perl_debug_log,"REG_RUN_ON_COMMENT_SEEN "); \
826 if (RExC_seen & REG_UNFOLDED_MULTI_SEEN) \
827 PerlIO_printf(Perl_debug_log,"REG_UNFOLDED_MULTI_SEEN "); \
829 if (RExC_seen & REG_GOSTART_SEEN) \
830 PerlIO_printf(Perl_debug_log,"REG_GOSTART_SEEN "); \
832 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) \
833 PerlIO_printf(Perl_debug_log,"REG_UNBOUNDED_QUANTIFIER_SEEN "); \
835 PerlIO_printf(Perl_debug_log,"\n"); \
838 #define DEBUG_SHOW_STUDY_FLAG(flags,flag) \
839 if ((flags) & flag) PerlIO_printf(Perl_debug_log, "%s ", #flag)
841 #define DEBUG_SHOW_STUDY_FLAGS(flags,open_str,close_str) \
843 PerlIO_printf(Perl_debug_log, "%s", open_str); \
844 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_SEOL); \
845 DEBUG_SHOW_STUDY_FLAG(flags,SF_FL_BEFORE_MEOL); \
846 DEBUG_SHOW_STUDY_FLAG(flags,SF_IS_INF); \
847 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_PAR); \
848 DEBUG_SHOW_STUDY_FLAG(flags,SF_IN_PAR); \
849 DEBUG_SHOW_STUDY_FLAG(flags,SF_HAS_EVAL); \
850 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_SUBSTR); \
851 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_AND); \
852 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS_OR); \
853 DEBUG_SHOW_STUDY_FLAG(flags,SCF_DO_STCLASS); \
854 DEBUG_SHOW_STUDY_FLAG(flags,SCF_WHILEM_VISITED_POS); \
855 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_RESTUDY); \
856 DEBUG_SHOW_STUDY_FLAG(flags,SCF_SEEN_ACCEPT); \
857 DEBUG_SHOW_STUDY_FLAG(flags,SCF_TRIE_DOING_RESTUDY); \
858 DEBUG_SHOW_STUDY_FLAG(flags,SCF_IN_DEFINE); \
859 PerlIO_printf(Perl_debug_log, "%s", close_str); \
863 #define DEBUG_STUDYDATA(str,data,depth) \
864 DEBUG_OPTIMISE_MORE_r(if(data){ \
865 PerlIO_printf(Perl_debug_log, \
866 "%*s" str "Pos:%"IVdf"/%"IVdf \
868 (int)(depth)*2, "", \
869 (IV)((data)->pos_min), \
870 (IV)((data)->pos_delta), \
871 (UV)((data)->flags) \
873 DEBUG_SHOW_STUDY_FLAGS((data)->flags," [ ","]"); \
874 PerlIO_printf(Perl_debug_log, \
875 " Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
876 (IV)((data)->whilem_c), \
877 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
878 is_inf ? "INF " : "" \
880 if ((data)->last_found) \
881 PerlIO_printf(Perl_debug_log, \
882 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
883 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
884 SvPVX_const((data)->last_found), \
885 (IV)((data)->last_end), \
886 (IV)((data)->last_start_min), \
887 (IV)((data)->last_start_max), \
888 ((data)->longest && \
889 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
890 SvPVX_const((data)->longest_fixed), \
891 (IV)((data)->offset_fixed), \
892 ((data)->longest && \
893 (data)->longest==&((data)->longest_float)) ? "*" : "", \
894 SvPVX_const((data)->longest_float), \
895 (IV)((data)->offset_float_min), \
896 (IV)((data)->offset_float_max) \
898 PerlIO_printf(Perl_debug_log,"\n"); \
901 /* is c a control character for which we have a mnemonic? */
902 #define isMNEMONIC_CNTRL(c) _IS_MNEMONIC_CNTRL_ONLY_FOR_USE_BY_REGCOMP_DOT_C(c)
905 S_cntrl_to_mnemonic(const U8 c)
907 /* Returns the mnemonic string that represents character 'c', if one
908 * exists; NULL otherwise. The only ones that exist for the purposes of
909 * this routine are a few control characters */
912 case '\a': return "\\a";
913 case '\b': return "\\b";
914 case ESC_NATIVE: return "\\e";
915 case '\f': return "\\f";
916 case '\n': return "\\n";
917 case '\r': return "\\r";
918 case '\t': return "\\t";
924 /* Mark that we cannot extend a found fixed substring at this point.
925 Update the longest found anchored substring and the longest found
926 floating substrings if needed. */
929 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data,
930 SSize_t *minlenp, int is_inf)
932 const STRLEN l = CHR_SVLEN(data->last_found);
933 const STRLEN old_l = CHR_SVLEN(*data->longest);
934 GET_RE_DEBUG_FLAGS_DECL;
936 PERL_ARGS_ASSERT_SCAN_COMMIT;
938 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
939 SvSetMagicSV(*data->longest, data->last_found);
940 if (*data->longest == data->longest_fixed) {
941 data->offset_fixed = l ? data->last_start_min : data->pos_min;
942 if (data->flags & SF_BEFORE_EOL)
944 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
946 data->flags &= ~SF_FIX_BEFORE_EOL;
947 data->minlen_fixed=minlenp;
948 data->lookbehind_fixed=0;
950 else { /* *data->longest == data->longest_float */
951 data->offset_float_min = l ? data->last_start_min : data->pos_min;
952 data->offset_float_max = (l
953 ? data->last_start_max
954 : (data->pos_delta > SSize_t_MAX - data->pos_min
956 : data->pos_min + data->pos_delta));
958 || (STRLEN)data->offset_float_max > (STRLEN)SSize_t_MAX)
959 data->offset_float_max = SSize_t_MAX;
960 if (data->flags & SF_BEFORE_EOL)
962 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
964 data->flags &= ~SF_FL_BEFORE_EOL;
965 data->minlen_float=minlenp;
966 data->lookbehind_float=0;
969 SvCUR_set(data->last_found, 0);
971 SV * const sv = data->last_found;
972 if (SvUTF8(sv) && SvMAGICAL(sv)) {
973 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
979 data->flags &= ~SF_BEFORE_EOL;
980 DEBUG_STUDYDATA("commit: ",data,0);
983 /* An SSC is just a regnode_charclass_posix with an extra field: the inversion
984 * list that describes which code points it matches */
987 S_ssc_anything(pTHX_ regnode_ssc *ssc)
989 /* Set the SSC 'ssc' to match an empty string or any code point */
991 PERL_ARGS_ASSERT_SSC_ANYTHING;
993 assert(is_ANYOF_SYNTHETIC(ssc));
995 ssc->invlist = sv_2mortal(_new_invlist(2)); /* mortalize so won't leak */
996 _append_range_to_invlist(ssc->invlist, 0, UV_MAX);
997 ANYOF_FLAGS(ssc) |= SSC_MATCHES_EMPTY_STRING; /* Plus matches empty */
1001 S_ssc_is_anything(const regnode_ssc *ssc)
1003 /* Returns TRUE if the SSC 'ssc' can match the empty string and any code
1004 * point; FALSE otherwise. Thus, this is used to see if using 'ssc' buys
1005 * us anything: if the function returns TRUE, 'ssc' hasn't been restricted
1006 * in any way, so there's no point in using it */
1011 PERL_ARGS_ASSERT_SSC_IS_ANYTHING;
1013 assert(is_ANYOF_SYNTHETIC(ssc));
1015 if (! (ANYOF_FLAGS(ssc) & SSC_MATCHES_EMPTY_STRING)) {
1019 /* See if the list consists solely of the range 0 - Infinity */
1020 invlist_iterinit(ssc->invlist);
1021 ret = invlist_iternext(ssc->invlist, &start, &end)
1025 invlist_iterfinish(ssc->invlist);
1031 /* If e.g., both \w and \W are set, matches everything */
1032 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1034 for (i = 0; i < ANYOF_POSIXL_MAX; i += 2) {
1035 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i+1)) {
1045 S_ssc_init(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc)
1047 /* Initializes the SSC 'ssc'. This includes setting it to match an empty
1048 * string, any code point, or any posix class under locale */
1050 PERL_ARGS_ASSERT_SSC_INIT;
1052 Zero(ssc, 1, regnode_ssc);
1053 set_ANYOF_SYNTHETIC(ssc);
1054 ARG_SET(ssc, ANYOF_ONLY_HAS_BITMAP);
1057 /* If any portion of the regex is to operate under locale rules that aren't
1058 * fully known at compile time, initialization includes it. The reason
1059 * this isn't done for all regexes is that the optimizer was written under
1060 * the assumption that locale was all-or-nothing. Given the complexity and
1061 * lack of documentation in the optimizer, and that there are inadequate
1062 * test cases for locale, many parts of it may not work properly, it is
1063 * safest to avoid locale unless necessary. */
1064 if (RExC_contains_locale) {
1065 ANYOF_POSIXL_SETALL(ssc);
1068 ANYOF_POSIXL_ZERO(ssc);
1073 S_ssc_is_cp_posixl_init(const RExC_state_t *pRExC_state,
1074 const regnode_ssc *ssc)
1076 /* Returns TRUE if the SSC 'ssc' is in its initial state with regard only
1077 * to the list of code points matched, and locale posix classes; hence does
1078 * not check its flags) */
1083 PERL_ARGS_ASSERT_SSC_IS_CP_POSIXL_INIT;
1085 assert(is_ANYOF_SYNTHETIC(ssc));
1087 invlist_iterinit(ssc->invlist);
1088 ret = invlist_iternext(ssc->invlist, &start, &end)
1092 invlist_iterfinish(ssc->invlist);
1098 if (RExC_contains_locale && ! ANYOF_POSIXL_SSC_TEST_ALL_SET(ssc)) {
1106 S_get_ANYOF_cp_list_for_ssc(pTHX_ const RExC_state_t *pRExC_state,
1107 const regnode_charclass* const node)
1109 /* Returns a mortal inversion list defining which code points are matched
1110 * by 'node', which is of type ANYOF. Handles complementing the result if
1111 * appropriate. If some code points aren't knowable at this time, the
1112 * returned list must, and will, contain every code point that is a
1115 SV* invlist = sv_2mortal(_new_invlist(0));
1116 SV* only_utf8_locale_invlist = NULL;
1118 const U32 n = ARG(node);
1119 bool new_node_has_latin1 = FALSE;
1121 PERL_ARGS_ASSERT_GET_ANYOF_CP_LIST_FOR_SSC;
1123 /* Look at the data structure created by S_set_ANYOF_arg() */
1124 if (n != ANYOF_ONLY_HAS_BITMAP) {
1125 SV * const rv = MUTABLE_SV(RExC_rxi->data->data[n]);
1126 AV * const av = MUTABLE_AV(SvRV(rv));
1127 SV **const ary = AvARRAY(av);
1128 assert(RExC_rxi->data->what[n] == 's');
1130 if (ary[1] && ary[1] != &PL_sv_undef) { /* Has compile-time swash */
1131 invlist = sv_2mortal(invlist_clone(_get_swash_invlist(ary[1])));
1133 else if (ary[0] && ary[0] != &PL_sv_undef) {
1135 /* Here, no compile-time swash, and there are things that won't be
1136 * known until runtime -- we have to assume it could be anything */
1137 return _add_range_to_invlist(invlist, 0, UV_MAX);
1139 else if (ary[3] && ary[3] != &PL_sv_undef) {
1141 /* Here no compile-time swash, and no run-time only data. Use the
1142 * node's inversion list */
1143 invlist = sv_2mortal(invlist_clone(ary[3]));
1146 /* Get the code points valid only under UTF-8 locales */
1147 if ((ANYOF_FLAGS(node) & ANYOF_LOC_FOLD)
1148 && ary[2] && ary[2] != &PL_sv_undef)
1150 only_utf8_locale_invlist = ary[2];
1154 /* An ANYOF node contains a bitmap for the first NUM_ANYOF_CODE_POINTS
1155 * code points, and an inversion list for the others, but if there are code
1156 * points that should match only conditionally on the target string being
1157 * UTF-8, those are placed in the inversion list, and not the bitmap.
1158 * Since there are circumstances under which they could match, they are
1159 * included in the SSC. But if the ANYOF node is to be inverted, we have
1160 * to exclude them here, so that when we invert below, the end result
1161 * actually does include them. (Think about "\xe0" =~ /[^\xc0]/di;). We
1162 * have to do this here before we add the unconditionally matched code
1164 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1165 _invlist_intersection_complement_2nd(invlist,
1170 /* Add in the points from the bit map */
1171 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
1172 if (ANYOF_BITMAP_TEST(node, i)) {
1173 invlist = add_cp_to_invlist(invlist, i);
1174 new_node_has_latin1 = TRUE;
1178 /* If this can match all upper Latin1 code points, have to add them
1180 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
1181 _invlist_union(invlist, PL_UpperLatin1, &invlist);
1184 /* Similarly for these */
1185 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
1186 _invlist_union_complement_2nd(invlist, PL_InBitmap, &invlist);
1189 if (ANYOF_FLAGS(node) & ANYOF_INVERT) {
1190 _invlist_invert(invlist);
1192 else if (new_node_has_latin1 && ANYOF_FLAGS(node) & ANYOF_LOC_FOLD) {
1194 /* Under /li, any 0-255 could fold to any other 0-255, depending on the
1195 * locale. We can skip this if there are no 0-255 at all. */
1196 _invlist_union(invlist, PL_Latin1, &invlist);
1199 /* Similarly add the UTF-8 locale possible matches. These have to be
1200 * deferred until after the non-UTF-8 locale ones are taken care of just
1201 * above, or it leads to wrong results under ANYOF_INVERT */
1202 if (only_utf8_locale_invlist) {
1203 _invlist_union_maybe_complement_2nd(invlist,
1204 only_utf8_locale_invlist,
1205 ANYOF_FLAGS(node) & ANYOF_INVERT,
1212 /* These two functions currently do the exact same thing */
1213 #define ssc_init_zero ssc_init
1215 #define ssc_add_cp(ssc, cp) ssc_add_range((ssc), (cp), (cp))
1216 #define ssc_match_all_cp(ssc) ssc_add_range(ssc, 0, UV_MAX)
1218 /* 'AND' a given class with another one. Can create false positives. 'ssc'
1219 * should not be inverted. 'and_with->flags & ANYOF_MATCHES_POSIXL' should be
1220 * 0 if 'and_with' is a regnode_charclass instead of a regnode_ssc. */
1223 S_ssc_and(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1224 const regnode_charclass *and_with)
1226 /* Accumulate into SSC 'ssc' its 'AND' with 'and_with', which is either
1227 * another SSC or a regular ANYOF class. Can create false positives. */
1232 PERL_ARGS_ASSERT_SSC_AND;
1234 assert(is_ANYOF_SYNTHETIC(ssc));
1236 /* 'and_with' is used as-is if it too is an SSC; otherwise have to extract
1237 * the code point inversion list and just the relevant flags */
1238 if (is_ANYOF_SYNTHETIC(and_with)) {
1239 anded_cp_list = ((regnode_ssc *)and_with)->invlist;
1240 anded_flags = ANYOF_FLAGS(and_with);
1242 /* XXX This is a kludge around what appears to be deficiencies in the
1243 * optimizer. If we make S_ssc_anything() add in the WARN_SUPER flag,
1244 * there are paths through the optimizer where it doesn't get weeded
1245 * out when it should. And if we don't make some extra provision for
1246 * it like the code just below, it doesn't get added when it should.
1247 * This solution is to add it only when AND'ing, which is here, and
1248 * only when what is being AND'ed is the pristine, original node
1249 * matching anything. Thus it is like adding it to ssc_anything() but
1250 * only when the result is to be AND'ed. Probably the same solution
1251 * could be adopted for the same problem we have with /l matching,
1252 * which is solved differently in S_ssc_init(), and that would lead to
1253 * fewer false positives than that solution has. But if this solution
1254 * creates bugs, the consequences are only that a warning isn't raised
1255 * that should be; while the consequences for having /l bugs is
1256 * incorrect matches */
1257 if (ssc_is_anything((regnode_ssc *)and_with)) {
1258 anded_flags |= ANYOF_WARN_SUPER;
1262 anded_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, and_with);
1263 anded_flags = ANYOF_FLAGS(and_with) & ANYOF_COMMON_FLAGS;
1266 ANYOF_FLAGS(ssc) &= anded_flags;
1268 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1269 * C2 is the list of code points in 'and-with'; P2, its posix classes.
1270 * 'and_with' may be inverted. When not inverted, we have the situation of
1272 * (C1 | P1) & (C2 | P2)
1273 * = (C1 & (C2 | P2)) | (P1 & (C2 | P2))
1274 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1275 * <= ((C1 & C2) | P2)) | ( P1 | (P1 & P2))
1276 * <= ((C1 & C2) | P1 | P2)
1277 * Alternatively, the last few steps could be:
1278 * = ((C1 & C2) | (C1 & P2)) | ((P1 & C2) | (P1 & P2))
1279 * <= ((C1 & C2) | C1 ) | ( C2 | (P1 & P2))
1280 * <= (C1 | C2 | (P1 & P2))
1281 * We favor the second approach if either P1 or P2 is non-empty. This is
1282 * because these components are a barrier to doing optimizations, as what
1283 * they match cannot be known until the moment of matching as they are
1284 * dependent on the current locale, 'AND"ing them likely will reduce or
1286 * But we can do better if we know that C1,P1 are in their initial state (a
1287 * frequent occurrence), each matching everything:
1288 * (<everything>) & (C2 | P2) = C2 | P2
1289 * Similarly, if C2,P2 are in their initial state (again a frequent
1290 * occurrence), the result is a no-op
1291 * (C1 | P1) & (<everything>) = C1 | P1
1294 * (C1 | P1) & ~(C2 | P2) = (C1 | P1) & (~C2 & ~P2)
1295 * = (C1 & (~C2 & ~P2)) | (P1 & (~C2 & ~P2))
1296 * <= (C1 & ~C2) | (P1 & ~P2)
1299 if ((ANYOF_FLAGS(and_with) & ANYOF_INVERT)
1300 && ! is_ANYOF_SYNTHETIC(and_with))
1304 ssc_intersection(ssc,
1306 FALSE /* Has already been inverted */
1309 /* If either P1 or P2 is empty, the intersection will be also; can skip
1311 if (! (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL)) {
1312 ANYOF_POSIXL_ZERO(ssc);
1314 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1316 /* Note that the Posix class component P from 'and_with' actually
1318 * P = Pa | Pb | ... | Pn
1319 * where each component is one posix class, such as in [\w\s].
1321 * ~P = ~(Pa | Pb | ... | Pn)
1322 * = ~Pa & ~Pb & ... & ~Pn
1323 * <= ~Pa | ~Pb | ... | ~Pn
1324 * The last is something we can easily calculate, but unfortunately
1325 * is likely to have many false positives. We could do better
1326 * in some (but certainly not all) instances if two classes in
1327 * P have known relationships. For example
1328 * :lower: <= :alpha: <= :alnum: <= \w <= :graph: <= :print:
1330 * :lower: & :print: = :lower:
1331 * And similarly for classes that must be disjoint. For example,
1332 * since \s and \w can have no elements in common based on rules in
1333 * the POSIX standard,
1334 * \w & ^\S = nothing
1335 * Unfortunately, some vendor locales do not meet the Posix
1336 * standard, in particular almost everything by Microsoft.
1337 * The loop below just changes e.g., \w into \W and vice versa */
1339 regnode_charclass_posixl temp;
1340 int add = 1; /* To calculate the index of the complement */
1342 ANYOF_POSIXL_ZERO(&temp);
1343 for (i = 0; i < ANYOF_MAX; i++) {
1345 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)
1346 || ! ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i + 1));
1348 if (ANYOF_POSIXL_TEST((regnode_charclass_posixl*) and_with, i)) {
1349 ANYOF_POSIXL_SET(&temp, i + add);
1351 add = 0 - add; /* 1 goes to -1; -1 goes to 1 */
1353 ANYOF_POSIXL_AND(&temp, ssc);
1355 } /* else ssc already has no posixes */
1356 } /* else: Not inverted. This routine is a no-op if 'and_with' is an SSC
1357 in its initial state */
1358 else if (! is_ANYOF_SYNTHETIC(and_with)
1359 || ! ssc_is_cp_posixl_init(pRExC_state, (regnode_ssc *)and_with))
1361 /* But if 'ssc' is in its initial state, the result is just 'and_with';
1362 * copy it over 'ssc' */
1363 if (ssc_is_cp_posixl_init(pRExC_state, ssc)) {
1364 if (is_ANYOF_SYNTHETIC(and_with)) {
1365 StructCopy(and_with, ssc, regnode_ssc);
1368 ssc->invlist = anded_cp_list;
1369 ANYOF_POSIXL_ZERO(ssc);
1370 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1371 ANYOF_POSIXL_OR((regnode_charclass_posixl*) and_with, ssc);
1375 else if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)
1376 || (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL))
1378 /* One or the other of P1, P2 is non-empty. */
1379 if (ANYOF_FLAGS(and_with) & ANYOF_MATCHES_POSIXL) {
1380 ANYOF_POSIXL_AND((regnode_charclass_posixl*) and_with, ssc);
1382 ssc_union(ssc, anded_cp_list, FALSE);
1384 else { /* P1 = P2 = empty */
1385 ssc_intersection(ssc, anded_cp_list, FALSE);
1391 S_ssc_or(pTHX_ const RExC_state_t *pRExC_state, regnode_ssc *ssc,
1392 const regnode_charclass *or_with)
1394 /* Accumulate into SSC 'ssc' its 'OR' with 'or_with', which is either
1395 * another SSC or a regular ANYOF class. Can create false positives if
1396 * 'or_with' is to be inverted. */
1401 PERL_ARGS_ASSERT_SSC_OR;
1403 assert(is_ANYOF_SYNTHETIC(ssc));
1405 /* 'or_with' is used as-is if it too is an SSC; otherwise have to extract
1406 * the code point inversion list and just the relevant flags */
1407 if (is_ANYOF_SYNTHETIC(or_with)) {
1408 ored_cp_list = ((regnode_ssc*) or_with)->invlist;
1409 ored_flags = ANYOF_FLAGS(or_with);
1412 ored_cp_list = get_ANYOF_cp_list_for_ssc(pRExC_state, or_with);
1413 ored_flags = ANYOF_FLAGS(or_with) & ANYOF_COMMON_FLAGS;
1416 ANYOF_FLAGS(ssc) |= ored_flags;
1418 /* Below, C1 is the list of code points in 'ssc'; P1, its posix classes.
1419 * C2 is the list of code points in 'or-with'; P2, its posix classes.
1420 * 'or_with' may be inverted. When not inverted, we have the simple
1421 * situation of computing:
1422 * (C1 | P1) | (C2 | P2) = (C1 | C2) | (P1 | P2)
1423 * If P1|P2 yields a situation with both a class and its complement are
1424 * set, like having both \w and \W, this matches all code points, and we
1425 * can delete these from the P component of the ssc going forward. XXX We
1426 * might be able to delete all the P components, but I (khw) am not certain
1427 * about this, and it is better to be safe.
1430 * (C1 | P1) | ~(C2 | P2) = (C1 | P1) | (~C2 & ~P2)
1431 * <= (C1 | P1) | ~C2
1432 * <= (C1 | ~C2) | P1
1433 * (which results in actually simpler code than the non-inverted case)
1436 if ((ANYOF_FLAGS(or_with) & ANYOF_INVERT)
1437 && ! is_ANYOF_SYNTHETIC(or_with))
1439 /* We ignore P2, leaving P1 going forward */
1440 } /* else Not inverted */
1441 else if (ANYOF_FLAGS(or_with) & ANYOF_MATCHES_POSIXL) {
1442 ANYOF_POSIXL_OR((regnode_charclass_posixl*)or_with, ssc);
1443 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1445 for (i = 0; i < ANYOF_MAX; i += 2) {
1446 if (ANYOF_POSIXL_TEST(ssc, i) && ANYOF_POSIXL_TEST(ssc, i + 1))
1448 ssc_match_all_cp(ssc);
1449 ANYOF_POSIXL_CLEAR(ssc, i);
1450 ANYOF_POSIXL_CLEAR(ssc, i+1);
1458 FALSE /* Already has been inverted */
1462 PERL_STATIC_INLINE void
1463 S_ssc_union(pTHX_ regnode_ssc *ssc, SV* const invlist, const bool invert2nd)
1465 PERL_ARGS_ASSERT_SSC_UNION;
1467 assert(is_ANYOF_SYNTHETIC(ssc));
1469 _invlist_union_maybe_complement_2nd(ssc->invlist,
1475 PERL_STATIC_INLINE void
1476 S_ssc_intersection(pTHX_ regnode_ssc *ssc,
1478 const bool invert2nd)
1480 PERL_ARGS_ASSERT_SSC_INTERSECTION;
1482 assert(is_ANYOF_SYNTHETIC(ssc));
1484 _invlist_intersection_maybe_complement_2nd(ssc->invlist,
1490 PERL_STATIC_INLINE void
1491 S_ssc_add_range(pTHX_ regnode_ssc *ssc, const UV start, const UV end)
1493 PERL_ARGS_ASSERT_SSC_ADD_RANGE;
1495 assert(is_ANYOF_SYNTHETIC(ssc));
1497 ssc->invlist = _add_range_to_invlist(ssc->invlist, start, end);
1500 PERL_STATIC_INLINE void
1501 S_ssc_cp_and(pTHX_ regnode_ssc *ssc, const UV cp)
1503 /* AND just the single code point 'cp' into the SSC 'ssc' */
1505 SV* cp_list = _new_invlist(2);
1507 PERL_ARGS_ASSERT_SSC_CP_AND;
1509 assert(is_ANYOF_SYNTHETIC(ssc));
1511 cp_list = add_cp_to_invlist(cp_list, cp);
1512 ssc_intersection(ssc, cp_list,
1513 FALSE /* Not inverted */
1515 SvREFCNT_dec_NN(cp_list);
1518 PERL_STATIC_INLINE void
1519 S_ssc_clear_locale(regnode_ssc *ssc)
1521 /* Set the SSC 'ssc' to not match any locale things */
1522 PERL_ARGS_ASSERT_SSC_CLEAR_LOCALE;
1524 assert(is_ANYOF_SYNTHETIC(ssc));
1526 ANYOF_POSIXL_ZERO(ssc);
1527 ANYOF_FLAGS(ssc) &= ~ANYOF_LOCALE_FLAGS;
1530 #define NON_OTHER_COUNT NON_OTHER_COUNT_FOR_USE_ONLY_BY_REGCOMP_DOT_C
1533 S_is_ssc_worth_it(const RExC_state_t * pRExC_state, const regnode_ssc * ssc)
1535 /* The synthetic start class is used to hopefully quickly winnow down
1536 * places where a pattern could start a match in the target string. If it
1537 * doesn't really narrow things down that much, there isn't much point to
1538 * having the overhead of using it. This function uses some very crude
1539 * heuristics to decide if to use the ssc or not.
1541 * It returns TRUE if 'ssc' rules out more than half what it considers to
1542 * be the "likely" possible matches, but of course it doesn't know what the
1543 * actual things being matched are going to be; these are only guesses
1545 * For /l matches, it assumes that the only likely matches are going to be
1546 * in the 0-255 range, uniformly distributed, so half of that is 127
1547 * For /a and /d matches, it assumes that the likely matches will be just
1548 * the ASCII range, so half of that is 63
1549 * For /u and there isn't anything matching above the Latin1 range, it
1550 * assumes that that is the only range likely to be matched, and uses
1551 * half that as the cut-off: 127. If anything matches above Latin1,
1552 * it assumes that all of Unicode could match (uniformly), except for
1553 * non-Unicode code points and things in the General Category "Other"
1554 * (unassigned, private use, surrogates, controls and formats). This
1555 * is a much large number. */
1557 const U32 max_match = (LOC)
1561 : (invlist_highest(ssc->invlist) < 256)
1563 : ((NON_OTHER_COUNT + 1) / 2) - 1;
1564 U32 count = 0; /* Running total of number of code points matched by
1566 UV start, end; /* Start and end points of current range in inversion
1569 PERL_ARGS_ASSERT_IS_SSC_WORTH_IT;
1571 invlist_iterinit(ssc->invlist);
1572 while (invlist_iternext(ssc->invlist, &start, &end)) {
1574 /* /u is the only thing that we expect to match above 255; so if not /u
1575 * and even if there are matches above 255, ignore them. This catches
1576 * things like \d under /d which does match the digits above 255, but
1577 * since the pattern is /d, it is not likely to be expecting them */
1578 if (! UNI_SEMANTICS) {
1582 end = MIN(end, 255);
1584 count += end - start + 1;
1585 if (count > max_match) {
1586 invlist_iterfinish(ssc->invlist);
1596 S_ssc_finalize(pTHX_ RExC_state_t *pRExC_state, regnode_ssc *ssc)
1598 /* The inversion list in the SSC is marked mortal; now we need a more
1599 * permanent copy, which is stored the same way that is done in a regular
1600 * ANYOF node, with the first NUM_ANYOF_CODE_POINTS code points in a bit
1603 SV* invlist = invlist_clone(ssc->invlist);
1605 PERL_ARGS_ASSERT_SSC_FINALIZE;
1607 assert(is_ANYOF_SYNTHETIC(ssc));
1609 /* The code in this file assumes that all but these flags aren't relevant
1610 * to the SSC, except SSC_MATCHES_EMPTY_STRING, which should be cleared
1611 * by the time we reach here */
1612 assert(! (ANYOF_FLAGS(ssc) & ~ANYOF_COMMON_FLAGS));
1614 populate_ANYOF_from_invlist( (regnode *) ssc, &invlist);
1616 set_ANYOF_arg(pRExC_state, (regnode *) ssc, invlist,
1617 NULL, NULL, NULL, FALSE);
1619 /* Make sure is clone-safe */
1620 ssc->invlist = NULL;
1622 if (ANYOF_POSIXL_SSC_TEST_ANY_SET(ssc)) {
1623 ANYOF_FLAGS(ssc) |= ANYOF_MATCHES_POSIXL;
1626 assert(! (ANYOF_FLAGS(ssc) & ANYOF_LOCALE_FLAGS) || RExC_contains_locale);
1629 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1630 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1631 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1632 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list \
1633 ? (TRIE_LIST_CUR( idx ) - 1) \
1639 dump_trie(trie,widecharmap,revcharmap)
1640 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1641 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1643 These routines dump out a trie in a somewhat readable format.
1644 The _interim_ variants are used for debugging the interim
1645 tables that are used to generate the final compressed
1646 representation which is what dump_trie expects.
1648 Part of the reason for their existence is to provide a form
1649 of documentation as to how the different representations function.
1654 Dumps the final compressed table form of the trie to Perl_debug_log.
1655 Used for debugging make_trie().
1659 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1660 AV *revcharmap, U32 depth)
1663 SV *sv=sv_newmortal();
1664 int colwidth= widecharmap ? 6 : 4;
1666 GET_RE_DEBUG_FLAGS_DECL;
1668 PERL_ARGS_ASSERT_DUMP_TRIE;
1670 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1671 (int)depth * 2 + 2,"",
1672 "Match","Base","Ofs" );
1674 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1675 SV ** const tmp = av_fetch( revcharmap, state, 0);
1677 PerlIO_printf( Perl_debug_log, "%*s",
1679 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1680 PL_colors[0], PL_colors[1],
1681 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1682 PERL_PV_ESCAPE_FIRSTCHAR
1687 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1688 (int)depth * 2 + 2,"");
1690 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1691 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1692 PerlIO_printf( Perl_debug_log, "\n");
1694 for( state = 1 ; state < trie->statecount ; state++ ) {
1695 const U32 base = trie->states[ state ].trans.base;
1697 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|",
1698 (int)depth * 2 + 2,"", (UV)state);
1700 if ( trie->states[ state ].wordnum ) {
1701 PerlIO_printf( Perl_debug_log, " W%4X",
1702 trie->states[ state ].wordnum );
1704 PerlIO_printf( Perl_debug_log, "%6s", "" );
1707 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1712 while( ( base + ofs < trie->uniquecharcount ) ||
1713 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1714 && trie->trans[ base + ofs - trie->uniquecharcount ].check
1718 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1720 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1721 if ( ( base + ofs >= trie->uniquecharcount )
1722 && ( base + ofs - trie->uniquecharcount
1724 && trie->trans[ base + ofs
1725 - trie->uniquecharcount ].check == state )
1727 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1729 (UV)trie->trans[ base + ofs
1730 - trie->uniquecharcount ].next );
1732 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1736 PerlIO_printf( Perl_debug_log, "]");
1739 PerlIO_printf( Perl_debug_log, "\n" );
1741 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=",
1743 for (word=1; word <= trie->wordcount; word++) {
1744 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1745 (int)word, (int)(trie->wordinfo[word].prev),
1746 (int)(trie->wordinfo[word].len));
1748 PerlIO_printf(Perl_debug_log, "\n" );
1751 Dumps a fully constructed but uncompressed trie in list form.
1752 List tries normally only are used for construction when the number of
1753 possible chars (trie->uniquecharcount) is very high.
1754 Used for debugging make_trie().
1757 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1758 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1762 SV *sv=sv_newmortal();
1763 int colwidth= widecharmap ? 6 : 4;
1764 GET_RE_DEBUG_FLAGS_DECL;
1766 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1768 /* print out the table precompression. */
1769 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1770 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1771 "------:-----+-----------------\n" );
1773 for( state=1 ; state < next_alloc ; state ++ ) {
1776 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1777 (int)depth * 2 + 2,"", (UV)state );
1778 if ( ! trie->states[ state ].wordnum ) {
1779 PerlIO_printf( Perl_debug_log, "%5s| ","");
1781 PerlIO_printf( Perl_debug_log, "W%4x| ",
1782 trie->states[ state ].wordnum
1785 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1786 SV ** const tmp = av_fetch( revcharmap,
1787 TRIE_LIST_ITEM(state,charid).forid, 0);
1789 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1791 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp),
1793 PL_colors[0], PL_colors[1],
1794 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0)
1795 | PERL_PV_ESCAPE_FIRSTCHAR
1797 TRIE_LIST_ITEM(state,charid).forid,
1798 (UV)TRIE_LIST_ITEM(state,charid).newstate
1801 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1802 (int)((depth * 2) + 14), "");
1805 PerlIO_printf( Perl_debug_log, "\n");
1810 Dumps a fully constructed but uncompressed trie in table form.
1811 This is the normal DFA style state transition table, with a few
1812 twists to facilitate compression later.
1813 Used for debugging make_trie().
1816 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1817 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1822 SV *sv=sv_newmortal();
1823 int colwidth= widecharmap ? 6 : 4;
1824 GET_RE_DEBUG_FLAGS_DECL;
1826 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1829 print out the table precompression so that we can do a visual check
1830 that they are identical.
1833 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1835 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1836 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1838 PerlIO_printf( Perl_debug_log, "%*s",
1840 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1841 PL_colors[0], PL_colors[1],
1842 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1843 PERL_PV_ESCAPE_FIRSTCHAR
1849 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1851 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1852 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1855 PerlIO_printf( Perl_debug_log, "\n" );
1857 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1859 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1860 (int)depth * 2 + 2,"",
1861 (UV)TRIE_NODENUM( state ) );
1863 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1864 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1866 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1868 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1870 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1871 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n",
1872 (UV)trie->trans[ state ].check );
1874 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n",
1875 (UV)trie->trans[ state ].check,
1876 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1884 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1885 startbranch: the first branch in the whole branch sequence
1886 first : start branch of sequence of branch-exact nodes.
1887 May be the same as startbranch
1888 last : Thing following the last branch.
1889 May be the same as tail.
1890 tail : item following the branch sequence
1891 count : words in the sequence
1892 flags : currently the OP() type we will be building one of /EXACT(|F|FA|FU|FU_SS|L|FLU8)/
1893 depth : indent depth
1895 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1897 A trie is an N'ary tree where the branches are determined by digital
1898 decomposition of the key. IE, at the root node you look up the 1st character and
1899 follow that branch repeat until you find the end of the branches. Nodes can be
1900 marked as "accepting" meaning they represent a complete word. Eg:
1904 would convert into the following structure. Numbers represent states, letters
1905 following numbers represent valid transitions on the letter from that state, if
1906 the number is in square brackets it represents an accepting state, otherwise it
1907 will be in parenthesis.
1909 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1913 (1) +-i->(6)-+-s->[7]
1915 +-s->(3)-+-h->(4)-+-e->[5]
1917 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1919 This shows that when matching against the string 'hers' we will begin at state 1
1920 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1921 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1922 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1923 single traverse. We store a mapping from accepting to state to which word was
1924 matched, and then when we have multiple possibilities we try to complete the
1925 rest of the regex in the order in which they occurred in the alternation.
1927 The only prior NFA like behaviour that would be changed by the TRIE support is
1928 the silent ignoring of duplicate alternations which are of the form:
1930 / (DUPE|DUPE) X? (?{ ... }) Y /x
1932 Thus EVAL blocks following a trie may be called a different number of times with
1933 and without the optimisation. With the optimisations dupes will be silently
1934 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1935 the following demonstrates:
1937 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1939 which prints out 'word' three times, but
1941 'words'=~/(word|word|word)(?{ print $1 })S/
1943 which doesnt print it out at all. This is due to other optimisations kicking in.
1945 Example of what happens on a structural level:
1947 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1949 1: CURLYM[1] {1,32767}(18)
1960 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1961 and should turn into:
1963 1: CURLYM[1] {1,32767}(18)
1965 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1973 Cases where tail != last would be like /(?foo|bar)baz/:
1983 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1984 and would end up looking like:
1987 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1994 d = uvchr_to_utf8_flags(d, uv, 0);
1996 is the recommended Unicode-aware way of saying
2001 #define TRIE_STORE_REVCHAR(val) \
2004 SV *zlopp = newSV(7); /* XXX: optimize me */ \
2005 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
2006 unsigned const char *const kapow = uvchr_to_utf8(flrbbbbb, val); \
2007 SvCUR_set(zlopp, kapow - flrbbbbb); \
2010 av_push(revcharmap, zlopp); \
2012 char ooooff = (char)val; \
2013 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
2017 /* This gets the next character from the input, folding it if not already
2019 #define TRIE_READ_CHAR STMT_START { \
2022 /* if it is UTF then it is either already folded, or does not need \
2024 uvc = valid_utf8_to_uvchr( (const U8*) uc, &len); \
2026 else if (folder == PL_fold_latin1) { \
2027 /* This folder implies Unicode rules, which in the range expressible \
2028 * by not UTF is the lower case, with the two exceptions, one of \
2029 * which should have been taken care of before calling this */ \
2030 assert(*uc != LATIN_SMALL_LETTER_SHARP_S); \
2031 uvc = toLOWER_L1(*uc); \
2032 if (UNLIKELY(uvc == MICRO_SIGN)) uvc = GREEK_SMALL_LETTER_MU; \
2035 /* raw data, will be folded later if needed */ \
2043 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
2044 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
2045 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
2046 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
2048 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
2049 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
2050 TRIE_LIST_CUR( state )++; \
2053 #define TRIE_LIST_NEW(state) STMT_START { \
2054 Newxz( trie->states[ state ].trans.list, \
2055 4, reg_trie_trans_le ); \
2056 TRIE_LIST_CUR( state ) = 1; \
2057 TRIE_LIST_LEN( state ) = 4; \
2060 #define TRIE_HANDLE_WORD(state) STMT_START { \
2061 U16 dupe= trie->states[ state ].wordnum; \
2062 regnode * const noper_next = regnext( noper ); \
2065 /* store the word for dumping */ \
2067 if (OP(noper) != NOTHING) \
2068 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
2070 tmp = newSVpvn_utf8( "", 0, UTF ); \
2071 av_push( trie_words, tmp ); \
2075 trie->wordinfo[curword].prev = 0; \
2076 trie->wordinfo[curword].len = wordlen; \
2077 trie->wordinfo[curword].accept = state; \
2079 if ( noper_next < tail ) { \
2081 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, \
2083 trie->jump[curword] = (U16)(noper_next - convert); \
2085 jumper = noper_next; \
2087 nextbranch= regnext(cur); \
2091 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
2092 /* chain, so that when the bits of chain are later */\
2093 /* linked together, the dups appear in the chain */\
2094 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
2095 trie->wordinfo[dupe].prev = curword; \
2097 /* we haven't inserted this word yet. */ \
2098 trie->states[ state ].wordnum = curword; \
2103 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
2104 ( ( base + charid >= ucharcount \
2105 && base + charid < ubound \
2106 && state == trie->trans[ base - ucharcount + charid ].check \
2107 && trie->trans[ base - ucharcount + charid ].next ) \
2108 ? trie->trans[ base - ucharcount + charid ].next \
2109 : ( state==1 ? special : 0 ) \
2113 #define MADE_JUMP_TRIE 2
2114 #define MADE_EXACT_TRIE 4
2117 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch,
2118 regnode *first, regnode *last, regnode *tail,
2119 U32 word_count, U32 flags, U32 depth)
2121 /* first pass, loop through and scan words */
2122 reg_trie_data *trie;
2123 HV *widecharmap = NULL;
2124 AV *revcharmap = newAV();
2130 regnode *jumper = NULL;
2131 regnode *nextbranch = NULL;
2132 regnode *convert = NULL;
2133 U32 *prev_states; /* temp array mapping each state to previous one */
2134 /* we just use folder as a flag in utf8 */
2135 const U8 * folder = NULL;
2138 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tuuu"));
2139 AV *trie_words = NULL;
2140 /* along with revcharmap, this only used during construction but both are
2141 * useful during debugging so we store them in the struct when debugging.
2144 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("tu"));
2145 STRLEN trie_charcount=0;
2147 SV *re_trie_maxbuff;
2148 GET_RE_DEBUG_FLAGS_DECL;
2150 PERL_ARGS_ASSERT_MAKE_TRIE;
2152 PERL_UNUSED_ARG(depth);
2156 case EXACT: case EXACTL: break;
2160 case EXACTFLU8: folder = PL_fold_latin1; break;
2161 case EXACTF: folder = PL_fold; break;
2162 default: Perl_croak( aTHX_ "panic! In trie construction, unknown node type %u %s", (unsigned) flags, PL_reg_name[flags] );
2165 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
2167 trie->startstate = 1;
2168 trie->wordcount = word_count;
2169 RExC_rxi->data->data[ data_slot ] = (void*)trie;
2170 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
2171 if (flags == EXACT || flags == EXACTL)
2172 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
2173 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
2174 trie->wordcount+1, sizeof(reg_trie_wordinfo));
2177 trie_words = newAV();
2180 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2181 assert(re_trie_maxbuff);
2182 if (!SvIOK(re_trie_maxbuff)) {
2183 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2185 DEBUG_TRIE_COMPILE_r({
2186 PerlIO_printf( Perl_debug_log,
2187 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
2188 (int)depth * 2 + 2, "",
2189 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
2190 REG_NODE_NUM(last), REG_NODE_NUM(tail), (int)depth);
2193 /* Find the node we are going to overwrite */
2194 if ( first == startbranch && OP( last ) != BRANCH ) {
2195 /* whole branch chain */
2198 /* branch sub-chain */
2199 convert = NEXTOPER( first );
2202 /* -- First loop and Setup --
2204 We first traverse the branches and scan each word to determine if it
2205 contains widechars, and how many unique chars there are, this is
2206 important as we have to build a table with at least as many columns as we
2209 We use an array of integers to represent the character codes 0..255
2210 (trie->charmap) and we use a an HV* to store Unicode characters. We use
2211 the native representation of the character value as the key and IV's for
2214 *TODO* If we keep track of how many times each character is used we can
2215 remap the columns so that the table compression later on is more
2216 efficient in terms of memory by ensuring the most common value is in the
2217 middle and the least common are on the outside. IMO this would be better
2218 than a most to least common mapping as theres a decent chance the most
2219 common letter will share a node with the least common, meaning the node
2220 will not be compressible. With a middle is most common approach the worst
2221 case is when we have the least common nodes twice.
2225 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2226 regnode *noper = NEXTOPER( cur );
2227 const U8 *uc = (U8*)STRING( noper );
2228 const U8 *e = uc + STR_LEN( noper );
2230 U32 wordlen = 0; /* required init */
2231 STRLEN minchars = 0;
2232 STRLEN maxchars = 0;
2233 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the
2236 if (OP(noper) == NOTHING) {
2237 regnode *noper_next= regnext(noper);
2238 if (noper_next != tail && OP(noper_next) == flags) {
2240 uc= (U8*)STRING(noper);
2241 e= uc + STR_LEN(noper);
2242 trie->minlen= STR_LEN(noper);
2249 if ( set_bit ) { /* bitmap only alloced when !(UTF&&Folding) */
2250 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
2251 regardless of encoding */
2252 if (OP( noper ) == EXACTFU_SS) {
2253 /* false positives are ok, so just set this */
2254 TRIE_BITMAP_SET(trie, LATIN_SMALL_LETTER_SHARP_S);
2257 for ( ; uc < e ; uc += len ) { /* Look at each char in the current
2259 TRIE_CHARCOUNT(trie)++;
2262 /* TRIE_READ_CHAR returns the current character, or its fold if /i
2263 * is in effect. Under /i, this character can match itself, or
2264 * anything that folds to it. If not under /i, it can match just
2265 * itself. Most folds are 1-1, for example k, K, and KELVIN SIGN
2266 * all fold to k, and all are single characters. But some folds
2267 * expand to more than one character, so for example LATIN SMALL
2268 * LIGATURE FFI folds to the three character sequence 'ffi'. If
2269 * the string beginning at 'uc' is 'ffi', it could be matched by
2270 * three characters, or just by the one ligature character. (It
2271 * could also be matched by two characters: LATIN SMALL LIGATURE FF
2272 * followed by 'i', or by 'f' followed by LATIN SMALL LIGATURE FI).
2273 * (Of course 'I' and/or 'F' instead of 'i' and 'f' can also
2274 * match.) The trie needs to know the minimum and maximum number
2275 * of characters that could match so that it can use size alone to
2276 * quickly reject many match attempts. The max is simple: it is
2277 * the number of folded characters in this branch (since a fold is
2278 * never shorter than what folds to it. */
2282 /* And the min is equal to the max if not under /i (indicated by
2283 * 'folder' being NULL), or there are no multi-character folds. If
2284 * there is a multi-character fold, the min is incremented just
2285 * once, for the character that folds to the sequence. Each
2286 * character in the sequence needs to be added to the list below of
2287 * characters in the trie, but we count only the first towards the
2288 * min number of characters needed. This is done through the
2289 * variable 'foldlen', which is returned by the macros that look
2290 * for these sequences as the number of bytes the sequence
2291 * occupies. Each time through the loop, we decrement 'foldlen' by
2292 * how many bytes the current char occupies. Only when it reaches
2293 * 0 do we increment 'minchars' or look for another multi-character
2295 if (folder == NULL) {
2298 else if (foldlen > 0) {
2299 foldlen -= (UTF) ? UTF8SKIP(uc) : 1;
2304 /* See if *uc is the beginning of a multi-character fold. If
2305 * so, we decrement the length remaining to look at, to account
2306 * for the current character this iteration. (We can use 'uc'
2307 * instead of the fold returned by TRIE_READ_CHAR because for
2308 * non-UTF, the latin1_safe macro is smart enough to account
2309 * for all the unfolded characters, and because for UTF, the
2310 * string will already have been folded earlier in the
2311 * compilation process */
2313 if ((foldlen = is_MULTI_CHAR_FOLD_utf8_safe(uc, e))) {
2314 foldlen -= UTF8SKIP(uc);
2317 else if ((foldlen = is_MULTI_CHAR_FOLD_latin1_safe(uc, e))) {
2322 /* The current character (and any potential folds) should be added
2323 * to the possible matching characters for this position in this
2327 U8 folded= folder[ (U8) uvc ];
2328 if ( !trie->charmap[ folded ] ) {
2329 trie->charmap[ folded ]=( ++trie->uniquecharcount );
2330 TRIE_STORE_REVCHAR( folded );
2333 if ( !trie->charmap[ uvc ] ) {
2334 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
2335 TRIE_STORE_REVCHAR( uvc );
2338 /* store the codepoint in the bitmap, and its folded
2340 TRIE_BITMAP_SET(trie, uvc);
2342 /* store the folded codepoint */
2343 if ( folder ) TRIE_BITMAP_SET(trie, folder[(U8) uvc ]);
2346 /* store first byte of utf8 representation of
2347 variant codepoints */
2348 if (! UVCHR_IS_INVARIANT(uvc)) {
2349 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
2352 set_bit = 0; /* We've done our bit :-) */
2356 /* XXX We could come up with the list of code points that fold
2357 * to this using PL_utf8_foldclosures, except not for
2358 * multi-char folds, as there may be multiple combinations
2359 * there that could work, which needs to wait until runtime to
2360 * resolve (The comment about LIGATURE FFI above is such an
2365 widecharmap = newHV();
2367 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
2370 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
2372 if ( !SvTRUE( *svpp ) ) {
2373 sv_setiv( *svpp, ++trie->uniquecharcount );
2374 TRIE_STORE_REVCHAR(uvc);
2377 } /* end loop through characters in this branch of the trie */
2379 /* We take the min and max for this branch and combine to find the min
2380 * and max for all branches processed so far */
2381 if( cur == first ) {
2382 trie->minlen = minchars;
2383 trie->maxlen = maxchars;
2384 } else if (minchars < trie->minlen) {
2385 trie->minlen = minchars;
2386 } else if (maxchars > trie->maxlen) {
2387 trie->maxlen = maxchars;
2389 } /* end first pass */
2390 DEBUG_TRIE_COMPILE_r(
2391 PerlIO_printf( Perl_debug_log,
2392 "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
2393 (int)depth * 2 + 2,"",
2394 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
2395 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
2396 (int)trie->minlen, (int)trie->maxlen )
2400 We now know what we are dealing with in terms of unique chars and
2401 string sizes so we can calculate how much memory a naive
2402 representation using a flat table will take. If it's over a reasonable
2403 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
2404 conservative but potentially much slower representation using an array
2407 At the end we convert both representations into the same compressed
2408 form that will be used in regexec.c for matching with. The latter
2409 is a form that cannot be used to construct with but has memory
2410 properties similar to the list form and access properties similar
2411 to the table form making it both suitable for fast searches and
2412 small enough that its feasable to store for the duration of a program.
2414 See the comment in the code where the compressed table is produced
2415 inplace from the flat tabe representation for an explanation of how
2416 the compression works.
2421 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
2424 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1)
2425 > SvIV(re_trie_maxbuff) )
2428 Second Pass -- Array Of Lists Representation
2430 Each state will be represented by a list of charid:state records
2431 (reg_trie_trans_le) the first such element holds the CUR and LEN
2432 points of the allocated array. (See defines above).
2434 We build the initial structure using the lists, and then convert
2435 it into the compressed table form which allows faster lookups
2436 (but cant be modified once converted).
2439 STRLEN transcount = 1;
2441 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2442 "%*sCompiling trie using list compiler\n",
2443 (int)depth * 2 + 2, ""));
2445 trie->states = (reg_trie_state *)
2446 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2447 sizeof(reg_trie_state) );
2451 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2453 regnode *noper = NEXTOPER( cur );
2454 U8 *uc = (U8*)STRING( noper );
2455 const U8 *e = uc + STR_LEN( noper );
2456 U32 state = 1; /* required init */
2457 U16 charid = 0; /* sanity init */
2458 U32 wordlen = 0; /* required init */
2460 if (OP(noper) == NOTHING) {
2461 regnode *noper_next= regnext(noper);
2462 if (noper_next != tail && OP(noper_next) == flags) {
2464 uc= (U8*)STRING(noper);
2465 e= uc + STR_LEN(noper);
2469 if (OP(noper) != NOTHING) {
2470 for ( ; uc < e ; uc += len ) {
2475 charid = trie->charmap[ uvc ];
2477 SV** const svpp = hv_fetch( widecharmap,
2484 charid=(U16)SvIV( *svpp );
2487 /* charid is now 0 if we dont know the char read, or
2488 * nonzero if we do */
2495 if ( !trie->states[ state ].trans.list ) {
2496 TRIE_LIST_NEW( state );
2499 check <= TRIE_LIST_USED( state );
2502 if ( TRIE_LIST_ITEM( state, check ).forid
2505 newstate = TRIE_LIST_ITEM( state, check ).newstate;
2510 newstate = next_alloc++;
2511 prev_states[newstate] = state;
2512 TRIE_LIST_PUSH( state, charid, newstate );
2517 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2521 TRIE_HANDLE_WORD(state);
2523 } /* end second pass */
2525 /* next alloc is the NEXT state to be allocated */
2526 trie->statecount = next_alloc;
2527 trie->states = (reg_trie_state *)
2528 PerlMemShared_realloc( trie->states,
2530 * sizeof(reg_trie_state) );
2532 /* and now dump it out before we compress it */
2533 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
2534 revcharmap, next_alloc,
2538 trie->trans = (reg_trie_trans *)
2539 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
2546 for( state=1 ; state < next_alloc ; state ++ ) {
2550 DEBUG_TRIE_COMPILE_MORE_r(
2551 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
2555 if (trie->states[state].trans.list) {
2556 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
2560 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2561 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
2562 if ( forid < minid ) {
2564 } else if ( forid > maxid ) {
2568 if ( transcount < tp + maxid - minid + 1) {
2570 trie->trans = (reg_trie_trans *)
2571 PerlMemShared_realloc( trie->trans,
2573 * sizeof(reg_trie_trans) );
2574 Zero( trie->trans + (transcount / 2),
2578 base = trie->uniquecharcount + tp - minid;
2579 if ( maxid == minid ) {
2581 for ( ; zp < tp ; zp++ ) {
2582 if ( ! trie->trans[ zp ].next ) {
2583 base = trie->uniquecharcount + zp - minid;
2584 trie->trans[ zp ].next = TRIE_LIST_ITEM( state,
2586 trie->trans[ zp ].check = state;
2592 trie->trans[ tp ].next = TRIE_LIST_ITEM( state,
2594 trie->trans[ tp ].check = state;
2599 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
2600 const U32 tid = base
2601 - trie->uniquecharcount
2602 + TRIE_LIST_ITEM( state, idx ).forid;
2603 trie->trans[ tid ].next = TRIE_LIST_ITEM( state,
2605 trie->trans[ tid ].check = state;
2607 tp += ( maxid - minid + 1 );
2609 Safefree(trie->states[ state ].trans.list);
2612 DEBUG_TRIE_COMPILE_MORE_r(
2613 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
2616 trie->states[ state ].trans.base=base;
2618 trie->lasttrans = tp + 1;
2622 Second Pass -- Flat Table Representation.
2624 we dont use the 0 slot of either trans[] or states[] so we add 1 to
2625 each. We know that we will need Charcount+1 trans at most to store
2626 the data (one row per char at worst case) So we preallocate both
2627 structures assuming worst case.
2629 We then construct the trie using only the .next slots of the entry
2632 We use the .check field of the first entry of the node temporarily
2633 to make compression both faster and easier by keeping track of how
2634 many non zero fields are in the node.
2636 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
2639 There are two terms at use here: state as a TRIE_NODEIDX() which is
2640 a number representing the first entry of the node, and state as a
2641 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1)
2642 and TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3)
2643 if there are 2 entrys per node. eg:
2651 The table is internally in the right hand, idx form. However as we
2652 also have to deal with the states array which is indexed by nodenum
2653 we have to use TRIE_NODENUM() to convert.
2656 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
2657 "%*sCompiling trie using table compiler\n",
2658 (int)depth * 2 + 2, ""));
2660 trie->trans = (reg_trie_trans *)
2661 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
2662 * trie->uniquecharcount + 1,
2663 sizeof(reg_trie_trans) );
2664 trie->states = (reg_trie_state *)
2665 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
2666 sizeof(reg_trie_state) );
2667 next_alloc = trie->uniquecharcount + 1;
2670 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
2672 regnode *noper = NEXTOPER( cur );
2673 const U8 *uc = (U8*)STRING( noper );
2674 const U8 *e = uc + STR_LEN( noper );
2676 U32 state = 1; /* required init */
2678 U16 charid = 0; /* sanity init */
2679 U32 accept_state = 0; /* sanity init */
2681 U32 wordlen = 0; /* required init */
2683 if (OP(noper) == NOTHING) {
2684 regnode *noper_next= regnext(noper);
2685 if (noper_next != tail && OP(noper_next) == flags) {
2687 uc= (U8*)STRING(noper);
2688 e= uc + STR_LEN(noper);
2692 if ( OP(noper) != NOTHING ) {
2693 for ( ; uc < e ; uc += len ) {
2698 charid = trie->charmap[ uvc ];
2700 SV* const * const svpp = hv_fetch( widecharmap,
2704 charid = svpp ? (U16)SvIV(*svpp) : 0;
2708 if ( !trie->trans[ state + charid ].next ) {
2709 trie->trans[ state + charid ].next = next_alloc;
2710 trie->trans[ state ].check++;
2711 prev_states[TRIE_NODENUM(next_alloc)]
2712 = TRIE_NODENUM(state);
2713 next_alloc += trie->uniquecharcount;
2715 state = trie->trans[ state + charid ].next;
2717 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
2719 /* charid is now 0 if we dont know the char read, or
2720 * nonzero if we do */
2723 accept_state = TRIE_NODENUM( state );
2724 TRIE_HANDLE_WORD(accept_state);
2726 } /* end second pass */
2728 /* and now dump it out before we compress it */
2729 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
2731 next_alloc, depth+1));
2735 * Inplace compress the table.*
2737 For sparse data sets the table constructed by the trie algorithm will
2738 be mostly 0/FAIL transitions or to put it another way mostly empty.
2739 (Note that leaf nodes will not contain any transitions.)
2741 This algorithm compresses the tables by eliminating most such
2742 transitions, at the cost of a modest bit of extra work during lookup:
2744 - Each states[] entry contains a .base field which indicates the
2745 index in the state[] array wheres its transition data is stored.
2747 - If .base is 0 there are no valid transitions from that node.
2749 - If .base is nonzero then charid is added to it to find an entry in
2752 -If trans[states[state].base+charid].check!=state then the
2753 transition is taken to be a 0/Fail transition. Thus if there are fail
2754 transitions at the front of the node then the .base offset will point
2755 somewhere inside the previous nodes data (or maybe even into a node
2756 even earlier), but the .check field determines if the transition is
2760 The following process inplace converts the table to the compressed
2761 table: We first do not compress the root node 1,and mark all its
2762 .check pointers as 1 and set its .base pointer as 1 as well. This
2763 allows us to do a DFA construction from the compressed table later,
2764 and ensures that any .base pointers we calculate later are greater
2767 - We set 'pos' to indicate the first entry of the second node.
2769 - We then iterate over the columns of the node, finding the first and
2770 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2771 and set the .check pointers accordingly, and advance pos
2772 appropriately and repreat for the next node. Note that when we copy
2773 the next pointers we have to convert them from the original
2774 NODEIDX form to NODENUM form as the former is not valid post
2777 - If a node has no transitions used we mark its base as 0 and do not
2778 advance the pos pointer.
2780 - If a node only has one transition we use a second pointer into the
2781 structure to fill in allocated fail transitions from other states.
2782 This pointer is independent of the main pointer and scans forward
2783 looking for null transitions that are allocated to a state. When it
2784 finds one it writes the single transition into the "hole". If the
2785 pointer doesnt find one the single transition is appended as normal.
2787 - Once compressed we can Renew/realloc the structures to release the
2790 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2791 specifically Fig 3.47 and the associated pseudocode.
2795 const U32 laststate = TRIE_NODENUM( next_alloc );
2798 trie->statecount = laststate;
2800 for ( state = 1 ; state < laststate ; state++ ) {
2802 const U32 stateidx = TRIE_NODEIDX( state );
2803 const U32 o_used = trie->trans[ stateidx ].check;
2804 U32 used = trie->trans[ stateidx ].check;
2805 trie->trans[ stateidx ].check = 0;
2808 used && charid < trie->uniquecharcount;
2811 if ( flag || trie->trans[ stateidx + charid ].next ) {
2812 if ( trie->trans[ stateidx + charid ].next ) {
2814 for ( ; zp < pos ; zp++ ) {
2815 if ( ! trie->trans[ zp ].next ) {
2819 trie->states[ state ].trans.base
2821 + trie->uniquecharcount
2823 trie->trans[ zp ].next
2824 = SAFE_TRIE_NODENUM( trie->trans[ stateidx
2826 trie->trans[ zp ].check = state;
2827 if ( ++zp > pos ) pos = zp;
2834 trie->states[ state ].trans.base
2835 = pos + trie->uniquecharcount - charid ;
2837 trie->trans[ pos ].next
2838 = SAFE_TRIE_NODENUM(
2839 trie->trans[ stateidx + charid ].next );
2840 trie->trans[ pos ].check = state;
2845 trie->lasttrans = pos + 1;
2846 trie->states = (reg_trie_state *)
2847 PerlMemShared_realloc( trie->states, laststate
2848 * sizeof(reg_trie_state) );
2849 DEBUG_TRIE_COMPILE_MORE_r(
2850 PerlIO_printf( Perl_debug_log,
2851 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2852 (int)depth * 2 + 2,"",
2853 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount
2857 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2860 } /* end table compress */
2862 DEBUG_TRIE_COMPILE_MORE_r(
2863 PerlIO_printf(Perl_debug_log,
2864 "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2865 (int)depth * 2 + 2, "",
2866 (UV)trie->statecount,
2867 (UV)trie->lasttrans)
2869 /* resize the trans array to remove unused space */
2870 trie->trans = (reg_trie_trans *)
2871 PerlMemShared_realloc( trie->trans, trie->lasttrans
2872 * sizeof(reg_trie_trans) );
2874 { /* Modify the program and insert the new TRIE node */
2875 U8 nodetype =(U8)(flags & 0xFF);
2879 regnode *optimize = NULL;
2880 #ifdef RE_TRACK_PATTERN_OFFSETS
2883 U32 mjd_nodelen = 0;
2884 #endif /* RE_TRACK_PATTERN_OFFSETS */
2885 #endif /* DEBUGGING */
2887 This means we convert either the first branch or the first Exact,
2888 depending on whether the thing following (in 'last') is a branch
2889 or not and whther first is the startbranch (ie is it a sub part of
2890 the alternation or is it the whole thing.)
2891 Assuming its a sub part we convert the EXACT otherwise we convert
2892 the whole branch sequence, including the first.
2894 /* Find the node we are going to overwrite */
2895 if ( first != startbranch || OP( last ) == BRANCH ) {
2896 /* branch sub-chain */
2897 NEXT_OFF( first ) = (U16)(last - first);
2898 #ifdef RE_TRACK_PATTERN_OFFSETS
2900 mjd_offset= Node_Offset((convert));
2901 mjd_nodelen= Node_Length((convert));
2904 /* whole branch chain */
2906 #ifdef RE_TRACK_PATTERN_OFFSETS
2909 const regnode *nop = NEXTOPER( convert );
2910 mjd_offset= Node_Offset((nop));
2911 mjd_nodelen= Node_Length((nop));
2915 PerlIO_printf(Perl_debug_log,
2916 "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2917 (int)depth * 2 + 2, "",
2918 (UV)mjd_offset, (UV)mjd_nodelen)
2921 /* But first we check to see if there is a common prefix we can
2922 split out as an EXACT and put in front of the TRIE node. */
2923 trie->startstate= 1;
2924 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2926 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2930 const U32 base = trie->states[ state ].trans.base;
2932 if ( trie->states[state].wordnum )
2935 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2936 if ( ( base + ofs >= trie->uniquecharcount ) &&
2937 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2938 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2940 if ( ++count > 1 ) {
2941 SV **tmp = av_fetch( revcharmap, ofs, 0);
2942 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2943 if ( state == 1 ) break;
2945 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2947 PerlIO_printf(Perl_debug_log,
2948 "%*sNew Start State=%"UVuf" Class: [",
2949 (int)depth * 2 + 2, "",
2952 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2953 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2955 TRIE_BITMAP_SET(trie,*ch);
2957 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2959 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2963 TRIE_BITMAP_SET(trie,*ch);
2965 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2966 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2972 SV **tmp = av_fetch( revcharmap, idx, 0);
2974 char *ch = SvPV( *tmp, len );
2976 SV *sv=sv_newmortal();
2977 PerlIO_printf( Perl_debug_log,
2978 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2979 (int)depth * 2 + 2, "",
2981 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2982 PL_colors[0], PL_colors[1],
2983 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2984 PERL_PV_ESCAPE_FIRSTCHAR
2989 OP( convert ) = nodetype;
2990 str=STRING(convert);
2993 STR_LEN(convert) += len;
2999 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
3004 trie->prefixlen = (state-1);
3006 regnode *n = convert+NODE_SZ_STR(convert);
3007 NEXT_OFF(convert) = NODE_SZ_STR(convert);
3008 trie->startstate = state;
3009 trie->minlen -= (state - 1);
3010 trie->maxlen -= (state - 1);
3012 /* At least the UNICOS C compiler choked on this
3013 * being argument to DEBUG_r(), so let's just have
3016 #ifdef PERL_EXT_RE_BUILD
3022 regnode *fix = convert;
3023 U32 word = trie->wordcount;
3025 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
3026 while( ++fix < n ) {
3027 Set_Node_Offset_Length(fix, 0, 0);
3030 SV ** const tmp = av_fetch( trie_words, word, 0 );
3032 if ( STR_LEN(convert) <= SvCUR(*tmp) )
3033 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
3035 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
3043 NEXT_OFF(convert) = (U16)(tail - convert);
3044 DEBUG_r(optimize= n);
3050 if ( trie->maxlen ) {
3051 NEXT_OFF( convert ) = (U16)(tail - convert);
3052 ARG_SET( convert, data_slot );
3053 /* Store the offset to the first unabsorbed branch in
3054 jump[0], which is otherwise unused by the jump logic.
3055 We use this when dumping a trie and during optimisation. */
3057 trie->jump[0] = (U16)(nextbranch - convert);
3059 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
3060 * and there is a bitmap
3061 * and the first "jump target" node we found leaves enough room
3062 * then convert the TRIE node into a TRIEC node, with the bitmap
3063 * embedded inline in the opcode - this is hypothetically faster.
3065 if ( !trie->states[trie->startstate].wordnum
3067 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
3069 OP( convert ) = TRIEC;
3070 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
3071 PerlMemShared_free(trie->bitmap);
3074 OP( convert ) = TRIE;
3076 /* store the type in the flags */
3077 convert->flags = nodetype;
3081 + regarglen[ OP( convert ) ];
3083 /* XXX We really should free up the resource in trie now,
3084 as we won't use them - (which resources?) dmq */
3086 /* needed for dumping*/
3087 DEBUG_r(if (optimize) {
3088 regnode *opt = convert;
3090 while ( ++opt < optimize) {
3091 Set_Node_Offset_Length(opt,0,0);
3094 Try to clean up some of the debris left after the
3097 while( optimize < jumper ) {
3098 mjd_nodelen += Node_Length((optimize));
3099 OP( optimize ) = OPTIMIZED;
3100 Set_Node_Offset_Length(optimize,0,0);
3103 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
3105 } /* end node insert */
3107 /* Finish populating the prev field of the wordinfo array. Walk back
3108 * from each accept state until we find another accept state, and if
3109 * so, point the first word's .prev field at the second word. If the
3110 * second already has a .prev field set, stop now. This will be the
3111 * case either if we've already processed that word's accept state,
3112 * or that state had multiple words, and the overspill words were
3113 * already linked up earlier.
3120 for (word=1; word <= trie->wordcount; word++) {
3122 if (trie->wordinfo[word].prev)
3124 state = trie->wordinfo[word].accept;
3126 state = prev_states[state];
3129 prev = trie->states[state].wordnum;
3133 trie->wordinfo[word].prev = prev;
3135 Safefree(prev_states);
3139 /* and now dump out the compressed format */
3140 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
3142 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
3144 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
3145 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
3147 SvREFCNT_dec_NN(revcharmap);
3151 : trie->startstate>1
3157 S_construct_ahocorasick_from_trie(pTHX_ RExC_state_t *pRExC_state, regnode *source, U32 depth)
3159 /* The Trie is constructed and compressed now so we can build a fail array if
3162 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and
3164 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi,
3168 We find the fail state for each state in the trie, this state is the longest
3169 proper suffix of the current state's 'word' that is also a proper prefix of
3170 another word in our trie. State 1 represents the word '' and is thus the
3171 default fail state. This allows the DFA not to have to restart after its
3172 tried and failed a word at a given point, it simply continues as though it
3173 had been matching the other word in the first place.
3175 'abcdgu'=~/abcdefg|cdgu/
3176 When we get to 'd' we are still matching the first word, we would encounter
3177 'g' which would fail, which would bring us to the state representing 'd' in
3178 the second word where we would try 'g' and succeed, proceeding to match
3181 /* add a fail transition */
3182 const U32 trie_offset = ARG(source);
3183 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
3185 const U32 ucharcount = trie->uniquecharcount;
3186 const U32 numstates = trie->statecount;
3187 const U32 ubound = trie->lasttrans + ucharcount;
3191 U32 base = trie->states[ 1 ].trans.base;
3194 const U32 data_slot = add_data( pRExC_state, STR_WITH_LEN("T"));
3196 GET_RE_DEBUG_FLAGS_DECL;
3198 PERL_ARGS_ASSERT_CONSTRUCT_AHOCORASICK_FROM_TRIE;
3199 PERL_UNUSED_CONTEXT;
3201 PERL_UNUSED_ARG(depth);
3204 if ( OP(source) == TRIE ) {
3205 struct regnode_1 *op = (struct regnode_1 *)
3206 PerlMemShared_calloc(1, sizeof(struct regnode_1));
3207 StructCopy(source,op,struct regnode_1);
3208 stclass = (regnode *)op;
3210 struct regnode_charclass *op = (struct regnode_charclass *)
3211 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
3212 StructCopy(source,op,struct regnode_charclass);
3213 stclass = (regnode *)op;
3215 OP(stclass)+=2; /* convert the TRIE type to its AHO-CORASICK equivalent */
3217 ARG_SET( stclass, data_slot );
3218 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
3219 RExC_rxi->data->data[ data_slot ] = (void*)aho;
3220 aho->trie=trie_offset;
3221 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
3222 Copy( trie->states, aho->states, numstates, reg_trie_state );
3223 Newxz( q, numstates, U32);
3224 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
3227 /* initialize fail[0..1] to be 1 so that we always have
3228 a valid final fail state */
3229 fail[ 0 ] = fail[ 1 ] = 1;
3231 for ( charid = 0; charid < ucharcount ; charid++ ) {
3232 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
3234 q[ q_write ] = newstate;
3235 /* set to point at the root */
3236 fail[ q[ q_write++ ] ]=1;
3239 while ( q_read < q_write) {
3240 const U32 cur = q[ q_read++ % numstates ];
3241 base = trie->states[ cur ].trans.base;
3243 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
3244 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
3246 U32 fail_state = cur;
3249 fail_state = fail[ fail_state ];
3250 fail_base = aho->states[ fail_state ].trans.base;
3251 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
3253 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
3254 fail[ ch_state ] = fail_state;
3255 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
3257 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
3259 q[ q_write++ % numstates] = ch_state;
3263 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
3264 when we fail in state 1, this allows us to use the
3265 charclass scan to find a valid start char. This is based on the principle
3266 that theres a good chance the string being searched contains lots of stuff
3267 that cant be a start char.
3269 fail[ 0 ] = fail[ 1 ] = 0;
3270 DEBUG_TRIE_COMPILE_r({
3271 PerlIO_printf(Perl_debug_log,
3272 "%*sStclass Failtable (%"UVuf" states): 0",
3273 (int)(depth * 2), "", (UV)numstates
3275 for( q_read=1; q_read<numstates; q_read++ ) {
3276 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
3278 PerlIO_printf(Perl_debug_log, "\n");
3281 /*RExC_seen |= REG_TRIEDFA_SEEN;*/
3286 #define DEBUG_PEEP(str,scan,depth) \
3287 DEBUG_OPTIMISE_r({if (scan){ \
3288 regnode *Next = regnext(scan); \
3289 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state); \
3290 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)", \
3291 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(RExC_mysv),\
3292 Next ? (REG_NODE_NUM(Next)) : 0 ); \
3293 DEBUG_SHOW_STUDY_FLAGS(flags," [ ","]");\
3294 PerlIO_printf(Perl_debug_log, "\n"); \
3297 /* The below joins as many adjacent EXACTish nodes as possible into a single
3298 * one. The regop may be changed if the node(s) contain certain sequences that
3299 * require special handling. The joining is only done if:
3300 * 1) there is room in the current conglomerated node to entirely contain the
3302 * 2) they are the exact same node type
3304 * The adjacent nodes actually may be separated by NOTHING-kind nodes, and
3305 * these get optimized out
3307 * If a node is to match under /i (folded), the number of characters it matches
3308 * can be different than its character length if it contains a multi-character
3309 * fold. *min_subtract is set to the total delta number of characters of the
3312 * And *unfolded_multi_char is set to indicate whether or not the node contains
3313 * an unfolded multi-char fold. This happens when whether the fold is valid or
3314 * not won't be known until runtime; namely for EXACTF nodes that contain LATIN
3315 * SMALL LETTER SHARP S, as only if the target string being matched against
3316 * turns out to be UTF-8 is that fold valid; and also for EXACTFL nodes whose
3317 * folding rules depend on the locale in force at runtime. (Multi-char folds
3318 * whose components are all above the Latin1 range are not run-time locale
3319 * dependent, and have already been folded by the time this function is
3322 * This is as good a place as any to discuss the design of handling these
3323 * multi-character fold sequences. It's been wrong in Perl for a very long
3324 * time. There are three code points in Unicode whose multi-character folds
3325 * were long ago discovered to mess things up. The previous designs for
3326 * dealing with these involved assigning a special node for them. This
3327 * approach doesn't always work, as evidenced by this example:
3328 * "\xDFs" =~ /s\xDF/ui # Used to fail before these patches
3329 * Both sides fold to "sss", but if the pattern is parsed to create a node that
3330 * would match just the \xDF, it won't be able to handle the case where a
3331 * successful match would have to cross the node's boundary. The new approach
3332 * that hopefully generally solves the problem generates an EXACTFU_SS node
3333 * that is "sss" in this case.
3335 * It turns out that there are problems with all multi-character folds, and not
3336 * just these three. Now the code is general, for all such cases. The
3337 * approach taken is:
3338 * 1) This routine examines each EXACTFish node that could contain multi-
3339 * character folded sequences. Since a single character can fold into
3340 * such a sequence, the minimum match length for this node is less than
3341 * the number of characters in the node. This routine returns in
3342 * *min_subtract how many characters to subtract from the the actual
3343 * length of the string to get a real minimum match length; it is 0 if
3344 * there are no multi-char foldeds. This delta is used by the caller to
3345 * adjust the min length of the match, and the delta between min and max,
3346 * so that the optimizer doesn't reject these possibilities based on size
3348 * 2) For the sequence involving the Sharp s (\xDF), the node type EXACTFU_SS
3349 * is used for an EXACTFU node that contains at least one "ss" sequence in
3350 * it. For non-UTF-8 patterns and strings, this is the only case where
3351 * there is a possible fold length change. That means that a regular
3352 * EXACTFU node without UTF-8 involvement doesn't have to concern itself
3353 * with length changes, and so can be processed faster. regexec.c takes
3354 * advantage of this. Generally, an EXACTFish node that is in UTF-8 is
3355 * pre-folded by regcomp.c (except EXACTFL, some of whose folds aren't
3356 * known until runtime). This saves effort in regex matching. However,
3357 * the pre-folding isn't done for non-UTF8 patterns because the fold of
3358 * the MICRO SIGN requires UTF-8, and we don't want to slow things down by
3359 * forcing the pattern into UTF8 unless necessary. Also what EXACTF (and,
3360 * again, EXACTFL) nodes fold to isn't known until runtime. The fold
3361 * possibilities for the non-UTF8 patterns are quite simple, except for
3362 * the sharp s. All the ones that don't involve a UTF-8 target string are
3363 * members of a fold-pair, and arrays are set up for all of them so that
3364 * the other member of the pair can be found quickly. Code elsewhere in
3365 * this file makes sure that in EXACTFU nodes, the sharp s gets folded to
3366 * 'ss', even if the pattern isn't UTF-8. This avoids the issues
3367 * described in the next item.
3368 * 3) A problem remains for unfolded multi-char folds. (These occur when the
3369 * validity of the fold won't be known until runtime, and so must remain
3370 * unfolded for now. This happens for the sharp s in EXACTF and EXACTFA
3371 * nodes when the pattern isn't in UTF-8. (Note, BTW, that there cannot
3372 * be an EXACTF node with a UTF-8 pattern.) They also occur for various
3373 * folds in EXACTFL nodes, regardless of the UTF-ness of the pattern.)
3374 * The reason this is a problem is that the optimizer part of regexec.c
3375 * (probably unwittingly, in Perl_regexec_flags()) makes an assumption
3376 * that a character in the pattern corresponds to at most a single
3377 * character in the target string. (And I do mean character, and not byte
3378 * here, unlike other parts of the documentation that have never been
3379 * updated to account for multibyte Unicode.) sharp s in EXACTF and
3380 * EXACTFL nodes can match the two character string 'ss'; in EXACTFA nodes
3381 * it can match "\x{17F}\x{17F}". These, along with other ones in EXACTFL
3382 * nodes, violate the assumption, and they are the only instances where it
3383 * is violated. I'm reluctant to try to change the assumption, as the
3384 * code involved is impenetrable to me (khw), so instead the code here
3385 * punts. This routine examines EXACTFL nodes, and (when the pattern
3386 * isn't UTF-8) EXACTF and EXACTFA for such unfolded folds, and returns a
3387 * boolean indicating whether or not the node contains such a fold. When
3388 * it is true, the caller sets a flag that later causes the optimizer in
3389 * this file to not set values for the floating and fixed string lengths,
3390 * and thus avoids the optimizer code in regexec.c that makes the invalid
3391 * assumption. Thus, there is no optimization based on string lengths for
3392 * EXACTFL nodes that contain these few folds, nor for non-UTF8-pattern
3393 * EXACTF and EXACTFA nodes that contain the sharp s. (The reason the
3394 * assumption is wrong only in these cases is that all other non-UTF-8
3395 * folds are 1-1; and, for UTF-8 patterns, we pre-fold all other folds to
3396 * their expanded versions. (Again, we can't prefold sharp s to 'ss' in
3397 * EXACTF nodes because we don't know at compile time if it actually
3398 * matches 'ss' or not. For EXACTF nodes it will match iff the target
3399 * string is in UTF-8. This is in contrast to EXACTFU nodes, where it
3400 * always matches; and EXACTFA where it never does. In an EXACTFA node in
3401 * a UTF-8 pattern, sharp s is folded to "\x{17F}\x{17F}, avoiding the
3402 * problem; but in a non-UTF8 pattern, folding it to that above-Latin1
3403 * string would require the pattern to be forced into UTF-8, the overhead
3404 * of which we want to avoid. Similarly the unfolded multi-char folds in
3405 * EXACTFL nodes will match iff the locale at the time of match is a UTF-8
3408 * Similarly, the code that generates tries doesn't currently handle
3409 * not-already-folded multi-char folds, and it looks like a pain to change
3410 * that. Therefore, trie generation of EXACTFA nodes with the sharp s
3411 * doesn't work. Instead, such an EXACTFA is turned into a new regnode,
3412 * EXACTFA_NO_TRIE, which the trie code knows not to handle. Most people
3413 * using /iaa matching will be doing so almost entirely with ASCII
3414 * strings, so this should rarely be encountered in practice */
3416 #define JOIN_EXACT(scan,min_subtract,unfolded_multi_char, flags) \
3417 if (PL_regkind[OP(scan)] == EXACT) \
3418 join_exact(pRExC_state,(scan),(min_subtract),unfolded_multi_char, (flags),NULL,depth+1)
3421 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan,
3422 UV *min_subtract, bool *unfolded_multi_char,
3423 U32 flags,regnode *val, U32 depth)
3425 /* Merge several consecutive EXACTish nodes into one. */
3426 regnode *n = regnext(scan);
3428 regnode *next = scan + NODE_SZ_STR(scan);
3432 regnode *stop = scan;
3433 GET_RE_DEBUG_FLAGS_DECL;
3435 PERL_UNUSED_ARG(depth);
3438 PERL_ARGS_ASSERT_JOIN_EXACT;
3439 #ifndef EXPERIMENTAL_INPLACESCAN
3440 PERL_UNUSED_ARG(flags);
3441 PERL_UNUSED_ARG(val);
3443 DEBUG_PEEP("join",scan,depth);
3445 /* Look through the subsequent nodes in the chain. Skip NOTHING, merge
3446 * EXACT ones that are mergeable to the current one. */
3448 && (PL_regkind[OP(n)] == NOTHING
3449 || (stringok && OP(n) == OP(scan)))
3451 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX)
3454 if (OP(n) == TAIL || n > next)
3456 if (PL_regkind[OP(n)] == NOTHING) {
3457 DEBUG_PEEP("skip:",n,depth);
3458 NEXT_OFF(scan) += NEXT_OFF(n);
3459 next = n + NODE_STEP_REGNODE;
3466 else if (stringok) {
3467 const unsigned int oldl = STR_LEN(scan);
3468 regnode * const nnext = regnext(n);
3470 /* XXX I (khw) kind of doubt that this works on platforms (should
3471 * Perl ever run on one) where U8_MAX is above 255 because of lots
3472 * of other assumptions */
3473 /* Don't join if the sum can't fit into a single node */
3474 if (oldl + STR_LEN(n) > U8_MAX)
3477 DEBUG_PEEP("merg",n,depth);
3480 NEXT_OFF(scan) += NEXT_OFF(n);
3481 STR_LEN(scan) += STR_LEN(n);
3482 next = n + NODE_SZ_STR(n);
3483 /* Now we can overwrite *n : */
3484 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
3492 #ifdef EXPERIMENTAL_INPLACESCAN
3493 if (flags && !NEXT_OFF(n)) {
3494 DEBUG_PEEP("atch", val, depth);
3495 if (reg_off_by_arg[OP(n)]) {
3496 ARG_SET(n, val - n);
3499 NEXT_OFF(n) = val - n;
3507 *unfolded_multi_char = FALSE;
3509 /* Here, all the adjacent mergeable EXACTish nodes have been merged. We
3510 * can now analyze for sequences of problematic code points. (Prior to
3511 * this final joining, sequences could have been split over boundaries, and
3512 * hence missed). The sequences only happen in folding, hence for any
3513 * non-EXACT EXACTish node */
3514 if (OP(scan) != EXACT && OP(scan) != EXACTL) {
3515 U8* s0 = (U8*) STRING(scan);
3517 U8* s_end = s0 + STR_LEN(scan);
3519 int total_count_delta = 0; /* Total delta number of characters that
3520 multi-char folds expand to */
3522 /* One pass is made over the node's string looking for all the
3523 * possibilities. To avoid some tests in the loop, there are two main
3524 * cases, for UTF-8 patterns (which can't have EXACTF nodes) and
3529 if (OP(scan) == EXACTFL) {
3532 /* An EXACTFL node would already have been changed to another
3533 * node type unless there is at least one character in it that
3534 * is problematic; likely a character whose fold definition
3535 * won't be known until runtime, and so has yet to be folded.
3536 * For all but the UTF-8 locale, folds are 1-1 in length, but
3537 * to handle the UTF-8 case, we need to create a temporary
3538 * folded copy using UTF-8 locale rules in order to analyze it.
3539 * This is because our macros that look to see if a sequence is
3540 * a multi-char fold assume everything is folded (otherwise the
3541 * tests in those macros would be too complicated and slow).
3542 * Note that here, the non-problematic folds will have already
3543 * been done, so we can just copy such characters. We actually
3544 * don't completely fold the EXACTFL string. We skip the
3545 * unfolded multi-char folds, as that would just create work
3546 * below to figure out the size they already are */
3548 Newx(folded, UTF8_MAX_FOLD_CHAR_EXPAND * STR_LEN(scan) + 1, U8);
3551 STRLEN s_len = UTF8SKIP(s);
3552 if (! is_PROBLEMATIC_LOCALE_FOLD_utf8(s)) {
3553 Copy(s, d, s_len, U8);
3556 else if (is_FOLDS_TO_MULTI_utf8(s)) {
3557 *unfolded_multi_char = TRUE;
3558 Copy(s, d, s_len, U8);
3561 else if (isASCII(*s)) {
3562 *(d++) = toFOLD(*s);
3566 _to_utf8_fold_flags(s, d, &len, FOLD_FLAGS_FULL);
3572 /* Point the remainder of the routine to look at our temporary
3576 } /* End of creating folded copy of EXACTFL string */
3578 /* Examine the string for a multi-character fold sequence. UTF-8
3579 * patterns have all characters pre-folded by the time this code is
3581 while (s < s_end - 1) /* Can stop 1 before the end, as minimum
3582 length sequence we are looking for is 2 */
3584 int count = 0; /* How many characters in a multi-char fold */
3585 int len = is_MULTI_CHAR_FOLD_utf8_safe(s, s_end);
3586 if (! len) { /* Not a multi-char fold: get next char */
3591 /* Nodes with 'ss' require special handling, except for
3592 * EXACTFA-ish for which there is no multi-char fold to this */
3593 if (len == 2 && *s == 's' && *(s+1) == 's'
3594 && OP(scan) != EXACTFA
3595 && OP(scan) != EXACTFA_NO_TRIE)
3598 if (OP(scan) != EXACTFL) {
3599 OP(scan) = EXACTFU_SS;
3603 else { /* Here is a generic multi-char fold. */
3604 U8* multi_end = s + len;
3606 /* Count how many characters are in it. In the case of
3607 * /aa, no folds which contain ASCII code points are
3608 * allowed, so check for those, and skip if found. */
3609 if (OP(scan) != EXACTFA && OP(scan) != EXACTFA_NO_TRIE) {
3610 count = utf8_length(s, multi_end);
3614 while (s < multi_end) {
3617 goto next_iteration;
3627 /* The delta is how long the sequence is minus 1 (1 is how long
3628 * the character that folds to the sequence is) */
3629 total_count_delta += count - 1;
3633 /* We created a temporary folded copy of the string in EXACTFL
3634 * nodes. Therefore we need to be sure it doesn't go below zero,
3635 * as the real string could be shorter */
3636 if (OP(scan) == EXACTFL) {
3637 int total_chars = utf8_length((U8*) STRING(scan),
3638 (U8*) STRING(scan) + STR_LEN(scan));
3639 if (total_count_delta > total_chars) {
3640 total_count_delta = total_chars;
3644 *min_subtract += total_count_delta;
3647 else if (OP(scan) == EXACTFA) {
3649 /* Non-UTF-8 pattern, EXACTFA node. There can't be a multi-char
3650 * fold to the ASCII range (and there are no existing ones in the
3651 * upper latin1 range). But, as outlined in the comments preceding
3652 * this function, we need to flag any occurrences of the sharp s.
3653 * This character forbids trie formation (because of added
3656 if (*s == LATIN_SMALL_LETTER_SHARP_S) {
3657 OP(scan) = EXACTFA_NO_TRIE;
3658 *unfolded_multi_char = TRUE;
3667 /* Non-UTF-8 pattern, not EXACTFA node. Look for the multi-char
3668 * folds that are all Latin1. As explained in the comments
3669 * preceding this function, we look also for the sharp s in EXACTF
3670 * and EXACTFL nodes; it can be in the final position. Otherwise
3671 * we can stop looking 1 byte earlier because have to find at least
3672 * two characters for a multi-fold */
3673 const U8* upper = (OP(scan) == EXACTF || OP(scan) == EXACTFL)
3678 int len = is_MULTI_CHAR_FOLD_latin1_safe(s, s_end);
3679 if (! len) { /* Not a multi-char fold. */
3680 if (*s == LATIN_SMALL_LETTER_SHARP_S
3681 && (OP(scan) == EXACTF || OP(scan) == EXACTFL))
3683 *unfolded_multi_char = TRUE;
3690 && isALPHA_FOLD_EQ(*s, 's')
3691 && isALPHA_FOLD_EQ(*(s+1), 's'))
3694 /* EXACTF nodes need to know that the minimum length
3695 * changed so that a sharp s in the string can match this
3696 * ss in the pattern, but they remain EXACTF nodes, as they
3697 * won't match this unless the target string is is UTF-8,
3698 * which we don't know until runtime. EXACTFL nodes can't
3699 * transform into EXACTFU nodes */
3700 if (OP(scan) != EXACTF && OP(scan) != EXACTFL) {
3701 OP(scan) = EXACTFU_SS;
3705 *min_subtract += len - 1;
3712 /* Allow dumping but overwriting the collection of skipped
3713 * ops and/or strings with fake optimized ops */
3714 n = scan + NODE_SZ_STR(scan);
3722 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
3726 /* REx optimizer. Converts nodes into quicker variants "in place".
3727 Finds fixed substrings. */
3729 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
3730 to the position after last scanned or to NULL. */
3732 #define INIT_AND_WITHP \
3733 assert(!and_withp); \
3734 Newx(and_withp,1, regnode_ssc); \
3735 SAVEFREEPV(and_withp)
3739 S_unwind_scan_frames(pTHX_ const void *p)
3741 scan_frame *f= (scan_frame *)p;
3743 scan_frame *n= f->next_frame;
3751 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
3752 SSize_t *minlenp, SSize_t *deltap,
3757 regnode_ssc *and_withp,
3758 U32 flags, U32 depth)
3759 /* scanp: Start here (read-write). */
3760 /* deltap: Write maxlen-minlen here. */
3761 /* last: Stop before this one. */
3762 /* data: string data about the pattern */
3763 /* stopparen: treat close N as END */
3764 /* recursed: which subroutines have we recursed into */
3765 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
3767 /* There must be at least this number of characters to match */
3770 regnode *scan = *scanp, *next;
3772 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
3773 int is_inf_internal = 0; /* The studied chunk is infinite */
3774 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
3775 scan_data_t data_fake;
3776 SV *re_trie_maxbuff = NULL;
3777 regnode *first_non_open = scan;
3778 SSize_t stopmin = SSize_t_MAX;
3779 scan_frame *frame = NULL;
3780 GET_RE_DEBUG_FLAGS_DECL;
3782 PERL_ARGS_ASSERT_STUDY_CHUNK;
3786 while (first_non_open && OP(first_non_open) == OPEN)
3787 first_non_open=regnext(first_non_open);
3793 RExC_study_chunk_recursed_count++;
3795 DEBUG_OPTIMISE_MORE_r(
3797 PerlIO_printf(Perl_debug_log,
3798 "%*sstudy_chunk stopparen=%ld recursed_count=%lu depth=%lu recursed_depth=%lu scan=%p last=%p",
3799 (int)(depth*2), "", (long)stopparen,
3800 (unsigned long)RExC_study_chunk_recursed_count,
3801 (unsigned long)depth, (unsigned long)recursed_depth,
3804 if (recursed_depth) {
3807 for ( j = 0 ; j < recursed_depth ; j++ ) {
3808 for ( i = 0 ; i < (U32)RExC_npar ; i++ ) {
3810 PAREN_TEST(RExC_study_chunk_recursed +
3811 ( j * RExC_study_chunk_recursed_bytes), i )
3814 !PAREN_TEST(RExC_study_chunk_recursed +
3815 (( j - 1 ) * RExC_study_chunk_recursed_bytes), i)
3818 PerlIO_printf(Perl_debug_log," %d",(int)i);
3822 if ( j + 1 < recursed_depth ) {
3823 PerlIO_printf(Perl_debug_log, ",");
3827 PerlIO_printf(Perl_debug_log,"\n");
3830 while ( scan && OP(scan) != END && scan < last ){
3831 UV min_subtract = 0; /* How mmany chars to subtract from the minimum
3832 node length to get a real minimum (because
3833 the folded version may be shorter) */
3834 bool unfolded_multi_char = FALSE;
3835 /* Peephole optimizer: */
3836 DEBUG_STUDYDATA("Peep:", data, depth);
3837 DEBUG_PEEP("Peep", scan, depth);
3840 /* The reason we do this here we need to deal with things like /(?:f)(?:o)(?:o)/
3841 * which cant be dealt with by the normal EXACT parsing code, as each (?:..) is handled
3842 * by a different invocation of reg() -- Yves
3844 JOIN_EXACT(scan,&min_subtract, &unfolded_multi_char, 0);
3846 /* Follow the next-chain of the current node and optimize
3847 away all the NOTHINGs from it. */
3848 if (OP(scan) != CURLYX) {
3849 const int max = (reg_off_by_arg[OP(scan)]
3851 /* I32 may be smaller than U16 on CRAYs! */
3852 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
3853 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
3857 /* Skip NOTHING and LONGJMP. */
3858 while ((n = regnext(n))
3859 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
3860 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
3861 && off + noff < max)
3863 if (reg_off_by_arg[OP(scan)])
3866 NEXT_OFF(scan) = off;
3869 /* The principal pseudo-switch. Cannot be a switch, since we
3870 look into several different things. */
3871 if ( OP(scan) == DEFINEP ) {
3873 SSize_t deltanext = 0;
3874 SSize_t fake_last_close = 0;
3875 I32 f = SCF_IN_DEFINE;
3877 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3878 scan = regnext(scan);
3879 assert( OP(scan) == IFTHEN );
3880 DEBUG_PEEP("expect IFTHEN", scan, depth);
3882 data_fake.last_closep= &fake_last_close;
3884 next = regnext(scan);
3885 scan = NEXTOPER(NEXTOPER(scan));
3886 DEBUG_PEEP("scan", scan, depth);
3887 DEBUG_PEEP("next", next, depth);
3889 /* we suppose the run is continuous, last=next...
3890 * NOTE we dont use the return here! */
3891 (void)study_chunk(pRExC_state, &scan, &minlen,
3892 &deltanext, next, &data_fake, stopparen,
3893 recursed_depth, NULL, f, depth+1);
3898 OP(scan) == BRANCH ||
3899 OP(scan) == BRANCHJ ||
3902 next = regnext(scan);
3905 /* The op(next)==code check below is to see if we
3906 * have "BRANCH-BRANCH", "BRANCHJ-BRANCHJ", "IFTHEN-IFTHEN"
3907 * IFTHEN is special as it might not appear in pairs.
3908 * Not sure whether BRANCH-BRANCHJ is possible, regardless
3909 * we dont handle it cleanly. */
3910 if (OP(next) == code || code == IFTHEN) {
3911 /* NOTE - There is similar code to this block below for
3912 * handling TRIE nodes on a re-study. If you change stuff here
3913 * check there too. */
3914 SSize_t max1 = 0, min1 = SSize_t_MAX, num = 0;
3916 regnode * const startbranch=scan;
3918 if (flags & SCF_DO_SUBSTR) {
3919 /* Cannot merge strings after this. */
3920 scan_commit(pRExC_state, data, minlenp, is_inf);
3923 if (flags & SCF_DO_STCLASS)
3924 ssc_init_zero(pRExC_state, &accum);
3926 while (OP(scan) == code) {
3927 SSize_t deltanext, minnext, fake;
3929 regnode_ssc this_class;
3931 DEBUG_PEEP("Branch", scan, depth);
3934 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
3936 data_fake.whilem_c = data->whilem_c;
3937 data_fake.last_closep = data->last_closep;
3940 data_fake.last_closep = &fake;
3942 data_fake.pos_delta = delta;
3943 next = regnext(scan);
3945 scan = NEXTOPER(scan); /* everything */
3946 if (code != BRANCH) /* everything but BRANCH */
3947 scan = NEXTOPER(scan);
3949 if (flags & SCF_DO_STCLASS) {
3950 ssc_init(pRExC_state, &this_class);
3951 data_fake.start_class = &this_class;
3952 f = SCF_DO_STCLASS_AND;
3954 if (flags & SCF_WHILEM_VISITED_POS)
3955 f |= SCF_WHILEM_VISITED_POS;
3957 /* we suppose the run is continuous, last=next...*/
3958 minnext = study_chunk(pRExC_state, &scan, minlenp,
3959 &deltanext, next, &data_fake, stopparen,
3960 recursed_depth, NULL, f,depth+1);
3964 if (deltanext == SSize_t_MAX) {
3965 is_inf = is_inf_internal = 1;
3967 } else if (max1 < minnext + deltanext)
3968 max1 = minnext + deltanext;
3970 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
3972 if (data_fake.flags & SCF_SEEN_ACCEPT) {
3973 if ( stopmin > minnext)
3974 stopmin = min + min1;
3975 flags &= ~SCF_DO_SUBSTR;
3977 data->flags |= SCF_SEEN_ACCEPT;
3980 if (data_fake.flags & SF_HAS_EVAL)
3981 data->flags |= SF_HAS_EVAL;
3982 data->whilem_c = data_fake.whilem_c;
3984 if (flags & SCF_DO_STCLASS)
3985 ssc_or(pRExC_state, &accum, (regnode_charclass*)&this_class);
3987 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
3989 if (flags & SCF_DO_SUBSTR) {
3990 data->pos_min += min1;
3991 if (data->pos_delta >= SSize_t_MAX - (max1 - min1))
3992 data->pos_delta = SSize_t_MAX;
3994 data->pos_delta += max1 - min1;
3995 if (max1 != min1 || is_inf)
3996 data->longest = &(data->longest_float);
3999 if (delta == SSize_t_MAX
4000 || SSize_t_MAX - delta - (max1 - min1) < 0)
4001 delta = SSize_t_MAX;
4003 delta += max1 - min1;
4004 if (flags & SCF_DO_STCLASS_OR) {
4005 ssc_or(pRExC_state, data->start_class, (regnode_charclass*) &accum);
4007 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
4008 flags &= ~SCF_DO_STCLASS;
4011 else if (flags & SCF_DO_STCLASS_AND) {
4013 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
4014 flags &= ~SCF_DO_STCLASS;
4017 /* Switch to OR mode: cache the old value of
4018 * data->start_class */
4020 StructCopy(data->start_class, and_withp, regnode_ssc);
4021 flags &= ~SCF_DO_STCLASS_AND;
4022 StructCopy(&accum, data->start_class, regnode_ssc);
4023 flags |= SCF_DO_STCLASS_OR;
4027 if (PERL_ENABLE_TRIE_OPTIMISATION &&
4028 OP( startbranch ) == BRANCH )
4032 Assuming this was/is a branch we are dealing with: 'scan'
4033 now points at the item that follows the branch sequence,
4034 whatever it is. We now start at the beginning of the
4035 sequence and look for subsequences of
4041 which would be constructed from a pattern like
4044 If we can find such a subsequence we need to turn the first
4045 element into a trie and then add the subsequent branch exact
4046 strings to the trie.
4050 1. patterns where the whole set of branches can be
4053 2. patterns where only a subset can be converted.
4055 In case 1 we can replace the whole set with a single regop
4056 for the trie. In case 2 we need to keep the start and end
4059 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
4060 becomes BRANCH TRIE; BRANCH X;
4062 There is an additional case, that being where there is a
4063 common prefix, which gets split out into an EXACT like node
4064 preceding the TRIE node.
4066 If x(1..n)==tail then we can do a simple trie, if not we make
4067 a "jump" trie, such that when we match the appropriate word
4068 we "jump" to the appropriate tail node. Essentially we turn
4069 a nested if into a case structure of sorts.
4074 if (!re_trie_maxbuff) {
4075 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
4076 if (!SvIOK(re_trie_maxbuff))
4077 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
4079 if ( SvIV(re_trie_maxbuff)>=0 ) {
4081 regnode *first = (regnode *)NULL;
4082 regnode *last = (regnode *)NULL;
4083 regnode *tail = scan;
4087 /* var tail is used because there may be a TAIL
4088 regop in the way. Ie, the exacts will point to the
4089 thing following the TAIL, but the last branch will
4090 point at the TAIL. So we advance tail. If we
4091 have nested (?:) we may have to move through several
4095 while ( OP( tail ) == TAIL ) {
4096 /* this is the TAIL generated by (?:) */
4097 tail = regnext( tail );
4101 DEBUG_TRIE_COMPILE_r({
4102 regprop(RExC_rx, RExC_mysv, tail, NULL, pRExC_state);
4103 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
4104 (int)depth * 2 + 2, "",
4105 "Looking for TRIE'able sequences. Tail node is: ",
4106 SvPV_nolen_const( RExC_mysv )
4112 Step through the branches
4113 cur represents each branch,
4114 noper is the first thing to be matched as part
4116 noper_next is the regnext() of that node.
4118 We normally handle a case like this
4119 /FOO[xyz]|BAR[pqr]/ via a "jump trie" but we also
4120 support building with NOJUMPTRIE, which restricts
4121 the trie logic to structures like /FOO|BAR/.
4123 If noper is a trieable nodetype then the branch is
4124 a possible optimization target. If we are building
4125 under NOJUMPTRIE then we require that noper_next is
4126 the same as scan (our current position in the regex
4129 Once we have two or more consecutive such branches
4130 we can create a trie of the EXACT's contents and
4131 stitch it in place into the program.
4133 If the sequence represents all of the branches in
4134 the alternation we replace the entire thing with a
4137 Otherwise when it is a subsequence we need to
4138 stitch it in place and replace only the relevant
4139 branches. This means the first branch has to remain
4140 as it is used by the alternation logic, and its
4141 next pointer, and needs to be repointed at the item
4142 on the branch chain following the last branch we
4143 have optimized away.
4145 This could be either a BRANCH, in which case the
4146 subsequence is internal, or it could be the item
4147 following the branch sequence in which case the
4148 subsequence is at the end (which does not
4149 necessarily mean the first node is the start of the
4152 TRIE_TYPE(X) is a define which maps the optype to a
4156 ----------------+-----------
4160 EXACTFU_SS | EXACTFU
4163 EXACTFLU8 | EXACTFLU8
4167 #define TRIE_TYPE(X) ( ( NOTHING == (X) ) \
4169 : ( EXACT == (X) ) \
4171 : ( EXACTFU == (X) || EXACTFU_SS == (X) ) \
4173 : ( EXACTFA == (X) ) \
4175 : ( EXACTL == (X) ) \
4177 : ( EXACTFLU8 == (X) ) \
4181 /* dont use tail as the end marker for this traverse */
4182 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
4183 regnode * const noper = NEXTOPER( cur );
4184 U8 noper_type = OP( noper );
4185 U8 noper_trietype = TRIE_TYPE( noper_type );
4186 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
4187 regnode * const noper_next = regnext( noper );
4188 U8 noper_next_type = (noper_next && noper_next != tail) ? OP(noper_next) : 0;
4189 U8 noper_next_trietype = (noper_next && noper_next != tail) ? TRIE_TYPE( noper_next_type ) :0;
4192 DEBUG_TRIE_COMPILE_r({
4193 regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
4194 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
4195 (int)depth * 2 + 2,"", SvPV_nolen_const( RExC_mysv ), REG_NODE_NUM(cur) );
4197 regprop(RExC_rx, RExC_mysv, noper, NULL, pRExC_state);
4198 PerlIO_printf( Perl_debug_log, " -> %s",
4199 SvPV_nolen_const(RExC_mysv));
4202 regprop(RExC_rx, RExC_mysv, noper_next, NULL, pRExC_state);
4203 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
4204 SvPV_nolen_const(RExC_mysv));
4206 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d,tt==%s,nt==%s,nnt==%s)\n",
4207 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur),
4208 PL_reg_name[trietype], PL_reg_name[noper_trietype], PL_reg_name[noper_next_trietype]
4212 /* Is noper a trieable nodetype that can be merged
4213 * with the current trie (if there is one)? */
4217 ( noper_trietype == NOTHING)
4218 || ( trietype == NOTHING )
4219 || ( trietype == noper_trietype )
4222 && noper_next == tail
4226 /* Handle mergable triable node Either we are
4227 * the first node in a new trieable sequence,
4228 * in which case we do some bookkeeping,
4229 * otherwise we update the end pointer. */
4232 if ( noper_trietype == NOTHING ) {
4233 #if !defined(DEBUGGING) && !defined(NOJUMPTRIE)
4234 regnode * const noper_next = regnext( noper );
4235 U8 noper_next_type = (noper_next && noper_next!=tail) ? OP(noper_next) : 0;
4236 U8 noper_next_trietype = noper_next_type ? TRIE_TYPE( noper_next_type ) :0;
4239 if ( noper_next_trietype ) {
4240 trietype = noper_next_trietype;
4241 } else if (noper_next_type) {
4242 /* a NOTHING regop is 1 regop wide.
4243 * We need at least two for a trie
4244 * so we can't merge this in */
4248 trietype = noper_trietype;
4251 if ( trietype == NOTHING )
4252 trietype = noper_trietype;
4257 } /* end handle mergable triable node */
4259 /* handle unmergable node -
4260 * noper may either be a triable node which can
4261 * not be tried together with the current trie,
4262 * or a non triable node */
4264 /* If last is set and trietype is not
4265 * NOTHING then we have found at least two
4266 * triable branch sequences in a row of a
4267 * similar trietype so we can turn them
4268 * into a trie. If/when we allow NOTHING to
4269 * start a trie sequence this condition
4270 * will be required, and it isn't expensive
4271 * so we leave it in for now. */
4272 if ( trietype && trietype != NOTHING )
4273 make_trie( pRExC_state,
4274 startbranch, first, cur, tail,
4275 count, trietype, depth+1 );
4276 last = NULL; /* note: we clear/update
4277 first, trietype etc below,
4278 so we dont do it here */
4282 && noper_next == tail
4285 /* noper is triable, so we can start a new
4289 trietype = noper_trietype;
4291 /* if we already saw a first but the
4292 * current node is not triable then we have
4293 * to reset the first information. */
4298 } /* end handle unmergable node */
4299 } /* loop over branches */
4300 DEBUG_TRIE_COMPILE_r({
4301 regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
4302 PerlIO_printf( Perl_debug_log,
4303 "%*s- %s (%d) <SCAN FINISHED>\n",
4305 "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
4308 if ( last && trietype ) {
4309 if ( trietype != NOTHING ) {
4310 /* the last branch of the sequence was part of
4311 * a trie, so we have to construct it here
4312 * outside of the loop */
4313 made= make_trie( pRExC_state, startbranch,
4314 first, scan, tail, count,
4315 trietype, depth+1 );
4316 #ifdef TRIE_STUDY_OPT
4317 if ( ((made == MADE_EXACT_TRIE &&
4318 startbranch == first)
4319 || ( first_non_open == first )) &&
4321 flags |= SCF_TRIE_RESTUDY;
4322 if ( startbranch == first
4325 RExC_seen &=~REG_TOP_LEVEL_BRANCHES_SEEN;
4330 /* at this point we know whatever we have is a
4331 * NOTHING sequence/branch AND if 'startbranch'
4332 * is 'first' then we can turn the whole thing
4335 if ( startbranch == first ) {
4337 /* the entire thing is a NOTHING sequence,
4338 * something like this: (?:|) So we can
4339 * turn it into a plain NOTHING op. */
4340 DEBUG_TRIE_COMPILE_r({
4341 regprop(RExC_rx, RExC_mysv, cur, NULL, pRExC_state);
4342 PerlIO_printf( Perl_debug_log,
4343 "%*s- %s (%d) <NOTHING BRANCH SEQUENCE>\n", (int)depth * 2 + 2,
4344 "", SvPV_nolen_const( RExC_mysv ),REG_NODE_NUM(cur));
4347 OP(startbranch)= NOTHING;
4348 NEXT_OFF(startbranch)= tail - startbranch;
4349 for ( opt= startbranch + 1; opt < tail ; opt++ )
4353 } /* end if ( last) */
4354 } /* TRIE_MAXBUF is non zero */
4359 else if ( code == BRANCHJ ) { /* single branch is optimized. */
4360 scan = NEXTOPER(NEXTOPER(scan));
4361 } else /* single branch is optimized. */
4362 scan = NEXTOPER(scan);
4364 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
4366 regnode *start = NULL;
4367 regnode *end = NULL;
4368 U32 my_recursed_depth= recursed_depth;
4371 if (OP(scan) != SUSPEND) { /* GOSUB/GOSTART */
4372 /* Do setup, note this code has side effects beyond
4373 * the rest of this block. Specifically setting
4374 * RExC_recurse[] must happen at least once during
4376 if (OP(scan) == GOSUB) {
4378 RExC_recurse[ARG2L(scan)] = scan;
4379 start = RExC_open_parens[paren-1];
4380 end = RExC_close_parens[paren-1];
4382 start = RExC_rxi->program + 1;
4385 /* NOTE we MUST always execute the above code, even
4386 * if we do nothing with a GOSUB/GOSTART */
4388 ( flags & SCF_IN_DEFINE )
4391 (is_inf_internal || is_inf || (data && data->flags & SF_IS_INF))
4393 ( (flags & (SCF_DO_STCLASS | SCF_DO_SUBSTR)) == 0 )
4396 /* no need to do anything here if we are in a define. */
4397 /* or we are after some kind of infinite construct
4398 * so we can skip recursing into this item.
4399 * Since it is infinite we will not change the maxlen
4400 * or delta, and if we miss something that might raise
4401 * the minlen it will merely pessimise a little.
4403 * Iow /(?(DEFINE)(?<foo>foo|food))a+(?&foo)/
4404 * might result in a minlen of 1 and not of 4,
4405 * but this doesn't make us mismatch, just try a bit
4406 * harder than we should.
4408 scan= regnext(scan);
4415 !PAREN_TEST(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes), paren)
4417 /* it is quite possible that there are more efficient ways
4418 * to do this. We maintain a bitmap per level of recursion
4419 * of which patterns we have entered so we can detect if a
4420 * pattern creates a possible infinite loop. When we
4421 * recurse down a level we copy the previous levels bitmap
4422 * down. When we are at recursion level 0 we zero the top
4423 * level bitmap. It would be nice to implement a different
4424 * more efficient way of doing this. In particular the top
4425 * level bitmap may be unnecessary.
4427 if (!recursed_depth) {
4428 Zero(RExC_study_chunk_recursed, RExC_study_chunk_recursed_bytes, U8);
4430 Copy(RExC_study_chunk_recursed + ((recursed_depth-1) * RExC_study_chunk_recursed_bytes),
4431 RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes),
4432 RExC_study_chunk_recursed_bytes, U8);
4434 /* we havent recursed into this paren yet, so recurse into it */
4435 DEBUG_STUDYDATA("set:", data,depth);
4436 PAREN_SET(RExC_study_chunk_recursed + (recursed_depth * RExC_study_chunk_recursed_bytes), paren);
4437 my_recursed_depth= recursed_depth + 1;
4439 DEBUG_STUDYDATA("inf:", data,depth);
4440 /* some form of infinite recursion, assume infinite length
4442 if (flags & SCF_DO_SUBSTR) {
4443 scan_commit(pRExC_state, data, minlenp, is_inf);
4444 data->longest = &(data->longest_float);
4446 is_inf = is_inf_internal = 1;
4447 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4448 ssc_anything(data->start_class);
4449 flags &= ~SCF_DO_STCLASS;
4451 start= NULL; /* reset start so we dont recurse later on. */
4456 end = regnext(scan);
4459 scan_frame *newframe;
4461 if (!RExC_frame_last) {
4462 Newxz(newframe, 1, scan_frame);
4463 SAVEDESTRUCTOR_X(S_unwind_scan_frames, newframe);
4464 RExC_frame_head= newframe;
4466 } else if (!RExC_frame_last->next_frame) {
4467 Newxz(newframe,1,scan_frame);
4468 RExC_frame_last->next_frame= newframe;
4469 newframe->prev_frame= RExC_frame_last;
4472 newframe= RExC_frame_last->next_frame;
4474 RExC_frame_last= newframe;
4476 newframe->next_regnode = regnext(scan);
4477 newframe->last_regnode = last;
4478 newframe->stopparen = stopparen;
4479 newframe->prev_recursed_depth = recursed_depth;
4480 newframe->this_prev_frame= frame;
4482 DEBUG_STUDYDATA("frame-new:",data,depth);
4483 DEBUG_PEEP("fnew", scan, depth);
4490 recursed_depth= my_recursed_depth;
4495 else if (OP(scan) == EXACT || OP(scan) == EXACTL) {
4496 SSize_t l = STR_LEN(scan);
4499 const U8 * const s = (U8*)STRING(scan);
4500 uc = utf8_to_uvchr_buf(s, s + l, NULL);
4501 l = utf8_length(s, s + l);
4503 uc = *((U8*)STRING(scan));
4506 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
4507 /* The code below prefers earlier match for fixed
4508 offset, later match for variable offset. */
4509 if (data->last_end == -1) { /* Update the start info. */
4510 data->last_start_min = data->pos_min;
4511 data->last_start_max = is_inf
4512 ? SSize_t_MAX : data->pos_min + data->pos_delta;
4514 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
4516 SvUTF8_on(data->last_found);
4518 SV * const sv = data->last_found;
4519 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4520 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4521 if (mg && mg->mg_len >= 0)
4522 mg->mg_len += utf8_length((U8*)STRING(scan),
4523 (U8*)STRING(scan)+STR_LEN(scan));
4525 data->last_end = data->pos_min + l;
4526 data->pos_min += l; /* As in the first entry. */
4527 data->flags &= ~SF_BEFORE_EOL;
4530 /* ANDing the code point leaves at most it, and not in locale, and
4531 * can't match null string */
4532 if (flags & SCF_DO_STCLASS_AND) {
4533 ssc_cp_and(data->start_class, uc);
4534 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
4535 ssc_clear_locale(data->start_class);
4537 else if (flags & SCF_DO_STCLASS_OR) {
4538 ssc_add_cp(data->start_class, uc);
4539 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
4541 /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
4542 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
4544 flags &= ~SCF_DO_STCLASS;
4546 else if (PL_regkind[OP(scan)] == EXACT) {
4547 /* But OP != EXACT!, so is EXACTFish */
4548 SSize_t l = STR_LEN(scan);
4549 const U8 * s = (U8*)STRING(scan);
4551 /* Search for fixed substrings supports EXACT only. */
4552 if (flags & SCF_DO_SUBSTR) {
4554 scan_commit(pRExC_state, data, minlenp, is_inf);
4557 l = utf8_length(s, s + l);
4559 if (unfolded_multi_char) {
4560 RExC_seen |= REG_UNFOLDED_MULTI_SEEN;
4562 min += l - min_subtract;
4564 delta += min_subtract;
4565 if (flags & SCF_DO_SUBSTR) {
4566 data->pos_min += l - min_subtract;
4567 if (data->pos_min < 0) {
4570 data->pos_delta += min_subtract;
4572 data->longest = &(data->longest_float);
4576 if (flags & SCF_DO_STCLASS) {
4577 SV* EXACTF_invlist = _make_exactf_invlist(pRExC_state, scan);
4579 assert(EXACTF_invlist);
4580 if (flags & SCF_DO_STCLASS_AND) {
4581 if (OP(scan) != EXACTFL)
4582 ssc_clear_locale(data->start_class);
4583 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
4584 ANYOF_POSIXL_ZERO(data->start_class);
4585 ssc_intersection(data->start_class, EXACTF_invlist, FALSE);
4587 else { /* SCF_DO_STCLASS_OR */
4588 ssc_union(data->start_class, EXACTF_invlist, FALSE);
4589 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
4591 /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
4592 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
4594 flags &= ~SCF_DO_STCLASS;
4595 SvREFCNT_dec(EXACTF_invlist);
4598 else if (REGNODE_VARIES(OP(scan))) {
4599 SSize_t mincount, maxcount, minnext, deltanext, pos_before = 0;
4600 I32 fl = 0, f = flags;
4601 regnode * const oscan = scan;
4602 regnode_ssc this_class;
4603 regnode_ssc *oclass = NULL;
4604 I32 next_is_eval = 0;
4606 switch (PL_regkind[OP(scan)]) {
4607 case WHILEM: /* End of (?:...)* . */
4608 scan = NEXTOPER(scan);
4611 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
4612 next = NEXTOPER(scan);
4613 if (OP(next) == EXACT
4614 || OP(next) == EXACTL
4615 || (flags & SCF_DO_STCLASS))
4618 maxcount = REG_INFTY;
4619 next = regnext(scan);
4620 scan = NEXTOPER(scan);
4624 if (flags & SCF_DO_SUBSTR)
4629 if (flags & SCF_DO_STCLASS) {
4631 maxcount = REG_INFTY;
4632 next = regnext(scan);
4633 scan = NEXTOPER(scan);
4636 if (flags & SCF_DO_SUBSTR) {
4637 scan_commit(pRExC_state, data, minlenp, is_inf);
4638 /* Cannot extend fixed substrings */
4639 data->longest = &(data->longest_float);
4641 is_inf = is_inf_internal = 1;
4642 scan = regnext(scan);
4643 goto optimize_curly_tail;
4645 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
4646 && (scan->flags == stopparen))
4651 mincount = ARG1(scan);
4652 maxcount = ARG2(scan);
4654 next = regnext(scan);
4655 if (OP(scan) == CURLYX) {
4656 I32 lp = (data ? *(data->last_closep) : 0);
4657 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
4659 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
4660 next_is_eval = (OP(scan) == EVAL);
4662 if (flags & SCF_DO_SUBSTR) {
4664 scan_commit(pRExC_state, data, minlenp, is_inf);
4665 /* Cannot extend fixed substrings */
4666 pos_before = data->pos_min;
4670 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
4672 data->flags |= SF_IS_INF;
4674 if (flags & SCF_DO_STCLASS) {
4675 ssc_init(pRExC_state, &this_class);
4676 oclass = data->start_class;
4677 data->start_class = &this_class;
4678 f |= SCF_DO_STCLASS_AND;
4679 f &= ~SCF_DO_STCLASS_OR;
4681 /* Exclude from super-linear cache processing any {n,m}
4682 regops for which the combination of input pos and regex
4683 pos is not enough information to determine if a match
4686 For example, in the regex /foo(bar\s*){4,8}baz/ with the
4687 regex pos at the \s*, the prospects for a match depend not
4688 only on the input position but also on how many (bar\s*)
4689 repeats into the {4,8} we are. */
4690 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
4691 f &= ~SCF_WHILEM_VISITED_POS;
4693 /* This will finish on WHILEM, setting scan, or on NULL: */
4694 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
4695 last, data, stopparen, recursed_depth, NULL,
4697 ? (f & ~SCF_DO_SUBSTR)
4701 if (flags & SCF_DO_STCLASS)
4702 data->start_class = oclass;
4703 if (mincount == 0 || minnext == 0) {
4704 if (flags & SCF_DO_STCLASS_OR) {
4705 ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
4707 else if (flags & SCF_DO_STCLASS_AND) {
4708 /* Switch to OR mode: cache the old value of
4709 * data->start_class */
4711 StructCopy(data->start_class, and_withp, regnode_ssc);
4712 flags &= ~SCF_DO_STCLASS_AND;
4713 StructCopy(&this_class, data->start_class, regnode_ssc);
4714 flags |= SCF_DO_STCLASS_OR;
4715 ANYOF_FLAGS(data->start_class)
4716 |= SSC_MATCHES_EMPTY_STRING;
4718 } else { /* Non-zero len */
4719 if (flags & SCF_DO_STCLASS_OR) {
4720 ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
4721 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
4723 else if (flags & SCF_DO_STCLASS_AND)
4724 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &this_class);
4725 flags &= ~SCF_DO_STCLASS;
4727 if (!scan) /* It was not CURLYX, but CURLY. */
4729 if (!(flags & SCF_TRIE_DOING_RESTUDY)
4730 /* ? quantifier ok, except for (?{ ... }) */
4731 && (next_is_eval || !(mincount == 0 && maxcount == 1))
4732 && (minnext == 0) && (deltanext == 0)
4733 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
4734 && maxcount <= REG_INFTY/3) /* Complement check for big
4737 /* Fatal warnings may leak the regexp without this: */
4738 SAVEFREESV(RExC_rx_sv);
4739 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP),
4740 "Quantifier unexpected on zero-length expression "
4741 "in regex m/%"UTF8f"/",
4742 UTF8fARG(UTF, RExC_end - RExC_precomp,
4744 (void)ReREFCNT_inc(RExC_rx_sv);
4747 min += minnext * mincount;
4748 is_inf_internal |= deltanext == SSize_t_MAX
4749 || (maxcount == REG_INFTY && minnext + deltanext > 0);
4750 is_inf |= is_inf_internal;
4752 delta = SSize_t_MAX;
4754 delta += (minnext + deltanext) * maxcount
4755 - minnext * mincount;
4757 /* Try powerful optimization CURLYX => CURLYN. */
4758 if ( OP(oscan) == CURLYX && data
4759 && data->flags & SF_IN_PAR
4760 && !(data->flags & SF_HAS_EVAL)
4761 && !deltanext && minnext == 1 ) {
4762 /* Try to optimize to CURLYN. */
4763 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
4764 regnode * const nxt1 = nxt;
4771 if (!REGNODE_SIMPLE(OP(nxt))
4772 && !(PL_regkind[OP(nxt)] == EXACT
4773 && STR_LEN(nxt) == 1))
4779 if (OP(nxt) != CLOSE)
4781 if (RExC_open_parens) {
4782 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
4783 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
4785 /* Now we know that nxt2 is the only contents: */
4786 oscan->flags = (U8)ARG(nxt);
4788 OP(nxt1) = NOTHING; /* was OPEN. */
4791 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
4792 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
4793 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
4794 OP(nxt) = OPTIMIZED; /* was CLOSE. */
4795 OP(nxt + 1) = OPTIMIZED; /* was count. */
4796 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
4801 /* Try optimization CURLYX => CURLYM. */
4802 if ( OP(oscan) == CURLYX && data
4803 && !(data->flags & SF_HAS_PAR)
4804 && !(data->flags & SF_HAS_EVAL)
4805 && !deltanext /* atom is fixed width */
4806 && minnext != 0 /* CURLYM can't handle zero width */
4808 /* Nor characters whose fold at run-time may be
4809 * multi-character */
4810 && ! (RExC_seen & REG_UNFOLDED_MULTI_SEEN)
4812 /* XXXX How to optimize if data == 0? */
4813 /* Optimize to a simpler form. */
4814 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
4818 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
4819 && (OP(nxt2) != WHILEM))
4821 OP(nxt2) = SUCCEED; /* Whas WHILEM */
4822 /* Need to optimize away parenths. */
4823 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
4824 /* Set the parenth number. */
4825 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
4827 oscan->flags = (U8)ARG(nxt);
4828 if (RExC_open_parens) {
4829 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
4830 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
4832 OP(nxt1) = OPTIMIZED; /* was OPEN. */
4833 OP(nxt) = OPTIMIZED; /* was CLOSE. */
4836 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
4837 OP(nxt + 1) = OPTIMIZED; /* was count. */
4838 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
4839 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
4842 while ( nxt1 && (OP(nxt1) != WHILEM)) {
4843 regnode *nnxt = regnext(nxt1);
4845 if (reg_off_by_arg[OP(nxt1)])
4846 ARG_SET(nxt1, nxt2 - nxt1);
4847 else if (nxt2 - nxt1 < U16_MAX)
4848 NEXT_OFF(nxt1) = nxt2 - nxt1;
4850 OP(nxt) = NOTHING; /* Cannot beautify */
4855 /* Optimize again: */
4856 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
4857 NULL, stopparen, recursed_depth, NULL, 0,depth+1);
4862 else if ((OP(oscan) == CURLYX)
4863 && (flags & SCF_WHILEM_VISITED_POS)
4864 /* See the comment on a similar expression above.
4865 However, this time it's not a subexpression
4866 we care about, but the expression itself. */
4867 && (maxcount == REG_INFTY)
4868 && data && ++data->whilem_c < 16) {
4869 /* This stays as CURLYX, we can put the count/of pair. */
4870 /* Find WHILEM (as in regexec.c) */
4871 regnode *nxt = oscan + NEXT_OFF(oscan);
4873 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
4875 PREVOPER(nxt)->flags = (U8)(data->whilem_c
4876 | (RExC_whilem_seen << 4)); /* On WHILEM */
4878 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
4880 if (flags & SCF_DO_SUBSTR) {
4881 SV *last_str = NULL;
4882 STRLEN last_chrs = 0;
4883 int counted = mincount != 0;
4885 if (data->last_end > 0 && mincount != 0) { /* Ends with a
4887 SSize_t b = pos_before >= data->last_start_min
4888 ? pos_before : data->last_start_min;
4890 const char * const s = SvPV_const(data->last_found, l);
4891 SSize_t old = b - data->last_start_min;
4894 old = utf8_hop((U8*)s, old) - (U8*)s;
4896 /* Get the added string: */
4897 last_str = newSVpvn_utf8(s + old, l, UTF);
4898 last_chrs = UTF ? utf8_length((U8*)(s + old),
4899 (U8*)(s + old + l)) : l;
4900 if (deltanext == 0 && pos_before == b) {
4901 /* What was added is a constant string */
4904 SvGROW(last_str, (mincount * l) + 1);
4905 repeatcpy(SvPVX(last_str) + l,
4906 SvPVX_const(last_str), l,
4908 SvCUR_set(last_str, SvCUR(last_str) * mincount);
4909 /* Add additional parts. */
4910 SvCUR_set(data->last_found,
4911 SvCUR(data->last_found) - l);
4912 sv_catsv(data->last_found, last_str);
4914 SV * sv = data->last_found;
4916 SvUTF8(sv) && SvMAGICAL(sv) ?
4917 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4918 if (mg && mg->mg_len >= 0)
4919 mg->mg_len += last_chrs * (mincount-1);
4921 last_chrs *= mincount;
4922 data->last_end += l * (mincount - 1);
4925 /* start offset must point into the last copy */
4926 data->last_start_min += minnext * (mincount - 1);
4927 data->last_start_max =
4930 : data->last_start_max +
4931 (maxcount - 1) * (minnext + data->pos_delta);
4934 /* It is counted once already... */
4935 data->pos_min += minnext * (mincount - counted);
4937 PerlIO_printf(Perl_debug_log, "counted=%"UVuf" deltanext=%"UVuf
4938 " SSize_t_MAX=%"UVuf" minnext=%"UVuf
4939 " maxcount=%"UVuf" mincount=%"UVuf"\n",
4940 (UV)counted, (UV)deltanext, (UV)SSize_t_MAX, (UV)minnext, (UV)maxcount,
4942 if (deltanext != SSize_t_MAX)
4943 PerlIO_printf(Perl_debug_log, "LHS=%"UVuf" RHS=%"UVuf"\n",
4944 (UV)(-counted * deltanext + (minnext + deltanext) * maxcount
4945 - minnext * mincount), (UV)(SSize_t_MAX - data->pos_delta));
4947 if (deltanext == SSize_t_MAX
4948 || -counted * deltanext + (minnext + deltanext) * maxcount - minnext * mincount >= SSize_t_MAX - data->pos_delta)
4949 data->pos_delta = SSize_t_MAX;
4951 data->pos_delta += - counted * deltanext +
4952 (minnext + deltanext) * maxcount - minnext * mincount;
4953 if (mincount != maxcount) {
4954 /* Cannot extend fixed substrings found inside
4956 scan_commit(pRExC_state, data, minlenp, is_inf);
4957 if (mincount && last_str) {
4958 SV * const sv = data->last_found;
4959 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
4960 mg_find(sv, PERL_MAGIC_utf8) : NULL;
4964 sv_setsv(sv, last_str);
4965 data->last_end = data->pos_min;
4966 data->last_start_min = data->pos_min - last_chrs;
4967 data->last_start_max = is_inf
4969 : data->pos_min + data->pos_delta - last_chrs;
4971 data->longest = &(data->longest_float);
4973 SvREFCNT_dec(last_str);
4975 if (data && (fl & SF_HAS_EVAL))
4976 data->flags |= SF_HAS_EVAL;
4977 optimize_curly_tail:
4978 if (OP(oscan) != CURLYX) {
4979 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
4981 NEXT_OFF(oscan) += NEXT_OFF(next);
4987 Perl_croak(aTHX_ "panic: unexpected varying REx opcode %d",
4992 if (flags & SCF_DO_SUBSTR) {
4993 /* Cannot expect anything... */
4994 scan_commit(pRExC_state, data, minlenp, is_inf);
4995 data->longest = &(data->longest_float);
4997 is_inf = is_inf_internal = 1;
4998 if (flags & SCF_DO_STCLASS_OR) {
4999 if (OP(scan) == CLUMP) {
5000 /* Actually is any start char, but very few code points
5001 * aren't start characters */
5002 ssc_match_all_cp(data->start_class);
5005 ssc_anything(data->start_class);
5008 flags &= ~SCF_DO_STCLASS;
5012 else if (OP(scan) == LNBREAK) {
5013 if (flags & SCF_DO_STCLASS) {
5014 if (flags & SCF_DO_STCLASS_AND) {
5015 ssc_intersection(data->start_class,
5016 PL_XPosix_ptrs[_CC_VERTSPACE], FALSE);
5017 ssc_clear_locale(data->start_class);
5018 ANYOF_FLAGS(data->start_class)
5019 &= ~SSC_MATCHES_EMPTY_STRING;
5021 else if (flags & SCF_DO_STCLASS_OR) {
5022 ssc_union(data->start_class,
5023 PL_XPosix_ptrs[_CC_VERTSPACE],
5025 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5027 /* See commit msg for
5028 * 749e076fceedeb708a624933726e7989f2302f6a */
5029 ANYOF_FLAGS(data->start_class)
5030 &= ~SSC_MATCHES_EMPTY_STRING;
5032 flags &= ~SCF_DO_STCLASS;
5035 if (delta != SSize_t_MAX)
5036 delta++; /* Because of the 2 char string cr-lf */
5037 if (flags & SCF_DO_SUBSTR) {
5038 /* Cannot expect anything... */
5039 scan_commit(pRExC_state, data, minlenp, is_inf);
5041 data->pos_delta += 1;
5042 data->longest = &(data->longest_float);
5045 else if (REGNODE_SIMPLE(OP(scan))) {
5047 if (flags & SCF_DO_SUBSTR) {
5048 scan_commit(pRExC_state, data, minlenp, is_inf);
5052 if (flags & SCF_DO_STCLASS) {
5054 SV* my_invlist = NULL;
5057 /* See commit msg 749e076fceedeb708a624933726e7989f2302f6a */
5058 ANYOF_FLAGS(data->start_class) &= ~SSC_MATCHES_EMPTY_STRING;
5060 /* Some of the logic below assumes that switching
5061 locale on will only add false positives. */
5066 Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d",
5070 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
5071 ssc_match_all_cp(data->start_class);
5076 SV* REG_ANY_invlist = _new_invlist(2);
5077 REG_ANY_invlist = add_cp_to_invlist(REG_ANY_invlist,
5079 if (flags & SCF_DO_STCLASS_OR) {
5080 ssc_union(data->start_class,
5082 TRUE /* TRUE => invert, hence all but \n
5086 else if (flags & SCF_DO_STCLASS_AND) {
5087 ssc_intersection(data->start_class,
5089 TRUE /* TRUE => invert */
5091 ssc_clear_locale(data->start_class);
5093 SvREFCNT_dec_NN(REG_ANY_invlist);
5099 if (flags & SCF_DO_STCLASS_AND)
5100 ssc_and(pRExC_state, data->start_class,
5101 (regnode_charclass *) scan);
5103 ssc_or(pRExC_state, data->start_class,
5104 (regnode_charclass *) scan);
5112 namedclass = classnum_to_namedclass(FLAGS(scan)) + invert;
5113 if (flags & SCF_DO_STCLASS_AND) {
5114 bool was_there = cBOOL(
5115 ANYOF_POSIXL_TEST(data->start_class,
5117 ANYOF_POSIXL_ZERO(data->start_class);
5118 if (was_there) { /* Do an AND */
5119 ANYOF_POSIXL_SET(data->start_class, namedclass);
5121 /* No individual code points can now match */
5122 data->start_class->invlist
5123 = sv_2mortal(_new_invlist(0));
5126 int complement = namedclass + ((invert) ? -1 : 1);
5128 assert(flags & SCF_DO_STCLASS_OR);
5130 /* If the complement of this class was already there,
5131 * the result is that they match all code points,
5132 * (\d + \D == everything). Remove the classes from
5133 * future consideration. Locale is not relevant in
5135 if (ANYOF_POSIXL_TEST(data->start_class, complement)) {
5136 ssc_match_all_cp(data->start_class);
5137 ANYOF_POSIXL_CLEAR(data->start_class, namedclass);
5138 ANYOF_POSIXL_CLEAR(data->start_class, complement);
5140 else { /* The usual case; just add this class to the
5142 ANYOF_POSIXL_SET(data->start_class, namedclass);
5147 case NPOSIXA: /* For these, we always know the exact set of
5152 if (FLAGS(scan) == _CC_ASCII) {
5153 my_invlist = invlist_clone(PL_XPosix_ptrs[_CC_ASCII]);
5156 _invlist_intersection(PL_XPosix_ptrs[FLAGS(scan)],
5157 PL_XPosix_ptrs[_CC_ASCII],
5168 my_invlist = invlist_clone(PL_XPosix_ptrs[FLAGS(scan)]);
5170 /* NPOSIXD matches all upper Latin1 code points unless the
5171 * target string being matched is UTF-8, which is
5172 * unknowable until match time. Since we are going to
5173 * invert, we want to get rid of all of them so that the
5174 * inversion will match all */
5175 if (OP(scan) == NPOSIXD) {
5176 _invlist_subtract(my_invlist, PL_UpperLatin1,
5182 if (flags & SCF_DO_STCLASS_AND) {
5183 ssc_intersection(data->start_class, my_invlist, invert);
5184 ssc_clear_locale(data->start_class);
5187 assert(flags & SCF_DO_STCLASS_OR);
5188 ssc_union(data->start_class, my_invlist, invert);
5190 SvREFCNT_dec(my_invlist);
5192 if (flags & SCF_DO_STCLASS_OR)
5193 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5194 flags &= ~SCF_DO_STCLASS;
5197 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
5198 data->flags |= (OP(scan) == MEOL
5201 scan_commit(pRExC_state, data, minlenp, is_inf);
5204 else if ( PL_regkind[OP(scan)] == BRANCHJ
5205 /* Lookbehind, or need to calculate parens/evals/stclass: */
5206 && (scan->flags || data || (flags & SCF_DO_STCLASS))
5207 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM))
5209 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
5210 || OP(scan) == UNLESSM )
5212 /* Negative Lookahead/lookbehind
5213 In this case we can't do fixed string optimisation.
5216 SSize_t deltanext, minnext, fake = 0;
5221 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
5223 data_fake.whilem_c = data->whilem_c;
5224 data_fake.last_closep = data->last_closep;
5227 data_fake.last_closep = &fake;
5228 data_fake.pos_delta = delta;
5229 if ( flags & SCF_DO_STCLASS && !scan->flags
5230 && OP(scan) == IFMATCH ) { /* Lookahead */
5231 ssc_init(pRExC_state, &intrnl);
5232 data_fake.start_class = &intrnl;
5233 f |= SCF_DO_STCLASS_AND;
5235 if (flags & SCF_WHILEM_VISITED_POS)
5236 f |= SCF_WHILEM_VISITED_POS;
5237 next = regnext(scan);
5238 nscan = NEXTOPER(NEXTOPER(scan));
5239 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
5240 last, &data_fake, stopparen,
5241 recursed_depth, NULL, f, depth+1);
5244 FAIL("Variable length lookbehind not implemented");
5246 else if (minnext > (I32)U8_MAX) {
5247 FAIL2("Lookbehind longer than %"UVuf" not implemented",
5250 scan->flags = (U8)minnext;
5253 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
5255 if (data_fake.flags & SF_HAS_EVAL)
5256 data->flags |= SF_HAS_EVAL;
5257 data->whilem_c = data_fake.whilem_c;
5259 if (f & SCF_DO_STCLASS_AND) {
5260 if (flags & SCF_DO_STCLASS_OR) {
5261 /* OR before, AND after: ideally we would recurse with
5262 * data_fake to get the AND applied by study of the
5263 * remainder of the pattern, and then derecurse;
5264 * *** HACK *** for now just treat as "no information".
5265 * See [perl #56690].
5267 ssc_init(pRExC_state, data->start_class);
5269 /* AND before and after: combine and continue. These
5270 * assertions are zero-length, so can match an EMPTY
5272 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
5273 ANYOF_FLAGS(data->start_class)
5274 |= SSC_MATCHES_EMPTY_STRING;
5278 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
5280 /* Positive Lookahead/lookbehind
5281 In this case we can do fixed string optimisation,
5282 but we must be careful about it. Note in the case of
5283 lookbehind the positions will be offset by the minimum
5284 length of the pattern, something we won't know about
5285 until after the recurse.
5287 SSize_t deltanext, fake = 0;
5291 /* We use SAVEFREEPV so that when the full compile
5292 is finished perl will clean up the allocated
5293 minlens when it's all done. This way we don't
5294 have to worry about freeing them when we know
5295 they wont be used, which would be a pain.
5298 Newx( minnextp, 1, SSize_t );
5299 SAVEFREEPV(minnextp);
5302 StructCopy(data, &data_fake, scan_data_t);
5303 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
5306 scan_commit(pRExC_state, &data_fake, minlenp, is_inf);
5307 data_fake.last_found=newSVsv(data->last_found);
5311 data_fake.last_closep = &fake;
5312 data_fake.flags = 0;
5313 data_fake.pos_delta = delta;
5315 data_fake.flags |= SF_IS_INF;
5316 if ( flags & SCF_DO_STCLASS && !scan->flags
5317 && OP(scan) == IFMATCH ) { /* Lookahead */
5318 ssc_init(pRExC_state, &intrnl);
5319 data_fake.start_class = &intrnl;
5320 f |= SCF_DO_STCLASS_AND;
5322 if (flags & SCF_WHILEM_VISITED_POS)
5323 f |= SCF_WHILEM_VISITED_POS;
5324 next = regnext(scan);
5325 nscan = NEXTOPER(NEXTOPER(scan));
5327 *minnextp = study_chunk(pRExC_state, &nscan, minnextp,
5328 &deltanext, last, &data_fake,
5329 stopparen, recursed_depth, NULL,
5333 FAIL("Variable length lookbehind not implemented");
5335 else if (*minnextp > (I32)U8_MAX) {
5336 FAIL2("Lookbehind longer than %"UVuf" not implemented",
5339 scan->flags = (U8)*minnextp;
5344 if (f & SCF_DO_STCLASS_AND) {
5345 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &intrnl);
5346 ANYOF_FLAGS(data->start_class) |= SSC_MATCHES_EMPTY_STRING;
5349 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
5351 if (data_fake.flags & SF_HAS_EVAL)
5352 data->flags |= SF_HAS_EVAL;
5353 data->whilem_c = data_fake.whilem_c;
5354 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
5355 if (RExC_rx->minlen<*minnextp)
5356 RExC_rx->minlen=*minnextp;
5357 scan_commit(pRExC_state, &data_fake, minnextp, is_inf);
5358 SvREFCNT_dec_NN(data_fake.last_found);
5360 if ( data_fake.minlen_fixed != minlenp )
5362 data->offset_fixed= data_fake.offset_fixed;
5363 data->minlen_fixed= data_fake.minlen_fixed;
5364 data->lookbehind_fixed+= scan->flags;
5366 if ( data_fake.minlen_float != minlenp )
5368 data->minlen_float= data_fake.minlen_float;
5369 data->offset_float_min=data_fake.offset_float_min;
5370 data->offset_float_max=data_fake.offset_float_max;
5371 data->lookbehind_float+= scan->flags;
5378 else if (OP(scan) == OPEN) {
5379 if (stopparen != (I32)ARG(scan))
5382 else if (OP(scan) == CLOSE) {
5383 if (stopparen == (I32)ARG(scan)) {
5386 if ((I32)ARG(scan) == is_par) {
5387 next = regnext(scan);
5389 if ( next && (OP(next) != WHILEM) && next < last)
5390 is_par = 0; /* Disable optimization */
5393 *(data->last_closep) = ARG(scan);
5395 else if (OP(scan) == EVAL) {
5397 data->flags |= SF_HAS_EVAL;
5399 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
5400 if (flags & SCF_DO_SUBSTR) {
5401 scan_commit(pRExC_state, data, minlenp, is_inf);
5402 flags &= ~SCF_DO_SUBSTR;
5404 if (data && OP(scan)==ACCEPT) {
5405 data->flags |= SCF_SEEN_ACCEPT;
5410 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
5412 if (flags & SCF_DO_SUBSTR) {
5413 scan_commit(pRExC_state, data, minlenp, is_inf);
5414 data->longest = &(data->longest_float);
5416 is_inf = is_inf_internal = 1;
5417 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
5418 ssc_anything(data->start_class);
5419 flags &= ~SCF_DO_STCLASS;
5421 else if (OP(scan) == GPOS) {
5422 if (!(RExC_rx->intflags & PREGf_GPOS_FLOAT) &&
5423 !(delta || is_inf || (data && data->pos_delta)))
5425 if (!(RExC_rx->intflags & PREGf_ANCH) && (flags & SCF_DO_SUBSTR))
5426 RExC_rx->intflags |= PREGf_ANCH_GPOS;
5427 if (RExC_rx->gofs < (STRLEN)min)
5428 RExC_rx->gofs = min;
5430 RExC_rx->intflags |= PREGf_GPOS_FLOAT;
5434 #ifdef TRIE_STUDY_OPT
5435 #ifdef FULL_TRIE_STUDY
5436 else if (PL_regkind[OP(scan)] == TRIE) {
5437 /* NOTE - There is similar code to this block above for handling
5438 BRANCH nodes on the initial study. If you change stuff here
5440 regnode *trie_node= scan;
5441 regnode *tail= regnext(scan);
5442 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
5443 SSize_t max1 = 0, min1 = SSize_t_MAX;
5446 if (flags & SCF_DO_SUBSTR) { /* XXXX Add !SUSPEND? */
5447 /* Cannot merge strings after this. */
5448 scan_commit(pRExC_state, data, minlenp, is_inf);
5450 if (flags & SCF_DO_STCLASS)
5451 ssc_init_zero(pRExC_state, &accum);
5457 const regnode *nextbranch= NULL;
5460 for ( word=1 ; word <= trie->wordcount ; word++)
5462 SSize_t deltanext=0, minnext=0, f = 0, fake;
5463 regnode_ssc this_class;
5465 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
5467 data_fake.whilem_c = data->whilem_c;
5468 data_fake.last_closep = data->last_closep;
5471 data_fake.last_closep = &fake;
5472 data_fake.pos_delta = delta;
5473 if (flags & SCF_DO_STCLASS) {
5474 ssc_init(pRExC_state, &this_class);
5475 data_fake.start_class = &this_class;
5476 f = SCF_DO_STCLASS_AND;
5478 if (flags & SCF_WHILEM_VISITED_POS)
5479 f |= SCF_WHILEM_VISITED_POS;
5481 if (trie->jump[word]) {
5483 nextbranch = trie_node + trie->jump[0];
5484 scan= trie_node + trie->jump[word];
5485 /* We go from the jump point to the branch that follows
5486 it. Note this means we need the vestigal unused
5487 branches even though they arent otherwise used. */
5488 minnext = study_chunk(pRExC_state, &scan, minlenp,
5489 &deltanext, (regnode *)nextbranch, &data_fake,
5490 stopparen, recursed_depth, NULL, f,depth+1);
5492 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
5493 nextbranch= regnext((regnode*)nextbranch);
5495 if (min1 > (SSize_t)(minnext + trie->minlen))
5496 min1 = minnext + trie->minlen;
5497 if (deltanext == SSize_t_MAX) {
5498 is_inf = is_inf_internal = 1;
5500 } else if (max1 < (SSize_t)(minnext + deltanext + trie->maxlen))
5501 max1 = minnext + deltanext + trie->maxlen;
5503 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
5505 if (data_fake.flags & SCF_SEEN_ACCEPT) {
5506 if ( stopmin > min + min1)
5507 stopmin = min + min1;
5508 flags &= ~SCF_DO_SUBSTR;
5510 data->flags |= SCF_SEEN_ACCEPT;
5513 if (data_fake.flags & SF_HAS_EVAL)
5514 data->flags |= SF_HAS_EVAL;
5515 data->whilem_c = data_fake.whilem_c;
5517 if (flags & SCF_DO_STCLASS)
5518 ssc_or(pRExC_state, &accum, (regnode_charclass *) &this_class);
5521 if (flags & SCF_DO_SUBSTR) {
5522 data->pos_min += min1;
5523 data->pos_delta += max1 - min1;
5524 if (max1 != min1 || is_inf)
5525 data->longest = &(data->longest_float);
5528 if (delta != SSize_t_MAX)
5529 delta += max1 - min1;
5530 if (flags & SCF_DO_STCLASS_OR) {
5531 ssc_or(pRExC_state, data->start_class, (regnode_charclass *) &accum);
5533 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5534 flags &= ~SCF_DO_STCLASS;
5537 else if (flags & SCF_DO_STCLASS_AND) {
5539 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) &accum);
5540 flags &= ~SCF_DO_STCLASS;
5543 /* Switch to OR mode: cache the old value of
5544 * data->start_class */
5546 StructCopy(data->start_class, and_withp, regnode_ssc);
5547 flags &= ~SCF_DO_STCLASS_AND;
5548 StructCopy(&accum, data->start_class, regnode_ssc);
5549 flags |= SCF_DO_STCLASS_OR;
5556 else if (PL_regkind[OP(scan)] == TRIE) {
5557 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
5560 min += trie->minlen;
5561 delta += (trie->maxlen - trie->minlen);
5562 flags &= ~SCF_DO_STCLASS; /* xxx */
5563 if (flags & SCF_DO_SUBSTR) {
5564 /* Cannot expect anything... */
5565 scan_commit(pRExC_state, data, minlenp, is_inf);
5566 data->pos_min += trie->minlen;
5567 data->pos_delta += (trie->maxlen - trie->minlen);
5568 if (trie->maxlen != trie->minlen)
5569 data->longest = &(data->longest_float);
5571 if (trie->jump) /* no more substrings -- for now /grr*/
5572 flags &= ~SCF_DO_SUBSTR;
5574 #endif /* old or new */
5575 #endif /* TRIE_STUDY_OPT */
5577 /* Else: zero-length, ignore. */
5578 scan = regnext(scan);
5580 /* If we are exiting a recursion we can unset its recursed bit
5581 * and allow ourselves to enter it again - no danger of an
5582 * infinite loop there.
5583 if (stopparen > -1 && recursed) {
5584 DEBUG_STUDYDATA("unset:", data,depth);
5585 PAREN_UNSET( recursed, stopparen);
5591 DEBUG_STUDYDATA("frame-end:",data,depth);
5592 DEBUG_PEEP("fend", scan, depth);
5594 /* restore previous context */
5595 last = frame->last_regnode;
5596 scan = frame->next_regnode;
5597 stopparen = frame->stopparen;
5598 recursed_depth = frame->prev_recursed_depth;
5600 RExC_frame_last = frame->prev_frame;
5601 frame = frame->this_prev_frame;
5602 goto fake_study_recurse;
5607 DEBUG_STUDYDATA("pre-fin:",data,depth);
5610 *deltap = is_inf_internal ? SSize_t_MAX : delta;
5612 if (flags & SCF_DO_SUBSTR && is_inf)
5613 data->pos_delta = SSize_t_MAX - data->pos_min;
5614 if (is_par > (I32)U8_MAX)
5616 if (is_par && pars==1 && data) {
5617 data->flags |= SF_IN_PAR;
5618 data->flags &= ~SF_HAS_PAR;
5620 else if (pars && data) {
5621 data->flags |= SF_HAS_PAR;
5622 data->flags &= ~SF_IN_PAR;
5624 if (flags & SCF_DO_STCLASS_OR)
5625 ssc_and(pRExC_state, data->start_class, (regnode_charclass *) and_withp);
5626 if (flags & SCF_TRIE_RESTUDY)
5627 data->flags |= SCF_TRIE_RESTUDY;
5629 DEBUG_STUDYDATA("post-fin:",data,depth);
5632 SSize_t final_minlen= min < stopmin ? min : stopmin;
5634 if (!(RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN)) {
5635 if (final_minlen > SSize_t_MAX - delta)
5636 RExC_maxlen = SSize_t_MAX;
5637 else if (RExC_maxlen < final_minlen + delta)
5638 RExC_maxlen = final_minlen + delta;
5640 return final_minlen;
5642 NOT_REACHED; /* NOTREACHED */
5646 S_add_data(RExC_state_t* const pRExC_state, const char* const s, const U32 n)
5648 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
5650 PERL_ARGS_ASSERT_ADD_DATA;
5652 Renewc(RExC_rxi->data,
5653 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
5654 char, struct reg_data);
5656 Renew(RExC_rxi->data->what, count + n, U8);
5658 Newx(RExC_rxi->data->what, n, U8);
5659 RExC_rxi->data->count = count + n;
5660 Copy(s, RExC_rxi->data->what + count, n, U8);
5664 /*XXX: todo make this not included in a non debugging perl, but appears to be
5665 * used anyway there, in 'use re' */
5666 #ifndef PERL_IN_XSUB_RE
5668 Perl_reginitcolors(pTHX)
5670 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
5672 char *t = savepv(s);
5676 t = strchr(t, '\t');
5682 PL_colors[i] = t = (char *)"";
5687 PL_colors[i++] = (char *)"";
5694 #ifdef TRIE_STUDY_OPT
5695 #define CHECK_RESTUDY_GOTO_butfirst(dOsomething) \
5698 (data.flags & SCF_TRIE_RESTUDY) \
5706 #define CHECK_RESTUDY_GOTO_butfirst
5710 * pregcomp - compile a regular expression into internal code
5712 * Decides which engine's compiler to call based on the hint currently in
5716 #ifndef PERL_IN_XSUB_RE
5718 /* return the currently in-scope regex engine (or the default if none) */
5720 regexp_engine const *
5721 Perl_current_re_engine(pTHX)
5723 if (IN_PERL_COMPILETIME) {
5724 HV * const table = GvHV(PL_hintgv);
5727 if (!table || !(PL_hints & HINT_LOCALIZE_HH))
5728 return &PL_core_reg_engine;
5729 ptr = hv_fetchs(table, "regcomp", FALSE);
5730 if ( !(ptr && SvIOK(*ptr) && SvIV(*ptr)))
5731 return &PL_core_reg_engine;
5732 return INT2PTR(regexp_engine*,SvIV(*ptr));
5736 if (!PL_curcop->cop_hints_hash)
5737 return &PL_core_reg_engine;
5738 ptr = cop_hints_fetch_pvs(PL_curcop, "regcomp", 0);
5739 if ( !(ptr && SvIOK(ptr) && SvIV(ptr)))
5740 return &PL_core_reg_engine;
5741 return INT2PTR(regexp_engine*,SvIV(ptr));
5747 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
5749 regexp_engine const *eng = current_re_engine();
5750 GET_RE_DEBUG_FLAGS_DECL;
5752 PERL_ARGS_ASSERT_PREGCOMP;
5754 /* Dispatch a request to compile a regexp to correct regexp engine. */
5756 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
5759 return CALLREGCOMP_ENG(eng, pattern, flags);
5763 /* public(ish) entry point for the perl core's own regex compiling code.
5764 * It's actually a wrapper for Perl_re_op_compile that only takes an SV
5765 * pattern rather than a list of OPs, and uses the internal engine rather
5766 * than the current one */
5769 Perl_re_compile(pTHX_ SV * const pattern, U32 rx_flags)
5771 SV *pat = pattern; /* defeat constness! */
5772 PERL_ARGS_ASSERT_RE_COMPILE;
5773 return Perl_re_op_compile(aTHX_ &pat, 1, NULL,
5774 #ifdef PERL_IN_XSUB_RE
5777 &PL_core_reg_engine,
5779 NULL, NULL, rx_flags, 0);
5783 /* upgrade pattern pat_p of length plen_p to UTF8, and if there are code
5784 * blocks, recalculate the indices. Update pat_p and plen_p in-place to
5785 * point to the realloced string and length.
5787 * This is essentially a copy of Perl_bytes_to_utf8() with the code index
5791 S_pat_upgrade_to_utf8(pTHX_ RExC_state_t * const pRExC_state,
5792 char **pat_p, STRLEN *plen_p, int num_code_blocks)
5794 U8 *const src = (U8*)*pat_p;
5799 GET_RE_DEBUG_FLAGS_DECL;
5801 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
5802 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
5804 Newx(dst, *plen_p * 2 + 1, U8);
5807 while (s < *plen_p) {
5808 append_utf8_from_native_byte(src[s], &d);
5809 if (n < num_code_blocks) {
5810 if (!do_end && pRExC_state->code_blocks[n].start == s) {
5811 pRExC_state->code_blocks[n].start = d - dst - 1;
5812 assert(*(d - 1) == '(');
5815 else if (do_end && pRExC_state->code_blocks[n].end == s) {
5816 pRExC_state->code_blocks[n].end = d - dst - 1;
5817 assert(*(d - 1) == ')');
5826 *pat_p = (char*) dst;
5828 RExC_orig_utf8 = RExC_utf8 = 1;
5833 /* S_concat_pat(): concatenate a list of args to the pattern string pat,
5834 * while recording any code block indices, and handling overloading,
5835 * nested qr// objects etc. If pat is null, it will allocate a new
5836 * string, or just return the first arg, if there's only one.
5838 * Returns the malloced/updated pat.
5839 * patternp and pat_count is the array of SVs to be concatted;
5840 * oplist is the optional list of ops that generated the SVs;
5841 * recompile_p is a pointer to a boolean that will be set if
5842 * the regex will need to be recompiled.
5843 * delim, if non-null is an SV that will be inserted between each element
5847 S_concat_pat(pTHX_ RExC_state_t * const pRExC_state,
5848 SV *pat, SV ** const patternp, int pat_count,
5849 OP *oplist, bool *recompile_p, SV *delim)
5853 bool use_delim = FALSE;
5854 bool alloced = FALSE;
5856 /* if we know we have at least two args, create an empty string,
5857 * then concatenate args to that. For no args, return an empty string */
5858 if (!pat && pat_count != 1) {
5864 for (svp = patternp; svp < patternp + pat_count; svp++) {
5867 STRLEN orig_patlen = 0;
5869 SV *msv = use_delim ? delim : *svp;
5870 if (!msv) msv = &PL_sv_undef;
5872 /* if we've got a delimiter, we go round the loop twice for each
5873 * svp slot (except the last), using the delimiter the second
5882 if (SvTYPE(msv) == SVt_PVAV) {
5883 /* we've encountered an interpolated array within
5884 * the pattern, e.g. /...@a..../. Expand the list of elements,
5885 * then recursively append elements.
5886 * The code in this block is based on S_pushav() */
5888 AV *const av = (AV*)msv;
5889 const SSize_t maxarg = AvFILL(av) + 1;
5893 assert(oplist->op_type == OP_PADAV
5894 || oplist->op_type == OP_RV2AV);
5895 oplist = OpSIBLING(oplist);
5898 if (SvRMAGICAL(av)) {
5901 Newx(array, maxarg, SV*);
5903 for (i=0; i < maxarg; i++) {
5904 SV ** const svp = av_fetch(av, i, FALSE);
5905 array[i] = svp ? *svp : &PL_sv_undef;
5909 array = AvARRAY(av);
5911 pat = S_concat_pat(aTHX_ pRExC_state, pat,
5912 array, maxarg, NULL, recompile_p,
5914 GvSV((gv_fetchpvs("\"", GV_ADDMULTI, SVt_PV))));
5920 /* we make the assumption here that each op in the list of
5921 * op_siblings maps to one SV pushed onto the stack,
5922 * except for code blocks, with have both an OP_NULL and
5924 * This allows us to match up the list of SVs against the
5925 * list of OPs to find the next code block.
5927 * Note that PUSHMARK PADSV PADSV ..
5929 * PADRANGE PADSV PADSV ..
5930 * so the alignment still works. */
5933 if (oplist->op_type == OP_NULL
5934 && (oplist->op_flags & OPf_SPECIAL))
5936 assert(n < pRExC_state->num_code_blocks);
5937 pRExC_state->code_blocks[n].start = pat ? SvCUR(pat) : 0;
5938 pRExC_state->code_blocks[n].block = oplist;
5939 pRExC_state->code_blocks[n].src_regex = NULL;
5942 oplist = OpSIBLING(oplist); /* skip CONST */
5945 oplist = OpSIBLING(oplist);;
5948 /* apply magic and QR overloading to arg */
5951 if (SvROK(msv) && SvAMAGIC(msv)) {
5952 SV *sv = AMG_CALLunary(msv, regexp_amg);
5956 if (SvTYPE(sv) != SVt_REGEXP)
5957 Perl_croak(aTHX_ "Overloaded qr did not return a REGEXP");
5962 /* try concatenation overload ... */
5963 if (pat && (SvAMAGIC(pat) || SvAMAGIC(msv)) &&
5964 (sv = amagic_call(pat, msv, concat_amg, AMGf_assign)))
5967 /* overloading involved: all bets are off over literal
5968 * code. Pretend we haven't seen it */
5969 pRExC_state->num_code_blocks -= n;
5973 /* ... or failing that, try "" overload */
5974 while (SvAMAGIC(msv)
5975 && (sv = AMG_CALLunary(msv, string_amg))
5979 && SvRV(msv) == SvRV(sv))
5984 if (SvROK(msv) && SvTYPE(SvRV(msv)) == SVt_REGEXP)
5988 /* this is a partially unrolled
5989 * sv_catsv_nomg(pat, msv);
5990 * that allows us to adjust code block indices if
5993 char *dst = SvPV_force_nomg(pat, dlen);
5995 if (SvUTF8(msv) && !SvUTF8(pat)) {
5996 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &dst, &dlen, n);
5997 sv_setpvn(pat, dst, dlen);
6000 sv_catsv_nomg(pat, msv);
6007 pRExC_state->code_blocks[n-1].end = SvCUR(pat)-1;
6010 /* extract any code blocks within any embedded qr//'s */
6011 if (rx && SvTYPE(rx) == SVt_REGEXP
6012 && RX_ENGINE((REGEXP*)rx)->op_comp)
6015 RXi_GET_DECL(ReANY((REGEXP *)rx), ri);
6016 if (ri->num_code_blocks) {
6018 /* the presence of an embedded qr// with code means
6019 * we should always recompile: the text of the
6020 * qr// may not have changed, but it may be a
6021 * different closure than last time */
6023 Renew(pRExC_state->code_blocks,
6024 pRExC_state->num_code_blocks + ri->num_code_blocks,
6025 struct reg_code_block);
6026 pRExC_state->num_code_blocks += ri->num_code_blocks;
6028 for (i=0; i < ri->num_code_blocks; i++) {
6029 struct reg_code_block *src, *dst;
6030 STRLEN offset = orig_patlen
6031 + ReANY((REGEXP *)rx)->pre_prefix;
6032 assert(n < pRExC_state->num_code_blocks);
6033 src = &ri->code_blocks[i];
6034 dst = &pRExC_state->code_blocks[n];
6035 dst->start = src->start + offset;
6036 dst->end = src->end + offset;
6037 dst->block = src->block;
6038 dst->src_regex = (REGEXP*) SvREFCNT_inc( (SV*)
6047 /* avoid calling magic multiple times on a single element e.g. =~ $qr */
6056 /* see if there are any run-time code blocks in the pattern.
6057 * False positives are allowed */
6060 S_has_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
6061 char *pat, STRLEN plen)
6066 PERL_UNUSED_CONTEXT;
6068 for (s = 0; s < plen; s++) {
6069 if (n < pRExC_state->num_code_blocks
6070 && s == pRExC_state->code_blocks[n].start)
6072 s = pRExC_state->code_blocks[n].end;
6076 /* TODO ideally should handle [..], (#..), /#.../x to reduce false
6078 if (pat[s] == '(' && s+2 <= plen && pat[s+1] == '?' &&
6080 || (s + 2 <= plen && pat[s+2] == '?' && pat[s+3] == '{'))
6087 /* Handle run-time code blocks. We will already have compiled any direct
6088 * or indirect literal code blocks. Now, take the pattern 'pat' and make a
6089 * copy of it, but with any literal code blocks blanked out and
6090 * appropriate chars escaped; then feed it into
6092 * eval "qr'modified_pattern'"
6096 * a\bc(?{"this was literal"})def'ghi\\jkl(?{"this is runtime"})mno
6100 * qr'a\\bc_______________________def\'ghi\\\\jkl(?{"this is runtime"})mno'
6102 * After eval_sv()-ing that, grab any new code blocks from the returned qr
6103 * and merge them with any code blocks of the original regexp.
6105 * If the pat is non-UTF8, while the evalled qr is UTF8, don't merge;
6106 * instead, just save the qr and return FALSE; this tells our caller that
6107 * the original pattern needs upgrading to utf8.
6111 S_compile_runtime_code(pTHX_ RExC_state_t * const pRExC_state,
6112 char *pat, STRLEN plen)
6116 GET_RE_DEBUG_FLAGS_DECL;
6118 if (pRExC_state->runtime_code_qr) {
6119 /* this is the second time we've been called; this should
6120 * only happen if the main pattern got upgraded to utf8
6121 * during compilation; re-use the qr we compiled first time
6122 * round (which should be utf8 too)
6124 qr = pRExC_state->runtime_code_qr;
6125 pRExC_state->runtime_code_qr = NULL;
6126 assert(RExC_utf8 && SvUTF8(qr));
6132 int newlen = plen + 6; /* allow for "qr''x\0" extra chars */
6136 /* determine how many extra chars we need for ' and \ escaping */
6137 for (s = 0; s < plen; s++) {
6138 if (pat[s] == '\'' || pat[s] == '\\')
6142 Newx(newpat, newlen, char);
6144 *p++ = 'q'; *p++ = 'r'; *p++ = '\'';
6146 for (s = 0; s < plen; s++) {
6147 if (n < pRExC_state->num_code_blocks
6148 && s == pRExC_state->code_blocks[n].start)
6150 /* blank out literal code block */
6151 assert(pat[s] == '(');
6152 while (s <= pRExC_state->code_blocks[n].end) {
6160 if (pat[s] == '\'' || pat[s] == '\\')
6165 if (pRExC_state->pm_flags & RXf_PMf_EXTENDED)
6169 PerlIO_printf(Perl_debug_log,
6170 "%sre-parsing pattern for runtime code:%s %s\n",
6171 PL_colors[4],PL_colors[5],newpat);
6174 sv = newSVpvn_flags(newpat, p-newpat-1, RExC_utf8 ? SVf_UTF8 : 0);
6180 PUSHSTACKi(PERLSI_REQUIRE);
6181 /* G_RE_REPARSING causes the toker to collapse \\ into \ when
6182 * parsing qr''; normally only q'' does this. It also alters
6184 eval_sv(sv, G_SCALAR|G_RE_REPARSING);
6185 SvREFCNT_dec_NN(sv);
6190 SV * const errsv = ERRSV;
6191 if (SvTRUE_NN(errsv))
6193 Safefree(pRExC_state->code_blocks);
6194 /* use croak_sv ? */
6195 Perl_croak_nocontext("%"SVf, SVfARG(errsv));
6198 assert(SvROK(qr_ref));
6200 assert(SvTYPE(qr) == SVt_REGEXP && RX_ENGINE((REGEXP*)qr)->op_comp);
6201 /* the leaving below frees the tmp qr_ref.
6202 * Give qr a life of its own */
6210 if (!RExC_utf8 && SvUTF8(qr)) {
6211 /* first time through; the pattern got upgraded; save the
6212 * qr for the next time through */
6213 assert(!pRExC_state->runtime_code_qr);
6214 pRExC_state->runtime_code_qr = qr;
6219 /* extract any code blocks within the returned qr// */
6222 /* merge the main (r1) and run-time (r2) code blocks into one */
6224 RXi_GET_DECL(ReANY((REGEXP *)qr), r2);
6225 struct reg_code_block *new_block, *dst;
6226 RExC_state_t * const r1 = pRExC_state; /* convenient alias */
6229 if (!r2->num_code_blocks) /* we guessed wrong */
6231 SvREFCNT_dec_NN(qr);
6236 r1->num_code_blocks + r2->num_code_blocks,
6237 struct reg_code_block);
6240 while ( i1 < r1->num_code_blocks
6241 || i2 < r2->num_code_blocks)
6243 struct reg_code_block *src;
6246 if (i1 == r1->num_code_blocks) {
6247 src = &r2->code_blocks[i2++];
6250 else if (i2 == r2->num_code_blocks)
6251 src = &r1->code_blocks[i1++];
6252 else if ( r1->code_blocks[i1].start
6253 < r2->code_blocks[i2].start)
6255 src = &r1->code_blocks[i1++];
6256 assert(src->end < r2->code_blocks[i2].start);
6259 assert( r1->code_blocks[i1].start
6260 > r2->code_blocks[i2].start);
6261 src = &r2->code_blocks[i2++];
6263 assert(src->end < r1->code_blocks[i1].start);
6266 assert(pat[src->start] == '(');
6267 assert(pat[src->end] == ')');
6268 dst->start = src->start;
6269 dst->end = src->end;
6270 dst->block = src->block;
6271 dst->src_regex = is_qr ? (REGEXP*) SvREFCNT_inc( (SV*) qr)
6275 r1->num_code_blocks += r2->num_code_blocks;
6276 Safefree(r1->code_blocks);
6277 r1->code_blocks = new_block;
6280 SvREFCNT_dec_NN(qr);
6286 S_setup_longest(pTHX_ RExC_state_t *pRExC_state, SV* sv_longest,
6287 SV** rx_utf8, SV** rx_substr, SSize_t* rx_end_shift,
6288 SSize_t lookbehind, SSize_t offset, SSize_t *minlen,
6289 STRLEN longest_length, bool eol, bool meol)
6291 /* This is the common code for setting up the floating and fixed length
6292 * string data extracted from Perl_re_op_compile() below. Returns a boolean
6293 * as to whether succeeded or not */
6298 if (! (longest_length
6299 || (eol /* Can't have SEOL and MULTI */
6300 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)))
6302 /* See comments for join_exact for why REG_UNFOLDED_MULTI_SEEN */
6303 || (RExC_seen & REG_UNFOLDED_MULTI_SEEN))
6308 /* copy the information about the longest from the reg_scan_data
6309 over to the program. */
6310 if (SvUTF8(sv_longest)) {
6311 *rx_utf8 = sv_longest;
6314 *rx_substr = sv_longest;
6317 /* end_shift is how many chars that must be matched that
6318 follow this item. We calculate it ahead of time as once the
6319 lookbehind offset is added in we lose the ability to correctly
6321 ml = minlen ? *(minlen) : (SSize_t)longest_length;
6322 *rx_end_shift = ml - offset
6323 - longest_length + (SvTAIL(sv_longest) != 0)
6326 t = (eol/* Can't have SEOL and MULTI */
6327 && (! meol || (RExC_flags & RXf_PMf_MULTILINE)));
6328 fbm_compile(sv_longest, t ? FBMcf_TAIL : 0);
6334 * Perl_re_op_compile - the perl internal RE engine's function to compile a
6335 * regular expression into internal code.
6336 * The pattern may be passed either as:
6337 * a list of SVs (patternp plus pat_count)
6338 * a list of OPs (expr)
6339 * If both are passed, the SV list is used, but the OP list indicates
6340 * which SVs are actually pre-compiled code blocks
6342 * The SVs in the list have magic and qr overloading applied to them (and
6343 * the list may be modified in-place with replacement SVs in the latter
6346 * If the pattern hasn't changed from old_re, then old_re will be
6349 * eng is the current engine. If that engine has an op_comp method, then
6350 * handle directly (i.e. we assume that op_comp was us); otherwise, just
6351 * do the initial concatenation of arguments and pass on to the external
6354 * If is_bare_re is not null, set it to a boolean indicating whether the
6355 * arg list reduced (after overloading) to a single bare regex which has
6356 * been returned (i.e. /$qr/).
6358 * orig_rx_flags contains RXf_* flags. See perlreapi.pod for more details.
6360 * pm_flags contains the PMf_* flags, typically based on those from the
6361 * pm_flags field of the related PMOP. Currently we're only interested in
6362 * PMf_HAS_CV, PMf_IS_QR, PMf_USE_RE_EVAL.
6364 * We can't allocate space until we know how big the compiled form will be,
6365 * but we can't compile it (and thus know how big it is) until we've got a
6366 * place to put the code. So we cheat: we compile it twice, once with code
6367 * generation turned off and size counting turned on, and once "for real".
6368 * This also means that we don't allocate space until we are sure that the
6369 * thing really will compile successfully, and we never have to move the
6370 * code and thus invalidate pointers into it. (Note that it has to be in
6371 * one piece because free() must be able to free it all.) [NB: not true in perl]
6373 * Beware that the optimization-preparation code in here knows about some
6374 * of the structure of the compiled regexp. [I'll say.]
6378 Perl_re_op_compile(pTHX_ SV ** const patternp, int pat_count,
6379 OP *expr, const regexp_engine* eng, REGEXP *old_re,
6380 bool *is_bare_re, U32 orig_rx_flags, U32 pm_flags)
6384 regexp_internal *ri;
6392 SV *code_blocksv = NULL;
6393 SV** new_patternp = patternp;
6395 /* these are all flags - maybe they should be turned
6396 * into a single int with different bit masks */
6397 I32 sawlookahead = 0;
6402 regex_charset initial_charset = get_regex_charset(orig_rx_flags);
6404 bool runtime_code = 0;
6406 RExC_state_t RExC_state;
6407 RExC_state_t * const pRExC_state = &RExC_state;
6408 #ifdef TRIE_STUDY_OPT
6410 RExC_state_t copyRExC_state;
6412 GET_RE_DEBUG_FLAGS_DECL;
6414 PERL_ARGS_ASSERT_RE_OP_COMPILE;
6416 DEBUG_r(if (!PL_colorset) reginitcolors());
6418 /* Initialize these here instead of as-needed, as is quick and avoids
6419 * having to test them each time otherwise */
6420 if (! PL_AboveLatin1) {
6421 PL_AboveLatin1 = _new_invlist_C_array(AboveLatin1_invlist);
6422 PL_Latin1 = _new_invlist_C_array(Latin1_invlist);
6423 PL_UpperLatin1 = _new_invlist_C_array(UpperLatin1_invlist);
6424 PL_utf8_foldable = _new_invlist_C_array(_Perl_Any_Folds_invlist);
6425 PL_HasMultiCharFold =
6426 _new_invlist_C_array(_Perl_Folds_To_Multi_Char_invlist);
6428 /* This is calculated here, because the Perl program that generates the
6429 * static global ones doesn't currently have access to
6430 * NUM_ANYOF_CODE_POINTS */
6431 PL_InBitmap = _new_invlist(2);
6432 PL_InBitmap = _add_range_to_invlist(PL_InBitmap, 0,
6433 NUM_ANYOF_CODE_POINTS - 1);
6436 pRExC_state->code_blocks = NULL;
6437 pRExC_state->num_code_blocks = 0;
6440 *is_bare_re = FALSE;
6442 if (expr && (expr->op_type == OP_LIST ||
6443 (expr->op_type == OP_NULL && expr->op_targ == OP_LIST))) {
6444 /* allocate code_blocks if needed */
6448 for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o))
6449 if (o->op_type == OP_NULL && (o->op_flags & OPf_SPECIAL))
6450 ncode++; /* count of DO blocks */
6452 pRExC_state->num_code_blocks = ncode;
6453 Newx(pRExC_state->code_blocks, ncode, struct reg_code_block);
6458 /* compile-time pattern with just OP_CONSTs and DO blocks */
6463 /* find how many CONSTs there are */
6466 if (expr->op_type == OP_CONST)
6469 for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
6470 if (o->op_type == OP_CONST)
6474 /* fake up an SV array */
6476 assert(!new_patternp);
6477 Newx(new_patternp, n, SV*);
6478 SAVEFREEPV(new_patternp);
6482 if (expr->op_type == OP_CONST)
6483 new_patternp[n] = cSVOPx_sv(expr);
6485 for (o = cLISTOPx(expr)->op_first; o; o = OpSIBLING(o)) {
6486 if (o->op_type == OP_CONST)
6487 new_patternp[n++] = cSVOPo_sv;
6492 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
6493 "Assembling pattern from %d elements%s\n", pat_count,
6494 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
6496 /* set expr to the first arg op */
6498 if (pRExC_state->num_code_blocks
6499 && expr->op_type != OP_CONST)
6501 expr = cLISTOPx(expr)->op_first;
6502 assert( expr->op_type == OP_PUSHMARK
6503 || (expr->op_type == OP_NULL && expr->op_targ == OP_PUSHMARK)
6504 || expr->op_type == OP_PADRANGE);
6505 expr = OpSIBLING(expr);
6508 pat = S_concat_pat(aTHX_ pRExC_state, NULL, new_patternp, pat_count,
6509 expr, &recompile, NULL);
6511 /* handle bare (possibly after overloading) regex: foo =~ $re */
6516 if (SvTYPE(re) == SVt_REGEXP) {
6520 Safefree(pRExC_state->code_blocks);
6521 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
6522 "Precompiled pattern%s\n",
6523 orig_rx_flags & RXf_SPLIT ? " for split" : ""));
6529 exp = SvPV_nomg(pat, plen);
6531 if (!eng->op_comp) {
6532 if ((SvUTF8(pat) && IN_BYTES)
6533 || SvGMAGICAL(pat) || SvAMAGIC(pat))
6535 /* make a temporary copy; either to convert to bytes,
6536 * or to avoid repeating get-magic / overloaded stringify */
6537 pat = newSVpvn_flags(exp, plen, SVs_TEMP |
6538 (IN_BYTES ? 0 : SvUTF8(pat)));
6540 Safefree(pRExC_state->code_blocks);
6541 return CALLREGCOMP_ENG(eng, pat, orig_rx_flags);
6544 /* ignore the utf8ness if the pattern is 0 length */
6545 RExC_utf8 = RExC_orig_utf8 = (plen == 0 || IN_BYTES) ? 0 : SvUTF8(pat);
6546 RExC_uni_semantics = 0;
6547 RExC_contains_locale = 0;
6548 RExC_contains_i = 0;
6549 RExC_strict = cBOOL(pm_flags & RXf_PMf_STRICT);
6550 pRExC_state->runtime_code_qr = NULL;
6551 RExC_frame_head= NULL;
6552 RExC_frame_last= NULL;
6553 RExC_frame_count= 0;
6556 RExC_mysv1= sv_newmortal();
6557 RExC_mysv2= sv_newmortal();
6560 SV *dsv= sv_newmortal();
6561 RE_PV_QUOTED_DECL(s, RExC_utf8, dsv, exp, plen, 60);
6562 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
6563 PL_colors[4],PL_colors[5],s);
6567 /* we jump here if we upgrade the pattern to utf8 and have to
6570 if ((pm_flags & PMf_USE_RE_EVAL)
6571 /* this second condition covers the non-regex literal case,
6572 * i.e. $foo =~ '(?{})'. */
6573 || (IN_PERL_COMPILETIME && (PL_hints & HINT_RE_EVAL))
6575 runtime_code = S_has_runtime_code(aTHX_ pRExC_state, exp, plen);
6577 /* return old regex if pattern hasn't changed */
6578 /* XXX: note in the below we have to check the flags as well as the
6581 * Things get a touch tricky as we have to compare the utf8 flag
6582 * independently from the compile flags. */
6586 && !!RX_UTF8(old_re) == !!RExC_utf8
6587 && ( RX_COMPFLAGS(old_re) == ( orig_rx_flags & RXf_PMf_FLAGCOPYMASK ) )
6588 && RX_PRECOMP(old_re)
6589 && RX_PRELEN(old_re) == plen
6590 && memEQ(RX_PRECOMP(old_re), exp, plen)
6591 && !runtime_code /* with runtime code, always recompile */ )
6593 Safefree(pRExC_state->code_blocks);
6597 rx_flags = orig_rx_flags;
6599 if (rx_flags & PMf_FOLD) {
6600 RExC_contains_i = 1;
6602 if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
6604 /* Set to use unicode semantics if the pattern is in utf8 and has the
6605 * 'depends' charset specified, as it means unicode when utf8 */
6606 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
6610 RExC_flags = rx_flags;
6611 RExC_pm_flags = pm_flags;
6614 if (TAINTING_get && TAINT_get)
6615 Perl_croak(aTHX_ "Eval-group in insecure regular expression");
6617 if (!S_compile_runtime_code(aTHX_ pRExC_state, exp, plen)) {
6618 /* whoops, we have a non-utf8 pattern, whilst run-time code
6619 * got compiled as utf8. Try again with a utf8 pattern */
6620 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
6621 pRExC_state->num_code_blocks);
6622 goto redo_first_pass;
6625 assert(!pRExC_state->runtime_code_qr);
6631 RExC_in_lookbehind = 0;
6632 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
6634 RExC_override_recoding = 0;
6636 RExC_recode_x_to_native = 0;
6638 RExC_in_multi_char_class = 0;
6640 /* First pass: determine size, legality. */
6643 RExC_end = exp + plen;
6648 RExC_emit = (regnode *) &RExC_emit_dummy;
6649 RExC_whilem_seen = 0;
6650 RExC_open_parens = NULL;
6651 RExC_close_parens = NULL;
6653 RExC_paren_names = NULL;
6655 RExC_paren_name_list = NULL;
6657 RExC_recurse = NULL;
6658 RExC_study_chunk_recursed = NULL;
6659 RExC_study_chunk_recursed_bytes= 0;
6660 RExC_recurse_count = 0;
6661 pRExC_state->code_index = 0;
6664 PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n");
6666 RExC_lastparse=NULL;
6668 /* reg may croak on us, not giving us a chance to free
6669 pRExC_state->code_blocks. We cannot SAVEFREEPV it now, as we may
6670 need it to survive as long as the regexp (qr/(?{})/).
6671 We must check that code_blocksv is not already set, because we may
6672 have jumped back to restart the sizing pass. */
6673 if (pRExC_state->code_blocks && !code_blocksv) {
6674 code_blocksv = newSV_type(SVt_PV);
6675 SAVEFREESV(code_blocksv);
6676 SvPV_set(code_blocksv, (char *)pRExC_state->code_blocks);
6677 SvLEN_set(code_blocksv, 1); /*sufficient to make sv_clear free it*/
6679 if (reg(pRExC_state, 0, &flags,1) == NULL) {
6680 /* It's possible to write a regexp in ascii that represents Unicode
6681 codepoints outside of the byte range, such as via \x{100}. If we
6682 detect such a sequence we have to convert the entire pattern to utf8
6683 and then recompile, as our sizing calculation will have been based
6684 on 1 byte == 1 character, but we will need to use utf8 to encode
6685 at least some part of the pattern, and therefore must convert the whole
6688 if (flags & RESTART_UTF8) {
6689 S_pat_upgrade_to_utf8(aTHX_ pRExC_state, &exp, &plen,
6690 pRExC_state->num_code_blocks);
6691 goto redo_first_pass;
6693 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for sizing pass, flags=%#"UVxf"", (UV) flags);
6696 SvLEN_set(code_blocksv,0); /* no you can't have it, sv_clear */
6699 PerlIO_printf(Perl_debug_log,
6700 "Required size %"IVdf" nodes\n"
6701 "Starting second pass (creation)\n",
6704 RExC_lastparse=NULL;
6707 /* The first pass could have found things that force Unicode semantics */
6708 if ((RExC_utf8 || RExC_uni_semantics)
6709 && get_regex_charset(rx_flags) == REGEX_DEPENDS_CHARSET)
6711 set_regex_charset(&rx_flags, REGEX_UNICODE_CHARSET);
6714 /* Small enough for pointer-storage convention?
6715 If extralen==0, this means that we will not need long jumps. */
6716 if (RExC_size >= 0x10000L && RExC_extralen)
6717 RExC_size += RExC_extralen;
6720 if (RExC_whilem_seen > 15)
6721 RExC_whilem_seen = 15;
6723 /* Allocate space and zero-initialize. Note, the two step process
6724 of zeroing when in debug mode, thus anything assigned has to
6725 happen after that */
6726 rx = (REGEXP*) newSV_type(SVt_REGEXP);
6728 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
6729 char, regexp_internal);
6730 if ( r == NULL || ri == NULL )
6731 FAIL("Regexp out of space");
6733 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
6734 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
6737 /* bulk initialize base fields with 0. */
6738 Zero(ri, sizeof(regexp_internal), char);
6741 /* non-zero initialization begins here */
6744 r->extflags = rx_flags;
6745 RXp_COMPFLAGS(r) = orig_rx_flags & RXf_PMf_FLAGCOPYMASK;
6747 if (pm_flags & PMf_IS_QR) {
6748 ri->code_blocks = pRExC_state->code_blocks;
6749 ri->num_code_blocks = pRExC_state->num_code_blocks;
6754 for (n = 0; n < pRExC_state->num_code_blocks; n++)
6755 if (pRExC_state->code_blocks[n].src_regex)
6756 SAVEFREESV(pRExC_state->code_blocks[n].src_regex);
6757 SAVEFREEPV(pRExC_state->code_blocks);
6761 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
6762 bool has_charset = (get_regex_charset(r->extflags)
6763 != REGEX_DEPENDS_CHARSET);
6765 /* The caret is output if there are any defaults: if not all the STD
6766 * flags are set, or if no character set specifier is needed */
6768 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
6770 bool has_runon = ((RExC_seen & REG_RUN_ON_COMMENT_SEEN)
6771 == REG_RUN_ON_COMMENT_SEEN);
6772 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
6773 >> RXf_PMf_STD_PMMOD_SHIFT);
6774 const char *fptr = STD_PAT_MODS; /*"msixn"*/
6776 /* Allocate for the worst case, which is all the std flags are turned
6777 * on. If more precision is desired, we could do a population count of
6778 * the flags set. This could be done with a small lookup table, or by
6779 * shifting, masking and adding, or even, when available, assembly
6780 * language for a machine-language population count.
6781 * We never output a minus, as all those are defaults, so are
6782 * covered by the caret */
6783 const STRLEN wraplen = plen + has_p + has_runon
6784 + has_default /* If needs a caret */
6786 /* If needs a character set specifier */
6787 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
6788 + (sizeof(STD_PAT_MODS) - 1)
6789 + (sizeof("(?:)") - 1);
6791 Newx(p, wraplen + 1, char); /* +1 for the ending NUL */
6792 r->xpv_len_u.xpvlenu_pv = p;
6794 SvFLAGS(rx) |= SVf_UTF8;
6797 /* If a default, cover it using the caret */
6799 *p++= DEFAULT_PAT_MOD;
6803 const char* const name = get_regex_charset_name(r->extflags, &len);
6804 Copy(name, p, len, char);
6808 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
6811 while((ch = *fptr++)) {
6819 Copy(RExC_precomp, p, plen, char);
6820 assert ((RX_WRAPPED(rx) - p) < 16);
6821 r->pre_prefix = p - RX_WRAPPED(rx);
6827 SvCUR_set(rx, p - RX_WRAPPED(rx));
6831 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
6833 /* setup various meta data about recursion, this all requires
6834 * RExC_npar to be correctly set, and a bit later on we clear it */
6835 if (RExC_seen & REG_RECURSE_SEEN) {
6836 Newxz(RExC_open_parens, RExC_npar,regnode *);
6837 SAVEFREEPV(RExC_open_parens);
6838 Newxz(RExC_close_parens,RExC_npar,regnode *);
6839 SAVEFREEPV(RExC_close_parens);
6841 if (RExC_seen & (REG_RECURSE_SEEN | REG_GOSTART_SEEN)) {
6842 /* Note, RExC_npar is 1 + the number of parens in a pattern.
6843 * So its 1 if there are no parens. */
6844 RExC_study_chunk_recursed_bytes= (RExC_npar >> 3) +
6845 ((RExC_npar & 0x07) != 0);
6846 Newx(RExC_study_chunk_recursed,
6847 RExC_study_chunk_recursed_bytes * RExC_npar, U8);
6848 SAVEFREEPV(RExC_study_chunk_recursed);
6851 /* Useful during FAIL. */
6852 #ifdef RE_TRACK_PATTERN_OFFSETS
6853 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
6854 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
6855 "%s %"UVuf" bytes for offset annotations.\n",
6856 ri->u.offsets ? "Got" : "Couldn't get",
6857 (UV)((2*RExC_size+1) * sizeof(U32))));
6859 SetProgLen(ri,RExC_size);
6864 /* Second pass: emit code. */
6865 RExC_flags = rx_flags; /* don't let top level (?i) bleed */
6866 RExC_pm_flags = pm_flags;
6868 RExC_end = exp + plen;
6871 RExC_emit_start = ri->program;
6872 RExC_emit = ri->program;
6873 RExC_emit_bound = ri->program + RExC_size + 1;
6874 pRExC_state->code_index = 0;
6876 *((char*) RExC_emit++) = (char) REG_MAGIC;
6877 if (reg(pRExC_state, 0, &flags,1) == NULL) {
6879 Perl_croak(aTHX_ "panic: reg returned NULL to re_op_compile for generation pass, flags=%#"UVxf"", (UV) flags);
6881 /* XXXX To minimize changes to RE engine we always allocate
6882 3-units-long substrs field. */
6883 Newx(r->substrs, 1, struct reg_substr_data);
6884 if (RExC_recurse_count) {
6885 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
6886 SAVEFREEPV(RExC_recurse);
6890 r->minlen = minlen = sawlookahead = sawplus = sawopen = sawminmod = 0;
6892 RExC_study_chunk_recursed_count= 0;
6894 Zero(r->substrs, 1, struct reg_substr_data);
6895 if (RExC_study_chunk_recursed) {
6896 Zero(RExC_study_chunk_recursed,
6897 RExC_study_chunk_recursed_bytes * RExC_npar, U8);
6901 #ifdef TRIE_STUDY_OPT
6903 StructCopy(&zero_scan_data, &data, scan_data_t);
6904 copyRExC_state = RExC_state;
6907 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
6909 RExC_state = copyRExC_state;
6910 if (seen & REG_TOP_LEVEL_BRANCHES_SEEN)
6911 RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
6913 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES_SEEN;
6914 StructCopy(&zero_scan_data, &data, scan_data_t);
6917 StructCopy(&zero_scan_data, &data, scan_data_t);
6920 /* Dig out information for optimizations. */
6921 r->extflags = RExC_flags; /* was pm_op */
6922 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
6925 SvUTF8_on(rx); /* Unicode in it? */
6926 ri->regstclass = NULL;
6927 if (RExC_naughty >= TOO_NAUGHTY) /* Probably an expensive pattern. */
6928 r->intflags |= PREGf_NAUGHTY;
6929 scan = ri->program + 1; /* First BRANCH. */
6931 /* testing for BRANCH here tells us whether there is "must appear"
6932 data in the pattern. If there is then we can use it for optimisations */
6933 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES_SEEN)) { /* Only one top-level choice.
6936 STRLEN longest_float_length, longest_fixed_length;
6937 regnode_ssc ch_class; /* pointed to by data */
6939 SSize_t last_close = 0; /* pointed to by data */
6940 regnode *first= scan;
6941 regnode *first_next= regnext(first);
6943 * Skip introductions and multiplicators >= 1
6944 * so that we can extract the 'meat' of the pattern that must
6945 * match in the large if() sequence following.
6946 * NOTE that EXACT is NOT covered here, as it is normally
6947 * picked up by the optimiser separately.
6949 * This is unfortunate as the optimiser isnt handling lookahead
6950 * properly currently.
6953 while ((OP(first) == OPEN && (sawopen = 1)) ||
6954 /* An OR of *one* alternative - should not happen now. */
6955 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
6956 /* for now we can't handle lookbehind IFMATCH*/
6957 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
6958 (OP(first) == PLUS) ||
6959 (OP(first) == MINMOD) ||
6960 /* An {n,m} with n>0 */
6961 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
6962 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
6965 * the only op that could be a regnode is PLUS, all the rest
6966 * will be regnode_1 or regnode_2.
6968 * (yves doesn't think this is true)
6970 if (OP(first) == PLUS)
6973 if (OP(first) == MINMOD)
6975 first += regarglen[OP(first)];
6977 first = NEXTOPER(first);
6978 first_next= regnext(first);
6981 /* Starting-point info. */
6983 DEBUG_PEEP("first:",first,0);
6984 /* Ignore EXACT as we deal with it later. */
6985 if (PL_regkind[OP(first)] == EXACT) {
6986 if (OP(first) == EXACT || OP(first) == EXACTL)
6987 NOOP; /* Empty, get anchored substr later. */
6989 ri->regstclass = first;
6992 else if (PL_regkind[OP(first)] == TRIE &&
6993 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
6995 /* this can happen only on restudy */
6996 ri->regstclass = construct_ahocorasick_from_trie(pRExC_state, (regnode *)first, 0);
6999 else if (REGNODE_SIMPLE(OP(first)))
7000 ri->regstclass = first;
7001 else if (PL_regkind[OP(first)] == BOUND ||
7002 PL_regkind[OP(first)] == NBOUND)
7003 ri->regstclass = first;
7004 else if (PL_regkind[OP(first)] == BOL) {
7005 r->intflags |= (OP(first) == MBOL
7008 first = NEXTOPER(first);
7011 else if (OP(first) == GPOS) {
7012 r->intflags |= PREGf_ANCH_GPOS;
7013 first = NEXTOPER(first);
7016 else if ((!sawopen || !RExC_sawback) &&
7018 (OP(first) == STAR &&
7019 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
7020 !(r->intflags & PREGf_ANCH) && !pRExC_state->num_code_blocks)
7022 /* turn .* into ^.* with an implied $*=1 */
7024 (OP(NEXTOPER(first)) == REG_ANY)
7027 r->intflags |= (type | PREGf_IMPLICIT);
7028 first = NEXTOPER(first);
7031 if (sawplus && !sawminmod && !sawlookahead
7032 && (!sawopen || !RExC_sawback)
7033 && !pRExC_state->num_code_blocks) /* May examine pos and $& */
7034 /* x+ must match at the 1st pos of run of x's */
7035 r->intflags |= PREGf_SKIP;
7037 /* Scan is after the zeroth branch, first is atomic matcher. */
7038 #ifdef TRIE_STUDY_OPT
7041 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
7042 (IV)(first - scan + 1))
7046 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
7047 (IV)(first - scan + 1))
7053 * If there's something expensive in the r.e., find the
7054 * longest literal string that must appear and make it the
7055 * regmust. Resolve ties in favor of later strings, since
7056 * the regstart check works with the beginning of the r.e.
7057 * and avoiding duplication strengthens checking. Not a
7058 * strong reason, but sufficient in the absence of others.
7059 * [Now we resolve ties in favor of the earlier string if
7060 * it happens that c_offset_min has been invalidated, since the
7061 * earlier string may buy us something the later one won't.]
7064 data.longest_fixed = newSVpvs("");
7065 data.longest_float = newSVpvs("");
7066 data.last_found = newSVpvs("");
7067 data.longest = &(data.longest_fixed);
7068 ENTER_with_name("study_chunk");
7069 SAVEFREESV(data.longest_fixed);
7070 SAVEFREESV(data.longest_float);
7071 SAVEFREESV(data.last_found);
7073 if (!ri->regstclass) {
7074 ssc_init(pRExC_state, &ch_class);
7075 data.start_class = &ch_class;
7076 stclass_flag = SCF_DO_STCLASS_AND;
7077 } else /* XXXX Check for BOUND? */
7079 data.last_closep = &last_close;
7082 minlen = study_chunk(pRExC_state, &first, &minlen, &fake,
7083 scan + RExC_size, /* Up to end */
7085 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag
7086 | (restudied ? SCF_TRIE_DOING_RESTUDY : 0),
7090 CHECK_RESTUDY_GOTO_butfirst(LEAVE_with_name("study_chunk"));
7093 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
7094 && data.last_start_min == 0 && data.last_end > 0
7095 && !RExC_seen_zerolen
7096 && !(RExC_seen & REG_VERBARG_SEEN)
7097 && !(RExC_seen & REG_GPOS_SEEN)
7099 r->extflags |= RXf_CHECK_ALL;
7101 scan_commit(pRExC_state, &data,&minlen,0);
7103 longest_float_length = CHR_SVLEN(data.longest_float);
7105 if (! ((SvCUR(data.longest_fixed) /* ok to leave SvCUR */
7106 && data.offset_fixed == data.offset_float_min
7107 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float)))
7108 && S_setup_longest (aTHX_ pRExC_state,
7112 &(r->float_end_shift),
7113 data.lookbehind_float,
7114 data.offset_float_min,
7116 longest_float_length,
7117 cBOOL(data.flags & SF_FL_BEFORE_EOL),
7118 cBOOL(data.flags & SF_FL_BEFORE_MEOL)))
7120 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
7121 r->float_max_offset = data.offset_float_max;
7122 if (data.offset_float_max < SSize_t_MAX) /* Don't offset infinity */
7123 r->float_max_offset -= data.lookbehind_float;
7124 SvREFCNT_inc_simple_void_NN(data.longest_float);
7127 r->float_substr = r->float_utf8 = NULL;
7128 longest_float_length = 0;
7131 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
7133 if (S_setup_longest (aTHX_ pRExC_state,
7135 &(r->anchored_utf8),
7136 &(r->anchored_substr),
7137 &(r->anchored_end_shift),
7138 data.lookbehind_fixed,
7141 longest_fixed_length,
7142 cBOOL(data.flags & SF_FIX_BEFORE_EOL),
7143 cBOOL(data.flags & SF_FIX_BEFORE_MEOL)))
7145 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
7146 SvREFCNT_inc_simple_void_NN(data.longest_fixed);
7149 r->anchored_substr = r->anchored_utf8 = NULL;
7150 longest_fixed_length = 0;
7152 LEAVE_with_name("study_chunk");
7155 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
7156 ri->regstclass = NULL;
7158 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
7160 && ! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
7161 && is_ssc_worth_it(pRExC_state, data.start_class))
7163 const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
7165 ssc_finalize(pRExC_state, data.start_class);
7167 Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
7168 StructCopy(data.start_class,
7169 (regnode_ssc*)RExC_rxi->data->data[n],
7171 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
7172 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
7173 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
7174 regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
7175 PerlIO_printf(Perl_debug_log,
7176 "synthetic stclass \"%s\".\n",
7177 SvPVX_const(sv));});
7178 data.start_class = NULL;
7181 /* A temporary algorithm prefers floated substr to fixed one to dig
7183 if (longest_fixed_length > longest_float_length) {
7184 r->substrs->check_ix = 0;
7185 r->check_end_shift = r->anchored_end_shift;
7186 r->check_substr = r->anchored_substr;
7187 r->check_utf8 = r->anchored_utf8;
7188 r->check_offset_min = r->check_offset_max = r->anchored_offset;
7189 if (r->intflags & (PREGf_ANCH_SBOL|PREGf_ANCH_GPOS))
7190 r->intflags |= PREGf_NOSCAN;
7193 r->substrs->check_ix = 1;
7194 r->check_end_shift = r->float_end_shift;
7195 r->check_substr = r->float_substr;
7196 r->check_utf8 = r->float_utf8;
7197 r->check_offset_min = r->float_min_offset;
7198 r->check_offset_max = r->float_max_offset;
7200 if ((r->check_substr || r->check_utf8) ) {
7201 r->extflags |= RXf_USE_INTUIT;
7202 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
7203 r->extflags |= RXf_INTUIT_TAIL;
7205 r->substrs->data[0].max_offset = r->substrs->data[0].min_offset;
7207 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
7208 if ( (STRLEN)minlen < longest_float_length )
7209 minlen= longest_float_length;
7210 if ( (STRLEN)minlen < longest_fixed_length )
7211 minlen= longest_fixed_length;
7215 /* Several toplevels. Best we can is to set minlen. */
7217 regnode_ssc ch_class;
7218 SSize_t last_close = 0;
7220 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
7222 scan = ri->program + 1;
7223 ssc_init(pRExC_state, &ch_class);
7224 data.start_class = &ch_class;
7225 data.last_closep = &last_close;
7228 minlen = study_chunk(pRExC_state,
7229 &scan, &minlen, &fake, scan + RExC_size, &data, -1, 0, NULL,
7230 SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS|(restudied
7231 ? SCF_TRIE_DOING_RESTUDY
7235 CHECK_RESTUDY_GOTO_butfirst(NOOP);
7237 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
7238 = r->float_substr = r->float_utf8 = NULL;
7240 if (! (ANYOF_FLAGS(data.start_class) & SSC_MATCHES_EMPTY_STRING)
7241 && is_ssc_worth_it(pRExC_state, data.start_class))
7243 const U32 n = add_data(pRExC_state, STR_WITH_LEN("f"));
7245 ssc_finalize(pRExC_state, data.start_class);
7247 Newx(RExC_rxi->data->data[n], 1, regnode_ssc);
7248 StructCopy(data.start_class,
7249 (regnode_ssc*)RExC_rxi->data->data[n],
7251 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
7252 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
7253 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
7254 regprop(r, sv, (regnode*)data.start_class, NULL, pRExC_state);
7255 PerlIO_printf(Perl_debug_log,
7256 "synthetic stclass \"%s\".\n",
7257 SvPVX_const(sv));});
7258 data.start_class = NULL;
7262 if (RExC_seen & REG_UNBOUNDED_QUANTIFIER_SEEN) {
7263 r->extflags |= RXf_UNBOUNDED_QUANTIFIER_SEEN;
7264 r->maxlen = REG_INFTY;
7267 r->maxlen = RExC_maxlen;
7270 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
7271 the "real" pattern. */
7273 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf" maxlen:%"IVdf"\n",
7274 (IV)minlen, (IV)r->minlen, (IV)RExC_maxlen);
7276 r->minlenret = minlen;
7277 if (r->minlen < minlen)
7280 if (RExC_seen & REG_GPOS_SEEN)
7281 r->intflags |= PREGf_GPOS_SEEN;
7282 if (RExC_seen & REG_LOOKBEHIND_SEEN)
7283 r->extflags |= RXf_NO_INPLACE_SUBST; /* inplace might break the
7285 if (pRExC_state->num_code_blocks)
7286 r->extflags |= RXf_EVAL_SEEN;
7287 if (RExC_seen & REG_VERBARG_SEEN)
7289 r->intflags |= PREGf_VERBARG_SEEN;
7290 r->extflags |= RXf_NO_INPLACE_SUBST; /* don't understand this! Yves */
7292 if (RExC_seen & REG_CUTGROUP_SEEN)
7293 r->intflags |= PREGf_CUTGROUP_SEEN;
7294 if (pm_flags & PMf_USE_RE_EVAL)
7295 r->intflags |= PREGf_USE_RE_EVAL;
7296 if (RExC_paren_names)
7297 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
7299 RXp_PAREN_NAMES(r) = NULL;
7301 /* If we have seen an anchor in our pattern then we set the extflag RXf_IS_ANCHORED
7302 * so it can be used in pp.c */
7303 if (r->intflags & PREGf_ANCH)
7304 r->extflags |= RXf_IS_ANCHORED;
7308 /* this is used to identify "special" patterns that might result
7309 * in Perl NOT calling the regex engine and instead doing the match "itself",
7310 * particularly special cases in split//. By having the regex compiler
7311 * do this pattern matching at a regop level (instead of by inspecting the pattern)
7312 * we avoid weird issues with equivalent patterns resulting in different behavior,
7313 * AND we allow non Perl engines to get the same optimizations by the setting the
7314 * flags appropriately - Yves */
7315 regnode *first = ri->program + 1;
7317 regnode *next = regnext(first);
7320 if (PL_regkind[fop] == NOTHING && nop == END)
7321 r->extflags |= RXf_NULL;
7322 else if ((fop == MBOL || (fop == SBOL && !first->flags)) && nop == END)
7323 /* when fop is SBOL first->flags will be true only when it was
7324 * produced by parsing /\A/, and not when parsing /^/. This is
7325 * very important for the split code as there we want to
7326 * treat /^/ as /^/m, but we do not want to treat /\A/ as /^/m.
7327 * See rt #122761 for more details. -- Yves */
7328 r->extflags |= RXf_START_ONLY;
7329 else if (fop == PLUS
7330 && PL_regkind[nop] == POSIXD && FLAGS(next) == _CC_SPACE
7332 r->extflags |= RXf_WHITE;
7333 else if ( r->extflags & RXf_SPLIT
7334 && (fop == EXACT || fop == EXACTL)
7335 && STR_LEN(first) == 1
7336 && *(STRING(first)) == ' '
7338 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
7342 if (RExC_contains_locale) {
7343 RXp_EXTFLAGS(r) |= RXf_TAINTED;
7347 if (RExC_paren_names) {
7348 ri->name_list_idx = add_data( pRExC_state, STR_WITH_LEN("a"));
7349 ri->data->data[ri->name_list_idx]
7350 = (void*)SvREFCNT_inc(RExC_paren_name_list);
7353 ri->name_list_idx = 0;
7355 if (RExC_recurse_count) {
7356 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
7357 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
7358 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
7361 Newxz(r->offs, RExC_npar, regexp_paren_pair);
7362 /* assume we don't need to swap parens around before we match */
7364 PerlIO_printf(Perl_debug_log,"study_chunk_recursed_count: %lu\n",
7365 (unsigned long)RExC_study_chunk_recursed_count);
7369 PerlIO_printf(Perl_debug_log,"Final program:\n");
7372 #ifdef RE_TRACK_PATTERN_OFFSETS
7373 DEBUG_OFFSETS_r(if (ri->u.offsets) {
7374 const STRLEN len = ri->u.offsets[0];
7376 GET_RE_DEBUG_FLAGS_DECL;
7377 PerlIO_printf(Perl_debug_log,
7378 "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
7379 for (i = 1; i <= len; i++) {
7380 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
7381 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
7382 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
7384 PerlIO_printf(Perl_debug_log, "\n");
7389 /* under ithreads the ?pat? PMf_USED flag on the pmop is simulated
7390 * by setting the regexp SV to readonly-only instead. If the
7391 * pattern's been recompiled, the USEDness should remain. */
7392 if (old_re && SvREADONLY(old_re))
7400 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
7403 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
7405 PERL_UNUSED_ARG(value);
7407 if (flags & RXapif_FETCH) {
7408 return reg_named_buff_fetch(rx, key, flags);
7409 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
7410 Perl_croak_no_modify();
7412 } else if (flags & RXapif_EXISTS) {
7413 return reg_named_buff_exists(rx, key, flags)
7416 } else if (flags & RXapif_REGNAMES) {
7417 return reg_named_buff_all(rx, flags);
7418 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
7419 return reg_named_buff_scalar(rx, flags);
7421 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
7427 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
7430 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
7431 PERL_UNUSED_ARG(lastkey);
7433 if (flags & RXapif_FIRSTKEY)
7434 return reg_named_buff_firstkey(rx, flags);
7435 else if (flags & RXapif_NEXTKEY)
7436 return reg_named_buff_nextkey(rx, flags);
7438 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter",
7445 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
7448 AV *retarray = NULL;
7450 struct regexp *const rx = ReANY(r);
7452 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
7454 if (flags & RXapif_ALL)
7457 if (rx && RXp_PAREN_NAMES(rx)) {
7458 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
7461 SV* sv_dat=HeVAL(he_str);
7462 I32 *nums=(I32*)SvPVX(sv_dat);
7463 for ( i=0; i<SvIVX(sv_dat); i++ ) {
7464 if ((I32)(rx->nparens) >= nums[i]
7465 && rx->offs[nums[i]].start != -1
7466 && rx->offs[nums[i]].end != -1)
7469 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
7474 ret = newSVsv(&PL_sv_undef);
7477 av_push(retarray, ret);
7480 return newRV_noinc(MUTABLE_SV(retarray));
7487 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
7490 struct regexp *const rx = ReANY(r);
7492 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
7494 if (rx && RXp_PAREN_NAMES(rx)) {
7495 if (flags & RXapif_ALL) {
7496 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
7498 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
7500 SvREFCNT_dec_NN(sv);
7512 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
7514 struct regexp *const rx = ReANY(r);
7516 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
7518 if ( rx && RXp_PAREN_NAMES(rx) ) {
7519 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
7521 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
7528 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
7530 struct regexp *const rx = ReANY(r);
7531 GET_RE_DEBUG_FLAGS_DECL;
7533 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
7535 if (rx && RXp_PAREN_NAMES(rx)) {
7536 HV *hv = RXp_PAREN_NAMES(rx);
7538 while ( (temphe = hv_iternext_flags(hv,0)) ) {
7541 SV* sv_dat = HeVAL(temphe);
7542 I32 *nums = (I32*)SvPVX(sv_dat);
7543 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
7544 if ((I32)(rx->lastparen) >= nums[i] &&
7545 rx->offs[nums[i]].start != -1 &&
7546 rx->offs[nums[i]].end != -1)
7552 if (parno || flags & RXapif_ALL) {
7553 return newSVhek(HeKEY_hek(temphe));
7561 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
7566 struct regexp *const rx = ReANY(r);
7568 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
7570 if (rx && RXp_PAREN_NAMES(rx)) {
7571 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
7572 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
7573 } else if (flags & RXapif_ONE) {
7574 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
7575 av = MUTABLE_AV(SvRV(ret));
7576 length = av_tindex(av);
7577 SvREFCNT_dec_NN(ret);
7578 return newSViv(length + 1);
7580 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar",
7585 return &PL_sv_undef;
7589 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
7591 struct regexp *const rx = ReANY(r);
7594 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
7596 if (rx && RXp_PAREN_NAMES(rx)) {
7597 HV *hv= RXp_PAREN_NAMES(rx);
7599 (void)hv_iterinit(hv);
7600 while ( (temphe = hv_iternext_flags(hv,0)) ) {
7603 SV* sv_dat = HeVAL(temphe);
7604 I32 *nums = (I32*)SvPVX(sv_dat);
7605 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
7606 if ((I32)(rx->lastparen) >= nums[i] &&
7607 rx->offs[nums[i]].start != -1 &&
7608 rx->offs[nums[i]].end != -1)
7614 if (parno || flags & RXapif_ALL) {
7615 av_push(av, newSVhek(HeKEY_hek(temphe)));
7620 return newRV_noinc(MUTABLE_SV(av));
7624 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
7627 struct regexp *const rx = ReANY(r);
7633 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
7635 if ( n == RX_BUFF_IDX_CARET_PREMATCH
7636 || n == RX_BUFF_IDX_CARET_FULLMATCH
7637 || n == RX_BUFF_IDX_CARET_POSTMATCH
7640 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
7642 /* on something like
7645 * the KEEPCOPY is set on the PMOP rather than the regex */
7646 if (PL_curpm && r == PM_GETRE(PL_curpm))
7647 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
7656 if (n == RX_BUFF_IDX_CARET_FULLMATCH)
7657 /* no need to distinguish between them any more */
7658 n = RX_BUFF_IDX_FULLMATCH;
7660 if ((n == RX_BUFF_IDX_PREMATCH || n == RX_BUFF_IDX_CARET_PREMATCH)
7661 && rx->offs[0].start != -1)
7663 /* $`, ${^PREMATCH} */
7664 i = rx->offs[0].start;
7668 if ((n == RX_BUFF_IDX_POSTMATCH || n == RX_BUFF_IDX_CARET_POSTMATCH)
7669 && rx->offs[0].end != -1)
7671 /* $', ${^POSTMATCH} */
7672 s = rx->subbeg - rx->suboffset + rx->offs[0].end;
7673 i = rx->sublen + rx->suboffset - rx->offs[0].end;
7676 if ( 0 <= n && n <= (I32)rx->nparens &&
7677 (s1 = rx->offs[n].start) != -1 &&
7678 (t1 = rx->offs[n].end) != -1)
7680 /* $&, ${^MATCH}, $1 ... */
7682 s = rx->subbeg + s1 - rx->suboffset;
7687 assert(s >= rx->subbeg);
7688 assert((STRLEN)rx->sublen >= (STRLEN)((s - rx->subbeg) + i) );
7690 #ifdef NO_TAINT_SUPPORT
7691 sv_setpvn(sv, s, i);
7693 const int oldtainted = TAINT_get;
7695 sv_setpvn(sv, s, i);
7696 TAINT_set(oldtainted);
7698 if (RXp_MATCH_UTF8(rx))
7703 if (RXp_MATCH_TAINTED(rx)) {
7704 if (SvTYPE(sv) >= SVt_PVMG) {
7705 MAGIC* const mg = SvMAGIC(sv);
7708 SvMAGIC_set(sv, mg->mg_moremagic);
7710 if ((mgt = SvMAGIC(sv))) {
7711 mg->mg_moremagic = mgt;
7712 SvMAGIC_set(sv, mg);
7723 sv_setsv(sv,&PL_sv_undef);
7729 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
7730 SV const * const value)
7732 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
7734 PERL_UNUSED_ARG(rx);
7735 PERL_UNUSED_ARG(paren);
7736 PERL_UNUSED_ARG(value);
7739 Perl_croak_no_modify();
7743 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
7746 struct regexp *const rx = ReANY(r);
7750 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
7752 if ( paren == RX_BUFF_IDX_CARET_PREMATCH
7753 || paren == RX_BUFF_IDX_CARET_FULLMATCH
7754 || paren == RX_BUFF_IDX_CARET_POSTMATCH
7757 bool keepcopy = cBOOL(rx->extflags & RXf_PMf_KEEPCOPY);
7759 /* on something like
7762 * the KEEPCOPY is set on the PMOP rather than the regex */
7763 if (PL_curpm && r == PM_GETRE(PL_curpm))
7764 keepcopy = cBOOL(PL_curpm->op_pmflags & PMf_KEEPCOPY);
7770 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
7772 case RX_BUFF_IDX_CARET_PREMATCH: /* ${^PREMATCH} */
7773 case RX_BUFF_IDX_PREMATCH: /* $` */
7774 if (rx->offs[0].start != -1) {
7775 i = rx->offs[0].start;
7784 case RX_BUFF_IDX_CARET_POSTMATCH: /* ${^POSTMATCH} */
7785 case RX_BUFF_IDX_POSTMATCH: /* $' */
7786 if (rx->offs[0].end != -1) {
7787 i = rx->sublen - rx->offs[0].end;
7789 s1 = rx->offs[0].end;
7796 default: /* $& / ${^MATCH}, $1, $2, ... */
7797 if (paren <= (I32)rx->nparens &&
7798 (s1 = rx->offs[paren].start) != -1 &&
7799 (t1 = rx->offs[paren].end) != -1)
7805 if (ckWARN(WARN_UNINITIALIZED))
7806 report_uninit((const SV *)sv);
7811 if (i > 0 && RXp_MATCH_UTF8(rx)) {
7812 const char * const s = rx->subbeg - rx->suboffset + s1;
7817 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
7824 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
7826 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
7827 PERL_UNUSED_ARG(rx);
7831 return newSVpvs("Regexp");
7834 /* Scans the name of a named buffer from the pattern.
7835 * If flags is REG_RSN_RETURN_NULL returns null.
7836 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
7837 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
7838 * to the parsed name as looked up in the RExC_paren_names hash.
7839 * If there is an error throws a vFAIL().. type exception.
7842 #define REG_RSN_RETURN_NULL 0
7843 #define REG_RSN_RETURN_NAME 1
7844 #define REG_RSN_RETURN_DATA 2
7847 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
7849 char *name_start = RExC_parse;
7851 PERL_ARGS_ASSERT_REG_SCAN_NAME;
7853 assert (RExC_parse <= RExC_end);
7854 if (RExC_parse == RExC_end) NOOP;
7855 else if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
7856 /* skip IDFIRST by using do...while */
7859 RExC_parse += UTF8SKIP(RExC_parse);
7860 } while (isWORDCHAR_utf8((U8*)RExC_parse));
7864 } while (isWORDCHAR(*RExC_parse));
7866 RExC_parse++; /* so the <- from the vFAIL is after the offending
7868 vFAIL("Group name must start with a non-digit word character");
7872 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
7873 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
7874 if ( flags == REG_RSN_RETURN_NAME)
7876 else if (flags==REG_RSN_RETURN_DATA) {
7879 if ( ! sv_name ) /* should not happen*/
7880 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
7881 if (RExC_paren_names)
7882 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
7884 sv_dat = HeVAL(he_str);
7886 vFAIL("Reference to nonexistent named group");
7890 Perl_croak(aTHX_ "panic: bad flag %lx in reg_scan_name",
7891 (unsigned long) flags);
7893 NOT_REACHED; /* NOTREACHED */
7898 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
7900 if (RExC_lastparse!=RExC_parse) { \
7901 PerlIO_printf(Perl_debug_log, "%s", \
7902 Perl_pv_pretty(aTHX_ RExC_mysv1, RExC_parse, \
7903 RExC_end - RExC_parse, 16, \
7905 PERL_PV_ESCAPE_UNI_DETECT | \
7906 PERL_PV_PRETTY_ELLIPSES | \
7907 PERL_PV_PRETTY_LTGT | \
7908 PERL_PV_ESCAPE_RE | \
7909 PERL_PV_PRETTY_EXACTSIZE \
7913 PerlIO_printf(Perl_debug_log,"%16s",""); \
7916 num = RExC_size + 1; \
7918 num=REG_NODE_NUM(RExC_emit); \
7919 if (RExC_lastnum!=num) \
7920 PerlIO_printf(Perl_debug_log,"|%4d",num); \
7922 PerlIO_printf(Perl_debug_log,"|%4s",""); \
7923 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
7924 (int)((depth*2)), "", \
7928 RExC_lastparse=RExC_parse; \
7933 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
7934 DEBUG_PARSE_MSG((funcname)); \
7935 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
7937 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
7938 DEBUG_PARSE_MSG((funcname)); \
7939 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
7942 /* This section of code defines the inversion list object and its methods. The
7943 * interfaces are highly subject to change, so as much as possible is static to
7944 * this file. An inversion list is here implemented as a malloc'd C UV array
7945 * as an SVt_INVLIST scalar.
7947 * An inversion list for Unicode is an array of code points, sorted by ordinal
7948 * number. The zeroth element is the first code point in the list. The 1th
7949 * element is the first element beyond that not in the list. In other words,
7950 * the first range is
7951 * invlist[0]..(invlist[1]-1)
7952 * The other ranges follow. Thus every element whose index is divisible by two
7953 * marks the beginning of a range that is in the list, and every element not
7954 * divisible by two marks the beginning of a range not in the list. A single
7955 * element inversion list that contains the single code point N generally
7956 * consists of two elements
7959 * (The exception is when N is the highest representable value on the
7960 * machine, in which case the list containing just it would be a single
7961 * element, itself. By extension, if the last range in the list extends to
7962 * infinity, then the first element of that range will be in the inversion list
7963 * at a position that is divisible by two, and is the final element in the
7965 * Taking the complement (inverting) an inversion list is quite simple, if the
7966 * first element is 0, remove it; otherwise add a 0 element at the beginning.
7967 * This implementation reserves an element at the beginning of each inversion
7968 * list to always contain 0; there is an additional flag in the header which
7969 * indicates if the list begins at the 0, or is offset to begin at the next
7972 * More about inversion lists can be found in "Unicode Demystified"
7973 * Chapter 13 by Richard Gillam, published by Addison-Wesley.
7974 * More will be coming when functionality is added later.
7976 * The inversion list data structure is currently implemented as an SV pointing
7977 * to an array of UVs that the SV thinks are bytes. This allows us to have an
7978 * array of UV whose memory management is automatically handled by the existing
7979 * facilities for SV's.
7981 * Some of the methods should always be private to the implementation, and some
7982 * should eventually be made public */
7984 /* The header definitions are in F<inline_invlist.c> */
7986 PERL_STATIC_INLINE UV*
7987 S__invlist_array_init(SV* const invlist, const bool will_have_0)
7989 /* Returns a pointer to the first element in the inversion list's array.
7990 * This is called upon initialization of an inversion list. Where the
7991 * array begins depends on whether the list has the code point U+0000 in it
7992 * or not. The other parameter tells it whether the code that follows this
7993 * call is about to put a 0 in the inversion list or not. The first
7994 * element is either the element reserved for 0, if TRUE, or the element
7995 * after it, if FALSE */
7997 bool* offset = get_invlist_offset_addr(invlist);
7998 UV* zero_addr = (UV *) SvPVX(invlist);
8000 PERL_ARGS_ASSERT__INVLIST_ARRAY_INIT;
8003 assert(! _invlist_len(invlist));
8007 /* 1^1 = 0; 1^0 = 1 */
8008 *offset = 1 ^ will_have_0;
8009 return zero_addr + *offset;
8012 PERL_STATIC_INLINE void
8013 S_invlist_set_len(pTHX_ SV* const invlist, const UV len, const bool offset)
8015 /* Sets the current number of elements stored in the inversion list.
8016 * Updates SvCUR correspondingly */
8017 PERL_UNUSED_CONTEXT;
8018 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
8020 assert(SvTYPE(invlist) == SVt_INVLIST);
8025 : TO_INTERNAL_SIZE(len + offset));
8026 assert(SvLEN(invlist) == 0 || SvCUR(invlist) <= SvLEN(invlist));
8029 #ifndef PERL_IN_XSUB_RE
8031 PERL_STATIC_INLINE IV*
8032 S_get_invlist_previous_index_addr(SV* invlist)
8034 /* Return the address of the IV that is reserved to hold the cached index
8036 PERL_ARGS_ASSERT_GET_INVLIST_PREVIOUS_INDEX_ADDR;
8038 assert(SvTYPE(invlist) == SVt_INVLIST);
8040 return &(((XINVLIST*) SvANY(invlist))->prev_index);
8043 PERL_STATIC_INLINE IV
8044 S_invlist_previous_index(SV* const invlist)
8046 /* Returns cached index of previous search */
8048 PERL_ARGS_ASSERT_INVLIST_PREVIOUS_INDEX;
8050 return *get_invlist_previous_index_addr(invlist);
8053 PERL_STATIC_INLINE void
8054 S_invlist_set_previous_index(SV* const invlist, const IV index)
8056 /* Caches <index> for later retrieval */
8058 PERL_ARGS_ASSERT_INVLIST_SET_PREVIOUS_INDEX;
8060 assert(index == 0 || index < (int) _invlist_len(invlist));
8062 *get_invlist_previous_index_addr(invlist) = index;
8065 PERL_STATIC_INLINE void
8066 S_invlist_trim(SV* const invlist)
8068 PERL_ARGS_ASSERT_INVLIST_TRIM;
8070 assert(SvTYPE(invlist) == SVt_INVLIST);
8072 /* Change the length of the inversion list to how many entries it currently
8074 SvPV_shrink_to_cur((SV *) invlist);
8077 PERL_STATIC_INLINE bool
8078 S_invlist_is_iterating(SV* const invlist)
8080 PERL_ARGS_ASSERT_INVLIST_IS_ITERATING;
8082 return *(get_invlist_iter_addr(invlist)) < (STRLEN) UV_MAX;
8085 #endif /* ifndef PERL_IN_XSUB_RE */
8087 PERL_STATIC_INLINE UV
8088 S_invlist_max(SV* const invlist)
8090 /* Returns the maximum number of elements storable in the inversion list's
8091 * array, without having to realloc() */
8093 PERL_ARGS_ASSERT_INVLIST_MAX;
8095 assert(SvTYPE(invlist) == SVt_INVLIST);
8097 /* Assumes worst case, in which the 0 element is not counted in the
8098 * inversion list, so subtracts 1 for that */
8099 return SvLEN(invlist) == 0 /* This happens under _new_invlist_C_array */
8100 ? FROM_INTERNAL_SIZE(SvCUR(invlist)) - 1
8101 : FROM_INTERNAL_SIZE(SvLEN(invlist)) - 1;
8104 #ifndef PERL_IN_XSUB_RE
8106 Perl__new_invlist(pTHX_ IV initial_size)
8109 /* Return a pointer to a newly constructed inversion list, with enough
8110 * space to store 'initial_size' elements. If that number is negative, a
8111 * system default is used instead */
8115 if (initial_size < 0) {
8119 /* Allocate the initial space */
8120 new_list = newSV_type(SVt_INVLIST);
8122 /* First 1 is in case the zero element isn't in the list; second 1 is for
8124 SvGROW(new_list, TO_INTERNAL_SIZE(initial_size + 1) + 1);
8125 invlist_set_len(new_list, 0, 0);
8127 /* Force iterinit() to be used to get iteration to work */
8128 *get_invlist_iter_addr(new_list) = (STRLEN) UV_MAX;
8130 *get_invlist_previous_index_addr(new_list) = 0;
8136 Perl__new_invlist_C_array(pTHX_ const UV* const list)
8138 /* Return a pointer to a newly constructed inversion list, initialized to
8139 * point to <list>, which has to be in the exact correct inversion list
8140 * form, including internal fields. Thus this is a dangerous routine that
8141 * should not be used in the wrong hands. The passed in 'list' contains
8142 * several header fields at the beginning that are not part of the
8143 * inversion list body proper */
8145 const STRLEN length = (STRLEN) list[0];
8146 const UV version_id = list[1];
8147 const bool offset = cBOOL(list[2]);
8148 #define HEADER_LENGTH 3
8149 /* If any of the above changes in any way, you must change HEADER_LENGTH
8150 * (if appropriate) and regenerate INVLIST_VERSION_ID by running
8151 * perl -E 'say int(rand 2**31-1)'
8153 #define INVLIST_VERSION_ID 148565664 /* This is a combination of a version and
8154 data structure type, so that one being
8155 passed in can be validated to be an
8156 inversion list of the correct vintage.
8159 SV* invlist = newSV_type(SVt_INVLIST);
8161 PERL_ARGS_ASSERT__NEW_INVLIST_C_ARRAY;
8163 if (version_id != INVLIST_VERSION_ID) {
8164 Perl_croak(aTHX_ "panic: Incorrect version for previously generated inversion list");
8167 /* The generated array passed in includes header elements that aren't part
8168 * of the list proper, so start it just after them */
8169 SvPV_set(invlist, (char *) (list + HEADER_LENGTH));
8171 SvLEN_set(invlist, 0); /* Means we own the contents, and the system
8172 shouldn't touch it */
8174 *(get_invlist_offset_addr(invlist)) = offset;
8176 /* The 'length' passed to us is the physical number of elements in the
8177 * inversion list. But if there is an offset the logical number is one
8179 invlist_set_len(invlist, length - offset, offset);
8181 invlist_set_previous_index(invlist, 0);
8183 /* Initialize the iteration pointer. */
8184 invlist_iterfinish(invlist);
8186 SvREADONLY_on(invlist);
8190 #endif /* ifndef PERL_IN_XSUB_RE */
8193 S_invlist_extend(pTHX_ SV* const invlist, const UV new_max)
8195 /* Grow the maximum size of an inversion list */
8197 PERL_ARGS_ASSERT_INVLIST_EXTEND;
8199 assert(SvTYPE(invlist) == SVt_INVLIST);
8201 /* Add one to account for the zero element at the beginning which may not
8202 * be counted by the calling parameters */
8203 SvGROW((SV *)invlist, TO_INTERNAL_SIZE(new_max + 1));
8207 S__append_range_to_invlist(pTHX_ SV* const invlist,
8208 const UV start, const UV end)
8210 /* Subject to change or removal. Append the range from 'start' to 'end' at
8211 * the end of the inversion list. The range must be above any existing
8215 UV max = invlist_max(invlist);
8216 UV len = _invlist_len(invlist);
8219 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
8221 if (len == 0) { /* Empty lists must be initialized */
8222 offset = start != 0;
8223 array = _invlist_array_init(invlist, ! offset);
8226 /* Here, the existing list is non-empty. The current max entry in the
8227 * list is generally the first value not in the set, except when the
8228 * set extends to the end of permissible values, in which case it is
8229 * the first entry in that final set, and so this call is an attempt to
8230 * append out-of-order */
8232 UV final_element = len - 1;
8233 array = invlist_array(invlist);
8234 if (array[final_element] > start
8235 || ELEMENT_RANGE_MATCHES_INVLIST(final_element))
8237 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list, final=%"UVuf", start=%"UVuf", match=%c",
8238 array[final_element], start,
8239 ELEMENT_RANGE_MATCHES_INVLIST(final_element) ? 't' : 'f');
8242 /* Here, it is a legal append. If the new range begins with the first
8243 * value not in the set, it is extending the set, so the new first
8244 * value not in the set is one greater than the newly extended range.
8246 offset = *get_invlist_offset_addr(invlist);
8247 if (array[final_element] == start) {
8248 if (end != UV_MAX) {
8249 array[final_element] = end + 1;
8252 /* But if the end is the maximum representable on the machine,
8253 * just let the range that this would extend to have no end */
8254 invlist_set_len(invlist, len - 1, offset);
8260 /* Here the new range doesn't extend any existing set. Add it */
8262 len += 2; /* Includes an element each for the start and end of range */
8264 /* If wll overflow the existing space, extend, which may cause the array to
8267 invlist_extend(invlist, len);
8269 /* Have to set len here to avoid assert failure in invlist_array() */
8270 invlist_set_len(invlist, len, offset);
8272 array = invlist_array(invlist);
8275 invlist_set_len(invlist, len, offset);
8278 /* The next item on the list starts the range, the one after that is
8279 * one past the new range. */
8280 array[len - 2] = start;
8281 if (end != UV_MAX) {
8282 array[len - 1] = end + 1;
8285 /* But if the end is the maximum representable on the machine, just let
8286 * the range have no end */
8287 invlist_set_len(invlist, len - 1, offset);
8291 #ifndef PERL_IN_XSUB_RE
8294 Perl__invlist_search(SV* const invlist, const UV cp)
8296 /* Searches the inversion list for the entry that contains the input code
8297 * point <cp>. If <cp> is not in the list, -1 is returned. Otherwise, the
8298 * return value is the index into the list's array of the range that
8303 IV high = _invlist_len(invlist);
8304 const IV highest_element = high - 1;
8307 PERL_ARGS_ASSERT__INVLIST_SEARCH;
8309 /* If list is empty, return failure. */
8314 /* (We can't get the array unless we know the list is non-empty) */
8315 array = invlist_array(invlist);
8317 mid = invlist_previous_index(invlist);
8318 assert(mid >=0 && mid <= highest_element);
8320 /* <mid> contains the cache of the result of the previous call to this
8321 * function (0 the first time). See if this call is for the same result,
8322 * or if it is for mid-1. This is under the theory that calls to this
8323 * function will often be for related code points that are near each other.
8324 * And benchmarks show that caching gives better results. We also test
8325 * here if the code point is within the bounds of the list. These tests
8326 * replace others that would have had to be made anyway to make sure that
8327 * the array bounds were not exceeded, and these give us extra information
8328 * at the same time */
8329 if (cp >= array[mid]) {
8330 if (cp >= array[highest_element]) {
8331 return highest_element;
8334 /* Here, array[mid] <= cp < array[highest_element]. This means that
8335 * the final element is not the answer, so can exclude it; it also
8336 * means that <mid> is not the final element, so can refer to 'mid + 1'
8338 if (cp < array[mid + 1]) {
8344 else { /* cp < aray[mid] */
8345 if (cp < array[0]) { /* Fail if outside the array */
8349 if (cp >= array[mid - 1]) {
8354 /* Binary search. What we are looking for is <i> such that
8355 * array[i] <= cp < array[i+1]
8356 * The loop below converges on the i+1. Note that there may not be an
8357 * (i+1)th element in the array, and things work nonetheless */
8358 while (low < high) {
8359 mid = (low + high) / 2;
8360 assert(mid <= highest_element);
8361 if (array[mid] <= cp) { /* cp >= array[mid] */
8364 /* We could do this extra test to exit the loop early.
8365 if (cp < array[low]) {
8370 else { /* cp < array[mid] */
8377 invlist_set_previous_index(invlist, high);
8382 Perl__invlist_populate_swatch(SV* const invlist,
8383 const UV start, const UV end, U8* swatch)
8385 /* populates a swatch of a swash the same way swatch_get() does in utf8.c,
8386 * but is used when the swash has an inversion list. This makes this much
8387 * faster, as it uses a binary search instead of a linear one. This is
8388 * intimately tied to that function, and perhaps should be in utf8.c,
8389 * except it is intimately tied to inversion lists as well. It assumes
8390 * that <swatch> is all 0's on input */
8393 const IV len = _invlist_len(invlist);
8397 PERL_ARGS_ASSERT__INVLIST_POPULATE_SWATCH;
8399 if (len == 0) { /* Empty inversion list */
8403 array = invlist_array(invlist);
8405 /* Find which element it is */
8406 i = _invlist_search(invlist, start);
8408 /* We populate from <start> to <end> */
8409 while (current < end) {
8412 /* The inversion list gives the results for every possible code point
8413 * after the first one in the list. Only those ranges whose index is
8414 * even are ones that the inversion list matches. For the odd ones,
8415 * and if the initial code point is not in the list, we have to skip
8416 * forward to the next element */
8417 if (i == -1 || ! ELEMENT_RANGE_MATCHES_INVLIST(i)) {
8419 if (i >= len) { /* Finished if beyond the end of the array */
8423 if (current >= end) { /* Finished if beyond the end of what we
8425 if (LIKELY(end < UV_MAX)) {
8429 /* We get here when the upper bound is the maximum
8430 * representable on the machine, and we are looking for just
8431 * that code point. Have to special case it */
8433 goto join_end_of_list;
8436 assert(current >= start);
8438 /* The current range ends one below the next one, except don't go past
8441 upper = (i < len && array[i] < end) ? array[i] : end;
8443 /* Here we are in a range that matches. Populate a bit in the 3-bit U8
8444 * for each code point in it */
8445 for (; current < upper; current++) {
8446 const STRLEN offset = (STRLEN)(current - start);
8447 swatch[offset >> 3] |= 1 << (offset & 7);
8452 /* Quit if at the end of the list */
8455 /* But first, have to deal with the highest possible code point on
8456 * the platform. The previous code assumes that <end> is one
8457 * beyond where we want to populate, but that is impossible at the
8458 * platform's infinity, so have to handle it specially */
8459 if (UNLIKELY(end == UV_MAX && ELEMENT_RANGE_MATCHES_INVLIST(len-1)))
8461 const STRLEN offset = (STRLEN)(end - start);
8462 swatch[offset >> 3] |= 1 << (offset & 7);
8467 /* Advance to the next range, which will be for code points not in the
8476 Perl__invlist_union_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
8477 const bool complement_b, SV** output)
8479 /* Take the union of two inversion lists and point <output> to it. *output
8480 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
8481 * the reference count to that list will be decremented if not already a
8482 * temporary (mortal); otherwise *output will be made correspondingly
8483 * mortal. The first list, <a>, may be NULL, in which case a copy of the
8484 * second list is returned. If <complement_b> is TRUE, the union is taken
8485 * of the complement (inversion) of <b> instead of b itself.
8487 * The basis for this comes from "Unicode Demystified" Chapter 13 by
8488 * Richard Gillam, published by Addison-Wesley, and explained at some
8489 * length there. The preface says to incorporate its examples into your
8490 * code at your own risk.
8492 * The algorithm is like a merge sort.
8494 * XXX A potential performance improvement is to keep track as we go along
8495 * if only one of the inputs contributes to the result, meaning the other
8496 * is a subset of that one. In that case, we can skip the final copy and
8497 * return the larger of the input lists, but then outside code might need
8498 * to keep track of whether to free the input list or not */
8500 const UV* array_a; /* a's array */
8502 UV len_a; /* length of a's array */
8505 SV* u; /* the resulting union */
8509 UV i_a = 0; /* current index into a's array */
8513 /* running count, as explained in the algorithm source book; items are
8514 * stopped accumulating and are output when the count changes to/from 0.
8515 * The count is incremented when we start a range that's in the set, and
8516 * decremented when we start a range that's not in the set. So its range
8517 * is 0 to 2. Only when the count is zero is something not in the set.
8521 PERL_ARGS_ASSERT__INVLIST_UNION_MAYBE_COMPLEMENT_2ND;
8524 /* If either one is empty, the union is the other one */
8525 if (a == NULL || ((len_a = _invlist_len(a)) == 0)) {
8526 bool make_temp = FALSE; /* Should we mortalize the result? */
8530 if (! (make_temp = cBOOL(SvTEMP(a)))) {
8536 *output = invlist_clone(b);
8538 _invlist_invert(*output);
8540 } /* else *output already = b; */
8543 sv_2mortal(*output);
8547 else if ((len_b = _invlist_len(b)) == 0) {
8548 bool make_temp = FALSE;
8550 if (! (make_temp = cBOOL(SvTEMP(b)))) {
8555 /* The complement of an empty list is a list that has everything in it,
8556 * so the union with <a> includes everything too */
8559 if (! (make_temp = cBOOL(SvTEMP(a)))) {
8563 *output = _new_invlist(1);
8564 _append_range_to_invlist(*output, 0, UV_MAX);
8566 else if (*output != a) {
8567 *output = invlist_clone(a);
8569 /* else *output already = a; */
8572 sv_2mortal(*output);
8577 /* Here both lists exist and are non-empty */
8578 array_a = invlist_array(a);
8579 array_b = invlist_array(b);
8581 /* If are to take the union of 'a' with the complement of b, set it
8582 * up so are looking at b's complement. */
8585 /* To complement, we invert: if the first element is 0, remove it. To
8586 * do this, we just pretend the array starts one later */
8587 if (array_b[0] == 0) {
8593 /* But if the first element is not zero, we pretend the list starts
8594 * at the 0 that is always stored immediately before the array. */
8600 /* Size the union for the worst case: that the sets are completely
8602 u = _new_invlist(len_a + len_b);
8604 /* Will contain U+0000 if either component does */
8605 array_u = _invlist_array_init(u, (len_a > 0 && array_a[0] == 0)
8606 || (len_b > 0 && array_b[0] == 0));
8608 /* Go through each list item by item, stopping when exhausted one of
8610 while (i_a < len_a && i_b < len_b) {
8611 UV cp; /* The element to potentially add to the union's array */
8612 bool cp_in_set; /* is it in the the input list's set or not */
8614 /* We need to take one or the other of the two inputs for the union.
8615 * Since we are merging two sorted lists, we take the smaller of the
8616 * next items. In case of a tie, we take the one that is in its set
8617 * first. If we took one not in the set first, it would decrement the
8618 * count, possibly to 0 which would cause it to be output as ending the
8619 * range, and the next time through we would take the same number, and
8620 * output it again as beginning the next range. By doing it the
8621 * opposite way, there is no possibility that the count will be
8622 * momentarily decremented to 0, and thus the two adjoining ranges will
8623 * be seamlessly merged. (In a tie and both are in the set or both not
8624 * in the set, it doesn't matter which we take first.) */
8625 if (array_a[i_a] < array_b[i_b]
8626 || (array_a[i_a] == array_b[i_b]
8627 && ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
8629 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
8633 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
8634 cp = array_b[i_b++];
8637 /* Here, have chosen which of the two inputs to look at. Only output
8638 * if the running count changes to/from 0, which marks the
8639 * beginning/end of a range in that's in the set */
8642 array_u[i_u++] = cp;
8649 array_u[i_u++] = cp;
8654 /* Here, we are finished going through at least one of the lists, which
8655 * means there is something remaining in at most one. We check if the list
8656 * that hasn't been exhausted is positioned such that we are in the middle
8657 * of a range in its set or not. (i_a and i_b point to the element beyond
8658 * the one we care about.) If in the set, we decrement 'count'; if 0, there
8659 * is potentially more to output.
8660 * There are four cases:
8661 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
8662 * in the union is entirely from the non-exhausted set.
8663 * 2) Both were in their sets, count is 2. Nothing further should
8664 * be output, as everything that remains will be in the exhausted
8665 * list's set, hence in the union; decrementing to 1 but not 0 insures
8667 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
8668 * Nothing further should be output because the union includes
8669 * everything from the exhausted set. Not decrementing ensures that.
8670 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
8671 * decrementing to 0 insures that we look at the remainder of the
8672 * non-exhausted set */
8673 if ((i_a != len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
8674 || (i_b != len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
8679 /* The final length is what we've output so far, plus what else is about to
8680 * be output. (If 'count' is non-zero, then the input list we exhausted
8681 * has everything remaining up to the machine's limit in its set, and hence
8682 * in the union, so there will be no further output. */
8685 /* At most one of the subexpressions will be non-zero */
8686 len_u += (len_a - i_a) + (len_b - i_b);
8689 /* Set result to final length, which can change the pointer to array_u, so
8691 if (len_u != _invlist_len(u)) {
8692 invlist_set_len(u, len_u, *get_invlist_offset_addr(u));
8694 array_u = invlist_array(u);
8697 /* When 'count' is 0, the list that was exhausted (if one was shorter than
8698 * the other) ended with everything above it not in its set. That means
8699 * that the remaining part of the union is precisely the same as the
8700 * non-exhausted list, so can just copy it unchanged. (If both list were
8701 * exhausted at the same time, then the operations below will be both 0.)
8704 IV copy_count; /* At most one will have a non-zero copy count */
8705 if ((copy_count = len_a - i_a) > 0) {
8706 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
8708 else if ((copy_count = len_b - i_b) > 0) {
8709 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
8713 /* We may be removing a reference to one of the inputs. If so, the output
8714 * is made mortal if the input was. (Mortal SVs shouldn't have their ref
8715 * count decremented) */
8716 if (a == *output || b == *output) {
8717 assert(! invlist_is_iterating(*output));
8718 if ((SvTEMP(*output))) {
8722 SvREFCNT_dec_NN(*output);
8732 Perl__invlist_intersection_maybe_complement_2nd(pTHX_ SV* const a, SV* const b,
8733 const bool complement_b, SV** i)
8735 /* Take the intersection of two inversion lists and point <i> to it. *i
8736 * SHOULD BE DEFINED upon input, and if it points to one of the two lists,
8737 * the reference count to that list will be decremented if not already a
8738 * temporary (mortal); otherwise *i will be made correspondingly mortal.
8739 * The first list, <a>, may be NULL, in which case an empty list is
8740 * returned. If <complement_b> is TRUE, the result will be the
8741 * intersection of <a> and the complement (or inversion) of <b> instead of
8744 * The basis for this comes from "Unicode Demystified" Chapter 13 by
8745 * Richard Gillam, published by Addison-Wesley, and explained at some
8746 * length there. The preface says to incorporate its examples into your
8747 * code at your own risk. In fact, it had bugs
8749 * The algorithm is like a merge sort, and is essentially the same as the
8753 const UV* array_a; /* a's array */
8755 UV len_a; /* length of a's array */
8758 SV* r; /* the resulting intersection */
8762 UV i_a = 0; /* current index into a's array */
8766 /* running count, as explained in the algorithm source book; items are
8767 * stopped accumulating and are output when the count changes to/from 2.
8768 * The count is incremented when we start a range that's in the set, and
8769 * decremented when we start a range that's not in the set. So its range
8770 * is 0 to 2. Only when the count is 2 is something in the intersection.
8774 PERL_ARGS_ASSERT__INVLIST_INTERSECTION_MAYBE_COMPLEMENT_2ND;
8777 /* Special case if either one is empty */
8778 len_a = (a == NULL) ? 0 : _invlist_len(a);
8779 if ((len_a == 0) || ((len_b = _invlist_len(b)) == 0)) {
8780 bool make_temp = FALSE;
8782 if (len_a != 0 && complement_b) {
8784 /* Here, 'a' is not empty, therefore from the above 'if', 'b' must
8785 * be empty. Here, also we are using 'b's complement, which hence
8786 * must be every possible code point. Thus the intersection is
8790 if (! (make_temp = cBOOL(SvTEMP(b)))) {
8795 *i = invlist_clone(a);
8797 /* else *i is already 'a' */
8805 /* Here, 'a' or 'b' is empty and not using the complement of 'b'. The
8806 * intersection must be empty */
8808 if (! (make_temp = cBOOL(SvTEMP(a)))) {
8813 if (! (make_temp = cBOOL(SvTEMP(b)))) {
8817 *i = _new_invlist(0);
8825 /* Here both lists exist and are non-empty */
8826 array_a = invlist_array(a);
8827 array_b = invlist_array(b);
8829 /* If are to take the intersection of 'a' with the complement of b, set it
8830 * up so are looking at b's complement. */
8833 /* To complement, we invert: if the first element is 0, remove it. To
8834 * do this, we just pretend the array starts one later */
8835 if (array_b[0] == 0) {
8841 /* But if the first element is not zero, we pretend the list starts
8842 * at the 0 that is always stored immediately before the array. */
8848 /* Size the intersection for the worst case: that the intersection ends up
8849 * fragmenting everything to be completely disjoint */
8850 r= _new_invlist(len_a + len_b);
8852 /* Will contain U+0000 iff both components do */
8853 array_r = _invlist_array_init(r, len_a > 0 && array_a[0] == 0
8854 && len_b > 0 && array_b[0] == 0);
8856 /* Go through each list item by item, stopping when exhausted one of
8858 while (i_a < len_a && i_b < len_b) {
8859 UV cp; /* The element to potentially add to the intersection's
8861 bool cp_in_set; /* Is it in the input list's set or not */
8863 /* We need to take one or the other of the two inputs for the
8864 * intersection. Since we are merging two sorted lists, we take the
8865 * smaller of the next items. In case of a tie, we take the one that
8866 * is not in its set first (a difference from the union algorithm). If
8867 * we took one in the set first, it would increment the count, possibly
8868 * to 2 which would cause it to be output as starting a range in the
8869 * intersection, and the next time through we would take that same
8870 * number, and output it again as ending the set. By doing it the
8871 * opposite of this, there is no possibility that the count will be
8872 * momentarily incremented to 2. (In a tie and both are in the set or
8873 * both not in the set, it doesn't matter which we take first.) */
8874 if (array_a[i_a] < array_b[i_b]
8875 || (array_a[i_a] == array_b[i_b]
8876 && ! ELEMENT_RANGE_MATCHES_INVLIST(i_a)))
8878 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_a);
8882 cp_in_set = ELEMENT_RANGE_MATCHES_INVLIST(i_b);
8886 /* Here, have chosen which of the two inputs to look at. Only output
8887 * if the running count changes to/from 2, which marks the
8888 * beginning/end of a range that's in the intersection */
8892 array_r[i_r++] = cp;
8897 array_r[i_r++] = cp;
8903 /* Here, we are finished going through at least one of the lists, which
8904 * means there is something remaining in at most one. We check if the list
8905 * that has been exhausted is positioned such that we are in the middle
8906 * of a range in its set or not. (i_a and i_b point to elements 1 beyond
8907 * the ones we care about.) There are four cases:
8908 * 1) Both weren't in their sets, count is 0, and remains 0. There's
8909 * nothing left in the intersection.
8910 * 2) Both were in their sets, count is 2 and perhaps is incremented to
8911 * above 2. What should be output is exactly that which is in the
8912 * non-exhausted set, as everything it has is also in the intersection
8913 * set, and everything it doesn't have can't be in the intersection
8914 * 3) The exhausted was in its set, non-exhausted isn't, count is 1, and
8915 * gets incremented to 2. Like the previous case, the intersection is
8916 * everything that remains in the non-exhausted set.
8917 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1, and
8918 * remains 1. And the intersection has nothing more. */
8919 if ((i_a == len_a && PREV_RANGE_MATCHES_INVLIST(i_a))
8920 || (i_b == len_b && PREV_RANGE_MATCHES_INVLIST(i_b)))
8925 /* The final length is what we've output so far plus what else is in the
8926 * intersection. At most one of the subexpressions below will be non-zero
8930 len_r += (len_a - i_a) + (len_b - i_b);
8933 /* Set result to final length, which can change the pointer to array_r, so
8935 if (len_r != _invlist_len(r)) {
8936 invlist_set_len(r, len_r, *get_invlist_offset_addr(r));
8938 array_r = invlist_array(r);
8941 /* Finish outputting any remaining */
8942 if (count >= 2) { /* At most one will have a non-zero copy count */
8944 if ((copy_count = len_a - i_a) > 0) {
8945 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
8947 else if ((copy_count = len_b - i_b) > 0) {
8948 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
8952 /* We may be removing a reference to one of the inputs. If so, the output
8953 * is made mortal if the input was. (Mortal SVs shouldn't have their ref
8954 * count decremented) */
8955 if (a == *i || b == *i) {
8956 assert(! invlist_is_iterating(*i));
8961 SvREFCNT_dec_NN(*i);
8971 Perl__add_range_to_invlist(pTHX_ SV* invlist, const UV start, const UV end)
8973 /* Add the range from 'start' to 'end' inclusive to the inversion list's
8974 * set. A pointer to the inversion list is returned. This may actually be
8975 * a new list, in which case the passed in one has been destroyed. The
8976 * passed-in inversion list can be NULL, in which case a new one is created
8977 * with just the one range in it */
8982 if (invlist == NULL) {
8983 invlist = _new_invlist(2);
8987 len = _invlist_len(invlist);
8990 /* If comes after the final entry actually in the list, can just append it
8993 || (! ELEMENT_RANGE_MATCHES_INVLIST(len - 1)
8994 && start >= invlist_array(invlist)[len - 1]))
8996 _append_range_to_invlist(invlist, start, end);
9000 /* Here, can't just append things, create and return a new inversion list
9001 * which is the union of this range and the existing inversion list */
9002 range_invlist = _new_invlist(2);
9003 _append_range_to_invlist(range_invlist, start, end);
9005 _invlist_union(invlist, range_invlist, &invlist);
9007 /* The temporary can be freed */
9008 SvREFCNT_dec_NN(range_invlist);
9014 Perl__setup_canned_invlist(pTHX_ const STRLEN size, const UV element0,
9015 UV** other_elements_ptr)
9017 /* Create and return an inversion list whose contents are to be populated
9018 * by the caller. The caller gives the number of elements (in 'size') and
9019 * the very first element ('element0'). This function will set
9020 * '*other_elements_ptr' to an array of UVs, where the remaining elements
9023 * Obviously there is some trust involved that the caller will properly
9024 * fill in the other elements of the array.
9026 * (The first element needs to be passed in, as the underlying code does
9027 * things differently depending on whether it is zero or non-zero) */
9029 SV* invlist = _new_invlist(size);
9032 PERL_ARGS_ASSERT__SETUP_CANNED_INVLIST;
9034 _append_range_to_invlist(invlist, element0, element0);
9035 offset = *get_invlist_offset_addr(invlist);
9037 invlist_set_len(invlist, size, offset);
9038 *other_elements_ptr = invlist_array(invlist) + 1;
9044 PERL_STATIC_INLINE SV*
9045 S_add_cp_to_invlist(pTHX_ SV* invlist, const UV cp) {
9046 return _add_range_to_invlist(invlist, cp, cp);
9049 #ifndef PERL_IN_XSUB_RE
9051 Perl__invlist_invert(pTHX_ SV* const invlist)
9053 /* Complement the input inversion list. This adds a 0 if the list didn't
9054 * have a zero; removes it otherwise. As described above, the data
9055 * structure is set up so that this is very efficient */
9057 PERL_ARGS_ASSERT__INVLIST_INVERT;
9059 assert(! invlist_is_iterating(invlist));
9061 /* The inverse of matching nothing is matching everything */
9062 if (_invlist_len(invlist) == 0) {
9063 _append_range_to_invlist(invlist, 0, UV_MAX);
9067 *get_invlist_offset_addr(invlist) = ! *get_invlist_offset_addr(invlist);
9072 PERL_STATIC_INLINE SV*
9073 S_invlist_clone(pTHX_ SV* const invlist)
9076 /* Return a new inversion list that is a copy of the input one, which is
9077 * unchanged. The new list will not be mortal even if the old one was. */
9079 /* Need to allocate extra space to accommodate Perl's addition of a
9080 * trailing NUL to SvPV's, since it thinks they are always strings */
9081 SV* new_invlist = _new_invlist(_invlist_len(invlist) + 1);
9082 STRLEN physical_length = SvCUR(invlist);
9083 bool offset = *(get_invlist_offset_addr(invlist));
9085 PERL_ARGS_ASSERT_INVLIST_CLONE;
9087 *(get_invlist_offset_addr(new_invlist)) = offset;
9088 invlist_set_len(new_invlist, _invlist_len(invlist), offset);
9089 Copy(SvPVX(invlist), SvPVX(new_invlist), physical_length, char);
9094 PERL_STATIC_INLINE STRLEN*
9095 S_get_invlist_iter_addr(SV* invlist)
9097 /* Return the address of the UV that contains the current iteration
9100 PERL_ARGS_ASSERT_GET_INVLIST_ITER_ADDR;
9102 assert(SvTYPE(invlist) == SVt_INVLIST);
9104 return &(((XINVLIST*) SvANY(invlist))->iterator);
9107 PERL_STATIC_INLINE void
9108 S_invlist_iterinit(SV* invlist) /* Initialize iterator for invlist */
9110 PERL_ARGS_ASSERT_INVLIST_ITERINIT;
9112 *get_invlist_iter_addr(invlist) = 0;
9115 PERL_STATIC_INLINE void
9116 S_invlist_iterfinish(SV* invlist)
9118 /* Terminate iterator for invlist. This is to catch development errors.
9119 * Any iteration that is interrupted before completed should call this
9120 * function. Functions that add code points anywhere else but to the end
9121 * of an inversion list assert that they are not in the middle of an
9122 * iteration. If they were, the addition would make the iteration
9123 * problematical: if the iteration hadn't reached the place where things
9124 * were being added, it would be ok */
9126 PERL_ARGS_ASSERT_INVLIST_ITERFINISH;
9128 *get_invlist_iter_addr(invlist) = (STRLEN) UV_MAX;
9132 S_invlist_iternext(SV* invlist, UV* start, UV* end)
9134 /* An C<invlist_iterinit> call on <invlist> must be used to set this up.
9135 * This call sets in <*start> and <*end>, the next range in <invlist>.
9136 * Returns <TRUE> if successful and the next call will return the next
9137 * range; <FALSE> if was already at the end of the list. If the latter,
9138 * <*start> and <*end> are unchanged, and the next call to this function
9139 * will start over at the beginning of the list */
9141 STRLEN* pos = get_invlist_iter_addr(invlist);
9142 UV len = _invlist_len(invlist);
9145 PERL_ARGS_ASSERT_INVLIST_ITERNEXT;
9148 *pos = (STRLEN) UV_MAX; /* Force iterinit() to be required next time */
9152 array = invlist_array(invlist);
9154 *start = array[(*pos)++];
9160 *end = array[(*pos)++] - 1;
9166 PERL_STATIC_INLINE UV
9167 S_invlist_highest(SV* const invlist)
9169 /* Returns the highest code point that matches an inversion list. This API
9170 * has an ambiguity, as it returns 0 under either the highest is actually
9171 * 0, or if the list is empty. If this distinction matters to you, check
9172 * for emptiness before calling this function */
9174 UV len = _invlist_len(invlist);
9177 PERL_ARGS_ASSERT_INVLIST_HIGHEST;
9183 array = invlist_array(invlist);
9185 /* The last element in the array in the inversion list always starts a
9186 * range that goes to infinity. That range may be for code points that are
9187 * matched in the inversion list, or it may be for ones that aren't
9188 * matched. In the latter case, the highest code point in the set is one
9189 * less than the beginning of this range; otherwise it is the final element
9190 * of this range: infinity */
9191 return (ELEMENT_RANGE_MATCHES_INVLIST(len - 1))
9193 : array[len - 1] - 1;
9196 #ifndef PERL_IN_XSUB_RE
9198 Perl__invlist_contents(pTHX_ SV* const invlist)
9200 /* Get the contents of an inversion list into a string SV so that they can
9201 * be printed out. It uses the format traditionally done for debug tracing
9205 SV* output = newSVpvs("\n");
9207 PERL_ARGS_ASSERT__INVLIST_CONTENTS;
9209 assert(! invlist_is_iterating(invlist));
9211 invlist_iterinit(invlist);
9212 while (invlist_iternext(invlist, &start, &end)) {
9213 if (end == UV_MAX) {
9214 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\tINFINITY\n", start);
9216 else if (end != start) {
9217 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\t%04"UVXf"\n",
9221 Perl_sv_catpvf(aTHX_ output, "%04"UVXf"\n", start);
9229 #ifndef PERL_IN_XSUB_RE
9231 Perl__invlist_dump(pTHX_ PerlIO *file, I32 level,
9232 const char * const indent, SV* const invlist)
9234 /* Designed to be called only by do_sv_dump(). Dumps out the ranges of the
9235 * inversion list 'invlist' to 'file' at 'level' Each line is prefixed by
9236 * the string 'indent'. The output looks like this:
9237 [0] 0x000A .. 0x000D
9239 [4] 0x2028 .. 0x2029
9240 [6] 0x3104 .. INFINITY
9241 * This means that the first range of code points matched by the list are
9242 * 0xA through 0xD; the second range contains only the single code point
9243 * 0x85, etc. An inversion list is an array of UVs. Two array elements
9244 * are used to define each range (except if the final range extends to
9245 * infinity, only a single element is needed). The array index of the
9246 * first element for the corresponding range is given in brackets. */
9251 PERL_ARGS_ASSERT__INVLIST_DUMP;
9253 if (invlist_is_iterating(invlist)) {
9254 Perl_dump_indent(aTHX_ level, file,
9255 "%sCan't dump inversion list because is in middle of iterating\n",
9260 invlist_iterinit(invlist);
9261 while (invlist_iternext(invlist, &start, &end)) {
9262 if (end == UV_MAX) {
9263 Perl_dump_indent(aTHX_ level, file,
9264 "%s[%"UVuf"] 0x%04"UVXf" .. INFINITY\n",
9265 indent, (UV)count, start);
9267 else if (end != start) {
9268 Perl_dump_indent(aTHX_ level, file,
9269 "%s[%"UVuf"] 0x%04"UVXf" .. 0x%04"UVXf"\n",
9270 indent, (UV)count, start, end);
9273 Perl_dump_indent(aTHX_ level, file, "%s[%"UVuf"] 0x%04"UVXf"\n",
9274 indent, (UV)count, start);
9281 Perl__load_PL_utf8_foldclosures (pTHX)
9283 assert(! PL_utf8_foldclosures);
9285 /* If the folds haven't been read in, call a fold function
9287 if (! PL_utf8_tofold) {
9288 U8 dummy[UTF8_MAXBYTES_CASE+1];
9290 /* This string is just a short named one above \xff */
9291 to_utf8_fold((U8*) HYPHEN_UTF8, dummy, NULL);
9292 assert(PL_utf8_tofold); /* Verify that worked */
9294 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
9298 #ifdef PERL_ARGS_ASSERT__INVLISTEQ
9300 S__invlistEQ(pTHX_ SV* const a, SV* const b, const bool complement_b)
9302 /* Return a boolean as to if the two passed in inversion lists are
9303 * identical. The final argument, if TRUE, says to take the complement of
9304 * the second inversion list before doing the comparison */
9306 const UV* array_a = invlist_array(a);
9307 const UV* array_b = invlist_array(b);
9308 UV len_a = _invlist_len(a);
9309 UV len_b = _invlist_len(b);
9311 UV i = 0; /* current index into the arrays */
9312 bool retval = TRUE; /* Assume are identical until proven otherwise */
9314 PERL_ARGS_ASSERT__INVLISTEQ;
9316 /* If are to compare 'a' with the complement of b, set it
9317 * up so are looking at b's complement. */
9320 /* The complement of nothing is everything, so <a> would have to have
9321 * just one element, starting at zero (ending at infinity) */
9323 return (len_a == 1 && array_a[0] == 0);
9325 else if (array_b[0] == 0) {
9327 /* Otherwise, to complement, we invert. Here, the first element is
9328 * 0, just remove it. To do this, we just pretend the array starts
9336 /* But if the first element is not zero, we pretend the list starts
9337 * at the 0 that is always stored immediately before the array. */
9343 /* Make sure that the lengths are the same, as well as the final element
9344 * before looping through the remainder. (Thus we test the length, final,
9345 * and first elements right off the bat) */
9346 if (len_a != len_b || array_a[len_a-1] != array_b[len_a-1]) {
9349 else for (i = 0; i < len_a - 1; i++) {
9350 if (array_a[i] != array_b[i]) {
9361 * As best we can, determine the characters that can match the start of
9362 * the given EXACTF-ish node.
9364 * Returns the invlist as a new SV*; it is the caller's responsibility to
9365 * call SvREFCNT_dec() when done with it.
9368 S__make_exactf_invlist(pTHX_ RExC_state_t *pRExC_state, regnode *node)
9370 const U8 * s = (U8*)STRING(node);
9371 SSize_t bytelen = STR_LEN(node);
9373 /* Start out big enough for 2 separate code points */
9374 SV* invlist = _new_invlist(4);
9376 PERL_ARGS_ASSERT__MAKE_EXACTF_INVLIST;
9381 /* We punt and assume can match anything if the node begins
9382 * with a multi-character fold. Things are complicated. For
9383 * example, /ffi/i could match any of:
9384 * "\N{LATIN SMALL LIGATURE FFI}"
9385 * "\N{LATIN SMALL LIGATURE FF}I"
9386 * "F\N{LATIN SMALL LIGATURE FI}"
9387 * plus several other things; and making sure we have all the
9388 * possibilities is hard. */
9389 if (is_MULTI_CHAR_FOLD_latin1_safe(s, s + bytelen)) {
9390 invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
9393 /* Any Latin1 range character can potentially match any
9394 * other depending on the locale */
9395 if (OP(node) == EXACTFL) {
9396 _invlist_union(invlist, PL_Latin1, &invlist);
9399 /* But otherwise, it matches at least itself. We can
9400 * quickly tell if it has a distinct fold, and if so,
9401 * it matches that as well */
9402 invlist = add_cp_to_invlist(invlist, uc);
9403 if (IS_IN_SOME_FOLD_L1(uc))
9404 invlist = add_cp_to_invlist(invlist, PL_fold_latin1[uc]);
9407 /* Some characters match above-Latin1 ones under /i. This
9408 * is true of EXACTFL ones when the locale is UTF-8 */
9409 if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(uc)
9410 && (! isASCII(uc) || (OP(node) != EXACTFA
9411 && OP(node) != EXACTFA_NO_TRIE)))
9413 add_above_Latin1_folds(pRExC_state, (U8) uc, &invlist);
9417 else { /* Pattern is UTF-8 */
9418 U8 folded[UTF8_MAX_FOLD_CHAR_EXPAND * UTF8_MAXBYTES_CASE + 1] = { '\0' };
9419 STRLEN foldlen = UTF8SKIP(s);
9420 const U8* e = s + bytelen;
9423 uc = utf8_to_uvchr_buf(s, s + bytelen, NULL);
9425 /* The only code points that aren't folded in a UTF EXACTFish
9426 * node are are the problematic ones in EXACTFL nodes */
9427 if (OP(node) == EXACTFL && is_PROBLEMATIC_LOCALE_FOLDEDS_START_cp(uc)) {
9428 /* We need to check for the possibility that this EXACTFL
9429 * node begins with a multi-char fold. Therefore we fold
9430 * the first few characters of it so that we can make that
9435 for (i = 0; i < UTF8_MAX_FOLD_CHAR_EXPAND && s < e; i++) {
9437 *(d++) = (U8) toFOLD(*s);
9442 to_utf8_fold(s, d, &len);
9448 /* And set up so the code below that looks in this folded
9449 * buffer instead of the node's string */
9451 foldlen = UTF8SKIP(folded);
9455 /* When we reach here 's' points to the fold of the first
9456 * character(s) of the node; and 'e' points to far enough along
9457 * the folded string to be just past any possible multi-char
9458 * fold. 'foldlen' is the length in bytes of the first
9461 * Unlike the non-UTF-8 case, the macro for determining if a
9462 * string is a multi-char fold requires all the characters to
9463 * already be folded. This is because of all the complications
9464 * if not. Note that they are folded anyway, except in EXACTFL
9465 * nodes. Like the non-UTF case above, we punt if the node
9466 * begins with a multi-char fold */
9468 if (is_MULTI_CHAR_FOLD_utf8_safe(s, e)) {
9469 invlist = _add_range_to_invlist(invlist, 0, UV_MAX);
9471 else { /* Single char fold */
9473 /* It matches all the things that fold to it, which are
9474 * found in PL_utf8_foldclosures (including itself) */
9475 invlist = add_cp_to_invlist(invlist, uc);
9476 if (! PL_utf8_foldclosures)
9477 _load_PL_utf8_foldclosures();
9478 if ((listp = hv_fetch(PL_utf8_foldclosures,
9479 (char *) s, foldlen, FALSE)))
9481 AV* list = (AV*) *listp;
9483 for (k = 0; k <= av_tindex(list); k++) {
9484 SV** c_p = av_fetch(list, k, FALSE);
9490 /* /aa doesn't allow folds between ASCII and non- */
9491 if ((OP(node) == EXACTFA || OP(node) == EXACTFA_NO_TRIE)
9492 && isASCII(c) != isASCII(uc))
9497 invlist = add_cp_to_invlist(invlist, c);
9506 #undef HEADER_LENGTH
9507 #undef TO_INTERNAL_SIZE
9508 #undef FROM_INTERNAL_SIZE
9509 #undef INVLIST_VERSION_ID
9511 /* End of inversion list object */
9514 S_parse_lparen_question_flags(pTHX_ RExC_state_t *pRExC_state)
9516 /* This parses the flags that are in either the '(?foo)' or '(?foo:bar)'
9517 * constructs, and updates RExC_flags with them. On input, RExC_parse
9518 * should point to the first flag; it is updated on output to point to the
9519 * final ')' or ':'. There needs to be at least one flag, or this will
9522 /* for (?g), (?gc), and (?o) warnings; warning
9523 about (?c) will warn about (?g) -- japhy */
9525 #define WASTED_O 0x01
9526 #define WASTED_G 0x02
9527 #define WASTED_C 0x04
9528 #define WASTED_GC (WASTED_G|WASTED_C)
9529 I32 wastedflags = 0x00;
9530 U32 posflags = 0, negflags = 0;
9531 U32 *flagsp = &posflags;
9532 char has_charset_modifier = '\0';
9534 bool has_use_defaults = FALSE;
9535 const char* const seqstart = RExC_parse - 1; /* Point to the '?' */
9536 int x_mod_count = 0;
9538 PERL_ARGS_ASSERT_PARSE_LPAREN_QUESTION_FLAGS;
9540 /* '^' as an initial flag sets certain defaults */
9541 if (UCHARAT(RExC_parse) == '^') {
9543 has_use_defaults = TRUE;
9544 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
9545 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
9546 ? REGEX_UNICODE_CHARSET
9547 : REGEX_DEPENDS_CHARSET);
9550 cs = get_regex_charset(RExC_flags);
9551 if (cs == REGEX_DEPENDS_CHARSET
9552 && (RExC_utf8 || RExC_uni_semantics))
9554 cs = REGEX_UNICODE_CHARSET;
9557 while (*RExC_parse) {
9558 /* && strchr("iogcmsx", *RExC_parse) */
9559 /* (?g), (?gc) and (?o) are useless here
9560 and must be globally applied -- japhy */
9561 switch (*RExC_parse) {
9563 /* Code for the imsxn flags */
9564 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp, x_mod_count);
9566 case LOCALE_PAT_MOD:
9567 if (has_charset_modifier) {
9568 goto excess_modifier;
9570 else if (flagsp == &negflags) {
9573 cs = REGEX_LOCALE_CHARSET;
9574 has_charset_modifier = LOCALE_PAT_MOD;
9576 case UNICODE_PAT_MOD:
9577 if (has_charset_modifier) {
9578 goto excess_modifier;
9580 else if (flagsp == &negflags) {
9583 cs = REGEX_UNICODE_CHARSET;
9584 has_charset_modifier = UNICODE_PAT_MOD;
9586 case ASCII_RESTRICT_PAT_MOD:
9587 if (flagsp == &negflags) {
9590 if (has_charset_modifier) {
9591 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
9592 goto excess_modifier;
9594 /* Doubled modifier implies more restricted */
9595 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
9598 cs = REGEX_ASCII_RESTRICTED_CHARSET;
9600 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
9602 case DEPENDS_PAT_MOD:
9603 if (has_use_defaults) {
9604 goto fail_modifiers;
9606 else if (flagsp == &negflags) {
9609 else if (has_charset_modifier) {
9610 goto excess_modifier;
9613 /* The dual charset means unicode semantics if the
9614 * pattern (or target, not known until runtime) are
9615 * utf8, or something in the pattern indicates unicode
9617 cs = (RExC_utf8 || RExC_uni_semantics)
9618 ? REGEX_UNICODE_CHARSET
9619 : REGEX_DEPENDS_CHARSET;
9620 has_charset_modifier = DEPENDS_PAT_MOD;
9624 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
9625 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
9627 else if (has_charset_modifier == *(RExC_parse - 1)) {
9628 vFAIL2("Regexp modifier \"%c\" may not appear twice",
9632 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
9634 NOT_REACHED; /*NOTREACHED*/
9637 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"",
9639 NOT_REACHED; /*NOTREACHED*/
9640 case ONCE_PAT_MOD: /* 'o' */
9641 case GLOBAL_PAT_MOD: /* 'g' */
9642 if (PASS2 && ckWARN(WARN_REGEXP)) {
9643 const I32 wflagbit = *RExC_parse == 'o'
9646 if (! (wastedflags & wflagbit) ) {
9647 wastedflags |= wflagbit;
9648 /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
9651 "Useless (%s%c) - %suse /%c modifier",
9652 flagsp == &negflags ? "?-" : "?",
9654 flagsp == &negflags ? "don't " : "",
9661 case CONTINUE_PAT_MOD: /* 'c' */
9662 if (PASS2 && ckWARN(WARN_REGEXP)) {
9663 if (! (wastedflags & WASTED_C) ) {
9664 wastedflags |= WASTED_GC;
9665 /* diag_listed_as: Useless (?-%s) - don't use /%s modifier in regex; marked by <-- HERE in m/%s/ */
9668 "Useless (%sc) - %suse /gc modifier",
9669 flagsp == &negflags ? "?-" : "?",
9670 flagsp == &negflags ? "don't " : ""
9675 case KEEPCOPY_PAT_MOD: /* 'p' */
9676 if (flagsp == &negflags) {
9678 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
9680 *flagsp |= RXf_PMf_KEEPCOPY;
9684 /* A flag is a default iff it is following a minus, so
9685 * if there is a minus, it means will be trying to
9686 * re-specify a default which is an error */
9687 if (has_use_defaults || flagsp == &negflags) {
9688 goto fail_modifiers;
9691 wastedflags = 0; /* reset so (?g-c) warns twice */
9695 RExC_flags |= posflags;
9696 RExC_flags &= ~negflags;
9697 set_regex_charset(&RExC_flags, cs);
9698 if (RExC_flags & RXf_PMf_FOLD) {
9699 RExC_contains_i = 1;
9702 STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
9708 RExC_parse += SKIP_IF_CHAR(RExC_parse);
9709 /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
9710 vFAIL2utf8f("Sequence (%"UTF8f"...) not recognized",
9711 UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
9712 NOT_REACHED; /*NOTREACHED*/
9719 STD_PMMOD_FLAGS_PARSE_X_WARN(x_mod_count);
9724 - reg - regular expression, i.e. main body or parenthesized thing
9726 * Caller must absorb opening parenthesis.
9728 * Combining parenthesis handling with the base level of regular expression
9729 * is a trifle forced, but the need to tie the tails of the branches to what
9730 * follows makes it hard to avoid.
9732 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
9734 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
9736 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
9739 /* Returns NULL, setting *flagp to TRYAGAIN at the end of (?) that only sets
9740 flags. Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan
9741 needs to be restarted.
9742 Otherwise would only return NULL if regbranch() returns NULL, which
9745 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
9746 /* paren: Parenthesized? 0=top; 1,2=inside '(': changed to letter.
9747 * 2 is like 1, but indicates that nextchar() has been called to advance
9748 * RExC_parse beyond the '('. Things like '(?' are indivisible tokens, and
9749 * this flag alerts us to the need to check for that */
9751 regnode *ret; /* Will be the head of the group. */
9754 regnode *ender = NULL;
9757 U32 oregflags = RExC_flags;
9758 bool have_branch = 0;
9760 I32 freeze_paren = 0;
9761 I32 after_freeze = 0;
9762 I32 num; /* numeric backreferences */
9764 char * parse_start = RExC_parse; /* MJD */
9765 char * const oregcomp_parse = RExC_parse;
9767 GET_RE_DEBUG_FLAGS_DECL;
9769 PERL_ARGS_ASSERT_REG;
9770 DEBUG_PARSE("reg ");
9772 *flagp = 0; /* Tentatively. */
9775 /* Make an OPEN node, if parenthesized. */
9778 /* Under /x, space and comments can be gobbled up between the '(' and
9779 * here (if paren ==2). The forms '(*VERB' and '(?...' disallow such
9780 * intervening space, as the sequence is a token, and a token should be
9782 bool has_intervening_patws = paren == 2 && *(RExC_parse - 1) != '(';
9784 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
9785 char *start_verb = RExC_parse;
9786 STRLEN verb_len = 0;
9787 char *start_arg = NULL;
9788 unsigned char op = 0;
9790 int internal_argval = 0; /* internal_argval is only useful if
9793 if (has_intervening_patws) {
9795 vFAIL("In '(*VERB...)', the '(' and '*' must be adjacent");
9797 while ( *RExC_parse && *RExC_parse != ')' ) {
9798 if ( *RExC_parse == ':' ) {
9799 start_arg = RExC_parse + 1;
9805 verb_len = RExC_parse - start_verb;
9808 while ( *RExC_parse && *RExC_parse != ')' )
9810 if ( *RExC_parse != ')' )
9811 vFAIL("Unterminated verb pattern argument");
9812 if ( RExC_parse == start_arg )
9815 if ( *RExC_parse != ')' )
9816 vFAIL("Unterminated verb pattern");
9819 switch ( *start_verb ) {
9820 case 'A': /* (*ACCEPT) */
9821 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
9823 internal_argval = RExC_nestroot;
9826 case 'C': /* (*COMMIT) */
9827 if ( memEQs(start_verb,verb_len,"COMMIT") )
9830 case 'F': /* (*FAIL) */
9831 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
9836 case ':': /* (*:NAME) */
9837 case 'M': /* (*MARK:NAME) */
9838 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
9843 case 'P': /* (*PRUNE) */
9844 if ( memEQs(start_verb,verb_len,"PRUNE") )
9847 case 'S': /* (*SKIP) */
9848 if ( memEQs(start_verb,verb_len,"SKIP") )
9851 case 'T': /* (*THEN) */
9852 /* [19:06] <TimToady> :: is then */
9853 if ( memEQs(start_verb,verb_len,"THEN") ) {
9855 RExC_seen |= REG_CUTGROUP_SEEN;
9860 RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
9862 "Unknown verb pattern '%"UTF8f"'",
9863 UTF8fARG(UTF, verb_len, start_verb));
9866 if ( start_arg && internal_argval ) {
9867 vFAIL3("Verb pattern '%.*s' may not have an argument",
9868 verb_len, start_verb);
9869 } else if ( argok < 0 && !start_arg ) {
9870 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
9871 verb_len, start_verb);
9873 ret = reganode(pRExC_state, op, internal_argval);
9874 if ( ! internal_argval && ! SIZE_ONLY ) {
9876 SV *sv = newSVpvn( start_arg,
9877 RExC_parse - start_arg);
9878 ARG(ret) = add_data( pRExC_state,
9880 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
9887 if (!internal_argval)
9888 RExC_seen |= REG_VERBARG_SEEN;
9889 } else if ( start_arg ) {
9890 vFAIL3("Verb pattern '%.*s' may not have an argument",
9891 verb_len, start_verb);
9893 ret = reg_node(pRExC_state, op);
9895 nextchar(pRExC_state);
9898 else if (*RExC_parse == '?') { /* (?...) */
9899 bool is_logical = 0;
9900 const char * const seqstart = RExC_parse;
9901 const char * endptr;
9902 if (has_intervening_patws) {
9904 vFAIL("In '(?...)', the '(' and '?' must be adjacent");
9908 paren = *RExC_parse++;
9909 ret = NULL; /* For look-ahead/behind. */
9912 case 'P': /* (?P...) variants for those used to PCRE/Python */
9913 paren = *RExC_parse++;
9914 if ( paren == '<') /* (?P<...>) named capture */
9916 else if (paren == '>') { /* (?P>name) named recursion */
9917 goto named_recursion;
9919 else if (paren == '=') { /* (?P=...) named backref */
9920 /* this pretty much dupes the code for \k<NAME> in
9921 * regatom(), if you change this make sure you change that
9923 char* name_start = RExC_parse;
9925 SV *sv_dat = reg_scan_name(pRExC_state,
9926 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
9927 if (RExC_parse == name_start || *RExC_parse != ')')
9928 /* diag_listed_as: Sequence ?P=... not terminated in regex; marked by <-- HERE in m/%s/ */
9929 vFAIL2("Sequence %.3s... not terminated",parse_start);
9932 num = add_data( pRExC_state, STR_WITH_LEN("S"));
9933 RExC_rxi->data->data[num]=(void*)sv_dat;
9934 SvREFCNT_inc_simple_void(sv_dat);
9937 ret = reganode(pRExC_state,
9940 : (ASCII_FOLD_RESTRICTED)
9942 : (AT_LEAST_UNI_SEMANTICS)
9950 Set_Node_Offset(ret, parse_start+1);
9951 Set_Node_Cur_Length(ret, parse_start);
9953 nextchar(pRExC_state);
9957 RExC_parse += SKIP_IF_CHAR(RExC_parse);
9958 /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
9959 vFAIL3("Sequence (%.*s...) not recognized",
9960 RExC_parse-seqstart, seqstart);
9961 NOT_REACHED; /*NOTREACHED*/
9962 case '<': /* (?<...) */
9963 if (*RExC_parse == '!')
9965 else if (*RExC_parse != '=')
9971 case '\'': /* (?'...') */
9972 name_start= RExC_parse;
9973 svname = reg_scan_name(pRExC_state,
9974 SIZE_ONLY /* reverse test from the others */
9975 ? REG_RSN_RETURN_NAME
9976 : REG_RSN_RETURN_NULL);
9977 if (RExC_parse == name_start || *RExC_parse != paren)
9978 vFAIL2("Sequence (?%c... not terminated",
9979 paren=='>' ? '<' : paren);
9983 if (!svname) /* shouldn't happen */
9985 "panic: reg_scan_name returned NULL");
9986 if (!RExC_paren_names) {
9987 RExC_paren_names= newHV();
9988 sv_2mortal(MUTABLE_SV(RExC_paren_names));
9990 RExC_paren_name_list= newAV();
9991 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
9994 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
9996 sv_dat = HeVAL(he_str);
9998 /* croak baby croak */
10000 "panic: paren_name hash element allocation failed");
10001 } else if ( SvPOK(sv_dat) ) {
10002 /* (?|...) can mean we have dupes so scan to check
10003 its already been stored. Maybe a flag indicating
10004 we are inside such a construct would be useful,
10005 but the arrays are likely to be quite small, so
10006 for now we punt -- dmq */
10007 IV count = SvIV(sv_dat);
10008 I32 *pv = (I32*)SvPVX(sv_dat);
10010 for ( i = 0 ; i < count ; i++ ) {
10011 if ( pv[i] == RExC_npar ) {
10017 pv = (I32*)SvGROW(sv_dat,
10018 SvCUR(sv_dat) + sizeof(I32)+1);
10019 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
10020 pv[count] = RExC_npar;
10021 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
10024 (void)SvUPGRADE(sv_dat,SVt_PVNV);
10025 sv_setpvn(sv_dat, (char *)&(RExC_npar),
10028 SvIV_set(sv_dat, 1);
10031 /* Yes this does cause a memory leak in debugging Perls
10033 if (!av_store(RExC_paren_name_list,
10034 RExC_npar, SvREFCNT_inc(svname)))
10035 SvREFCNT_dec_NN(svname);
10038 /*sv_dump(sv_dat);*/
10040 nextchar(pRExC_state);
10042 goto capturing_parens;
10044 RExC_seen |= REG_LOOKBEHIND_SEEN;
10045 RExC_in_lookbehind++;
10048 case '=': /* (?=...) */
10049 RExC_seen_zerolen++;
10051 case '!': /* (?!...) */
10052 RExC_seen_zerolen++;
10053 /* check if we're really just a "FAIL" assertion */
10055 nextchar(pRExC_state);
10056 if (*RExC_parse == ')') {
10057 ret=reg_node(pRExC_state, OPFAIL);
10058 nextchar(pRExC_state);
10062 case '|': /* (?|...) */
10063 /* branch reset, behave like a (?:...) except that
10064 buffers in alternations share the same numbers */
10066 after_freeze = freeze_paren = RExC_npar;
10068 case ':': /* (?:...) */
10069 case '>': /* (?>...) */
10071 case '$': /* (?$...) */
10072 case '@': /* (?@...) */
10073 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
10075 case '0' : /* (?0) */
10076 case 'R' : /* (?R) */
10077 if (*RExC_parse != ')')
10078 FAIL("Sequence (?R) not terminated");
10079 ret = reg_node(pRExC_state, GOSTART);
10080 RExC_seen |= REG_GOSTART_SEEN;
10081 *flagp |= POSTPONED;
10082 nextchar(pRExC_state);
10085 /* named and numeric backreferences */
10086 case '&': /* (?&NAME) */
10087 parse_start = RExC_parse - 1;
10090 SV *sv_dat = reg_scan_name(pRExC_state,
10091 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10092 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
10094 if (RExC_parse == RExC_end || *RExC_parse != ')')
10095 vFAIL("Sequence (?&... not terminated");
10096 goto gen_recurse_regop;
10099 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
10101 vFAIL("Illegal pattern");
10103 goto parse_recursion;
10105 case '-': /* (?-1) */
10106 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
10107 RExC_parse--; /* rewind to let it be handled later */
10111 case '1': case '2': case '3': case '4': /* (?1) */
10112 case '5': case '6': case '7': case '8': case '9':
10116 bool is_neg = FALSE;
10118 parse_start = RExC_parse - 1; /* MJD */
10119 if (*RExC_parse == '-') {
10123 if (grok_atoUV(RExC_parse, &unum, &endptr)
10127 RExC_parse = (char*)endptr;
10131 /* Some limit for num? */
10135 if (*RExC_parse!=')')
10136 vFAIL("Expecting close bracket");
10139 if ( paren == '-' ) {
10141 Diagram of capture buffer numbering.
10142 Top line is the normal capture buffer numbers
10143 Bottom line is the negative indexing as from
10147 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
10151 num = RExC_npar + num;
10154 vFAIL("Reference to nonexistent group");
10156 } else if ( paren == '+' ) {
10157 num = RExC_npar + num - 1;
10160 ret = reg2Lanode(pRExC_state, GOSUB, num, RExC_recurse_count);
10162 if (num > (I32)RExC_rx->nparens) {
10164 vFAIL("Reference to nonexistent group");
10166 RExC_recurse_count++;
10167 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
10168 "%*s%*s Recurse #%"UVuf" to %"IVdf"\n",
10169 22, "| |", (int)(depth * 2 + 1), "",
10170 (UV)ARG(ret), (IV)ARG2L(ret)));
10172 RExC_seen |= REG_RECURSE_SEEN;
10173 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
10174 Set_Node_Offset(ret, parse_start); /* MJD */
10176 *flagp |= POSTPONED;
10177 nextchar(pRExC_state);
10182 case '?': /* (??...) */
10184 if (*RExC_parse != '{') {
10185 RExC_parse += SKIP_IF_CHAR(RExC_parse);
10186 /* diag_listed_as: Sequence (?%s...) not recognized in regex; marked by <-- HERE in m/%s/ */
10188 "Sequence (%"UTF8f"...) not recognized",
10189 UTF8fARG(UTF, RExC_parse-seqstart, seqstart));
10190 NOT_REACHED; /*NOTREACHED*/
10192 *flagp |= POSTPONED;
10193 paren = *RExC_parse++;
10195 case '{': /* (?{...}) */
10198 struct reg_code_block *cb;
10200 RExC_seen_zerolen++;
10202 if ( !pRExC_state->num_code_blocks
10203 || pRExC_state->code_index >= pRExC_state->num_code_blocks
10204 || pRExC_state->code_blocks[pRExC_state->code_index].start
10205 != (STRLEN)((RExC_parse -3 - (is_logical ? 1 : 0))
10208 if (RExC_pm_flags & PMf_USE_RE_EVAL)
10209 FAIL("panic: Sequence (?{...}): no code block found\n");
10210 FAIL("Eval-group not allowed at runtime, use re 'eval'");
10212 /* this is a pre-compiled code block (?{...}) */
10213 cb = &pRExC_state->code_blocks[pRExC_state->code_index];
10214 RExC_parse = RExC_start + cb->end;
10217 if (cb->src_regex) {
10218 n = add_data(pRExC_state, STR_WITH_LEN("rl"));
10219 RExC_rxi->data->data[n] =
10220 (void*)SvREFCNT_inc((SV*)cb->src_regex);
10221 RExC_rxi->data->data[n+1] = (void*)o;
10224 n = add_data(pRExC_state,
10225 (RExC_pm_flags & PMf_HAS_CV) ? "L" : "l", 1);
10226 RExC_rxi->data->data[n] = (void*)o;
10229 pRExC_state->code_index++;
10230 nextchar(pRExC_state);
10234 ret = reg_node(pRExC_state, LOGICAL);
10236 eval = reg2Lanode(pRExC_state, EVAL,
10239 /* for later propagation into (??{})
10241 RExC_flags & RXf_PMf_COMPILETIME
10246 REGTAIL(pRExC_state, ret, eval);
10247 /* deal with the length of this later - MJD */
10250 ret = reg2Lanode(pRExC_state, EVAL, n, 0);
10251 Set_Node_Length(ret, RExC_parse - parse_start + 1);
10252 Set_Node_Offset(ret, parse_start);
10255 case '(': /* (?(?{...})...) and (?(?=...)...) */
10258 const int DEFINE_len = sizeof("DEFINE") - 1;
10259 if (RExC_parse[0] == '?') { /* (?(?...)) */
10260 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
10261 || RExC_parse[1] == '<'
10262 || RExC_parse[1] == '{') { /* Lookahead or eval. */
10266 ret = reg_node(pRExC_state, LOGICAL);
10270 tail = reg(pRExC_state, 1, &flag, depth+1);
10271 if (flag & RESTART_UTF8) {
10272 *flagp = RESTART_UTF8;
10275 REGTAIL(pRExC_state, ret, tail);
10278 /* Fall through to ‘Unknown switch condition’ at the
10279 end of the if/else chain. */
10281 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
10282 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
10284 char ch = RExC_parse[0] == '<' ? '>' : '\'';
10285 char *name_start= RExC_parse++;
10287 SV *sv_dat=reg_scan_name(pRExC_state,
10288 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
10289 if (RExC_parse == name_start || *RExC_parse != ch)
10290 vFAIL2("Sequence (?(%c... not terminated",
10291 (ch == '>' ? '<' : ch));
10294 num = add_data( pRExC_state, STR_WITH_LEN("S"));
10295 RExC_rxi->data->data[num]=(void*)sv_dat;
10296 SvREFCNT_inc_simple_void(sv_dat);
10298 ret = reganode(pRExC_state,NGROUPP,num);
10299 goto insert_if_check_paren;
10301 else if (RExC_end - RExC_parse >= DEFINE_len
10302 && strnEQ(RExC_parse, "DEFINE", DEFINE_len))
10304 ret = reganode(pRExC_state,DEFINEP,0);
10305 RExC_parse += DEFINE_len;
10307 goto insert_if_check_paren;
10309 else if (RExC_parse[0] == 'R') {
10312 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
10314 if (grok_atoUV(RExC_parse, &uv, &endptr)
10318 RExC_parse = (char*)endptr;
10320 /* else "Switch condition not recognized" below */
10321 } else if (RExC_parse[0] == '&') {
10324 sv_dat = reg_scan_name(pRExC_state,
10326 ? REG_RSN_RETURN_NULL
10327 : REG_RSN_RETURN_DATA);
10328 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
10330 ret = reganode(pRExC_state,INSUBP,parno);
10331 goto insert_if_check_paren;
10333 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
10338 if (grok_atoUV(RExC_parse, &uv, &endptr)
10342 RExC_parse = (char*)endptr;
10344 /* XXX else what? */
10345 ret = reganode(pRExC_state, GROUPP, parno);
10347 insert_if_check_paren:
10348 if (*(tmp = nextchar(pRExC_state)) != ')') {
10349 /* nextchar also skips comments, so undo its work
10350 * and skip over the the next character.
10353 RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
10354 vFAIL("Switch condition not recognized");
10357 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
10358 br = regbranch(pRExC_state, &flags, 1,depth+1);
10360 if (flags & RESTART_UTF8) {
10361 *flagp = RESTART_UTF8;
10364 FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
10367 REGTAIL(pRExC_state, br, reganode(pRExC_state,
10369 c = *nextchar(pRExC_state);
10370 if (flags&HASWIDTH)
10371 *flagp |= HASWIDTH;
10374 vFAIL("(?(DEFINE)....) does not allow branches");
10376 /* Fake one for optimizer. */
10377 lastbr = reganode(pRExC_state, IFTHEN, 0);
10379 if (!regbranch(pRExC_state, &flags, 1,depth+1)) {
10380 if (flags & RESTART_UTF8) {
10381 *flagp = RESTART_UTF8;
10384 FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"",
10387 REGTAIL(pRExC_state, ret, lastbr);
10388 if (flags&HASWIDTH)
10389 *flagp |= HASWIDTH;
10390 c = *nextchar(pRExC_state);
10395 if (RExC_parse>RExC_end)
10396 vFAIL("Switch (?(condition)... not terminated");
10398 vFAIL("Switch (?(condition)... contains too many branches");
10400 ender = reg_node(pRExC_state, TAIL);
10401 REGTAIL(pRExC_state, br, ender);
10403 REGTAIL(pRExC_state, lastbr, ender);
10404 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
10407 REGTAIL(pRExC_state, ret, ender);
10408 RExC_size++; /* XXX WHY do we need this?!!
10409 For large programs it seems to be required
10410 but I can't figure out why. -- dmq*/
10413 RExC_parse += UTF ? UTF8SKIP(RExC_parse) : 1;
10414 vFAIL("Unknown switch condition (?(...))");
10416 case '[': /* (?[ ... ]) */
10417 return handle_regex_sets(pRExC_state, NULL, flagp, depth,
10420 RExC_parse--; /* for vFAIL to print correctly */
10421 vFAIL("Sequence (? incomplete");
10423 default: /* e.g., (?i) */
10426 parse_lparen_question_flags(pRExC_state);
10427 if (UCHARAT(RExC_parse) != ':') {
10429 nextchar(pRExC_state);
10434 nextchar(pRExC_state);
10439 else if (!(RExC_flags & RXf_PMf_NOCAPTURE)) { /* (...) */
10444 ret = reganode(pRExC_state, OPEN, parno);
10446 if (!RExC_nestroot)
10447 RExC_nestroot = parno;
10448 if (RExC_seen & REG_RECURSE_SEEN
10449 && !RExC_open_parens[parno-1])
10451 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
10452 "%*s%*s Setting open paren #%"IVdf" to %d\n",
10453 22, "| |", (int)(depth * 2 + 1), "",
10454 (IV)parno, REG_NODE_NUM(ret)));
10455 RExC_open_parens[parno-1]= ret;
10458 Set_Node_Length(ret, 1); /* MJD */
10459 Set_Node_Offset(ret, RExC_parse); /* MJD */
10462 /* with RXf_PMf_NOCAPTURE treat (...) as (?:...) */
10471 /* Pick up the branches, linking them together. */
10472 parse_start = RExC_parse; /* MJD */
10473 br = regbranch(pRExC_state, &flags, 1,depth+1);
10475 /* branch_len = (paren != 0); */
10478 if (flags & RESTART_UTF8) {
10479 *flagp = RESTART_UTF8;
10482 FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
10484 if (*RExC_parse == '|') {
10485 if (!SIZE_ONLY && RExC_extralen) {
10486 reginsert(pRExC_state, BRANCHJ, br, depth+1);
10489 reginsert(pRExC_state, BRANCH, br, depth+1);
10490 Set_Node_Length(br, paren != 0);
10491 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
10495 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
10497 else if (paren == ':') {
10498 *flagp |= flags&SIMPLE;
10500 if (is_open) { /* Starts with OPEN. */
10501 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
10503 else if (paren != '?') /* Not Conditional */
10505 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
10507 while (*RExC_parse == '|') {
10508 if (!SIZE_ONLY && RExC_extralen) {
10509 ender = reganode(pRExC_state, LONGJMP,0);
10511 /* Append to the previous. */
10512 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
10515 RExC_extralen += 2; /* Account for LONGJMP. */
10516 nextchar(pRExC_state);
10517 if (freeze_paren) {
10518 if (RExC_npar > after_freeze)
10519 after_freeze = RExC_npar;
10520 RExC_npar = freeze_paren;
10522 br = regbranch(pRExC_state, &flags, 0, depth+1);
10525 if (flags & RESTART_UTF8) {
10526 *flagp = RESTART_UTF8;
10529 FAIL2("panic: regbranch returned NULL, flags=%#"UVxf"", (UV) flags);
10531 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
10533 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
10536 if (have_branch || paren != ':') {
10537 /* Make a closing node, and hook it on the end. */
10540 ender = reg_node(pRExC_state, TAIL);
10543 ender = reganode(pRExC_state, CLOSE, parno);
10544 if (!SIZE_ONLY && RExC_seen & REG_RECURSE_SEEN) {
10545 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
10546 "%*s%*s Setting close paren #%"IVdf" to %d\n",
10547 22, "| |", (int)(depth * 2 + 1), "", (IV)parno, REG_NODE_NUM(ender)));
10548 RExC_close_parens[parno-1]= ender;
10549 if (RExC_nestroot == parno)
10552 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
10553 Set_Node_Length(ender,1); /* MJD */
10559 *flagp &= ~HASWIDTH;
10562 ender = reg_node(pRExC_state, SUCCEED);
10565 ender = reg_node(pRExC_state, END);
10567 assert(!RExC_opend); /* there can only be one! */
10568 RExC_opend = ender;
10572 DEBUG_PARSE_r(if (!SIZE_ONLY) {
10573 DEBUG_PARSE_MSG("lsbr");
10574 regprop(RExC_rx, RExC_mysv1, lastbr, NULL, pRExC_state);
10575 regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
10576 PerlIO_printf(Perl_debug_log, "~ tying lastbr %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
10577 SvPV_nolen_const(RExC_mysv1),
10578 (IV)REG_NODE_NUM(lastbr),
10579 SvPV_nolen_const(RExC_mysv2),
10580 (IV)REG_NODE_NUM(ender),
10581 (IV)(ender - lastbr)
10584 REGTAIL(pRExC_state, lastbr, ender);
10586 if (have_branch && !SIZE_ONLY) {
10587 char is_nothing= 1;
10589 RExC_seen |= REG_TOP_LEVEL_BRANCHES_SEEN;
10591 /* Hook the tails of the branches to the closing node. */
10592 for (br = ret; br; br = regnext(br)) {
10593 const U8 op = PL_regkind[OP(br)];
10594 if (op == BRANCH) {
10595 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
10596 if ( OP(NEXTOPER(br)) != NOTHING
10597 || regnext(NEXTOPER(br)) != ender)
10600 else if (op == BRANCHJ) {
10601 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
10602 /* for now we always disable this optimisation * /
10603 if ( OP(NEXTOPER(NEXTOPER(br))) != NOTHING
10604 || regnext(NEXTOPER(NEXTOPER(br))) != ender)
10610 br= PL_regkind[OP(ret)] != BRANCH ? regnext(ret) : ret;
10611 DEBUG_PARSE_r(if (!SIZE_ONLY) {
10612 DEBUG_PARSE_MSG("NADA");
10613 regprop(RExC_rx, RExC_mysv1, ret, NULL, pRExC_state);
10614 regprop(RExC_rx, RExC_mysv2, ender, NULL, pRExC_state);
10615 PerlIO_printf(Perl_debug_log, "~ converting ret %s (%"IVdf") to ender %s (%"IVdf") offset %"IVdf"\n",
10616 SvPV_nolen_const(RExC_mysv1),
10617 (IV)REG_NODE_NUM(ret),
10618 SvPV_nolen_const(RExC_mysv2),
10619 (IV)REG_NODE_NUM(ender),
10624 if (OP(ender) == TAIL) {
10629 for ( opt= br + 1; opt < ender ; opt++ )
10630 OP(opt)= OPTIMIZED;
10631 NEXT_OFF(br)= ender - br;
10639 static const char parens[] = "=!<,>";
10641 if (paren && (p = strchr(parens, paren))) {
10642 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
10643 int flag = (p - parens) > 1;
10646 node = SUSPEND, flag = 0;
10647 reginsert(pRExC_state, node,ret, depth+1);
10648 Set_Node_Cur_Length(ret, parse_start);
10649 Set_Node_Offset(ret, parse_start + 1);
10651 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
10655 /* Check for proper termination. */
10657 /* restore original flags, but keep (?p) */
10658 RExC_flags = oregflags | (RExC_flags & RXf_PMf_KEEPCOPY);
10659 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
10660 RExC_parse = oregcomp_parse;
10661 vFAIL("Unmatched (");
10664 else if (!paren && RExC_parse < RExC_end) {
10665 if (*RExC_parse == ')') {
10667 vFAIL("Unmatched )");
10670 FAIL("Junk on end of regexp"); /* "Can't happen". */
10671 NOT_REACHED; /* NOTREACHED */
10674 if (RExC_in_lookbehind) {
10675 RExC_in_lookbehind--;
10677 if (after_freeze > RExC_npar)
10678 RExC_npar = after_freeze;
10683 - regbranch - one alternative of an | operator
10685 * Implements the concatenation operator.
10687 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10691 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
10694 regnode *chain = NULL;
10696 I32 flags = 0, c = 0;
10697 GET_RE_DEBUG_FLAGS_DECL;
10699 PERL_ARGS_ASSERT_REGBRANCH;
10701 DEBUG_PARSE("brnc");
10706 if (!SIZE_ONLY && RExC_extralen)
10707 ret = reganode(pRExC_state, BRANCHJ,0);
10709 ret = reg_node(pRExC_state, BRANCH);
10710 Set_Node_Length(ret, 1);
10714 if (!first && SIZE_ONLY)
10715 RExC_extralen += 1; /* BRANCHJ */
10717 *flagp = WORST; /* Tentatively. */
10720 nextchar(pRExC_state);
10721 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
10722 flags &= ~TRYAGAIN;
10723 latest = regpiece(pRExC_state, &flags,depth+1);
10724 if (latest == NULL) {
10725 if (flags & TRYAGAIN)
10727 if (flags & RESTART_UTF8) {
10728 *flagp = RESTART_UTF8;
10731 FAIL2("panic: regpiece returned NULL, flags=%#"UVxf"", (UV) flags);
10733 else if (ret == NULL)
10735 *flagp |= flags&(HASWIDTH|POSTPONED);
10736 if (chain == NULL) /* First piece. */
10737 *flagp |= flags&SPSTART;
10739 /* FIXME adding one for every branch after the first is probably
10740 * excessive now we have TRIE support. (hv) */
10742 REGTAIL(pRExC_state, chain, latest);
10747 if (chain == NULL) { /* Loop ran zero times. */
10748 chain = reg_node(pRExC_state, NOTHING);
10753 *flagp |= flags&SIMPLE;
10760 - regpiece - something followed by possible [*+?]
10762 * Note that the branching code sequences used for ? and the general cases
10763 * of * and + are somewhat optimized: they use the same NOTHING node as
10764 * both the endmarker for their branch list and the body of the last branch.
10765 * It might seem that this node could be dispensed with entirely, but the
10766 * endmarker role is not redundant.
10768 * Returns NULL, setting *flagp to TRYAGAIN if regatom() returns NULL with
10770 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
10774 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
10780 const char * const origparse = RExC_parse;
10782 I32 max = REG_INFTY;
10783 #ifdef RE_TRACK_PATTERN_OFFSETS
10786 const char *maxpos = NULL;
10789 /* Save the original in case we change the emitted regop to a FAIL. */
10790 regnode * const orig_emit = RExC_emit;
10792 GET_RE_DEBUG_FLAGS_DECL;
10794 PERL_ARGS_ASSERT_REGPIECE;
10796 DEBUG_PARSE("piec");
10798 ret = regatom(pRExC_state, &flags,depth+1);
10800 if (flags & (TRYAGAIN|RESTART_UTF8))
10801 *flagp |= flags & (TRYAGAIN|RESTART_UTF8);
10803 FAIL2("panic: regatom returned NULL, flags=%#"UVxf"", (UV) flags);
10809 if (op == '{' && regcurly(RExC_parse)) {
10811 #ifdef RE_TRACK_PATTERN_OFFSETS
10812 parse_start = RExC_parse; /* MJD */
10814 next = RExC_parse + 1;
10815 while (isDIGIT(*next) || *next == ',') {
10816 if (*next == ',') {
10824 if (*next == '}') { /* got one */
10825 const char* endptr;
10829 if (isDIGIT(*RExC_parse)) {
10830 if (!grok_atoUV(RExC_parse, &uv, &endptr))
10831 vFAIL("Invalid quantifier in {,}");
10832 if (uv >= REG_INFTY)
10833 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
10838 if (*maxpos == ',')
10841 maxpos = RExC_parse;
10842 if (isDIGIT(*maxpos)) {
10843 if (!grok_atoUV(maxpos, &uv, &endptr))
10844 vFAIL("Invalid quantifier in {,}");
10845 if (uv >= REG_INFTY)
10846 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
10849 max = REG_INFTY; /* meaning "infinity" */
10852 nextchar(pRExC_state);
10853 if (max < min) { /* If can't match, warn and optimize to fail
10857 /* We can't back off the size because we have to reserve
10858 * enough space for all the things we are about to throw
10859 * away, but we can shrink it by the ammount we are about
10860 * to re-use here */
10861 RExC_size = PREVOPER(RExC_size) - regarglen[(U8)OPFAIL];
10864 ckWARNreg(RExC_parse, "Quantifier {n,m} with n > m can't match");
10865 RExC_emit = orig_emit;
10867 ret = reg_node(pRExC_state, OPFAIL);
10870 else if (min == max
10871 && RExC_parse < RExC_end
10872 && (*RExC_parse == '?' || *RExC_parse == '+'))
10875 ckWARN2reg(RExC_parse + 1,
10876 "Useless use of greediness modifier '%c'",
10879 /* Absorb the modifier, so later code doesn't see nor use
10881 nextchar(pRExC_state);
10885 if ((flags&SIMPLE)) {
10886 MARK_NAUGHTY_EXP(2, 2);
10887 reginsert(pRExC_state, CURLY, ret, depth+1);
10888 Set_Node_Offset(ret, parse_start+1); /* MJD */
10889 Set_Node_Cur_Length(ret, parse_start);
10892 regnode * const w = reg_node(pRExC_state, WHILEM);
10895 REGTAIL(pRExC_state, ret, w);
10896 if (!SIZE_ONLY && RExC_extralen) {
10897 reginsert(pRExC_state, LONGJMP,ret, depth+1);
10898 reginsert(pRExC_state, NOTHING,ret, depth+1);
10899 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
10901 reginsert(pRExC_state, CURLYX,ret, depth+1);
10903 Set_Node_Offset(ret, parse_start+1);
10904 Set_Node_Length(ret,
10905 op == '{' ? (RExC_parse - parse_start) : 1);
10907 if (!SIZE_ONLY && RExC_extralen)
10908 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
10909 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
10911 RExC_whilem_seen++, RExC_extralen += 3;
10912 MARK_NAUGHTY_EXP(1, 4); /* compound interest */
10919 *flagp |= HASWIDTH;
10921 ARG1_SET(ret, (U16)min);
10922 ARG2_SET(ret, (U16)max);
10924 if (max == REG_INFTY)
10925 RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
10931 if (!ISMULT1(op)) {
10936 #if 0 /* Now runtime fix should be reliable. */
10938 /* if this is reinstated, don't forget to put this back into perldiag:
10940 =item Regexp *+ operand could be empty at {#} in regex m/%s/
10942 (F) The part of the regexp subject to either the * or + quantifier
10943 could match an empty string. The {#} shows in the regular
10944 expression about where the problem was discovered.
10948 if (!(flags&HASWIDTH) && op != '?')
10949 vFAIL("Regexp *+ operand could be empty");
10952 #ifdef RE_TRACK_PATTERN_OFFSETS
10953 parse_start = RExC_parse;
10955 nextchar(pRExC_state);
10957 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
10959 if (op == '*' && (flags&SIMPLE)) {
10960 reginsert(pRExC_state, STAR, ret, depth+1);
10963 RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
10965 else if (op == '*') {
10969 else if (op == '+' && (flags&SIMPLE)) {
10970 reginsert(pRExC_state, PLUS, ret, depth+1);
10973 RExC_seen |= REG_UNBOUNDED_QUANTIFIER_SEEN;
10975 else if (op == '+') {
10979 else if (op == '?') {
10984 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
10985 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
10986 ckWARN2reg(RExC_parse,
10987 "%"UTF8f" matches null string many times",
10988 UTF8fARG(UTF, (RExC_parse >= origparse
10989 ? RExC_parse - origparse
10992 (void)ReREFCNT_inc(RExC_rx_sv);
10995 if (RExC_parse < RExC_end && *RExC_parse == '?') {
10996 nextchar(pRExC_state);
10997 reginsert(pRExC_state, MINMOD, ret, depth+1);
10998 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
11001 if (RExC_parse < RExC_end && *RExC_parse == '+') {
11003 nextchar(pRExC_state);
11004 ender = reg_node(pRExC_state, SUCCEED);
11005 REGTAIL(pRExC_state, ret, ender);
11006 reginsert(pRExC_state, SUSPEND, ret, depth+1);
11008 ender = reg_node(pRExC_state, TAIL);
11009 REGTAIL(pRExC_state, ret, ender);
11012 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
11014 vFAIL("Nested quantifiers");
11021 S_grok_bslash_N(pTHX_ RExC_state_t *pRExC_state,
11029 /* This routine teases apart the various meanings of \N and returns
11030 * accordingly. The input parameters constrain which meaning(s) is/are valid
11031 * in the current context.
11033 * Exactly one of <node_p> and <code_point_p> must be non-NULL.
11035 * If <code_point_p> is not NULL, the context is expecting the result to be a
11036 * single code point. If this \N instance turns out to a single code point,
11037 * the function returns TRUE and sets *code_point_p to that code point.
11039 * If <node_p> is not NULL, the context is expecting the result to be one of
11040 * the things representable by a regnode. If this \N instance turns out to be
11041 * one such, the function generates the regnode, returns TRUE and sets *node_p
11042 * to point to that regnode.
11044 * If this instance of \N isn't legal in any context, this function will
11045 * generate a fatal error and not return.
11047 * On input, RExC_parse should point to the first char following the \N at the
11048 * time of the call. On successful return, RExC_parse will have been updated
11049 * to point to just after the sequence identified by this routine. Also
11050 * *flagp has been updated as needed.
11052 * When there is some problem with the current context and this \N instance,
11053 * the function returns FALSE, without advancing RExC_parse, nor setting
11054 * *node_p, nor *code_point_p, nor *flagp.
11056 * If <cp_count> is not NULL, the caller wants to know the length (in code
11057 * points) that this \N sequence matches. This is set even if the function
11058 * returns FALSE, as detailed below.
11060 * There are 5 possibilities here, as detailed in the next 5 paragraphs.
11062 * Probably the most common case is for the \N to specify a single code point.
11063 * *cp_count will be set to 1, and *code_point_p will be set to that code
11066 * Another possibility is for the input to be an empty \N{}, which for
11067 * backwards compatibility we accept. *cp_count will be set to 0. *node_p
11068 * will be set to a generated NOTHING node.
11070 * Still another possibility is for the \N to mean [^\n]. *cp_count will be
11071 * set to 0. *node_p will be set to a generated REG_ANY node.
11073 * The fourth possibility is that \N resolves to a sequence of more than one
11074 * code points. *cp_count will be set to the number of code points in the
11075 * sequence. *node_p * will be set to a generated node returned by this
11076 * function calling S_reg().
11078 * The final possibility, which happens only when the fourth one would
11079 * otherwise be in effect, is that one of those code points requires the
11080 * pattern to be recompiled as UTF-8. The function returns FALSE, and sets
11081 * the RESTART_UTF8 flag in *flagp. When this happens, the caller needs to
11082 * desist from continuing parsing, and return this information to its caller.
11083 * This is not set for when there is only one code point, as this can be
11084 * called as part of an ANYOF node, and they can store above-Latin1 code
11085 * points without the pattern having to be in UTF-8.
11087 * For non-single-quoted regexes, the tokenizer has resolved character and
11088 * sequence names inside \N{...} into their Unicode values, normalizing the
11089 * result into what we should see here: '\N{U+c1.c2...}', where c1... are the
11090 * hex-represented code points in the sequence. This is done there because
11091 * the names can vary based on what charnames pragma is in scope at the time,
11092 * so we need a way to take a snapshot of what they resolve to at the time of
11093 * the original parse. [perl #56444].
11095 * That parsing is skipped for single-quoted regexes, so we may here get
11096 * '\N{NAME}'. This is a fatal error. These names have to be resolved by the
11097 * parser. But if the single-quoted regex is something like '\N{U+41}', that
11098 * is legal and handled here. The code point is Unicode, and has to be
11099 * translated into the native character set for non-ASCII platforms.
11100 * the tokenizer passes the \N sequence through unchanged; this code will not
11101 * attempt to determine this nor expand those, instead raising a syntax error.
11104 char * endbrace; /* points to '}' following the name */
11105 char *endchar; /* Points to '.' or '}' ending cur char in the input
11107 char* p; /* Temporary */
11109 GET_RE_DEBUG_FLAGS_DECL;
11111 PERL_ARGS_ASSERT_GROK_BSLASH_N;
11113 GET_RE_DEBUG_FLAGS;
11115 assert(cBOOL(node_p) ^ cBOOL(code_point_p)); /* Exactly one should be set */
11116 assert(! (node_p && cp_count)); /* At most 1 should be set */
11118 if (cp_count) { /* Initialize return for the most common case */
11122 /* The [^\n] meaning of \N ignores spaces and comments under the /x
11123 * modifier. The other meanings do not, so use a temporary until we find
11124 * out which we are being called with */
11125 p = (RExC_flags & RXf_PMf_EXTENDED)
11126 ? regpatws(pRExC_state, RExC_parse,
11127 TRUE) /* means recognize comments */
11130 /* Disambiguate between \N meaning a named character versus \N meaning
11131 * [^\n]. The latter is assumed when the {...} following the \N is a legal
11132 * quantifier, or there is no a '{' at all */
11133 if (*p != '{' || regcurly(p)) {
11142 RExC_parse--; /* Need to back off so nextchar() doesn't skip the
11144 nextchar(pRExC_state);
11145 *node_p = reg_node(pRExC_state, REG_ANY);
11146 *flagp |= HASWIDTH|SIMPLE;
11148 Set_Node_Length(*node_p, 1); /* MJD */
11152 /* Here, we have decided it should be a named character or sequence */
11154 /* The test above made sure that the next real character is a '{', but
11155 * under the /x modifier, it could be separated by space (or a comment and
11156 * \n) and this is not allowed (for consistency with \x{...} and the
11157 * tokenizer handling of \N{NAME}). */
11158 if (*RExC_parse != '{') {
11159 vFAIL("Missing braces on \\N{}");
11162 RExC_parse++; /* Skip past the '{' */
11164 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
11165 || ! (endbrace == RExC_parse /* nothing between the {} */
11166 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked... */
11167 && strnEQ(RExC_parse, "U+", 2)))) /* ... below for a better
11170 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
11171 vFAIL("\\N{NAME} must be resolved by the lexer");
11174 RExC_uni_semantics = 1; /* Unicode named chars imply Unicode semantics */
11176 if (endbrace == RExC_parse) { /* empty: \N{} */
11180 nextchar(pRExC_state);
11185 *node_p = reg_node(pRExC_state,NOTHING);
11189 RExC_parse += 2; /* Skip past the 'U+' */
11191 endchar = RExC_parse + strcspn(RExC_parse, ".}");
11193 /* Code points are separated by dots. If none, there is only one code
11194 * point, and is terminated by the brace */
11196 if (endchar >= endbrace) {
11197 STRLEN length_of_hex;
11198 I32 grok_hex_flags;
11200 /* Here, exactly one code point. If that isn't what is wanted, fail */
11201 if (! code_point_p) {
11206 /* Convert code point from hex */
11207 length_of_hex = (STRLEN)(endchar - RExC_parse);
11208 grok_hex_flags = PERL_SCAN_ALLOW_UNDERSCORES
11209 | PERL_SCAN_DISALLOW_PREFIX
11211 /* No errors in the first pass (See [perl
11212 * #122671].) We let the code below find the
11213 * errors when there are multiple chars. */
11215 ? PERL_SCAN_SILENT_ILLDIGIT
11218 /* This routine is the one place where both single- and double-quotish
11219 * \N{U+xxxx} are evaluated. The value is a Unicode code point which
11220 * must be converted to native. */
11221 *code_point_p = UNI_TO_NATIVE(grok_hex(RExC_parse,
11226 /* The tokenizer should have guaranteed validity, but it's possible to
11227 * bypass it by using single quoting, so check. Don't do the check
11228 * here when there are multiple chars; we do it below anyway. */
11229 if (length_of_hex == 0
11230 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
11232 RExC_parse += length_of_hex; /* Includes all the valid */
11233 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
11234 ? UTF8SKIP(RExC_parse)
11236 /* Guard against malformed utf8 */
11237 if (RExC_parse >= endchar) {
11238 RExC_parse = endchar;
11240 vFAIL("Invalid hexadecimal number in \\N{U+...}");
11243 RExC_parse = endbrace + 1;
11246 else { /* Is a multiple character sequence */
11247 SV * substitute_parse;
11249 char *orig_end = RExC_end;
11252 /* Count the code points, if desired, in the sequence */
11255 while (RExC_parse < endbrace) {
11256 /* Point to the beginning of the next character in the sequence. */
11257 RExC_parse = endchar + 1;
11258 endchar = RExC_parse + strcspn(RExC_parse, ".}");
11263 /* Fail if caller doesn't want to handle a multi-code-point sequence.
11264 * But don't backup up the pointer if the caller want to know how many
11265 * code points there are (they can then handle things) */
11273 /* What is done here is to convert this to a sub-pattern of the form
11274 * \x{char1}\x{char2}... and then call reg recursively to parse it
11275 * (enclosing in "(?: ... )" ). That way, it retains its atomicness,
11276 * while not having to worry about special handling that some code
11277 * points may have. */
11279 substitute_parse = newSVpvs("?:");
11281 while (RExC_parse < endbrace) {
11283 /* Convert to notation the rest of the code understands */
11284 sv_catpv(substitute_parse, "\\x{");
11285 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
11286 sv_catpv(substitute_parse, "}");
11288 /* Point to the beginning of the next character in the sequence. */
11289 RExC_parse = endchar + 1;
11290 endchar = RExC_parse + strcspn(RExC_parse, ".}");
11293 sv_catpv(substitute_parse, ")");
11295 RExC_parse = SvPV(substitute_parse, len);
11297 /* Don't allow empty number */
11298 if (len < (STRLEN) 8) {
11299 RExC_parse = endbrace;
11300 vFAIL("Invalid hexadecimal number in \\N{U+...}");
11302 RExC_end = RExC_parse + len;
11304 /* The values are Unicode, and therefore not subject to recoding, but
11305 * have to be converted to native on a non-Unicode (meaning non-ASCII)
11307 RExC_override_recoding = 1;
11309 RExC_recode_x_to_native = 1;
11313 if (!(*node_p = reg(pRExC_state, 1, &flags, depth+1))) {
11314 if (flags & RESTART_UTF8) {
11315 *flagp = RESTART_UTF8;
11318 FAIL2("panic: reg returned NULL to grok_bslash_N, flags=%#"UVxf"",
11321 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
11324 /* Restore the saved values */
11325 RExC_parse = endbrace;
11326 RExC_end = orig_end;
11327 RExC_override_recoding = 0;
11329 RExC_recode_x_to_native = 0;
11332 SvREFCNT_dec_NN(substitute_parse);
11333 nextchar(pRExC_state);
11343 * It returns the code point in utf8 for the value in *encp.
11344 * value: a code value in the source encoding
11345 * encp: a pointer to an Encode object
11347 * If the result from Encode is not a single character,
11348 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
11351 S_reg_recode(pTHX_ const char value, SV **encp)
11354 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
11355 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
11356 const STRLEN newlen = SvCUR(sv);
11357 UV uv = UNICODE_REPLACEMENT;
11359 PERL_ARGS_ASSERT_REG_RECODE;
11363 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
11366 if (!newlen || numlen != newlen) {
11367 uv = UNICODE_REPLACEMENT;
11373 PERL_STATIC_INLINE U8
11374 S_compute_EXACTish(RExC_state_t *pRExC_state)
11378 PERL_ARGS_ASSERT_COMPUTE_EXACTISH;
11386 op = get_regex_charset(RExC_flags);
11387 if (op >= REGEX_ASCII_RESTRICTED_CHARSET) {
11388 op--; /* /a is same as /u, and map /aa's offset to what /a's would have
11389 been, so there is no hole */
11392 return op + EXACTF;
11395 PERL_STATIC_INLINE void
11396 S_alloc_maybe_populate_EXACT(pTHX_ RExC_state_t *pRExC_state,
11397 regnode *node, I32* flagp, STRLEN len, UV code_point,
11400 /* This knows the details about sizing an EXACTish node, setting flags for
11401 * it (by setting <*flagp>, and potentially populating it with a single
11404 * If <len> (the length in bytes) is non-zero, this function assumes that
11405 * the node has already been populated, and just does the sizing. In this
11406 * case <code_point> should be the final code point that has already been
11407 * placed into the node. This value will be ignored except that under some
11408 * circumstances <*flagp> is set based on it.
11410 * If <len> is zero, the function assumes that the node is to contain only
11411 * the single character given by <code_point> and calculates what <len>
11412 * should be. In pass 1, it sizes the node appropriately. In pass 2, it
11413 * additionally will populate the node's STRING with <code_point> or its
11416 * In both cases <*flagp> is appropriately set
11418 * It knows that under FOLD, the Latin Sharp S and UTF characters above
11419 * 255, must be folded (the former only when the rules indicate it can
11422 * When it does the populating, it looks at the flag 'downgradable'. If
11423 * true with a node that folds, it checks if the single code point
11424 * participates in a fold, and if not downgrades the node to an EXACT.
11425 * This helps the optimizer */
11427 bool len_passed_in = cBOOL(len != 0);
11428 U8 character[UTF8_MAXBYTES_CASE+1];
11430 PERL_ARGS_ASSERT_ALLOC_MAYBE_POPULATE_EXACT;
11432 /* Don't bother to check for downgrading in PASS1, as it doesn't make any
11433 * sizing difference, and is extra work that is thrown away */
11434 if (downgradable && ! PASS2) {
11435 downgradable = FALSE;
11438 if (! len_passed_in) {
11440 if (UVCHR_IS_INVARIANT(code_point)) {
11441 if (LOC || ! FOLD) { /* /l defers folding until runtime */
11442 *character = (U8) code_point;
11444 else { /* Here is /i and not /l. (toFOLD() is defined on just
11445 ASCII, which isn't the same thing as INVARIANT on
11446 EBCDIC, but it works there, as the extra invariants
11447 fold to themselves) */
11448 *character = toFOLD((U8) code_point);
11450 /* We can downgrade to an EXACT node if this character
11451 * isn't a folding one. Note that this assumes that
11452 * nothing above Latin1 folds to some other invariant than
11453 * one of these alphabetics; otherwise we would also have
11455 * && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
11456 * || ASCII_FOLD_RESTRICTED))
11458 if (downgradable && PL_fold[code_point] == code_point) {
11464 else if (FOLD && (! LOC
11465 || ! is_PROBLEMATIC_LOCALE_FOLD_cp(code_point)))
11466 { /* Folding, and ok to do so now */
11467 UV folded = _to_uni_fold_flags(
11471 FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
11472 ? FOLD_FLAGS_NOMIX_ASCII
11475 && folded == code_point /* This quickly rules out many
11476 cases, avoiding the
11477 _invlist_contains_cp() overhead
11479 && ! _invlist_contains_cp(PL_utf8_foldable, code_point))
11486 else if (code_point <= MAX_UTF8_TWO_BYTE) {
11488 /* Not folding this cp, and can output it directly */
11489 *character = UTF8_TWO_BYTE_HI(code_point);
11490 *(character + 1) = UTF8_TWO_BYTE_LO(code_point);
11494 uvchr_to_utf8( character, code_point);
11495 len = UTF8SKIP(character);
11497 } /* Else pattern isn't UTF8. */
11499 *character = (U8) code_point;
11501 } /* Else is folded non-UTF8 */
11502 else if (LIKELY(code_point != LATIN_SMALL_LETTER_SHARP_S)) {
11504 /* We don't fold any non-UTF8 except possibly the Sharp s (see
11505 * comments at join_exact()); */
11506 *character = (U8) code_point;
11509 /* Can turn into an EXACT node if we know the fold at compile time,
11510 * and it folds to itself and doesn't particpate in other folds */
11513 && PL_fold_latin1[code_point] == code_point
11514 && (! HAS_NONLATIN1_FOLD_CLOSURE(code_point)
11515 || (isASCII(code_point) && ASCII_FOLD_RESTRICTED)))
11519 } /* else is Sharp s. May need to fold it */
11520 else if (AT_LEAST_UNI_SEMANTICS && ! ASCII_FOLD_RESTRICTED) {
11522 *(character + 1) = 's';
11526 *character = LATIN_SMALL_LETTER_SHARP_S;
11532 RExC_size += STR_SZ(len);
11535 RExC_emit += STR_SZ(len);
11536 STR_LEN(node) = len;
11537 if (! len_passed_in) {
11538 Copy((char *) character, STRING(node), len, char);
11542 *flagp |= HASWIDTH;
11544 /* A single character node is SIMPLE, except for the special-cased SHARP S
11546 if ((len == 1 || (UTF && len == UNISKIP(code_point)))
11547 && (code_point != LATIN_SMALL_LETTER_SHARP_S
11548 || ! FOLD || ! DEPENDS_SEMANTICS))
11553 /* The OP may not be well defined in PASS1 */
11554 if (PASS2 && OP(node) == EXACTFL) {
11555 RExC_contains_locale = 1;
11560 /* Parse backref decimal value, unless it's too big to sensibly be a backref,
11561 * in which case return I32_MAX (rather than possibly 32-bit wrapping) */
11564 S_backref_value(char *p)
11566 const char* endptr;
11568 if (grok_atoUV(p, &val, &endptr) && val <= I32_MAX)
11575 - regatom - the lowest level
11577 Try to identify anything special at the start of the pattern. If there
11578 is, then handle it as required. This may involve generating a single regop,
11579 such as for an assertion; or it may involve recursing, such as to
11580 handle a () structure.
11582 If the string doesn't start with something special then we gobble up
11583 as much literal text as we can.
11585 Once we have been able to handle whatever type of thing started the
11586 sequence, we return.
11588 Note: we have to be careful with escapes, as they can be both literal
11589 and special, and in the case of \10 and friends, context determines which.
11591 A summary of the code structure is:
11593 switch (first_byte) {
11594 cases for each special:
11595 handle this special;
11598 switch (2nd byte) {
11599 cases for each unambiguous special:
11600 handle this special;
11602 cases for each ambigous special/literal:
11604 if (special) handle here
11606 default: // unambiguously literal:
11609 default: // is a literal char
11612 create EXACTish node for literal;
11613 while (more input and node isn't full) {
11614 switch (input_byte) {
11615 cases for each special;
11616 make sure parse pointer is set so that the next call to
11617 regatom will see this special first
11618 goto loopdone; // EXACTish node terminated by prev. char
11620 append char to EXACTISH node;
11622 get next input byte;
11626 return the generated node;
11628 Specifically there are two separate switches for handling
11629 escape sequences, with the one for handling literal escapes requiring
11630 a dummy entry for all of the special escapes that are actually handled
11633 Returns NULL, setting *flagp to TRYAGAIN if reg() returns NULL with
11635 Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs to be
11637 Otherwise does not return NULL.
11641 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
11643 regnode *ret = NULL;
11645 char *parse_start = RExC_parse;
11650 GET_RE_DEBUG_FLAGS_DECL;
11652 *flagp = WORST; /* Tentatively. */
11654 DEBUG_PARSE("atom");
11656 PERL_ARGS_ASSERT_REGATOM;
11659 switch ((U8)*RExC_parse) {
11661 RExC_seen_zerolen++;
11662 nextchar(pRExC_state);
11663 if (RExC_flags & RXf_PMf_MULTILINE)
11664 ret = reg_node(pRExC_state, MBOL);
11666 ret = reg_node(pRExC_state, SBOL);
11667 Set_Node_Length(ret, 1); /* MJD */
11670 nextchar(pRExC_state);
11672 RExC_seen_zerolen++;
11673 if (RExC_flags & RXf_PMf_MULTILINE)
11674 ret = reg_node(pRExC_state, MEOL);
11676 ret = reg_node(pRExC_state, SEOL);
11677 Set_Node_Length(ret, 1); /* MJD */
11680 nextchar(pRExC_state);
11681 if (RExC_flags & RXf_PMf_SINGLELINE)
11682 ret = reg_node(pRExC_state, SANY);
11684 ret = reg_node(pRExC_state, REG_ANY);
11685 *flagp |= HASWIDTH|SIMPLE;
11687 Set_Node_Length(ret, 1); /* MJD */
11691 char * const oregcomp_parse = ++RExC_parse;
11692 ret = regclass(pRExC_state, flagp,depth+1,
11693 FALSE, /* means parse the whole char class */
11694 TRUE, /* allow multi-char folds */
11695 FALSE, /* don't silence non-portable warnings. */
11696 (bool) RExC_strict,
11698 if (*RExC_parse != ']') {
11699 RExC_parse = oregcomp_parse;
11700 vFAIL("Unmatched [");
11703 if (*flagp & RESTART_UTF8)
11705 FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
11708 nextchar(pRExC_state);
11709 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
11713 nextchar(pRExC_state);
11714 ret = reg(pRExC_state, 2, &flags,depth+1);
11716 if (flags & TRYAGAIN) {
11717 if (RExC_parse == RExC_end) {
11718 /* Make parent create an empty node if needed. */
11719 *flagp |= TRYAGAIN;
11724 if (flags & RESTART_UTF8) {
11725 *flagp = RESTART_UTF8;
11728 FAIL2("panic: reg returned NULL to regatom, flags=%#"UVxf"",
11731 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
11735 if (flags & TRYAGAIN) {
11736 *flagp |= TRYAGAIN;
11739 vFAIL("Internal urp");
11740 /* Supposed to be caught earlier. */
11746 vFAIL("Quantifier follows nothing");
11751 This switch handles escape sequences that resolve to some kind
11752 of special regop and not to literal text. Escape sequnces that
11753 resolve to literal text are handled below in the switch marked
11756 Every entry in this switch *must* have a corresponding entry
11757 in the literal escape switch. However, the opposite is not
11758 required, as the default for this switch is to jump to the
11759 literal text handling code.
11761 switch ((U8)*++RExC_parse) {
11762 /* Special Escapes */
11764 RExC_seen_zerolen++;
11765 ret = reg_node(pRExC_state, SBOL);
11766 /* SBOL is shared with /^/ so we set the flags so we can tell
11767 * /\A/ from /^/ in split. We check ret because first pass we
11768 * have no regop struct to set the flags on. */
11772 goto finish_meta_pat;
11774 ret = reg_node(pRExC_state, GPOS);
11775 RExC_seen |= REG_GPOS_SEEN;
11777 goto finish_meta_pat;
11779 RExC_seen_zerolen++;
11780 ret = reg_node(pRExC_state, KEEPS);
11782 /* XXX:dmq : disabling in-place substitution seems to
11783 * be necessary here to avoid cases of memory corruption, as
11784 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
11786 RExC_seen |= REG_LOOKBEHIND_SEEN;
11787 goto finish_meta_pat;
11789 ret = reg_node(pRExC_state, SEOL);
11791 RExC_seen_zerolen++; /* Do not optimize RE away */
11792 goto finish_meta_pat;
11794 ret = reg_node(pRExC_state, EOS);
11796 RExC_seen_zerolen++; /* Do not optimize RE away */
11797 goto finish_meta_pat;
11799 vFAIL("\\C no longer supported");
11801 ret = reg_node(pRExC_state, CLUMP);
11802 *flagp |= HASWIDTH;
11803 goto finish_meta_pat;
11809 arg = ANYOF_WORDCHAR;
11817 regex_charset charset = get_regex_charset(RExC_flags);
11819 RExC_seen_zerolen++;
11820 RExC_seen |= REG_LOOKBEHIND_SEEN;
11821 op = BOUND + charset;
11823 if (op == BOUNDL) {
11824 RExC_contains_locale = 1;
11827 ret = reg_node(pRExC_state, op);
11829 if (*(RExC_parse + 1) != '{') {
11830 FLAGS(ret) = TRADITIONAL_BOUND;
11831 if (PASS2 && op > BOUNDA) { /* /aa is same as /a */
11837 char name = *RExC_parse;
11840 endbrace = strchr(RExC_parse, '}');
11843 vFAIL2("Missing right brace on \\%c{}", name);
11845 /* XXX Need to decide whether to take spaces or not. Should be
11846 * consistent with \p{}, but that currently is SPACE, which
11847 * means vertical too, which seems wrong
11848 * while (isBLANK(*RExC_parse)) {
11851 if (endbrace == RExC_parse) {
11852 RExC_parse++; /* After the '}' */
11853 vFAIL2("Empty \\%c{}", name);
11855 length = endbrace - RExC_parse;
11856 /*while (isBLANK(*(RExC_parse + length - 1))) {
11859 switch (*RExC_parse) {
11862 && (length != 3 || strnNE(RExC_parse + 1, "cb", 2)))
11864 goto bad_bound_type;
11866 FLAGS(ret) = GCB_BOUND;
11869 if (length != 2 || *(RExC_parse + 1) != 'b') {
11870 goto bad_bound_type;
11872 FLAGS(ret) = SB_BOUND;
11875 if (length != 2 || *(RExC_parse + 1) != 'b') {
11876 goto bad_bound_type;
11878 FLAGS(ret) = WB_BOUND;
11882 RExC_parse = endbrace;
11884 "'%"UTF8f"' is an unknown bound type",
11885 UTF8fARG(UTF, length, endbrace - length));
11886 NOT_REACHED; /*NOTREACHED*/
11888 RExC_parse = endbrace;
11889 RExC_uni_semantics = 1;
11891 if (PASS2 && op >= BOUNDA) { /* /aa is same as /a */
11895 /* Don't have to worry about UTF-8, in this message because
11896 * to get here the contents of the \b must be ASCII */
11897 ckWARN4reg(RExC_parse + 1, /* Include the '}' in msg */
11898 "Using /u for '%.*s' instead of /%s",
11900 endbrace - length + 1,
11901 (charset == REGEX_ASCII_RESTRICTED_CHARSET)
11902 ? ASCII_RESTRICT_PAT_MODS
11903 : ASCII_MORE_RESTRICT_PAT_MODS);
11907 if (PASS2 && invert) {
11908 OP(ret) += NBOUND - BOUND;
11910 goto finish_meta_pat;
11918 if (! DEPENDS_SEMANTICS) {
11922 /* \d doesn't have any matches in the upper Latin1 range, hence /d
11923 * is equivalent to /u. Changing to /u saves some branches at
11926 goto join_posix_op_known;
11929 ret = reg_node(pRExC_state, LNBREAK);
11930 *flagp |= HASWIDTH|SIMPLE;
11931 goto finish_meta_pat;
11939 goto join_posix_op_known;
11945 arg = ANYOF_VERTWS;
11947 goto join_posix_op_known;
11957 op = POSIXD + get_regex_charset(RExC_flags);
11958 if (op > POSIXA) { /* /aa is same as /a */
11961 else if (op == POSIXL) {
11962 RExC_contains_locale = 1;
11965 join_posix_op_known:
11968 op += NPOSIXD - POSIXD;
11971 ret = reg_node(pRExC_state, op);
11973 FLAGS(ret) = namedclass_to_classnum(arg);
11976 *flagp |= HASWIDTH|SIMPLE;
11980 nextchar(pRExC_state);
11981 Set_Node_Length(ret, 2); /* MJD */
11987 char* parse_start = RExC_parse - 2;
11992 ret = regclass(pRExC_state, flagp,depth+1,
11993 TRUE, /* means just parse this element */
11994 FALSE, /* don't allow multi-char folds */
11995 FALSE, /* don't silence non-portable warnings.
11996 It would be a bug if these returned
11998 (bool) RExC_strict,
12000 /* regclass() can only return RESTART_UTF8 if multi-char folds
12003 FAIL2("panic: regclass returned NULL to regatom, flags=%#"UVxf"",
12008 Set_Node_Offset(ret, parse_start + 2);
12009 Set_Node_Cur_Length(ret, parse_start);
12010 nextchar(pRExC_state);
12014 /* Handle \N, \N{} and \N{NAMED SEQUENCE} (the latter meaning the
12015 * \N{...} evaluates to a sequence of more than one code points).
12016 * The function call below returns a regnode, which is our result.
12017 * The parameters cause it to fail if the \N{} evaluates to a
12018 * single code point; we handle those like any other literal. The
12019 * reason that the multicharacter case is handled here and not as
12020 * part of the EXACtish code is because of quantifiers. In
12021 * /\N{BLAH}+/, the '+' applies to the whole thing, and doing it
12022 * this way makes that Just Happen. dmq.
12023 * join_exact() will join this up with adjacent EXACTish nodes
12024 * later on, if appropriate. */
12026 if (grok_bslash_N(pRExC_state,
12027 &ret, /* Want a regnode returned */
12028 NULL, /* Fail if evaluates to a single code
12030 NULL, /* Don't need a count of how many code
12038 if (*flagp & RESTART_UTF8)
12043 case 'k': /* Handle \k<NAME> and \k'NAME' */
12046 char ch= RExC_parse[1];
12047 if (ch != '<' && ch != '\'' && ch != '{') {
12049 /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
12050 vFAIL2("Sequence %.2s... not terminated",parse_start);
12052 /* this pretty much dupes the code for (?P=...) in reg(), if
12053 you change this make sure you change that */
12054 char* name_start = (RExC_parse += 2);
12056 SV *sv_dat = reg_scan_name(pRExC_state,
12057 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
12058 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
12059 if (RExC_parse == name_start || *RExC_parse != ch)
12060 /* diag_listed_as: Sequence \%s... not terminated in regex; marked by <-- HERE in m/%s/ */
12061 vFAIL2("Sequence %.3s... not terminated",parse_start);
12064 num = add_data( pRExC_state, STR_WITH_LEN("S"));
12065 RExC_rxi->data->data[num]=(void*)sv_dat;
12066 SvREFCNT_inc_simple_void(sv_dat);
12070 ret = reganode(pRExC_state,
12073 : (ASCII_FOLD_RESTRICTED)
12075 : (AT_LEAST_UNI_SEMANTICS)
12081 *flagp |= HASWIDTH;
12083 /* override incorrect value set in reganode MJD */
12084 Set_Node_Offset(ret, parse_start+1);
12085 Set_Node_Cur_Length(ret, parse_start);
12086 nextchar(pRExC_state);
12092 case '1': case '2': case '3': case '4':
12093 case '5': case '6': case '7': case '8': case '9':
12098 if (*RExC_parse == 'g') {
12102 if (*RExC_parse == '{') {
12106 if (*RExC_parse == '-') {
12110 if (hasbrace && !isDIGIT(*RExC_parse)) {
12111 if (isrel) RExC_parse--;
12113 goto parse_named_seq;
12116 num = S_backref_value(RExC_parse);
12118 vFAIL("Reference to invalid group 0");
12119 else if (num == I32_MAX) {
12120 if (isDIGIT(*RExC_parse))
12121 vFAIL("Reference to nonexistent group");
12123 vFAIL("Unterminated \\g... pattern");
12127 num = RExC_npar - num;
12129 vFAIL("Reference to nonexistent or unclosed group");
12133 num = S_backref_value(RExC_parse);
12134 /* bare \NNN might be backref or octal - if it is larger
12135 * than or equal RExC_npar then it is assumed to be an
12136 * octal escape. Note RExC_npar is +1 from the actual
12137 * number of parens. */
12138 /* Note we do NOT check if num == I32_MAX here, as that is
12139 * handled by the RExC_npar check */
12142 /* any numeric escape < 10 is always a backref */
12144 /* any numeric escape < RExC_npar is a backref */
12145 && num >= RExC_npar
12146 /* cannot be an octal escape if it starts with 8 */
12147 && *RExC_parse != '8'
12148 /* cannot be an octal escape it it starts with 9 */
12149 && *RExC_parse != '9'
12152 /* Probably not a backref, instead likely to be an
12153 * octal character escape, e.g. \35 or \777.
12154 * The above logic should make it obvious why using
12155 * octal escapes in patterns is problematic. - Yves */
12160 /* At this point RExC_parse points at a numeric escape like
12161 * \12 or \88 or something similar, which we should NOT treat
12162 * as an octal escape. It may or may not be a valid backref
12163 * escape. For instance \88888888 is unlikely to be a valid
12166 #ifdef RE_TRACK_PATTERN_OFFSETS
12167 char * const parse_start = RExC_parse - 1; /* MJD */
12169 while (isDIGIT(*RExC_parse))
12172 if (*RExC_parse != '}')
12173 vFAIL("Unterminated \\g{...} pattern");
12177 if (num > (I32)RExC_rx->nparens)
12178 vFAIL("Reference to nonexistent group");
12181 ret = reganode(pRExC_state,
12184 : (ASCII_FOLD_RESTRICTED)
12186 : (AT_LEAST_UNI_SEMANTICS)
12192 *flagp |= HASWIDTH;
12194 /* override incorrect value set in reganode MJD */
12195 Set_Node_Offset(ret, parse_start+1);
12196 Set_Node_Cur_Length(ret, parse_start);
12198 nextchar(pRExC_state);
12203 if (RExC_parse >= RExC_end)
12204 FAIL("Trailing \\");
12207 /* Do not generate "unrecognized" warnings here, we fall
12208 back into the quick-grab loop below */
12215 if (RExC_flags & RXf_PMf_EXTENDED) {
12216 RExC_parse = reg_skipcomment( pRExC_state, RExC_parse );
12217 if (RExC_parse < RExC_end)
12224 parse_start = RExC_parse - 1;
12233 #define MAX_NODE_STRING_SIZE 127
12234 char foldbuf[MAX_NODE_STRING_SIZE+UTF8_MAXBYTES_CASE];
12236 U8 upper_parse = MAX_NODE_STRING_SIZE;
12237 U8 node_type = compute_EXACTish(pRExC_state);
12238 bool next_is_quantifier;
12239 char * oldp = NULL;
12241 /* We can convert EXACTF nodes to EXACTFU if they contain only
12242 * characters that match identically regardless of the target
12243 * string's UTF8ness. The reason to do this is that EXACTF is not
12244 * trie-able, EXACTFU is.
12246 * Similarly, we can convert EXACTFL nodes to EXACTFU if they
12247 * contain only above-Latin1 characters (hence must be in UTF8),
12248 * which don't participate in folds with Latin1-range characters,
12249 * as the latter's folds aren't known until runtime. (We don't
12250 * need to figure this out until pass 2) */
12251 bool maybe_exactfu = PASS2
12252 && (node_type == EXACTF || node_type == EXACTFL);
12254 /* If a folding node contains only code points that don't
12255 * participate in folds, it can be changed into an EXACT node,
12256 * which allows the optimizer more things to look for */
12259 ret = reg_node(pRExC_state, node_type);
12261 /* In pass1, folded, we use a temporary buffer instead of the
12262 * actual node, as the node doesn't exist yet */
12263 s = (SIZE_ONLY && FOLD) ? foldbuf : STRING(ret);
12269 /* We do the EXACTFish to EXACT node only if folding. (And we
12270 * don't need to figure this out until pass 2) */
12271 maybe_exact = FOLD && PASS2;
12273 /* XXX The node can hold up to 255 bytes, yet this only goes to
12274 * 127. I (khw) do not know why. Keeping it somewhat less than
12275 * 255 allows us to not have to worry about overflow due to
12276 * converting to utf8 and fold expansion, but that value is
12277 * 255-UTF8_MAXBYTES_CASE. join_exact() may join adjacent nodes
12278 * split up by this limit into a single one using the real max of
12279 * 255. Even at 127, this breaks under rare circumstances. If
12280 * folding, we do not want to split a node at a character that is a
12281 * non-final in a multi-char fold, as an input string could just
12282 * happen to want to match across the node boundary. The join
12283 * would solve that problem if the join actually happens. But a
12284 * series of more than two nodes in a row each of 127 would cause
12285 * the first join to succeed to get to 254, but then there wouldn't
12286 * be room for the next one, which could at be one of those split
12287 * multi-char folds. I don't know of any fool-proof solution. One
12288 * could back off to end with only a code point that isn't such a
12289 * non-final, but it is possible for there not to be any in the
12291 for (p = RExC_parse - 1;
12292 len < upper_parse && p < RExC_end;
12297 if (RExC_flags & RXf_PMf_EXTENDED)
12298 p = regpatws(pRExC_state, p,
12299 TRUE); /* means recognize comments */
12310 /* Literal Escapes Switch
12312 This switch is meant to handle escape sequences that
12313 resolve to a literal character.
12315 Every escape sequence that represents something
12316 else, like an assertion or a char class, is handled
12317 in the switch marked 'Special Escapes' above in this
12318 routine, but also has an entry here as anything that
12319 isn't explicitly mentioned here will be treated as
12320 an unescaped equivalent literal.
12323 switch ((U8)*++p) {
12324 /* These are all the special escapes. */
12325 case 'A': /* Start assertion */
12326 case 'b': case 'B': /* Word-boundary assertion*/
12327 case 'C': /* Single char !DANGEROUS! */
12328 case 'd': case 'D': /* digit class */
12329 case 'g': case 'G': /* generic-backref, pos assertion */
12330 case 'h': case 'H': /* HORIZWS */
12331 case 'k': case 'K': /* named backref, keep marker */
12332 case 'p': case 'P': /* Unicode property */
12333 case 'R': /* LNBREAK */
12334 case 's': case 'S': /* space class */
12335 case 'v': case 'V': /* VERTWS */
12336 case 'w': case 'W': /* word class */
12337 case 'X': /* eXtended Unicode "combining
12338 character sequence" */
12339 case 'z': case 'Z': /* End of line/string assertion */
12343 /* Anything after here is an escape that resolves to a
12344 literal. (Except digits, which may or may not)
12350 case 'N': /* Handle a single-code point named character. */
12351 RExC_parse = p + 1;
12352 if (! grok_bslash_N(pRExC_state,
12353 NULL, /* Fail if evaluates to
12354 anything other than a
12355 single code point */
12356 &ender, /* The returned single code
12358 NULL, /* Don't need a count of
12359 how many code points */
12363 if (*flagp & RESTART_UTF8)
12364 FAIL("panic: grok_bslash_N set RESTART_UTF8");
12366 /* Here, it wasn't a single code point. Go close
12367 * up this EXACTish node. The switch() prior to
12368 * this switch handles the other cases */
12369 RExC_parse = p = oldp;
12373 if (ender > 0xff) {
12390 ender = ESC_NATIVE;
12400 const char* error_msg;
12402 bool valid = grok_bslash_o(&p,
12405 PASS2, /* out warnings */
12406 (bool) RExC_strict,
12407 TRUE, /* Output warnings
12412 RExC_parse = p; /* going to die anyway; point
12413 to exact spot of failure */
12417 if (IN_ENCODING && ender < 0x100) {
12418 goto recode_encoding;
12420 if (ender > 0xff) {
12427 UV result = UV_MAX; /* initialize to erroneous
12429 const char* error_msg;
12431 bool valid = grok_bslash_x(&p,
12434 PASS2, /* out warnings */
12435 (bool) RExC_strict,
12436 TRUE, /* Silence warnings
12441 RExC_parse = p; /* going to die anyway; point
12442 to exact spot of failure */
12447 if (ender < 0x100) {
12449 if (RExC_recode_x_to_native) {
12450 ender = LATIN1_TO_NATIVE(ender);
12455 goto recode_encoding;
12465 ender = grok_bslash_c(*p++, PASS2);
12467 case '8': case '9': /* must be a backreference */
12469 /* we have an escape like \8 which cannot be an octal escape
12470 * so we exit the loop, and let the outer loop handle this
12471 * escape which may or may not be a legitimate backref. */
12473 case '1': case '2': case '3':case '4':
12474 case '5': case '6': case '7':
12475 /* When we parse backslash escapes there is ambiguity
12476 * between backreferences and octal escapes. Any escape
12477 * from \1 - \9 is a backreference, any multi-digit
12478 * escape which does not start with 0 and which when
12479 * evaluated as decimal could refer to an already
12480 * parsed capture buffer is a back reference. Anything
12483 * Note this implies that \118 could be interpreted as
12484 * 118 OR as "\11" . "8" depending on whether there
12485 * were 118 capture buffers defined already in the
12488 /* NOTE, RExC_npar is 1 more than the actual number of
12489 * parens we have seen so far, hence the < RExC_npar below. */
12491 if ( !isDIGIT(p[1]) || S_backref_value(p) < RExC_npar)
12492 { /* Not to be treated as an octal constant, go
12500 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
12502 ender = grok_oct(p, &numlen, &flags, NULL);
12503 if (ender > 0xff) {
12507 if (PASS2 /* like \08, \178 */
12510 && isDIGIT(*p) && ckWARN(WARN_REGEXP))
12512 reg_warn_non_literal_string(
12514 form_short_octal_warning(p, numlen));
12517 if (IN_ENCODING && ender < 0x100)
12518 goto recode_encoding;
12521 if (! RExC_override_recoding) {
12522 SV* enc = _get_encoding();
12523 ender = reg_recode((const char)(U8)ender, &enc);
12525 ckWARNreg(p, "Invalid escape in the specified encoding");
12531 FAIL("Trailing \\");
12534 if (!SIZE_ONLY&& isALPHANUMERIC(*p)) {
12535 /* Include any { following the alpha to emphasize
12536 * that it could be part of an escape at some point
12538 int len = (isALPHA(*p) && *(p + 1) == '{') ? 2 : 1;
12539 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
12541 goto normal_default;
12542 } /* End of switch on '\' */
12545 /* Currently we don't warn when the lbrace is at the start
12546 * of a construct. This catches it in the middle of a
12547 * literal string, or when its the first thing after
12548 * something like "\b" */
12550 && (len || (p > RExC_start && isALPHA_A(*(p -1)))))
12552 ckWARNregdep(p + 1, "Unescaped left brace in regex is deprecated, passed through");
12555 default: /* A literal character */
12557 if (UTF8_IS_START(*p) && UTF) {
12559 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
12560 &numlen, UTF8_ALLOW_DEFAULT);
12566 } /* End of switch on the literal */
12568 /* Here, have looked at the literal character and <ender>
12569 * contains its ordinal, <p> points to the character after it
12572 if ( RExC_flags & RXf_PMf_EXTENDED)
12573 p = regpatws(pRExC_state, p,
12574 TRUE); /* means recognize comments */
12576 /* If the next thing is a quantifier, it applies to this
12577 * character only, which means that this character has to be in
12578 * its own node and can't just be appended to the string in an
12579 * existing node, so if there are already other characters in
12580 * the node, close the node with just them, and set up to do
12581 * this character again next time through, when it will be the
12582 * only thing in its new node */
12583 if ((next_is_quantifier = (p < RExC_end && ISMULT2(p))) && len)
12589 if (! FOLD) { /* The simple case, just append the literal */
12591 /* In the sizing pass, we need only the size of the
12592 * character we are appending, hence we can delay getting
12593 * its representation until PASS2. */
12596 const STRLEN unilen = UNISKIP(ender);
12599 /* We have to subtract 1 just below (and again in
12600 * the corresponding PASS2 code) because the loop
12601 * increments <len> each time, as all but this path
12602 * (and one other) through it add a single byte to
12603 * the EXACTish node. But these paths would change
12604 * len to be the correct final value, so cancel out
12605 * the increment that follows */
12611 } else { /* PASS2 */
12614 U8 * new_s = uvchr_to_utf8((U8*)s, ender);
12615 len += (char *) new_s - s - 1;
12616 s = (char *) new_s;
12619 *(s++) = (char) ender;
12623 else if (LOC && is_PROBLEMATIC_LOCALE_FOLD_cp(ender)) {
12625 /* Here are folding under /l, and the code point is
12626 * problematic. First, we know we can't simplify things */
12627 maybe_exact = FALSE;
12628 maybe_exactfu = FALSE;
12630 /* A problematic code point in this context means that its
12631 * fold isn't known until runtime, so we can't fold it now.
12632 * (The non-problematic code points are the above-Latin1
12633 * ones that fold to also all above-Latin1. Their folds
12634 * don't vary no matter what the locale is.) But here we
12635 * have characters whose fold depends on the locale.
12636 * Unlike the non-folding case above, we have to keep track
12637 * of these in the sizing pass, so that we can make sure we
12638 * don't split too-long nodes in the middle of a potential
12639 * multi-char fold. And unlike the regular fold case
12640 * handled in the else clauses below, we don't actually
12641 * fold and don't have special cases to consider. What we
12642 * do for both passes is the PASS2 code for non-folding */
12643 goto not_fold_common;
12645 else /* A regular FOLD code point */
12647 /* See comments for join_exact() as to why we fold this
12648 * non-UTF at compile time */
12649 || (node_type == EXACTFU
12650 && ender == LATIN_SMALL_LETTER_SHARP_S)))
12652 /* Here, are folding and are not UTF-8 encoded; therefore
12653 * the character must be in the range 0-255, and is not /l
12654 * (Not /l because we already handled these under /l in
12655 * is_PROBLEMATIC_LOCALE_FOLD_cp) */
12656 if (IS_IN_SOME_FOLD_L1(ender)) {
12657 maybe_exact = FALSE;
12659 /* See if the character's fold differs between /d and
12660 * /u. This includes the multi-char fold SHARP S to
12663 && (PL_fold[ender] != PL_fold_latin1[ender]
12664 || ender == LATIN_SMALL_LETTER_SHARP_S
12666 && isALPHA_FOLD_EQ(ender, 's')
12667 && isALPHA_FOLD_EQ(*(s-1), 's'))))
12669 maybe_exactfu = FALSE;
12673 /* Even when folding, we store just the input character, as
12674 * we have an array that finds its fold quickly */
12675 *(s++) = (char) ender;
12677 else { /* FOLD and UTF */
12678 /* Unlike the non-fold case, we do actually have to
12679 * calculate the results here in pass 1. This is for two
12680 * reasons, the folded length may be longer than the
12681 * unfolded, and we have to calculate how many EXACTish
12682 * nodes it will take; and we may run out of room in a node
12683 * in the middle of a potential multi-char fold, and have
12684 * to back off accordingly. */
12687 if (isASCII_uni(ender)) {
12688 folded = toFOLD(ender);
12689 *(s)++ = (U8) folded;
12694 folded = _to_uni_fold_flags(
12698 FOLD_FLAGS_FULL | ((ASCII_FOLD_RESTRICTED)
12699 ? FOLD_FLAGS_NOMIX_ASCII
12703 /* The loop increments <len> each time, as all but this
12704 * path (and one other) through it add a single byte to
12705 * the EXACTish node. But this one has changed len to
12706 * be the correct final value, so subtract one to
12707 * cancel out the increment that follows */
12708 len += foldlen - 1;
12710 /* If this node only contains non-folding code points so
12711 * far, see if this new one is also non-folding */
12713 if (folded != ender) {
12714 maybe_exact = FALSE;
12717 /* Here the fold is the original; we have to check
12718 * further to see if anything folds to it */
12719 if (_invlist_contains_cp(PL_utf8_foldable,
12722 maybe_exact = FALSE;
12729 if (next_is_quantifier) {
12731 /* Here, the next input is a quantifier, and to get here,
12732 * the current character is the only one in the node.
12733 * Also, here <len> doesn't include the final byte for this
12739 } /* End of loop through literal characters */
12741 /* Here we have either exhausted the input or ran out of room in
12742 * the node. (If we encountered a character that can't be in the
12743 * node, transfer is made directly to <loopdone>, and so we
12744 * wouldn't have fallen off the end of the loop.) In the latter
12745 * case, we artificially have to split the node into two, because
12746 * we just don't have enough space to hold everything. This
12747 * creates a problem if the final character participates in a
12748 * multi-character fold in the non-final position, as a match that
12749 * should have occurred won't, due to the way nodes are matched,
12750 * and our artificial boundary. So back off until we find a non-
12751 * problematic character -- one that isn't at the beginning or
12752 * middle of such a fold. (Either it doesn't participate in any
12753 * folds, or appears only in the final position of all the folds it
12754 * does participate in.) A better solution with far fewer false
12755 * positives, and that would fill the nodes more completely, would
12756 * be to actually have available all the multi-character folds to
12757 * test against, and to back-off only far enough to be sure that
12758 * this node isn't ending with a partial one. <upper_parse> is set
12759 * further below (if we need to reparse the node) to include just
12760 * up through that final non-problematic character that this code
12761 * identifies, so when it is set to less than the full node, we can
12762 * skip the rest of this */
12763 if (FOLD && p < RExC_end && upper_parse == MAX_NODE_STRING_SIZE) {
12765 const STRLEN full_len = len;
12767 assert(len >= MAX_NODE_STRING_SIZE);
12769 /* Here, <s> points to the final byte of the final character.
12770 * Look backwards through the string until find a non-
12771 * problematic character */
12775 /* This has no multi-char folds to non-UTF characters */
12776 if (ASCII_FOLD_RESTRICTED) {
12780 while (--s >= s0 && IS_NON_FINAL_FOLD(*s)) { }
12784 if (! PL_NonL1NonFinalFold) {
12785 PL_NonL1NonFinalFold = _new_invlist_C_array(
12786 NonL1_Perl_Non_Final_Folds_invlist);
12789 /* Point to the first byte of the final character */
12790 s = (char *) utf8_hop((U8 *) s, -1);
12792 while (s >= s0) { /* Search backwards until find
12793 non-problematic char */
12794 if (UTF8_IS_INVARIANT(*s)) {
12796 /* There are no ascii characters that participate
12797 * in multi-char folds under /aa. In EBCDIC, the
12798 * non-ascii invariants are all control characters,
12799 * so don't ever participate in any folds. */
12800 if (ASCII_FOLD_RESTRICTED
12801 || ! IS_NON_FINAL_FOLD(*s))
12806 else if (UTF8_IS_DOWNGRADEABLE_START(*s)) {
12807 if (! IS_NON_FINAL_FOLD(TWO_BYTE_UTF8_TO_NATIVE(
12813 else if (! _invlist_contains_cp(
12814 PL_NonL1NonFinalFold,
12815 valid_utf8_to_uvchr((U8 *) s, NULL)))
12820 /* Here, the current character is problematic in that
12821 * it does occur in the non-final position of some
12822 * fold, so try the character before it, but have to
12823 * special case the very first byte in the string, so
12824 * we don't read outside the string */
12825 s = (s == s0) ? s -1 : (char *) utf8_hop((U8 *) s, -1);
12826 } /* End of loop backwards through the string */
12828 /* If there were only problematic characters in the string,
12829 * <s> will point to before s0, in which case the length
12830 * should be 0, otherwise include the length of the
12831 * non-problematic character just found */
12832 len = (s < s0) ? 0 : s - s0 + UTF8SKIP(s);
12835 /* Here, have found the final character, if any, that is
12836 * non-problematic as far as ending the node without splitting
12837 * it across a potential multi-char fold. <len> contains the
12838 * number of bytes in the node up-to and including that
12839 * character, or is 0 if there is no such character, meaning
12840 * the whole node contains only problematic characters. In
12841 * this case, give up and just take the node as-is. We can't
12846 /* If the node ends in an 's' we make sure it stays EXACTF,
12847 * as if it turns into an EXACTFU, it could later get
12848 * joined with another 's' that would then wrongly match
12850 if (maybe_exactfu && isALPHA_FOLD_EQ(ender, 's'))
12852 maybe_exactfu = FALSE;
12856 /* Here, the node does contain some characters that aren't
12857 * problematic. If one such is the final character in the
12858 * node, we are done */
12859 if (len == full_len) {
12862 else if (len + ((UTF) ? UTF8SKIP(s) : 1) == full_len) {
12864 /* If the final character is problematic, but the
12865 * penultimate is not, back-off that last character to
12866 * later start a new node with it */
12871 /* Here, the final non-problematic character is earlier
12872 * in the input than the penultimate character. What we do
12873 * is reparse from the beginning, going up only as far as
12874 * this final ok one, thus guaranteeing that the node ends
12875 * in an acceptable character. The reason we reparse is
12876 * that we know how far in the character is, but we don't
12877 * know how to correlate its position with the input parse.
12878 * An alternate implementation would be to build that
12879 * correlation as we go along during the original parse,
12880 * but that would entail extra work for every node, whereas
12881 * this code gets executed only when the string is too
12882 * large for the node, and the final two characters are
12883 * problematic, an infrequent occurrence. Yet another
12884 * possible strategy would be to save the tail of the
12885 * string, and the next time regatom is called, initialize
12886 * with that. The problem with this is that unless you
12887 * back off one more character, you won't be guaranteed
12888 * regatom will get called again, unless regbranch,
12889 * regpiece ... are also changed. If you do back off that
12890 * extra character, so that there is input guaranteed to
12891 * force calling regatom, you can't handle the case where
12892 * just the first character in the node is acceptable. I
12893 * (khw) decided to try this method which doesn't have that
12894 * pitfall; if performance issues are found, we can do a
12895 * combination of the current approach plus that one */
12901 } /* End of verifying node ends with an appropriate char */
12903 loopdone: /* Jumped to when encounters something that shouldn't be
12906 /* I (khw) don't know if you can get here with zero length, but the
12907 * old code handled this situation by creating a zero-length EXACT
12908 * node. Might as well be NOTHING instead */
12914 /* If 'maybe_exact' is still set here, means there are no
12915 * code points in the node that participate in folds;
12916 * similarly for 'maybe_exactfu' and code points that match
12917 * differently depending on UTF8ness of the target string
12918 * (for /u), or depending on locale for /l */
12924 else if (maybe_exactfu) {
12930 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, len, ender,
12931 FALSE /* Don't look to see if could
12932 be turned into an EXACT
12933 node, as we have already
12938 RExC_parse = p - 1;
12939 Set_Node_Cur_Length(ret, parse_start);
12940 nextchar(pRExC_state);
12942 /* len is STRLEN which is unsigned, need to copy to signed */
12945 vFAIL("Internal disaster");
12948 } /* End of label 'defchar:' */
12950 } /* End of giant switch on input character */
12956 S_regpatws(RExC_state_t *pRExC_state, char *p , const bool recognize_comment )
12958 /* Returns the next non-pattern-white space, non-comment character (the
12959 * latter only if 'recognize_comment is true) in the string p, which is
12960 * ended by RExC_end. See also reg_skipcomment */
12961 const char *e = RExC_end;
12963 PERL_ARGS_ASSERT_REGPATWS;
12967 if ((len = is_PATWS_safe(p, e, UTF))) {
12970 else if (recognize_comment && *p == '#') {
12971 p = reg_skipcomment(pRExC_state, p);
12980 S_populate_ANYOF_from_invlist(pTHX_ regnode *node, SV** invlist_ptr)
12982 /* Uses the inversion list '*invlist_ptr' to populate the ANYOF 'node'. It
12983 * sets up the bitmap and any flags, removing those code points from the
12984 * inversion list, setting it to NULL should it become completely empty */
12986 PERL_ARGS_ASSERT_POPULATE_ANYOF_FROM_INVLIST;
12987 assert(PL_regkind[OP(node)] == ANYOF);
12989 ANYOF_BITMAP_ZERO(node);
12990 if (*invlist_ptr) {
12992 /* This gets set if we actually need to modify things */
12993 bool change_invlist = FALSE;
12997 /* Start looking through *invlist_ptr */
12998 invlist_iterinit(*invlist_ptr);
12999 while (invlist_iternext(*invlist_ptr, &start, &end)) {
13003 if (end == UV_MAX && start <= NUM_ANYOF_CODE_POINTS) {
13004 ANYOF_FLAGS(node) |= ANYOF_MATCHES_ALL_ABOVE_BITMAP;
13006 else if (end >= NUM_ANYOF_CODE_POINTS) {
13007 ANYOF_FLAGS(node) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
13010 /* Quit if are above what we should change */
13011 if (start >= NUM_ANYOF_CODE_POINTS) {
13015 change_invlist = TRUE;
13017 /* Set all the bits in the range, up to the max that we are doing */
13018 high = (end < NUM_ANYOF_CODE_POINTS - 1)
13020 : NUM_ANYOF_CODE_POINTS - 1;
13021 for (i = start; i <= (int) high; i++) {
13022 if (! ANYOF_BITMAP_TEST(node, i)) {
13023 ANYOF_BITMAP_SET(node, i);
13027 invlist_iterfinish(*invlist_ptr);
13029 /* Done with loop; remove any code points that are in the bitmap from
13030 * *invlist_ptr; similarly for code points above the bitmap if we have
13031 * a flag to match all of them anyways */
13032 if (change_invlist) {
13033 _invlist_subtract(*invlist_ptr, PL_InBitmap, invlist_ptr);
13035 if (ANYOF_FLAGS(node) & ANYOF_MATCHES_ALL_ABOVE_BITMAP) {
13036 _invlist_intersection(*invlist_ptr, PL_InBitmap, invlist_ptr);
13039 /* If have completely emptied it, remove it completely */
13040 if (_invlist_len(*invlist_ptr) == 0) {
13041 SvREFCNT_dec_NN(*invlist_ptr);
13042 *invlist_ptr = NULL;
13047 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
13048 Character classes ([:foo:]) can also be negated ([:^foo:]).
13049 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
13050 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
13051 but trigger failures because they are currently unimplemented. */
13053 #define POSIXCC_DONE(c) ((c) == ':')
13054 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
13055 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
13057 PERL_STATIC_INLINE I32
13058 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value, const bool strict)
13060 I32 namedclass = OOB_NAMEDCLASS;
13062 PERL_ARGS_ASSERT_REGPPOSIXCC;
13064 if (value == '[' && RExC_parse + 1 < RExC_end &&
13065 /* I smell either [: or [= or [. -- POSIX has been here, right? */
13066 POSIXCC(UCHARAT(RExC_parse)))
13068 const char c = UCHARAT(RExC_parse);
13069 char* const s = RExC_parse++;
13071 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
13073 if (RExC_parse == RExC_end) {
13076 /* Try to give a better location for the error (than the end of
13077 * the string) by looking for the matching ']' */
13079 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
13082 vFAIL2("Unmatched '%c' in POSIX class", c);
13084 /* Grandfather lone [:, [=, [. */
13088 const char* const t = RExC_parse++; /* skip over the c */
13091 if (UCHARAT(RExC_parse) == ']') {
13092 const char *posixcc = s + 1;
13093 RExC_parse++; /* skip over the ending ] */
13096 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
13097 const I32 skip = t - posixcc;
13099 /* Initially switch on the length of the name. */
13102 if (memEQ(posixcc, "word", 4)) /* this is not POSIX,
13103 this is the Perl \w
13105 namedclass = ANYOF_WORDCHAR;
13108 /* Names all of length 5. */
13109 /* alnum alpha ascii blank cntrl digit graph lower
13110 print punct space upper */
13111 /* Offset 4 gives the best switch position. */
13112 switch (posixcc[4]) {
13114 if (memEQ(posixcc, "alph", 4)) /* alpha */
13115 namedclass = ANYOF_ALPHA;
13118 if (memEQ(posixcc, "spac", 4)) /* space */
13119 namedclass = ANYOF_SPACE;
13122 if (memEQ(posixcc, "grap", 4)) /* graph */
13123 namedclass = ANYOF_GRAPH;
13126 if (memEQ(posixcc, "asci", 4)) /* ascii */
13127 namedclass = ANYOF_ASCII;
13130 if (memEQ(posixcc, "blan", 4)) /* blank */
13131 namedclass = ANYOF_BLANK;
13134 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
13135 namedclass = ANYOF_CNTRL;
13138 if (memEQ(posixcc, "alnu", 4)) /* alnum */
13139 namedclass = ANYOF_ALPHANUMERIC;
13142 if (memEQ(posixcc, "lowe", 4)) /* lower */
13143 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_LOWER;
13144 else if (memEQ(posixcc, "uppe", 4)) /* upper */
13145 namedclass = (FOLD) ? ANYOF_CASED : ANYOF_UPPER;
13148 if (memEQ(posixcc, "digi", 4)) /* digit */
13149 namedclass = ANYOF_DIGIT;
13150 else if (memEQ(posixcc, "prin", 4)) /* print */
13151 namedclass = ANYOF_PRINT;
13152 else if (memEQ(posixcc, "punc", 4)) /* punct */
13153 namedclass = ANYOF_PUNCT;
13158 if (memEQ(posixcc, "xdigit", 6))
13159 namedclass = ANYOF_XDIGIT;
13163 if (namedclass == OOB_NAMEDCLASS)
13165 "POSIX class [:%"UTF8f":] unknown",
13166 UTF8fARG(UTF, t - s - 1, s + 1));
13168 /* The #defines are structured so each complement is +1 to
13169 * the normal one */
13173 assert (posixcc[skip] == ':');
13174 assert (posixcc[skip+1] == ']');
13175 } else if (!SIZE_ONLY) {
13176 /* [[=foo=]] and [[.foo.]] are still future. */
13178 /* adjust RExC_parse so the warning shows after
13179 the class closes */
13180 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
13182 vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
13185 /* Maternal grandfather:
13186 * "[:" ending in ":" but not in ":]" */
13188 vFAIL("Unmatched '[' in POSIX class");
13191 /* Grandfather lone [:, [=, [. */
13201 S_could_it_be_a_POSIX_class(RExC_state_t *pRExC_state)
13203 /* This applies some heuristics at the current parse position (which should
13204 * be at a '[') to see if what follows might be intended to be a [:posix:]
13205 * class. It returns true if it really is a posix class, of course, but it
13206 * also can return true if it thinks that what was intended was a posix
13207 * class that didn't quite make it.
13209 * It will return true for
13211 * [:alphanumerics] (as long as the ] isn't followed immediately by a
13212 * ')' indicating the end of the (?[
13213 * [:any garbage including %^&$ punctuation:]
13215 * This is designed to be called only from S_handle_regex_sets; it could be
13216 * easily adapted to be called from the spot at the beginning of regclass()
13217 * that checks to see in a normal bracketed class if the surrounding []
13218 * have been omitted ([:word:] instead of [[:word:]]). But doing so would
13219 * change long-standing behavior, so I (khw) didn't do that */
13220 char* p = RExC_parse + 1;
13221 char first_char = *p;
13223 PERL_ARGS_ASSERT_COULD_IT_BE_A_POSIX_CLASS;
13225 assert(*(p - 1) == '[');
13227 if (! POSIXCC(first_char)) {
13232 while (p < RExC_end && isWORDCHAR(*p)) p++;
13234 if (p >= RExC_end) {
13238 if (p - RExC_parse > 2 /* Got at least 1 word character */
13239 && (*p == first_char
13240 || (*p == ']' && p + 1 < RExC_end && *(p + 1) != ')')))
13245 p = (char *) memchr(RExC_parse, ']', RExC_end - RExC_parse);
13248 && p - RExC_parse > 2 /* [:] evaluates to colon;
13249 [::] is a bad posix class. */
13250 && first_char == *(p - 1));
13253 STATIC unsigned int
13254 S_regex_set_precedence(const U8 my_operator) {
13256 /* Returns the precedence in the (?[...]) construct of the input operator,
13257 * specified by its character representation. The precedence follows
13258 * general Perl rules, but it extends this so that ')' and ']' have (low)
13259 * precedence even though they aren't really operators */
13261 switch (my_operator) {
13277 NOT_REACHED; /* NOTREACHED */
13278 return 0; /* Silence compiler warning */
13282 S_handle_regex_sets(pTHX_ RExC_state_t *pRExC_state, SV** return_invlist,
13283 I32 *flagp, U32 depth,
13284 char * const oregcomp_parse)
13286 /* Handle the (?[...]) construct to do set operations */
13288 U8 curchar; /* Current character being parsed */
13289 UV start, end; /* End points of code point ranges */
13290 SV* final = NULL; /* The end result inversion list */
13291 SV* result_string; /* 'final' stringified */
13292 AV* stack; /* stack of operators and operands not yet
13294 AV* fence_stack = NULL; /* A stack containing the positions in
13295 'stack' of where the undealt-with left
13296 parens would be if they were actually
13298 IV fence = 0; /* Position of where most recent undealt-
13299 with left paren in stack is; -1 if none.
13301 STRLEN len; /* Temporary */
13302 regnode* node; /* Temporary, and final regnode returned by
13304 const bool save_fold = FOLD; /* Temporary */
13305 char *save_end, *save_parse; /* Temporaries */
13307 GET_RE_DEBUG_FLAGS_DECL;
13309 PERL_ARGS_ASSERT_HANDLE_REGEX_SETS;
13311 if (LOC) { /* XXX could make valid in UTF-8 locales */
13312 vFAIL("(?[...]) not valid in locale");
13314 RExC_uni_semantics = 1; /* The use of this operator implies /u. This
13315 is required so that the compile time values
13316 are valid in all runtime cases */
13318 /* This will return only an ANYOF regnode, or (unlikely) something smaller
13319 * (such as EXACT). Thus we can skip most everything if just sizing. We
13320 * call regclass to handle '[]' so as to not have to reinvent its parsing
13321 * rules here (throwing away the size it computes each time). And, we exit
13322 * upon an unescaped ']' that isn't one ending a regclass. To do both
13323 * these things, we need to realize that something preceded by a backslash
13324 * is escaped, so we have to keep track of backslashes */
13326 UV depth = 0; /* how many nested (?[...]) constructs */
13328 while (RExC_parse < RExC_end) {
13329 SV* current = NULL;
13330 RExC_parse = regpatws(pRExC_state, RExC_parse,
13331 TRUE); /* means recognize comments */
13332 switch (*RExC_parse) {
13334 if (RExC_parse[1] == '[') depth++, RExC_parse++;
13339 /* Skip the next byte (which could cause us to end up in
13340 * the middle of a UTF-8 character, but since none of those
13341 * are confusable with anything we currently handle in this
13342 * switch (invariants all), it's safe. We'll just hit the
13343 * default: case next time and keep on incrementing until
13344 * we find one of the invariants we do handle. */
13349 /* If this looks like it is a [:posix:] class, leave the
13350 * parse pointer at the '[' to fool regclass() into
13351 * thinking it is part of a '[[:posix:]]'. That function
13352 * will use strict checking to force a syntax error if it
13353 * doesn't work out to a legitimate class */
13354 bool is_posix_class
13355 = could_it_be_a_POSIX_class(pRExC_state);
13356 if (! is_posix_class) {
13360 /* regclass() can only return RESTART_UTF8 if multi-char
13361 folds are allowed. */
13362 if (!regclass(pRExC_state, flagp,depth+1,
13363 is_posix_class, /* parse the whole char
13364 class only if not a
13366 FALSE, /* don't allow multi-char folds */
13367 TRUE, /* silence non-portable warnings. */
13371 FAIL2("panic: regclass returned NULL to handle_sets, "
13372 "flags=%#"UVxf"", (UV) *flagp);
13374 /* function call leaves parse pointing to the ']', except
13375 * if we faked it */
13376 if (is_posix_class) {
13380 SvREFCNT_dec(current); /* In case it returned something */
13385 if (depth--) break;
13387 if (RExC_parse < RExC_end
13388 && *RExC_parse == ')')
13390 node = reganode(pRExC_state, ANYOF, 0);
13391 RExC_size += ANYOF_SKIP;
13392 nextchar(pRExC_state);
13393 Set_Node_Length(node,
13394 RExC_parse - oregcomp_parse + 1); /* MJD */
13403 FAIL("Syntax error in (?[...])");
13406 /* Pass 2 only after this. */
13407 Perl_ck_warner_d(aTHX_
13408 packWARN(WARN_EXPERIMENTAL__REGEX_SETS),
13409 "The regex_sets feature is experimental" REPORT_LOCATION,
13410 UTF8fARG(UTF, (RExC_parse - RExC_precomp), RExC_precomp),
13412 RExC_end - RExC_start - (RExC_parse - RExC_precomp),
13413 RExC_precomp + (RExC_parse - RExC_precomp)));
13415 /* Everything in this construct is a metacharacter. Operands begin with
13416 * either a '\' (for an escape sequence), or a '[' for a bracketed
13417 * character class. Any other character should be an operator, or
13418 * parenthesis for grouping. Both types of operands are handled by calling
13419 * regclass() to parse them. It is called with a parameter to indicate to
13420 * return the computed inversion list. The parsing here is implemented via
13421 * a stack. Each entry on the stack is a single character representing one
13422 * of the operators; or else a pointer to an operand inversion list. */
13424 #define IS_OPERAND(a) (! SvIOK(a))
13426 /* The stack is kept in Łukasiewicz order. (That's pronounced similar
13427 * to luke-a-shave-itch (or -itz), but people who didn't want to bother
13428 * with prounouncing it called it Reverse Polish instead, but now that YOU
13429 * know how to prounounce it you can use the correct term, thus giving due
13430 * credit to the person who invented it, and impressing your geek friends.
13431 * Wikipedia says that the pronounciation of "Ł" has been changing so that
13432 * it is now more like an English initial W (as in wonk) than an L.)
13434 * This means that, for example, 'a | b & c' is stored on the stack as
13442 * where the numbers in brackets give the stack [array] element number.
13443 * In this implementation, parentheses are not stored on the stack.
13444 * Instead a '(' creates a "fence" so that the part of the stack below the
13445 * fence is invisible except to the corresponding ')' (this allows us to
13446 * replace testing for parens, by using instead subtraction of the fence
13447 * position). As new operands are processed they are pushed onto the stack
13448 * (except as noted in the next paragraph). New operators of higher
13449 * precedence than the current final one are inserted on the stack before
13450 * the lhs operand (so that when the rhs is pushed next, everything will be
13451 * in the correct positions shown above. When an operator of equal or
13452 * lower precedence is encountered in parsing, all the stacked operations
13453 * of equal or higher precedence are evaluated, leaving the result as the
13454 * top entry on the stack. This makes higher precedence operations
13455 * evaluate before lower precedence ones, and causes operations of equal
13456 * precedence to left associate.
13458 * The only unary operator '!' is immediately pushed onto the stack when
13459 * encountered. When an operand is encountered, if the top of the stack is
13460 * a '!", the complement is immediately performed, and the '!' popped. The
13461 * resulting value is treated as a new operand, and the logic in the
13462 * previous paragraph is executed. Thus in the expression
13464 * the stack looks like
13470 * as 'b' gets parsed, the latter gets evaluated to '!b', and the stack
13477 * A ')' is treated as an operator with lower precedence than all the
13478 * aforementioned ones, which causes all operations on the stack above the
13479 * corresponding '(' to be evaluated down to a single resultant operand.
13480 * Then the fence for the '(' is removed, and the operand goes through the
13481 * algorithm above, without the fence.
13483 * A separate stack is kept of the fence positions, so that the position of
13484 * the latest so-far unbalanced '(' is at the top of it.
13486 * The ']' ending the construct is treated as the lowest operator of all,
13487 * so that everything gets evaluated down to a single operand, which is the
13490 sv_2mortal((SV *)(stack = newAV()));
13491 sv_2mortal((SV *)(fence_stack = newAV()));
13493 while (RExC_parse < RExC_end) {
13494 I32 top_index; /* Index of top-most element in 'stack' */
13495 SV** top_ptr; /* Pointer to top 'stack' element */
13496 SV* current = NULL; /* To contain the current inversion list
13498 SV* only_to_avoid_leaks;
13500 /* Skip white space */
13501 RExC_parse = regpatws(pRExC_state, RExC_parse,
13502 TRUE /* means recognize comments */ );
13503 if (RExC_parse >= RExC_end) {
13504 Perl_croak(aTHX_ "panic: Read past end of '(?[ ])'");
13507 curchar = UCHARAT(RExC_parse);
13511 top_index = av_tindex(stack);
13514 SV** stacked_ptr; /* Ptr to something already on 'stack' */
13515 char stacked_operator; /* The topmost operator on the 'stack'. */
13516 SV* lhs; /* Operand to the left of the operator */
13517 SV* rhs; /* Operand to the right of the operator */
13518 SV* fence_ptr; /* Pointer to top element of the fence
13523 if (RExC_parse < RExC_end && (UCHARAT(RExC_parse + 1) == '?'))
13525 /* If is a '(?', could be an embedded '(?flags:(?[...])'.
13526 * This happens when we have some thing like
13528 * my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;
13530 * qr/(?[ \p{Digit} & $thai_or_lao ])/;
13532 * Here we would be handling the interpolated
13533 * '$thai_or_lao'. We handle this by a recursive call to
13534 * ourselves which returns the inversion list the
13535 * interpolated expression evaluates to. We use the flags
13536 * from the interpolated pattern. */
13537 U32 save_flags = RExC_flags;
13538 const char * save_parse;
13540 RExC_parse += 2; /* Skip past the '(?' */
13541 save_parse = RExC_parse;
13543 /* Parse any flags for the '(?' */
13544 parse_lparen_question_flags(pRExC_state);
13546 if (RExC_parse == save_parse /* Makes sure there was at
13547 least one flag (or else
13548 this embedding wasn't
13550 || RExC_parse >= RExC_end - 4
13551 || UCHARAT(RExC_parse) != ':'
13552 || UCHARAT(++RExC_parse) != '('
13553 || UCHARAT(++RExC_parse) != '?'
13554 || UCHARAT(++RExC_parse) != '[')
13557 /* In combination with the above, this moves the
13558 * pointer to the point just after the first erroneous
13559 * character (or if there are no flags, to where they
13560 * should have been) */
13561 if (RExC_parse >= RExC_end - 4) {
13562 RExC_parse = RExC_end;
13564 else if (RExC_parse != save_parse) {
13565 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
13567 vFAIL("Expecting '(?flags:(?[...'");
13570 /* Recurse, with the meat of the embedded expression */
13572 (void) handle_regex_sets(pRExC_state, ¤t, flagp,
13573 depth+1, oregcomp_parse);
13575 /* Here, 'current' contains the embedded expression's
13576 * inversion list, and RExC_parse points to the trailing
13577 * ']'; the next character should be the ')' */
13579 assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
13581 /* Then the ')' matching the original '(' handled by this
13582 * case: statement */
13584 assert(RExC_parse < RExC_end && UCHARAT(RExC_parse) == ')');
13587 RExC_flags = save_flags;
13588 goto handle_operand;
13591 /* A regular '('. Look behind for illegal syntax */
13592 if (top_index - fence >= 0) {
13593 /* If the top entry on the stack is an operator, it had
13594 * better be a '!', otherwise the entry below the top
13595 * operand should be an operator */
13596 if ( ! (top_ptr = av_fetch(stack, top_index, FALSE))
13597 || (! IS_OPERAND(*top_ptr) && SvUV(*top_ptr) != '!')
13598 || top_index - fence < 1
13599 || ! (stacked_ptr = av_fetch(stack,
13602 || IS_OPERAND(*stacked_ptr))
13605 vFAIL("Unexpected '(' with no preceding operator");
13609 /* Stack the position of this undealt-with left paren */
13610 fence = top_index + 1;
13611 av_push(fence_stack, newSViv(fence));
13615 /* regclass() can only return RESTART_UTF8 if multi-char
13616 folds are allowed. */
13617 if (!regclass(pRExC_state, flagp,depth+1,
13618 TRUE, /* means parse just the next thing */
13619 FALSE, /* don't allow multi-char folds */
13620 FALSE, /* don't silence non-portable warnings. */
13624 FAIL2("panic: regclass returned NULL to handle_sets, "
13625 "flags=%#"UVxf"", (UV) *flagp);
13628 /* regclass() will return with parsing just the \ sequence,
13629 * leaving the parse pointer at the next thing to parse */
13631 goto handle_operand;
13633 case '[': /* Is a bracketed character class */
13635 bool is_posix_class = could_it_be_a_POSIX_class(pRExC_state);
13637 if (! is_posix_class) {
13641 /* regclass() can only return RESTART_UTF8 if multi-char
13642 folds are allowed. */
13643 if(!regclass(pRExC_state, flagp,depth+1,
13644 is_posix_class, /* parse the whole char class
13645 only if not a posix class */
13646 FALSE, /* don't allow multi-char folds */
13647 FALSE, /* don't silence non-portable warnings. */
13652 FAIL2("panic: regclass returned NULL to handle_sets, "
13653 "flags=%#"UVxf"", (UV) *flagp);
13656 /* function call leaves parse pointing to the ']', except if we
13658 if (is_posix_class) {
13662 goto handle_operand;
13666 if (top_index >= 1) {
13667 goto join_operators;
13670 /* Only a single operand on the stack: are done */
13674 if (av_tindex(fence_stack) < 0) {
13676 vFAIL("Unexpected ')'");
13679 /* If at least two thing on the stack, treat this as an
13681 if (top_index - fence >= 1) {
13682 goto join_operators;
13685 /* Here only a single thing on the fenced stack, and there is a
13686 * fence. Get rid of it */
13687 fence_ptr = av_pop(fence_stack);
13689 fence = SvIV(fence_ptr) - 1;
13690 SvREFCNT_dec_NN(fence_ptr);
13697 /* Having gotten rid of the fence, we pop the operand at the
13698 * stack top and process it as a newly encountered operand */
13699 current = av_pop(stack);
13700 assert(IS_OPERAND(current));
13701 goto handle_operand;
13709 /* These binary operators should have a left operand already
13711 if ( top_index - fence < 0
13712 || top_index - fence == 1
13713 || ( ! (top_ptr = av_fetch(stack, top_index, FALSE)))
13714 || ! IS_OPERAND(*top_ptr))
13716 goto unexpected_binary;
13719 /* If only the one operand is on the part of the stack visible
13720 * to us, we just place this operator in the proper position */
13721 if (top_index - fence < 2) {
13723 /* Place the operator before the operand */
13725 SV* lhs = av_pop(stack);
13726 av_push(stack, newSVuv(curchar));
13727 av_push(stack, lhs);
13731 /* But if there is something else on the stack, we need to
13732 * process it before this new operator if and only if the
13733 * stacked operation has equal or higher precedence than the
13738 /* The operator on the stack is supposed to be below both its
13740 if ( ! (stacked_ptr = av_fetch(stack, top_index - 2, FALSE))
13741 || IS_OPERAND(*stacked_ptr))
13743 /* But if not, it's legal and indicates we are completely
13744 * done if and only if we're currently processing a ']',
13745 * which should be the final thing in the expression */
13746 if (curchar == ']') {
13752 vFAIL2("Unexpected binary operator '%c' with no "
13753 "preceding operand", curchar);
13755 stacked_operator = (char) SvUV(*stacked_ptr);
13757 if (regex_set_precedence(curchar)
13758 > regex_set_precedence(stacked_operator))
13760 /* Here, the new operator has higher precedence than the
13761 * stacked one. This means we need to add the new one to
13762 * the stack to await its rhs operand (and maybe more
13763 * stuff). We put it before the lhs operand, leaving
13764 * untouched the stacked operator and everything below it
13766 lhs = av_pop(stack);
13767 assert(IS_OPERAND(lhs));
13769 av_push(stack, newSVuv(curchar));
13770 av_push(stack, lhs);
13774 /* Here, the new operator has equal or lower precedence than
13775 * what's already there. This means the operation already
13776 * there should be performed now, before the new one. */
13777 rhs = av_pop(stack);
13778 lhs = av_pop(stack);
13780 assert(IS_OPERAND(rhs));
13781 assert(IS_OPERAND(lhs));
13783 switch (stacked_operator) {
13785 _invlist_intersection(lhs, rhs, &rhs);
13790 _invlist_union(lhs, rhs, &rhs);
13794 _invlist_subtract(lhs, rhs, &rhs);
13797 case '^': /* The union minus the intersection */
13803 _invlist_union(lhs, rhs, &u);
13804 _invlist_intersection(lhs, rhs, &i);
13805 /* _invlist_subtract will overwrite rhs
13806 without freeing what it already contains */
13808 _invlist_subtract(u, i, &rhs);
13809 SvREFCNT_dec_NN(i);
13810 SvREFCNT_dec_NN(u);
13811 SvREFCNT_dec_NN(element);
13817 /* Here, the higher precedence operation has been done, and the
13818 * result is in 'rhs'. We overwrite the stacked operator with
13819 * the result. Then we redo this code to either push the new
13820 * operator onto the stack or perform any higher precedence
13821 * stacked operation */
13822 only_to_avoid_leaks = av_pop(stack);
13823 SvREFCNT_dec(only_to_avoid_leaks);
13824 av_push(stack, rhs);
13827 case '!': /* Highest priority, right associative, so just push
13829 av_push(stack, newSVuv(curchar));
13833 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
13834 vFAIL("Unexpected character");
13838 /* Here 'current' is the operand. If something is already on the
13839 * stack, we have to check if it is a !. */
13840 top_index = av_tindex(stack); /* Code above may have altered the
13841 * stack in the time since we
13842 * earlier set 'top_index'. */
13843 if (top_index - fence >= 0) {
13844 /* If the top entry on the stack is an operator, it had better
13845 * be a '!', otherwise the entry below the top operand should
13846 * be an operator */
13847 top_ptr = av_fetch(stack, top_index, FALSE);
13849 if (! IS_OPERAND(*top_ptr)) {
13851 /* The only permissible operator at the top of the stack is
13852 * '!', which is applied immediately to this operand. */
13853 curchar = (char) SvUV(*top_ptr);
13854 if (curchar != '!') {
13855 SvREFCNT_dec(current);
13856 vFAIL2("Unexpected binary operator '%c' with no "
13857 "preceding operand", curchar);
13860 _invlist_invert(current);
13862 only_to_avoid_leaks = av_pop(stack);
13863 SvREFCNT_dec(only_to_avoid_leaks);
13864 top_index = av_tindex(stack);
13866 /* And we redo with the inverted operand. This allows
13867 * handling multiple ! in a row */
13868 goto handle_operand;
13870 /* Single operand is ok only for the non-binary ')'
13872 else if ((top_index - fence == 0 && curchar != ')')
13873 || (top_index - fence > 0
13874 && (! (stacked_ptr = av_fetch(stack,
13877 || IS_OPERAND(*stacked_ptr))))
13879 SvREFCNT_dec(current);
13880 vFAIL("Operand with no preceding operator");
13884 /* Here there was nothing on the stack or the top element was
13885 * another operand. Just add this new one */
13886 av_push(stack, current);
13888 } /* End of switch on next parse token */
13890 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
13891 } /* End of loop parsing through the construct */
13894 if (av_tindex(fence_stack) >= 0) {
13895 vFAIL("Unmatched (");
13898 if (av_tindex(stack) < 0 /* Was empty */
13899 || ((final = av_pop(stack)) == NULL)
13900 || ! IS_OPERAND(final)
13901 || av_tindex(stack) >= 0) /* More left on stack */
13903 SvREFCNT_dec(final);
13904 vFAIL("Incomplete expression within '(?[ ])'");
13907 /* Here, 'final' is the resultant inversion list from evaluating the
13908 * expression. Return it if so requested */
13909 if (return_invlist) {
13910 *return_invlist = final;
13914 /* Otherwise generate a resultant node, based on 'final'. regclass() is
13915 * expecting a string of ranges and individual code points */
13916 invlist_iterinit(final);
13917 result_string = newSVpvs("");
13918 while (invlist_iternext(final, &start, &end)) {
13919 if (start == end) {
13920 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}", start);
13923 Perl_sv_catpvf(aTHX_ result_string, "\\x{%"UVXf"}-\\x{%"UVXf"}",
13928 /* About to generate an ANYOF (or similar) node from the inversion list we
13929 * have calculated */
13930 save_parse = RExC_parse;
13931 RExC_parse = SvPV(result_string, len);
13932 save_end = RExC_end;
13933 RExC_end = RExC_parse + len;
13935 /* We turn off folding around the call, as the class we have constructed
13936 * already has all folding taken into consideration, and we don't want
13937 * regclass() to add to that */
13938 RExC_flags &= ~RXf_PMf_FOLD;
13939 /* regclass() can only return RESTART_UTF8 if multi-char folds are allowed.
13941 node = regclass(pRExC_state, flagp,depth+1,
13942 FALSE, /* means parse the whole char class */
13943 FALSE, /* don't allow multi-char folds */
13944 TRUE, /* silence non-portable warnings. The above may very
13945 well have generated non-portable code points, but
13946 they're valid on this machine */
13947 FALSE, /* similarly, no need for strict */
13951 FAIL2("panic: regclass returned NULL to handle_sets, flags=%#"UVxf,
13954 RExC_flags |= RXf_PMf_FOLD;
13956 RExC_parse = save_parse + 1;
13957 RExC_end = save_end;
13958 SvREFCNT_dec_NN(final);
13959 SvREFCNT_dec_NN(result_string);
13961 nextchar(pRExC_state);
13962 Set_Node_Length(node, RExC_parse - oregcomp_parse + 1); /* MJD */
13968 S_add_above_Latin1_folds(pTHX_ RExC_state_t *pRExC_state, const U8 cp, SV** invlist)
13970 /* This hard-codes the Latin1/above-Latin1 folding rules, so that an
13971 * innocent-looking character class, like /[ks]/i won't have to go out to
13972 * disk to find the possible matches.
13974 * This should be called only for a Latin1-range code points, cp, which is
13975 * known to be involved in a simple fold with other code points above
13976 * Latin1. It would give false results if /aa has been specified.
13977 * Multi-char folds are outside the scope of this, and must be handled
13980 * XXX It would be better to generate these via regen, in case a new
13981 * version of the Unicode standard adds new mappings, though that is not
13982 * really likely, and may be caught by the default: case of the switch
13985 PERL_ARGS_ASSERT_ADD_ABOVE_LATIN1_FOLDS;
13987 assert(HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(cp));
13993 add_cp_to_invlist(*invlist, KELVIN_SIGN);
13997 *invlist = add_cp_to_invlist(*invlist, LATIN_SMALL_LETTER_LONG_S);
14000 *invlist = add_cp_to_invlist(*invlist, GREEK_CAPITAL_LETTER_MU);
14001 *invlist = add_cp_to_invlist(*invlist, GREEK_SMALL_LETTER_MU);
14003 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
14004 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
14005 *invlist = add_cp_to_invlist(*invlist, ANGSTROM_SIGN);
14007 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
14008 *invlist = add_cp_to_invlist(*invlist,
14009 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
14011 case LATIN_SMALL_LETTER_SHARP_S:
14012 *invlist = add_cp_to_invlist(*invlist, LATIN_CAPITAL_LETTER_SHARP_S);
14015 /* Use deprecated warning to increase the chances of this being
14018 ckWARN2reg_d(RExC_parse, "Perl folding rules are not up-to-date for 0x%02X; please use the perlbug utility to report;", cp);
14025 S_add_multi_match(pTHX_ AV* multi_char_matches, SV* multi_string, const STRLEN cp_count)
14027 /* This adds the string scalar <multi_string> to the array
14028 * <multi_char_matches>. <multi_string> is known to have exactly
14029 * <cp_count> code points in it. This is used when constructing a
14030 * bracketed character class and we find something that needs to match more
14031 * than a single character.
14033 * <multi_char_matches> is actually an array of arrays. Each top-level
14034 * element is an array that contains all the strings known so far that are
14035 * the same length. And that length (in number of code points) is the same
14036 * as the index of the top-level array. Hence, the [2] element is an
14037 * array, each element thereof is a string containing TWO code points;
14038 * while element [3] is for strings of THREE characters, and so on. Since
14039 * this is for multi-char strings there can never be a [0] nor [1] element.
14041 * When we rewrite the character class below, we will do so such that the
14042 * longest strings are written first, so that it prefers the longest
14043 * matching strings first. This is done even if it turns out that any
14044 * quantifier is non-greedy, out of this programmer's (khw) laziness. Tom
14045 * Christiansen has agreed that this is ok. This makes the test for the
14046 * ligature 'ffi' come before the test for 'ff', for example */
14049 AV** this_array_ptr;
14051 PERL_ARGS_ASSERT_ADD_MULTI_MATCH;
14053 if (! multi_char_matches) {
14054 multi_char_matches = newAV();
14057 if (av_exists(multi_char_matches, cp_count)) {
14058 this_array_ptr = (AV**) av_fetch(multi_char_matches, cp_count, FALSE);
14059 this_array = *this_array_ptr;
14062 this_array = newAV();
14063 av_store(multi_char_matches, cp_count,
14066 av_push(this_array, multi_string);
14068 return multi_char_matches;
14071 /* The names of properties whose definitions are not known at compile time are
14072 * stored in this SV, after a constant heading. So if the length has been
14073 * changed since initialization, then there is a run-time definition. */
14074 #define HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION \
14075 (SvCUR(listsv) != initial_listsv_len)
14078 S_regclass(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth,
14079 const bool stop_at_1, /* Just parse the next thing, don't
14080 look for a full character class */
14081 bool allow_multi_folds,
14082 const bool silence_non_portable, /* Don't output warnings
14086 SV** ret_invlist /* Return an inversion list, not a node */
14089 /* parse a bracketed class specification. Most of these will produce an
14090 * ANYOF node; but something like [a] will produce an EXACT node; [aA], an
14091 * EXACTFish node; [[:ascii:]], a POSIXA node; etc. It is more complex
14092 * under /i with multi-character folds: it will be rewritten following the
14093 * paradigm of this example, where the <multi-fold>s are characters which
14094 * fold to multiple character sequences:
14095 * /[abc\x{multi-fold1}def\x{multi-fold2}ghi]/i
14096 * gets effectively rewritten as:
14097 * /(?:\x{multi-fold1}|\x{multi-fold2}|[abcdefghi]/i
14098 * reg() gets called (recursively) on the rewritten version, and this
14099 * function will return what it constructs. (Actually the <multi-fold>s
14100 * aren't physically removed from the [abcdefghi], it's just that they are
14101 * ignored in the recursion by means of a flag:
14102 * <RExC_in_multi_char_class>.)
14104 * ANYOF nodes contain a bit map for the first NUM_ANYOF_CODE_POINTS
14105 * characters, with the corresponding bit set if that character is in the
14106 * list. For characters above this, a range list or swash is used. There
14107 * are extra bits for \w, etc. in locale ANYOFs, as what these match is not
14108 * determinable at compile time
14110 * Returns NULL, setting *flagp to RESTART_UTF8 if the sizing scan needs
14111 * to be restarted. This can only happen if ret_invlist is non-NULL.
14114 UV prevvalue = OOB_UNICODE, save_prevvalue = OOB_UNICODE;
14116 UV value = OOB_UNICODE, save_value = OOB_UNICODE;
14119 IV namedclass = OOB_NAMEDCLASS;
14120 char *rangebegin = NULL;
14121 bool need_class = 0;
14123 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
14124 than just initialized. */
14125 SV* properties = NULL; /* Code points that match \p{} \P{} */
14126 SV* posixes = NULL; /* Code points that match classes like [:word:],
14127 extended beyond the Latin1 range. These have to
14128 be kept separate from other code points for much
14129 of this function because their handling is
14130 different under /i, and for most classes under
14132 SV* nposixes = NULL; /* Similarly for [:^word:]. These are kept
14133 separate for a while from the non-complemented
14134 versions because of complications with /d
14136 SV* simple_posixes = NULL; /* But under some conditions, the classes can be
14137 treated more simply than the general case,
14138 leading to less compilation and execution
14140 UV element_count = 0; /* Number of distinct elements in the class.
14141 Optimizations may be possible if this is tiny */
14142 AV * multi_char_matches = NULL; /* Code points that fold to more than one
14143 character; used under /i */
14145 char * stop_ptr = RExC_end; /* where to stop parsing */
14146 const bool skip_white = cBOOL(ret_invlist); /* ignore unescaped white
14149 /* Unicode properties are stored in a swash; this holds the current one
14150 * being parsed. If this swash is the only above-latin1 component of the
14151 * character class, an optimization is to pass it directly on to the
14152 * execution engine. Otherwise, it is set to NULL to indicate that there
14153 * are other things in the class that have to be dealt with at execution
14155 SV* swash = NULL; /* Code points that match \p{} \P{} */
14157 /* Set if a component of this character class is user-defined; just passed
14158 * on to the engine */
14159 bool has_user_defined_property = FALSE;
14161 /* inversion list of code points this node matches only when the target
14162 * string is in UTF-8. (Because is under /d) */
14163 SV* depends_list = NULL;
14165 /* Inversion list of code points this node matches regardless of things
14166 * like locale, folding, utf8ness of the target string */
14167 SV* cp_list = NULL;
14169 /* Like cp_list, but code points on this list need to be checked for things
14170 * that fold to/from them under /i */
14171 SV* cp_foldable_list = NULL;
14173 /* Like cp_list, but code points on this list are valid only when the
14174 * runtime locale is UTF-8 */
14175 SV* only_utf8_locale_list = NULL;
14177 /* In a range, if one of the endpoints is non-character-set portable,
14178 * meaning that it hard-codes a code point that may mean a different
14179 * charactger in ASCII vs. EBCDIC, as opposed to, say, a literal 'A' or a
14180 * mnemonic '\t' which each mean the same character no matter which
14181 * character set the platform is on. */
14182 unsigned int non_portable_endpoint = 0;
14184 /* Is the range unicode? which means on a platform that isn't 1-1 native
14185 * to Unicode (i.e. non-ASCII), each code point in it should be considered
14186 * to be a Unicode value. */
14187 bool unicode_range = FALSE;
14188 bool invert = FALSE; /* Is this class to be complemented */
14190 bool warn_super = ALWAYS_WARN_SUPER;
14192 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
14193 case we need to change the emitted regop to an EXACT. */
14194 const char * orig_parse = RExC_parse;
14195 const SSize_t orig_size = RExC_size;
14196 bool posixl_matches_all = FALSE; /* Does /l class have both e.g. \W,\w ? */
14197 GET_RE_DEBUG_FLAGS_DECL;
14199 PERL_ARGS_ASSERT_REGCLASS;
14201 PERL_UNUSED_ARG(depth);
14204 DEBUG_PARSE("clas");
14206 /* Assume we are going to generate an ANYOF node. */
14207 ret = reganode(pRExC_state,
14214 RExC_size += ANYOF_SKIP;
14215 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
14218 ANYOF_FLAGS(ret) = 0;
14220 RExC_emit += ANYOF_SKIP;
14221 listsv = newSVpvs_flags("# comment\n", SVs_TEMP);
14222 initial_listsv_len = SvCUR(listsv);
14223 SvTEMP_off(listsv); /* Grr, TEMPs and mortals are conflated. */
14227 RExC_parse = regpatws(pRExC_state, RExC_parse,
14228 FALSE /* means don't recognize comments */ );
14231 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
14234 allow_multi_folds = FALSE;
14237 RExC_parse = regpatws(pRExC_state, RExC_parse,
14238 FALSE /* means don't recognize comments */ );
14242 /* Check that they didn't say [:posix:] instead of [[:posix:]] */
14243 if (!SIZE_ONLY && RExC_parse < RExC_end && POSIXCC(UCHARAT(RExC_parse))) {
14244 const char *s = RExC_parse;
14245 const char c = *s++;
14250 while (isWORDCHAR(*s))
14252 if (*s && c == *s && s[1] == ']') {
14253 SAVEFREESV(RExC_rx_sv);
14255 "POSIX syntax [%c %c] belongs inside character classes",
14257 (void)ReREFCNT_inc(RExC_rx_sv);
14261 /* If the caller wants us to just parse a single element, accomplish this
14262 * by faking the loop ending condition */
14263 if (stop_at_1 && RExC_end > RExC_parse) {
14264 stop_ptr = RExC_parse + 1;
14267 /* allow 1st char to be ']' (allowing it to be '-' is dealt with later) */
14268 if (UCHARAT(RExC_parse) == ']')
14269 goto charclassloop;
14272 if (RExC_parse >= stop_ptr) {
14277 RExC_parse = regpatws(pRExC_state, RExC_parse,
14278 FALSE /* means don't recognize comments */ );
14281 if (UCHARAT(RExC_parse) == ']') {
14287 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
14288 save_value = value;
14289 save_prevvalue = prevvalue;
14292 rangebegin = RExC_parse;
14294 non_portable_endpoint = 0;
14297 value = utf8n_to_uvchr((U8*)RExC_parse,
14298 RExC_end - RExC_parse,
14299 &numlen, UTF8_ALLOW_DEFAULT);
14300 RExC_parse += numlen;
14303 value = UCHARAT(RExC_parse++);
14306 && RExC_parse < RExC_end
14307 && POSIXCC(UCHARAT(RExC_parse)))
14309 namedclass = regpposixcc(pRExC_state, value, strict);
14311 else if (value == '\\') {
14312 /* Is a backslash; get the code point of the char after it */
14313 if (UTF && ! UTF8_IS_INVARIANT(UCHARAT(RExC_parse))) {
14314 value = utf8n_to_uvchr((U8*)RExC_parse,
14315 RExC_end - RExC_parse,
14316 &numlen, UTF8_ALLOW_DEFAULT);
14317 RExC_parse += numlen;
14320 value = UCHARAT(RExC_parse++);
14322 /* Some compilers cannot handle switching on 64-bit integer
14323 * values, therefore value cannot be an UV. Yes, this will
14324 * be a problem later if we want switch on Unicode.
14325 * A similar issue a little bit later when switching on
14326 * namedclass. --jhi */
14328 /* If the \ is escaping white space when white space is being
14329 * skipped, it means that that white space is wanted literally, and
14330 * is already in 'value'. Otherwise, need to translate the escape
14331 * into what it signifies. */
14332 if (! skip_white || ! is_PATWS_cp(value)) switch ((I32)value) {
14334 case 'w': namedclass = ANYOF_WORDCHAR; break;
14335 case 'W': namedclass = ANYOF_NWORDCHAR; break;
14336 case 's': namedclass = ANYOF_SPACE; break;
14337 case 'S': namedclass = ANYOF_NSPACE; break;
14338 case 'd': namedclass = ANYOF_DIGIT; break;
14339 case 'D': namedclass = ANYOF_NDIGIT; break;
14340 case 'v': namedclass = ANYOF_VERTWS; break;
14341 case 'V': namedclass = ANYOF_NVERTWS; break;
14342 case 'h': namedclass = ANYOF_HORIZWS; break;
14343 case 'H': namedclass = ANYOF_NHORIZWS; break;
14344 case 'N': /* Handle \N{NAME} in class */
14346 const char * const backslash_N_beg = RExC_parse - 2;
14349 if (! grok_bslash_N(pRExC_state,
14350 NULL, /* No regnode */
14351 &value, /* Yes single value */
14352 &cp_count, /* Multiple code pt count */
14357 if (*flagp & RESTART_UTF8)
14358 FAIL("panic: grok_bslash_N set RESTART_UTF8");
14360 if (cp_count < 0) {
14361 vFAIL("\\N in a character class must be a named character: \\N{...}");
14363 else if (cp_count == 0) {
14365 RExC_parse++; /* Position after the "}" */
14366 vFAIL("Zero length \\N{}");
14369 ckWARNreg(RExC_parse,
14370 "Ignoring zero length \\N{} in character class");
14373 else { /* cp_count > 1 */
14374 if (! RExC_in_multi_char_class) {
14375 if (invert || range || *RExC_parse == '-') {
14378 vFAIL("\\N{} in inverted character class or as a range end-point is restricted to one character");
14381 ckWARNreg(RExC_parse, "Using just the first character returned by \\N{} in character class");
14383 break; /* <value> contains the first code
14384 point. Drop out of the switch to
14388 SV * multi_char_N = newSVpvn(backslash_N_beg,
14389 RExC_parse - backslash_N_beg);
14391 = add_multi_match(multi_char_matches,
14396 } /* End of cp_count != 1 */
14398 /* This element should not be processed further in this
14401 value = save_value;
14402 prevvalue = save_prevvalue;
14403 continue; /* Back to top of loop to get next char */
14406 /* Here, is a single code point, and <value> contains it */
14407 unicode_range = TRUE; /* \N{} are Unicode */
14415 /* We will handle any undefined properties ourselves */
14416 U8 swash_init_flags = _CORE_SWASH_INIT_RETURN_IF_UNDEF
14417 /* And we actually would prefer to get
14418 * the straight inversion list of the
14419 * swash, since we will be accessing it
14420 * anyway, to save a little time */
14421 |_CORE_SWASH_INIT_ACCEPT_INVLIST;
14423 if (RExC_parse >= RExC_end)
14424 vFAIL2("Empty \\%c{}", (U8)value);
14425 if (*RExC_parse == '{') {
14426 const U8 c = (U8)value;
14427 e = strchr(RExC_parse++, '}');
14429 vFAIL2("Missing right brace on \\%c{}", c);
14430 while (isSPACE(*RExC_parse))
14432 if (e == RExC_parse)
14433 vFAIL2("Empty \\%c{}", c);
14434 n = e - RExC_parse;
14435 while (isSPACE(*(RExC_parse + n - 1)))
14446 if (UCHARAT(RExC_parse) == '^') {
14449 /* toggle. (The rhs xor gets the single bit that
14450 * differs between P and p; the other xor inverts just
14452 value ^= 'P' ^ 'p';
14454 while (isSPACE(*RExC_parse)) {
14459 /* Try to get the definition of the property into
14460 * <invlist>. If /i is in effect, the effective property
14461 * will have its name be <__NAME_i>. The design is
14462 * discussed in commit
14463 * 2f833f5208e26b208886e51e09e2c072b5eabb46 */
14464 name = savepv(Perl_form(aTHX_
14466 (FOLD) ? "__" : "",
14472 /* Look up the property name, and get its swash and
14473 * inversion list, if the property is found */
14475 SvREFCNT_dec_NN(swash);
14477 swash = _core_swash_init("utf8", name, &PL_sv_undef,
14480 NULL, /* No inversion list */
14483 if (! swash || ! (invlist = _get_swash_invlist(swash))) {
14484 HV* curpkg = (IN_PERL_COMPILETIME)
14486 : CopSTASH(PL_curcop);
14488 SvREFCNT_dec_NN(swash);
14492 /* Here didn't find it. It could be a user-defined
14493 * property that will be available at run-time. If we
14494 * accept only compile-time properties, is an error;
14495 * otherwise add it to the list for run-time look up */
14497 RExC_parse = e + 1;
14499 "Property '%"UTF8f"' is unknown",
14500 UTF8fARG(UTF, n, name));
14503 /* If the property name doesn't already have a package
14504 * name, add the current one to it so that it can be
14505 * referred to outside it. [perl #121777] */
14506 if (curpkg && ! instr(name, "::")) {
14507 char* pkgname = HvNAME(curpkg);
14508 if (strNE(pkgname, "main")) {
14509 char* full_name = Perl_form(aTHX_
14513 n = strlen(full_name);
14515 name = savepvn(full_name, n);
14518 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%"UTF8f"\n",
14519 (value == 'p' ? '+' : '!'),
14520 UTF8fARG(UTF, n, name));
14521 has_user_defined_property = TRUE;
14523 /* We don't know yet, so have to assume that the
14524 * property could match something in the Latin1 range,
14525 * hence something that isn't utf8. Note that this
14526 * would cause things in <depends_list> to match
14527 * inappropriately, except that any \p{}, including
14528 * this one forces Unicode semantics, which means there
14529 * is no <depends_list> */
14531 |= ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES;
14535 /* Here, did get the swash and its inversion list. If
14536 * the swash is from a user-defined property, then this
14537 * whole character class should be regarded as such */
14538 if (swash_init_flags
14539 & _CORE_SWASH_INIT_USER_DEFINED_PROPERTY)
14541 has_user_defined_property = TRUE;
14544 /* We warn on matching an above-Unicode code point
14545 * if the match would return true, except don't
14546 * warn for \p{All}, which has exactly one element
14548 (_invlist_contains_cp(invlist, 0x110000)
14549 && (! (_invlist_len(invlist) == 1
14550 && *invlist_array(invlist) == 0)))
14556 /* Invert if asking for the complement */
14557 if (value == 'P') {
14558 _invlist_union_complement_2nd(properties,
14562 /* The swash can't be used as-is, because we've
14563 * inverted things; delay removing it to here after
14564 * have copied its invlist above */
14565 SvREFCNT_dec_NN(swash);
14569 _invlist_union(properties, invlist, &properties);
14574 RExC_parse = e + 1;
14575 namedclass = ANYOF_UNIPROP; /* no official name, but it's
14578 /* \p means they want Unicode semantics */
14579 RExC_uni_semantics = 1;
14582 case 'n': value = '\n'; break;
14583 case 'r': value = '\r'; break;
14584 case 't': value = '\t'; break;
14585 case 'f': value = '\f'; break;
14586 case 'b': value = '\b'; break;
14587 case 'e': value = ESC_NATIVE; break;
14588 case 'a': value = '\a'; break;
14590 RExC_parse--; /* function expects to be pointed at the 'o' */
14592 const char* error_msg;
14593 bool valid = grok_bslash_o(&RExC_parse,
14596 PASS2, /* warnings only in
14599 silence_non_portable,
14605 non_portable_endpoint++;
14606 if (IN_ENCODING && value < 0x100) {
14607 goto recode_encoding;
14611 RExC_parse--; /* function expects to be pointed at the 'x' */
14613 const char* error_msg;
14614 bool valid = grok_bslash_x(&RExC_parse,
14617 PASS2, /* Output warnings */
14619 silence_non_portable,
14625 non_portable_endpoint++;
14626 if (IN_ENCODING && value < 0x100)
14627 goto recode_encoding;
14630 value = grok_bslash_c(*RExC_parse++, PASS2);
14631 non_portable_endpoint++;
14633 case '0': case '1': case '2': case '3': case '4':
14634 case '5': case '6': case '7':
14636 /* Take 1-3 octal digits */
14637 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
14638 numlen = (strict) ? 4 : 3;
14639 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
14640 RExC_parse += numlen;
14643 RExC_parse += (UTF) ? UTF8SKIP(RExC_parse) : 1;
14644 vFAIL("Need exactly 3 octal digits");
14646 else if (! SIZE_ONLY /* like \08, \178 */
14648 && RExC_parse < RExC_end
14649 && isDIGIT(*RExC_parse)
14650 && ckWARN(WARN_REGEXP))
14652 SAVEFREESV(RExC_rx_sv);
14653 reg_warn_non_literal_string(
14655 form_short_octal_warning(RExC_parse, numlen));
14656 (void)ReREFCNT_inc(RExC_rx_sv);
14659 non_portable_endpoint++;
14660 if (IN_ENCODING && value < 0x100)
14661 goto recode_encoding;
14665 if (! RExC_override_recoding) {
14666 SV* enc = _get_encoding();
14667 value = reg_recode((const char)(U8)value, &enc);
14670 vFAIL("Invalid escape in the specified encoding");
14673 ckWARNreg(RExC_parse,
14674 "Invalid escape in the specified encoding");
14680 /* Allow \_ to not give an error */
14681 if (!SIZE_ONLY && isWORDCHAR(value) && value != '_') {
14683 vFAIL2("Unrecognized escape \\%c in character class",
14687 SAVEFREESV(RExC_rx_sv);
14688 ckWARN2reg(RExC_parse,
14689 "Unrecognized escape \\%c in character class passed through",
14691 (void)ReREFCNT_inc(RExC_rx_sv);
14695 } /* End of switch on char following backslash */
14696 } /* end of handling backslash escape sequences */
14698 /* Here, we have the current token in 'value' */
14700 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
14703 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
14704 * literal, as is the character that began the false range, i.e.
14705 * the 'a' in the examples */
14708 const int w = (RExC_parse >= rangebegin)
14709 ? RExC_parse - rangebegin
14713 "False [] range \"%"UTF8f"\"",
14714 UTF8fARG(UTF, w, rangebegin));
14717 SAVEFREESV(RExC_rx_sv); /* in case of fatal warnings */
14718 ckWARN2reg(RExC_parse,
14719 "False [] range \"%"UTF8f"\"",
14720 UTF8fARG(UTF, w, rangebegin));
14721 (void)ReREFCNT_inc(RExC_rx_sv);
14722 cp_list = add_cp_to_invlist(cp_list, '-');
14723 cp_foldable_list = add_cp_to_invlist(cp_foldable_list,
14728 range = 0; /* this was not a true range */
14729 element_count += 2; /* So counts for three values */
14732 classnum = namedclass_to_classnum(namedclass);
14734 if (LOC && namedclass < ANYOF_POSIXL_MAX
14735 #ifndef HAS_ISASCII
14736 && classnum != _CC_ASCII
14739 /* What the Posix classes (like \w, [:space:]) match in locale
14740 * isn't knowable under locale until actual match time. Room
14741 * must be reserved (one time per outer bracketed class) to
14742 * store such classes. The space will contain a bit for each
14743 * named class that is to be matched against. This isn't
14744 * needed for \p{} and pseudo-classes, as they are not affected
14745 * by locale, and hence are dealt with separately */
14746 if (! need_class) {
14749 RExC_size += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
14752 RExC_emit += ANYOF_POSIXL_SKIP - ANYOF_SKIP;
14754 ANYOF_FLAGS(ret) |= ANYOF_MATCHES_POSIXL;
14755 ANYOF_POSIXL_ZERO(ret);
14758 /* Coverity thinks it is possible for this to be negative; both
14759 * jhi and khw think it's not, but be safer */
14760 assert(! (ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
14761 || (namedclass + ((namedclass % 2) ? -1 : 1)) >= 0);
14763 /* See if it already matches the complement of this POSIX
14765 if ((ANYOF_FLAGS(ret) & ANYOF_MATCHES_POSIXL)
14766 && ANYOF_POSIXL_TEST(ret, namedclass + ((namedclass % 2)
14770 posixl_matches_all = TRUE;
14771 break; /* No need to continue. Since it matches both
14772 e.g., \w and \W, it matches everything, and the
14773 bracketed class can be optimized into qr/./s */
14776 /* Add this class to those that should be checked at runtime */
14777 ANYOF_POSIXL_SET(ret, namedclass);
14779 /* The above-Latin1 characters are not subject to locale rules.
14780 * Just add them, in the second pass, to the
14781 * unconditionally-matched list */
14783 SV* scratch_list = NULL;
14785 /* Get the list of the above-Latin1 code points this
14787 _invlist_intersection_maybe_complement_2nd(PL_AboveLatin1,
14788 PL_XPosix_ptrs[classnum],
14790 /* Odd numbers are complements, like
14791 * NDIGIT, NASCII, ... */
14792 namedclass % 2 != 0,
14794 /* Checking if 'cp_list' is NULL first saves an extra
14795 * clone. Its reference count will be decremented at the
14796 * next union, etc, or if this is the only instance, at the
14797 * end of the routine */
14799 cp_list = scratch_list;
14802 _invlist_union(cp_list, scratch_list, &cp_list);
14803 SvREFCNT_dec_NN(scratch_list);
14805 continue; /* Go get next character */
14808 else if (! SIZE_ONLY) {
14810 /* Here, not in pass1 (in that pass we skip calculating the
14811 * contents of this class), and is /l, or is a POSIX class for
14812 * which /l doesn't matter (or is a Unicode property, which is
14813 * skipped here). */
14814 if (namedclass >= ANYOF_POSIXL_MAX) { /* If a special class */
14815 if (namedclass != ANYOF_UNIPROP) { /* UNIPROP = \p and \P */
14817 /* Here, should be \h, \H, \v, or \V. None of /d, /i
14818 * nor /l make a difference in what these match,
14819 * therefore we just add what they match to cp_list. */
14820 if (classnum != _CC_VERTSPACE) {
14821 assert( namedclass == ANYOF_HORIZWS
14822 || namedclass == ANYOF_NHORIZWS);
14824 /* It turns out that \h is just a synonym for
14826 classnum = _CC_BLANK;
14829 _invlist_union_maybe_complement_2nd(
14831 PL_XPosix_ptrs[classnum],
14832 namedclass % 2 != 0, /* Complement if odd
14833 (NHORIZWS, NVERTWS)
14838 else if (UNI_SEMANTICS
14839 || classnum == _CC_ASCII
14840 || (DEPENDS_SEMANTICS && (classnum == _CC_DIGIT
14841 || classnum == _CC_XDIGIT)))
14843 /* We usually have to worry about /d and /a affecting what
14844 * POSIX classes match, with special code needed for /d
14845 * because we won't know until runtime what all matches.
14846 * But there is no extra work needed under /u, and
14847 * [:ascii:] is unaffected by /a and /d; and :digit: and
14848 * :xdigit: don't have runtime differences under /d. So we
14849 * can special case these, and avoid some extra work below,
14850 * and at runtime. */
14851 _invlist_union_maybe_complement_2nd(
14853 PL_XPosix_ptrs[classnum],
14854 namedclass % 2 != 0,
14857 else { /* Garden variety class. If is NUPPER, NALPHA, ...
14858 complement and use nposixes */
14859 SV** posixes_ptr = namedclass % 2 == 0
14862 _invlist_union_maybe_complement_2nd(
14864 PL_XPosix_ptrs[classnum],
14865 namedclass % 2 != 0,
14869 } /* end of namedclass \blah */
14872 RExC_parse = regpatws(pRExC_state, RExC_parse,
14873 FALSE /* means don't recognize comments */ );
14876 /* If 'range' is set, 'value' is the ending of a range--check its
14877 * validity. (If value isn't a single code point in the case of a
14878 * range, we should have figured that out above in the code that
14879 * catches false ranges). Later, we will handle each individual code
14880 * point in the range. If 'range' isn't set, this could be the
14881 * beginning of a range, so check for that by looking ahead to see if
14882 * the next real character to be processed is the range indicator--the
14887 /* For unicode ranges, we have to test that the Unicode as opposed
14888 * to the native values are not decreasing. (Above 255, there is
14889 * no difference between native and Unicode) */
14890 if (unicode_range && prevvalue < 255 && value < 255) {
14891 if (NATIVE_TO_LATIN1(prevvalue) > NATIVE_TO_LATIN1(value)) {
14892 goto backwards_range;
14897 if (prevvalue > value) /* b-a */ {
14902 w = RExC_parse - rangebegin;
14904 "Invalid [] range \"%"UTF8f"\"",
14905 UTF8fARG(UTF, w, rangebegin));
14906 NOT_REACHED; /* NOTREACHED */
14910 prevvalue = value; /* save the beginning of the potential range */
14911 if (! stop_at_1 /* Can't be a range if parsing just one thing */
14912 && *RExC_parse == '-')
14914 char* next_char_ptr = RExC_parse + 1;
14915 if (skip_white) { /* Get the next real char after the '-' */
14916 next_char_ptr = regpatws(pRExC_state,
14918 FALSE); /* means don't recognize
14922 /* If the '-' is at the end of the class (just before the ']',
14923 * it is a literal minus; otherwise it is a range */
14924 if (next_char_ptr < RExC_end && *next_char_ptr != ']') {
14925 RExC_parse = next_char_ptr;
14927 /* a bad range like \w-, [:word:]- ? */
14928 if (namedclass > OOB_NAMEDCLASS) {
14929 if (strict || (PASS2 && ckWARN(WARN_REGEXP))) {
14930 const int w = RExC_parse >= rangebegin
14931 ? RExC_parse - rangebegin
14934 vFAIL4("False [] range \"%*.*s\"",
14939 "False [] range \"%*.*s\"",
14944 cp_list = add_cp_to_invlist(cp_list, '-');
14948 range = 1; /* yeah, it's a range! */
14949 continue; /* but do it the next time */
14954 if (namedclass > OOB_NAMEDCLASS) {
14958 /* Here, we have a single value this time through the loop, and
14959 * <prevvalue> is the beginning of the range, if any; or <value> if
14962 /* non-Latin1 code point implies unicode semantics. Must be set in
14963 * pass1 so is there for the whole of pass 2 */
14965 RExC_uni_semantics = 1;
14968 /* Ready to process either the single value, or the completed range.
14969 * For single-valued non-inverted ranges, we consider the possibility
14970 * of multi-char folds. (We made a conscious decision to not do this
14971 * for the other cases because it can often lead to non-intuitive
14972 * results. For example, you have the peculiar case that:
14973 * "s s" =~ /^[^\xDF]+$/i => Y
14974 * "ss" =~ /^[^\xDF]+$/i => N
14976 * See [perl #89750] */
14977 if (FOLD && allow_multi_folds && value == prevvalue) {
14978 if (value == LATIN_SMALL_LETTER_SHARP_S
14979 || (value > 255 && _invlist_contains_cp(PL_HasMultiCharFold,
14982 /* Here <value> is indeed a multi-char fold. Get what it is */
14984 U8 foldbuf[UTF8_MAXBYTES_CASE];
14987 UV folded = _to_uni_fold_flags(
14991 FOLD_FLAGS_FULL | (ASCII_FOLD_RESTRICTED
14992 ? FOLD_FLAGS_NOMIX_ASCII
14996 /* Here, <folded> should be the first character of the
14997 * multi-char fold of <value>, with <foldbuf> containing the
14998 * whole thing. But, if this fold is not allowed (because of
14999 * the flags), <fold> will be the same as <value>, and should
15000 * be processed like any other character, so skip the special
15002 if (folded != value) {
15004 /* Skip if we are recursed, currently parsing the class
15005 * again. Otherwise add this character to the list of
15006 * multi-char folds. */
15007 if (! RExC_in_multi_char_class) {
15008 STRLEN cp_count = utf8_length(foldbuf,
15009 foldbuf + foldlen);
15010 SV* multi_fold = sv_2mortal(newSVpvs(""));
15012 Perl_sv_catpvf(aTHX_ multi_fold, "\\x{%"UVXf"}", value);
15015 = add_multi_match(multi_char_matches,
15021 /* This element should not be processed further in this
15024 value = save_value;
15025 prevvalue = save_prevvalue;
15031 if (strict && PASS2 && ckWARN(WARN_REGEXP)) {
15034 /* If the range starts above 255, everything is portable and
15035 * likely to be so for any forseeable character set, so don't
15037 if (unicode_range && non_portable_endpoint && prevvalue < 256) {
15038 vWARN(RExC_parse, "Both or neither range ends should be Unicode");
15040 else if (prevvalue != value) {
15042 /* Under strict, ranges that stop and/or end in an ASCII
15043 * printable should have each end point be a portable value
15044 * for it (preferably like 'A', but we don't warn if it is
15045 * a (portable) Unicode name or code point), and the range
15046 * must be be all digits or all letters of the same case.
15047 * Otherwise, the range is non-portable and unclear as to
15048 * what it contains */
15049 if ((isPRINT_A(prevvalue) || isPRINT_A(value))
15050 && (non_portable_endpoint
15051 || ! ((isDIGIT_A(prevvalue) && isDIGIT_A(value))
15052 || (isLOWER_A(prevvalue) && isLOWER_A(value))
15053 || (isUPPER_A(prevvalue) && isUPPER_A(value)))))
15055 vWARN(RExC_parse, "Ranges of ASCII printables should be some subset of \"0-9\", \"A-Z\", or \"a-z\"");
15057 else if (prevvalue >= 0x660) { /* ARABIC_INDIC_DIGIT_ZERO */
15059 /* But the nature of Unicode and languages mean we
15060 * can't do the same checks for above-ASCII ranges,
15061 * except in the case of digit ones. These should
15062 * contain only digits from the same group of 10. The
15063 * ASCII case is handled just above. 0x660 is the
15064 * first digit character beyond ASCII. Hence here, the
15065 * range could be a range of digits. Find out. */
15066 IV index_start = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
15068 IV index_final = _invlist_search(PL_XPosix_ptrs[_CC_DIGIT],
15071 /* If the range start and final points are in the same
15072 * inversion list element, it means that either both
15073 * are not digits, or both are digits in a consecutive
15074 * sequence of digits. (So far, Unicode has kept all
15075 * such sequences as distinct groups of 10, but assert
15076 * to make sure). If the end points are not in the
15077 * same element, neither should be a digit. */
15078 if (index_start == index_final) {
15079 assert(! ELEMENT_RANGE_MATCHES_INVLIST(index_start)
15080 || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
15081 - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
15083 /* But actually Unicode did have one group of 11
15084 * 'digits' in 5.2, so in case we are operating
15085 * on that version, let that pass */
15086 || (invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start+1]
15087 - invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
15089 && invlist_array(PL_XPosix_ptrs[_CC_DIGIT])[index_start]
15093 else if ((index_start >= 0
15094 && ELEMENT_RANGE_MATCHES_INVLIST(index_start))
15095 || (index_final >= 0
15096 && ELEMENT_RANGE_MATCHES_INVLIST(index_final)))
15098 vWARN(RExC_parse, "Ranges of digits should be from the same group of 10");
15103 if ((! range || prevvalue == value) && non_portable_endpoint) {
15104 if (isPRINT_A(value)) {
15107 if (isBACKSLASHED_PUNCT(value)) {
15108 literal[d++] = '\\';
15110 literal[d++] = (char) value;
15111 literal[d++] = '\0';
15114 "\"%.*s\" is more clearly written simply as \"%s\"",
15115 (int) (RExC_parse - rangebegin),
15120 else if isMNEMONIC_CNTRL(value) {
15122 "\"%.*s\" is more clearly written simply as \"%s\"",
15123 (int) (RExC_parse - rangebegin),
15125 cntrl_to_mnemonic((char) value)
15131 /* Deal with this element of the class */
15135 cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
15138 /* On non-ASCII platforms, for ranges that span all of 0..255, and
15139 * ones that don't require special handling, we can just add the
15140 * range like we do for ASCII platforms */
15141 if ((UNLIKELY(prevvalue == 0) && value >= 255)
15142 || ! (prevvalue < 256
15144 || (! non_portable_endpoint
15145 && ((isLOWER_A(prevvalue) && isLOWER_A(value))
15146 || (isUPPER_A(prevvalue)
15147 && isUPPER_A(value)))))))
15149 cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
15153 /* Here, requires special handling. This can be because it is
15154 * a range whose code points are considered to be Unicode, and
15155 * so must be individually translated into native, or because
15156 * its a subrange of 'A-Z' or 'a-z' which each aren't
15157 * contiguous in EBCDIC, but we have defined them to include
15158 * only the "expected" upper or lower case ASCII alphabetics.
15159 * Subranges above 255 are the same in native and Unicode, so
15160 * can be added as a range */
15161 U8 start = NATIVE_TO_LATIN1(prevvalue);
15163 U8 end = (value < 256) ? NATIVE_TO_LATIN1(value) : 255;
15164 for (j = start; j <= end; j++) {
15165 cp_foldable_list = add_cp_to_invlist(cp_foldable_list, LATIN1_TO_NATIVE(j));
15168 cp_foldable_list = _add_range_to_invlist(cp_foldable_list,
15175 range = 0; /* this range (if it was one) is done now */
15176 } /* End of loop through all the text within the brackets */
15178 /* If anything in the class expands to more than one character, we have to
15179 * deal with them by building up a substitute parse string, and recursively
15180 * calling reg() on it, instead of proceeding */
15181 if (multi_char_matches) {
15182 SV * substitute_parse = newSVpvn_flags("?:", 2, SVs_TEMP);
15185 char *save_end = RExC_end;
15186 char *save_parse = RExC_parse;
15187 bool first_time = TRUE; /* First multi-char occurrence doesn't get
15192 #if 0 /* Have decided not to deal with multi-char folds in inverted classes,
15193 because too confusing */
15195 sv_catpv(substitute_parse, "(?:");
15199 /* Look at the longest folds first */
15200 for (cp_count = av_tindex(multi_char_matches); cp_count > 0; cp_count--) {
15202 if (av_exists(multi_char_matches, cp_count)) {
15203 AV** this_array_ptr;
15206 this_array_ptr = (AV**) av_fetch(multi_char_matches,
15208 while ((this_sequence = av_pop(*this_array_ptr)) !=
15211 if (! first_time) {
15212 sv_catpv(substitute_parse, "|");
15214 first_time = FALSE;
15216 sv_catpv(substitute_parse, SvPVX(this_sequence));
15221 /* If the character class contains anything else besides these
15222 * multi-character folds, have to include it in recursive parsing */
15223 if (element_count) {
15224 sv_catpv(substitute_parse, "|[");
15225 sv_catpvn(substitute_parse, orig_parse, RExC_parse - orig_parse);
15226 sv_catpv(substitute_parse, "]");
15229 sv_catpv(substitute_parse, ")");
15232 /* This is a way to get the parse to skip forward a whole named
15233 * sequence instead of matching the 2nd character when it fails the
15235 sv_catpv(substitute_parse, "(*THEN)(*SKIP)(*FAIL)|.)");
15239 RExC_parse = SvPV(substitute_parse, len);
15240 RExC_end = RExC_parse + len;
15241 RExC_in_multi_char_class = 1;
15242 RExC_override_recoding = 1;
15243 RExC_emit = (regnode *)orig_emit;
15245 ret = reg(pRExC_state, 1, ®_flags, depth+1);
15247 *flagp |= reg_flags&(HASWIDTH|SIMPLE|SPSTART|POSTPONED|RESTART_UTF8);
15249 RExC_parse = save_parse;
15250 RExC_end = save_end;
15251 RExC_in_multi_char_class = 0;
15252 RExC_override_recoding = 0;
15253 SvREFCNT_dec_NN(multi_char_matches);
15257 /* Here, we've gone through the entire class and dealt with multi-char
15258 * folds. We are now in a position that we can do some checks to see if we
15259 * can optimize this ANYOF node into a simpler one, even in Pass 1.
15260 * Currently we only do two checks:
15261 * 1) is in the unlikely event that the user has specified both, eg. \w and
15262 * \W under /l, then the class matches everything. (This optimization
15263 * is done only to make the optimizer code run later work.)
15264 * 2) if the character class contains only a single element (including a
15265 * single range), we see if there is an equivalent node for it.
15266 * Other checks are possible */
15267 if (! ret_invlist /* Can't optimize if returning the constructed
15269 && (UNLIKELY(posixl_matches_all) || element_count == 1))
15274 if (UNLIKELY(posixl_matches_all)) {
15277 else if (namedclass > OOB_NAMEDCLASS) { /* this is a named class, like
15278 \w or [:digit:] or \p{foo}
15281 /* All named classes are mapped into POSIXish nodes, with its FLAG
15282 * argument giving which class it is */
15283 switch ((I32)namedclass) {
15284 case ANYOF_UNIPROP:
15287 /* These don't depend on the charset modifiers. They always
15288 * match under /u rules */
15289 case ANYOF_NHORIZWS:
15290 case ANYOF_HORIZWS:
15291 namedclass = ANYOF_BLANK + namedclass - ANYOF_HORIZWS;
15294 case ANYOF_NVERTWS:
15299 /* The actual POSIXish node for all the rest depends on the
15300 * charset modifier. The ones in the first set depend only on
15301 * ASCII or, if available on this platform, also locale */
15305 op = (LOC) ? POSIXL : POSIXA;
15311 /* The following don't have any matches in the upper Latin1
15312 * range, hence /d is equivalent to /u for them. Making it /u
15313 * saves some branches at runtime */
15317 case ANYOF_NXDIGIT:
15318 if (! DEPENDS_SEMANTICS) {
15319 goto treat_as_default;
15325 /* The following change to CASED under /i */
15331 namedclass = ANYOF_CASED + (namedclass % 2);
15335 /* The rest have more possibilities depending on the charset.
15336 * We take advantage of the enum ordering of the charset
15337 * modifiers to get the exact node type, */
15340 op = POSIXD + get_regex_charset(RExC_flags);
15341 if (op > POSIXA) { /* /aa is same as /a */
15346 /* The odd numbered ones are the complements of the
15347 * next-lower even number one */
15348 if (namedclass % 2 == 1) {
15352 arg = namedclass_to_classnum(namedclass);
15356 else if (value == prevvalue) {
15358 /* Here, the class consists of just a single code point */
15361 if (! LOC && value == '\n') {
15362 op = REG_ANY; /* Optimize [^\n] */
15363 *flagp |= HASWIDTH|SIMPLE;
15367 else if (value < 256 || UTF) {
15369 /* Optimize a single value into an EXACTish node, but not if it
15370 * would require converting the pattern to UTF-8. */
15371 op = compute_EXACTish(pRExC_state);
15373 } /* Otherwise is a range */
15374 else if (! LOC) { /* locale could vary these */
15375 if (prevvalue == '0') {
15376 if (value == '9') {
15381 else if (! FOLD || ASCII_FOLD_RESTRICTED) {
15382 /* We can optimize A-Z or a-z, but not if they could match
15383 * something like the KELVIN SIGN under /i. */
15384 if (prevvalue == 'A') {
15387 && ! non_portable_endpoint
15390 arg = (FOLD) ? _CC_ALPHA : _CC_UPPER;
15394 else if (prevvalue == 'a') {
15397 && ! non_portable_endpoint
15400 arg = (FOLD) ? _CC_ALPHA : _CC_LOWER;
15407 /* Here, we have changed <op> away from its initial value iff we found
15408 * an optimization */
15411 /* Throw away this ANYOF regnode, and emit the calculated one,
15412 * which should correspond to the beginning, not current, state of
15414 const char * cur_parse = RExC_parse;
15415 RExC_parse = (char *)orig_parse;
15419 /* To get locale nodes to not use the full ANYOF size would
15420 * require moving the code above that writes the portions
15421 * of it that aren't in other nodes to after this point.
15422 * e.g. ANYOF_POSIXL_SET */
15423 RExC_size = orig_size;
15427 RExC_emit = (regnode *)orig_emit;
15428 if (PL_regkind[op] == POSIXD) {
15429 if (op == POSIXL) {
15430 RExC_contains_locale = 1;
15433 op += NPOSIXD - POSIXD;
15438 ret = reg_node(pRExC_state, op);
15440 if (PL_regkind[op] == POSIXD || PL_regkind[op] == NPOSIXD) {
15444 *flagp |= HASWIDTH|SIMPLE;
15446 else if (PL_regkind[op] == EXACT) {
15447 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
15448 TRUE /* downgradable to EXACT */
15452 RExC_parse = (char *) cur_parse;
15454 SvREFCNT_dec(posixes);
15455 SvREFCNT_dec(nposixes);
15456 SvREFCNT_dec(simple_posixes);
15457 SvREFCNT_dec(cp_list);
15458 SvREFCNT_dec(cp_foldable_list);
15465 /****** !SIZE_ONLY (Pass 2) AFTER HERE *********/
15467 /* If folding, we calculate all characters that could fold to or from the
15468 * ones already on the list */
15469 if (cp_foldable_list) {
15471 UV start, end; /* End points of code point ranges */
15473 SV* fold_intersection = NULL;
15476 /* Our calculated list will be for Unicode rules. For locale
15477 * matching, we have to keep a separate list that is consulted at
15478 * runtime only when the locale indicates Unicode rules. For
15479 * non-locale, we just use to the general list */
15481 use_list = &only_utf8_locale_list;
15484 use_list = &cp_list;
15487 /* Only the characters in this class that participate in folds need
15488 * be checked. Get the intersection of this class and all the
15489 * possible characters that are foldable. This can quickly narrow
15490 * down a large class */
15491 _invlist_intersection(PL_utf8_foldable, cp_foldable_list,
15492 &fold_intersection);
15494 /* The folds for all the Latin1 characters are hard-coded into this
15495 * program, but we have to go out to disk to get the others. */
15496 if (invlist_highest(cp_foldable_list) >= 256) {
15498 /* This is a hash that for a particular fold gives all
15499 * characters that are involved in it */
15500 if (! PL_utf8_foldclosures) {
15501 _load_PL_utf8_foldclosures();
15505 /* Now look at the foldable characters in this class individually */
15506 invlist_iterinit(fold_intersection);
15507 while (invlist_iternext(fold_intersection, &start, &end)) {
15510 /* Look at every character in the range */
15511 for (j = start; j <= end; j++) {
15512 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
15518 if (IS_IN_SOME_FOLD_L1(j)) {
15520 /* ASCII is always matched; non-ASCII is matched
15521 * only under Unicode rules (which could happen
15522 * under /l if the locale is a UTF-8 one */
15523 if (isASCII(j) || ! DEPENDS_SEMANTICS) {
15524 *use_list = add_cp_to_invlist(*use_list,
15525 PL_fold_latin1[j]);
15529 add_cp_to_invlist(depends_list,
15530 PL_fold_latin1[j]);
15534 if (HAS_NONLATIN1_SIMPLE_FOLD_CLOSURE(j)
15535 && (! isASCII(j) || ! ASCII_FOLD_RESTRICTED))
15537 add_above_Latin1_folds(pRExC_state,
15544 /* Here is an above Latin1 character. We don't have the
15545 * rules hard-coded for it. First, get its fold. This is
15546 * the simple fold, as the multi-character folds have been
15547 * handled earlier and separated out */
15548 _to_uni_fold_flags(j, foldbuf, &foldlen,
15549 (ASCII_FOLD_RESTRICTED)
15550 ? FOLD_FLAGS_NOMIX_ASCII
15553 /* Single character fold of above Latin1. Add everything in
15554 * its fold closure to the list that this node should match.
15555 * The fold closures data structure is a hash with the keys
15556 * being the UTF-8 of every character that is folded to, like
15557 * 'k', and the values each an array of all code points that
15558 * fold to its key. e.g. [ 'k', 'K', KELVIN_SIGN ].
15559 * Multi-character folds are not included */
15560 if ((listp = hv_fetch(PL_utf8_foldclosures,
15561 (char *) foldbuf, foldlen, FALSE)))
15563 AV* list = (AV*) *listp;
15565 for (k = 0; k <= av_tindex(list); k++) {
15566 SV** c_p = av_fetch(list, k, FALSE);
15572 /* /aa doesn't allow folds between ASCII and non- */
15573 if ((ASCII_FOLD_RESTRICTED
15574 && (isASCII(c) != isASCII(j))))
15579 /* Folds under /l which cross the 255/256 boundary
15580 * are added to a separate list. (These are valid
15581 * only when the locale is UTF-8.) */
15582 if (c < 256 && LOC) {
15583 *use_list = add_cp_to_invlist(*use_list, c);
15587 if (isASCII(c) || c > 255 || AT_LEAST_UNI_SEMANTICS)
15589 cp_list = add_cp_to_invlist(cp_list, c);
15592 /* Similarly folds involving non-ascii Latin1
15593 * characters under /d are added to their list */
15594 depends_list = add_cp_to_invlist(depends_list,
15601 SvREFCNT_dec_NN(fold_intersection);
15604 /* Now that we have finished adding all the folds, there is no reason
15605 * to keep the foldable list separate */
15606 _invlist_union(cp_list, cp_foldable_list, &cp_list);
15607 SvREFCNT_dec_NN(cp_foldable_list);
15610 /* And combine the result (if any) with any inversion list from posix
15611 * classes. The lists are kept separate up to now because we don't want to
15612 * fold the classes (folding of those is automatically handled by the swash
15613 * fetching code) */
15614 if (simple_posixes) {
15615 _invlist_union(cp_list, simple_posixes, &cp_list);
15616 SvREFCNT_dec_NN(simple_posixes);
15618 if (posixes || nposixes) {
15619 if (posixes && AT_LEAST_ASCII_RESTRICTED) {
15620 /* Under /a and /aa, nothing above ASCII matches these */
15621 _invlist_intersection(posixes,
15622 PL_XPosix_ptrs[_CC_ASCII],
15626 if (DEPENDS_SEMANTICS) {
15627 /* Under /d, everything in the upper half of the Latin1 range
15628 * matches these complements */
15629 ANYOF_FLAGS(ret) |= ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII;
15631 else if (AT_LEAST_ASCII_RESTRICTED) {
15632 /* Under /a and /aa, everything above ASCII matches these
15634 _invlist_union_complement_2nd(nposixes,
15635 PL_XPosix_ptrs[_CC_ASCII],
15639 _invlist_union(posixes, nposixes, &posixes);
15640 SvREFCNT_dec_NN(nposixes);
15643 posixes = nposixes;
15646 if (! DEPENDS_SEMANTICS) {
15648 _invlist_union(cp_list, posixes, &cp_list);
15649 SvREFCNT_dec_NN(posixes);
15656 /* Under /d, we put into a separate list the Latin1 things that
15657 * match only when the target string is utf8 */
15658 SV* nonascii_but_latin1_properties = NULL;
15659 _invlist_intersection(posixes, PL_UpperLatin1,
15660 &nonascii_but_latin1_properties);
15661 _invlist_subtract(posixes, nonascii_but_latin1_properties,
15664 _invlist_union(cp_list, posixes, &cp_list);
15665 SvREFCNT_dec_NN(posixes);
15671 if (depends_list) {
15672 _invlist_union(depends_list, nonascii_but_latin1_properties,
15674 SvREFCNT_dec_NN(nonascii_but_latin1_properties);
15677 depends_list = nonascii_but_latin1_properties;
15682 /* And combine the result (if any) with any inversion list from properties.
15683 * The lists are kept separate up to now so that we can distinguish the two
15684 * in regards to matching above-Unicode. A run-time warning is generated
15685 * if a Unicode property is matched against a non-Unicode code point. But,
15686 * we allow user-defined properties to match anything, without any warning,
15687 * and we also suppress the warning if there is a portion of the character
15688 * class that isn't a Unicode property, and which matches above Unicode, \W
15689 * or [\x{110000}] for example.
15690 * (Note that in this case, unlike the Posix one above, there is no
15691 * <depends_list>, because having a Unicode property forces Unicode
15696 /* If it matters to the final outcome, see if a non-property
15697 * component of the class matches above Unicode. If so, the
15698 * warning gets suppressed. This is true even if just a single
15699 * such code point is specified, as though not strictly correct if
15700 * another such code point is matched against, the fact that they
15701 * are using above-Unicode code points indicates they should know
15702 * the issues involved */
15704 warn_super = ! (invert
15705 ^ (invlist_highest(cp_list) > PERL_UNICODE_MAX));
15708 _invlist_union(properties, cp_list, &cp_list);
15709 SvREFCNT_dec_NN(properties);
15712 cp_list = properties;
15716 ANYOF_FLAGS(ret) |= ANYOF_WARN_SUPER;
15720 /* Here, we have calculated what code points should be in the character
15723 * Now we can see about various optimizations. Fold calculation (which we
15724 * did above) needs to take place before inversion. Otherwise /[^k]/i
15725 * would invert to include K, which under /i would match k, which it
15726 * shouldn't. Therefore we can't invert folded locale now, as it won't be
15727 * folded until runtime */
15729 /* If we didn't do folding, it's because some information isn't available
15730 * until runtime; set the run-time fold flag for these. (We don't have to
15731 * worry about properties folding, as that is taken care of by the swash
15732 * fetching). We know to set the flag if we have a non-NULL list for UTF-8
15733 * locales, or the class matches at least one 0-255 range code point */
15735 if (only_utf8_locale_list) {
15736 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
15738 else if (cp_list) { /* Look to see if there a 0-255 code point is in
15741 invlist_iterinit(cp_list);
15742 if (invlist_iternext(cp_list, &start, &end) && start < 256) {
15743 ANYOF_FLAGS(ret) |= ANYOF_LOC_FOLD;
15745 invlist_iterfinish(cp_list);
15749 /* Optimize inverted simple patterns (e.g. [^a-z]) when everything is known
15750 * at compile time. Besides not inverting folded locale now, we can't
15751 * invert if there are things such as \w, which aren't known until runtime
15755 && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
15757 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
15759 _invlist_invert(cp_list);
15761 /* Any swash can't be used as-is, because we've inverted things */
15763 SvREFCNT_dec_NN(swash);
15767 /* Clear the invert flag since have just done it here */
15774 *ret_invlist = cp_list;
15775 SvREFCNT_dec(swash);
15777 /* Discard the generated node */
15779 RExC_size = orig_size;
15782 RExC_emit = orig_emit;
15787 /* Some character classes are equivalent to other nodes. Such nodes take
15788 * up less room and generally fewer operations to execute than ANYOF nodes.
15789 * Above, we checked for and optimized into some such equivalents for
15790 * certain common classes that are easy to test. Getting to this point in
15791 * the code means that the class didn't get optimized there. Since this
15792 * code is only executed in Pass 2, it is too late to save space--it has
15793 * been allocated in Pass 1, and currently isn't given back. But turning
15794 * things into an EXACTish node can allow the optimizer to join it to any
15795 * adjacent such nodes. And if the class is equivalent to things like /./,
15796 * expensive run-time swashes can be avoided. Now that we have more
15797 * complete information, we can find things necessarily missed by the
15798 * earlier code. I (khw) am not sure how much to look for here. It would
15799 * be easy, but perhaps too slow, to check any candidates against all the
15800 * node types they could possibly match using _invlistEQ(). */
15805 && ! (ANYOF_FLAGS(ret) & (ANYOF_LOCALE_FLAGS))
15806 && ! HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
15808 /* We don't optimize if we are supposed to make sure all non-Unicode
15809 * code points raise a warning, as only ANYOF nodes have this check.
15811 && ! ((ANYOF_FLAGS(ret) & ANYOF_WARN_SUPER) && ALWAYS_WARN_SUPER))
15814 U8 op = END; /* The optimzation node-type */
15815 const char * cur_parse= RExC_parse;
15817 invlist_iterinit(cp_list);
15818 if (! invlist_iternext(cp_list, &start, &end)) {
15820 /* Here, the list is empty. This happens, for example, when a
15821 * Unicode property is the only thing in the character class, and
15822 * it doesn't match anything. (perluniprops.pod notes such
15825 *flagp |= HASWIDTH|SIMPLE;
15827 else if (start == end) { /* The range is a single code point */
15828 if (! invlist_iternext(cp_list, &start, &end)
15830 /* Don't do this optimization if it would require changing
15831 * the pattern to UTF-8 */
15832 && (start < 256 || UTF))
15834 /* Here, the list contains a single code point. Can optimize
15835 * into an EXACTish node */
15846 /* A locale node under folding with one code point can be
15847 * an EXACTFL, as its fold won't be calculated until
15853 /* Here, we are generally folding, but there is only one
15854 * code point to match. If we have to, we use an EXACT
15855 * node, but it would be better for joining with adjacent
15856 * nodes in the optimization pass if we used the same
15857 * EXACTFish node that any such are likely to be. We can
15858 * do this iff the code point doesn't participate in any
15859 * folds. For example, an EXACTF of a colon is the same as
15860 * an EXACT one, since nothing folds to or from a colon. */
15862 if (IS_IN_SOME_FOLD_L1(value)) {
15867 if (_invlist_contains_cp(PL_utf8_foldable, value)) {
15872 /* If we haven't found the node type, above, it means we
15873 * can use the prevailing one */
15875 op = compute_EXACTish(pRExC_state);
15880 else if (start == 0) {
15881 if (end == UV_MAX) {
15883 *flagp |= HASWIDTH|SIMPLE;
15886 else if (end == '\n' - 1
15887 && invlist_iternext(cp_list, &start, &end)
15888 && start == '\n' + 1 && end == UV_MAX)
15891 *flagp |= HASWIDTH|SIMPLE;
15895 invlist_iterfinish(cp_list);
15898 RExC_parse = (char *)orig_parse;
15899 RExC_emit = (regnode *)orig_emit;
15901 ret = reg_node(pRExC_state, op);
15903 RExC_parse = (char *)cur_parse;
15905 if (PL_regkind[op] == EXACT) {
15906 alloc_maybe_populate_EXACT(pRExC_state, ret, flagp, 0, value,
15907 TRUE /* downgradable to EXACT */
15911 SvREFCNT_dec_NN(cp_list);
15916 /* Here, <cp_list> contains all the code points we can determine at
15917 * compile time that match under all conditions. Go through it, and
15918 * for things that belong in the bitmap, put them there, and delete from
15919 * <cp_list>. While we are at it, see if everything above 255 is in the
15920 * list, and if so, set a flag to speed up execution */
15922 populate_ANYOF_from_invlist(ret, &cp_list);
15925 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
15928 /* Here, the bitmap has been populated with all the Latin1 code points that
15929 * always match. Can now add to the overall list those that match only
15930 * when the target string is UTF-8 (<depends_list>). */
15931 if (depends_list) {
15933 _invlist_union(cp_list, depends_list, &cp_list);
15934 SvREFCNT_dec_NN(depends_list);
15937 cp_list = depends_list;
15939 ANYOF_FLAGS(ret) |= ANYOF_HAS_UTF8_NONBITMAP_MATCHES;
15942 /* If there is a swash and more than one element, we can't use the swash in
15943 * the optimization below. */
15944 if (swash && element_count > 1) {
15945 SvREFCNT_dec_NN(swash);
15949 /* Note that the optimization of using 'swash' if it is the only thing in
15950 * the class doesn't have us change swash at all, so it can include things
15951 * that are also in the bitmap; otherwise we have purposely deleted that
15952 * duplicate information */
15953 set_ANYOF_arg(pRExC_state, ret, cp_list,
15954 (HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION)
15956 only_utf8_locale_list,
15957 swash, has_user_defined_property);
15959 *flagp |= HASWIDTH|SIMPLE;
15961 if (ANYOF_FLAGS(ret) & ANYOF_LOCALE_FLAGS) {
15962 RExC_contains_locale = 1;
15968 #undef HAS_NONLOCALE_RUNTIME_PROPERTY_DEFINITION
15971 S_set_ANYOF_arg(pTHX_ RExC_state_t* const pRExC_state,
15972 regnode* const node,
15974 SV* const runtime_defns,
15975 SV* const only_utf8_locale_list,
15977 const bool has_user_defined_property)
15979 /* Sets the arg field of an ANYOF-type node 'node', using information about
15980 * the node passed-in. If there is nothing outside the node's bitmap, the
15981 * arg is set to ANYOF_ONLY_HAS_BITMAP. Otherwise, it sets the argument to
15982 * the count returned by add_data(), having allocated and stored an array,
15983 * av, that that count references, as follows:
15984 * av[0] stores the character class description in its textual form.
15985 * This is used later (regexec.c:Perl_regclass_swash()) to
15986 * initialize the appropriate swash, and is also useful for dumping
15987 * the regnode. This is set to &PL_sv_undef if the textual
15988 * description is not needed at run-time (as happens if the other
15989 * elements completely define the class)
15990 * av[1] if &PL_sv_undef, is a placeholder to later contain the swash
15991 * computed from av[0]. But if no further computation need be done,
15992 * the swash is stored here now (and av[0] is &PL_sv_undef).
15993 * av[2] stores the inversion list of code points that match only if the
15994 * current locale is UTF-8
15995 * av[3] stores the cp_list inversion list for use in addition or instead
15996 * of av[0]; used only if cp_list exists and av[1] is &PL_sv_undef.
15997 * (Otherwise everything needed is already in av[0] and av[1])
15998 * av[4] is set if any component of the class is from a user-defined
15999 * property; used only if av[3] exists */
16003 PERL_ARGS_ASSERT_SET_ANYOF_ARG;
16005 if (! cp_list && ! runtime_defns && ! only_utf8_locale_list) {
16006 assert(! (ANYOF_FLAGS(node)
16007 & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
16008 |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES)));
16009 ARG_SET(node, ANYOF_ONLY_HAS_BITMAP);
16012 AV * const av = newAV();
16015 assert(ANYOF_FLAGS(node)
16016 & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
16017 |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
16019 av_store(av, 0, (runtime_defns)
16020 ? SvREFCNT_inc(runtime_defns) : &PL_sv_undef);
16023 av_store(av, 1, swash);
16024 SvREFCNT_dec_NN(cp_list);
16027 av_store(av, 1, &PL_sv_undef);
16029 av_store(av, 3, cp_list);
16030 av_store(av, 4, newSVuv(has_user_defined_property));
16034 if (only_utf8_locale_list) {
16035 av_store(av, 2, only_utf8_locale_list);
16038 av_store(av, 2, &PL_sv_undef);
16041 rv = newRV_noinc(MUTABLE_SV(av));
16042 n = add_data(pRExC_state, STR_WITH_LEN("s"));
16043 RExC_rxi->data->data[n] = (void*)rv;
16048 #if !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION)
16050 Perl__get_regclass_nonbitmap_data(pTHX_ const regexp *prog,
16051 const regnode* node,
16054 SV** only_utf8_locale_ptr,
16058 /* For internal core use only.
16059 * Returns the swash for the input 'node' in the regex 'prog'.
16060 * If <doinit> is 'true', will attempt to create the swash if not already
16062 * If <listsvp> is non-null, will return the printable contents of the
16063 * swash. This can be used to get debugging information even before the
16064 * swash exists, by calling this function with 'doinit' set to false, in
16065 * which case the components that will be used to eventually create the
16066 * swash are returned (in a printable form).
16067 * If <exclude_list> is not NULL, it is an inversion list of things to
16068 * exclude from what's returned in <listsvp>.
16069 * Tied intimately to how S_set_ANYOF_arg sets up the data structure. Note
16070 * that, in spite of this function's name, the swash it returns may include
16071 * the bitmap data as well */
16074 SV *si = NULL; /* Input swash initialization string */
16075 SV* invlist = NULL;
16077 RXi_GET_DECL(prog,progi);
16078 const struct reg_data * const data = prog ? progi->data : NULL;
16080 PERL_ARGS_ASSERT__GET_REGCLASS_NONBITMAP_DATA;
16082 assert(ANYOF_FLAGS(node)
16083 & (ANYOF_HAS_UTF8_NONBITMAP_MATCHES
16084 |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES|ANYOF_LOC_FOLD));
16086 if (data && data->count) {
16087 const U32 n = ARG(node);
16089 if (data->what[n] == 's') {
16090 SV * const rv = MUTABLE_SV(data->data[n]);
16091 AV * const av = MUTABLE_AV(SvRV(rv));
16092 SV **const ary = AvARRAY(av);
16093 U8 swash_init_flags = _CORE_SWASH_INIT_ACCEPT_INVLIST;
16095 si = *ary; /* ary[0] = the string to initialize the swash with */
16097 /* Elements 3 and 4 are either both present or both absent. [3] is
16098 * any inversion list generated at compile time; [4] indicates if
16099 * that inversion list has any user-defined properties in it. */
16100 if (av_tindex(av) >= 2) {
16101 if (only_utf8_locale_ptr
16103 && ary[2] != &PL_sv_undef)
16105 *only_utf8_locale_ptr = ary[2];
16108 assert(only_utf8_locale_ptr);
16109 *only_utf8_locale_ptr = NULL;
16112 if (av_tindex(av) >= 3) {
16114 if (SvUV(ary[4])) {
16115 swash_init_flags |= _CORE_SWASH_INIT_USER_DEFINED_PROPERTY;
16123 /* Element [1] is reserved for the set-up swash. If already there,
16124 * return it; if not, create it and store it there */
16125 if (ary[1] && SvROK(ary[1])) {
16128 else if (doinit && ((si && si != &PL_sv_undef)
16129 || (invlist && invlist != &PL_sv_undef))) {
16131 sw = _core_swash_init("utf8", /* the utf8 package */
16135 0, /* not from tr/// */
16137 &swash_init_flags);
16138 (void)av_store(av, 1, sw);
16143 /* If requested, return a printable version of what this swash matches */
16145 SV* matches_string = newSVpvs("");
16147 /* The swash should be used, if possible, to get the data, as it
16148 * contains the resolved data. But this function can be called at
16149 * compile-time, before everything gets resolved, in which case we
16150 * return the currently best available information, which is the string
16151 * that will eventually be used to do that resolving, 'si' */
16152 if ((! sw || (invlist = _get_swash_invlist(sw)) == NULL)
16153 && (si && si != &PL_sv_undef))
16155 sv_catsv(matches_string, si);
16158 /* Add the inversion list to whatever we have. This may have come from
16159 * the swash, or from an input parameter */
16161 if (exclude_list) {
16162 SV* clone = invlist_clone(invlist);
16163 _invlist_subtract(clone, exclude_list, &clone);
16164 sv_catsv(matches_string, _invlist_contents(clone));
16165 SvREFCNT_dec_NN(clone);
16168 sv_catsv(matches_string, _invlist_contents(invlist));
16171 *listsvp = matches_string;
16176 #endif /* !defined(PERL_IN_XSUB_RE) || defined(PLUGGABLE_RE_EXTENSION) */
16178 /* reg_skipcomment()
16180 Absorbs an /x style # comment from the input stream,
16181 returning a pointer to the first character beyond the comment, or if the
16182 comment terminates the pattern without anything following it, this returns
16183 one past the final character of the pattern (in other words, RExC_end) and
16184 sets the REG_RUN_ON_COMMENT_SEEN flag.
16186 Note it's the callers responsibility to ensure that we are
16187 actually in /x mode
16191 PERL_STATIC_INLINE char*
16192 S_reg_skipcomment(RExC_state_t *pRExC_state, char* p)
16194 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
16198 while (p < RExC_end) {
16199 if (*(++p) == '\n') {
16204 /* we ran off the end of the pattern without ending the comment, so we have
16205 * to add an \n when wrapping */
16206 RExC_seen |= REG_RUN_ON_COMMENT_SEEN;
16212 Advances the parse position, and optionally absorbs
16213 "whitespace" from the inputstream.
16215 Without /x "whitespace" means (?#...) style comments only,
16216 with /x this means (?#...) and # comments and whitespace proper.
16218 Returns the RExC_parse point from BEFORE the scan occurs.
16220 This is the /x friendly way of saying RExC_parse++.
16224 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
16226 char* const retval = RExC_parse++;
16228 PERL_ARGS_ASSERT_NEXTCHAR;
16231 if (RExC_end - RExC_parse >= 3
16232 && *RExC_parse == '('
16233 && RExC_parse[1] == '?'
16234 && RExC_parse[2] == '#')
16236 while (*RExC_parse != ')') {
16237 if (RExC_parse == RExC_end)
16238 FAIL("Sequence (?#... not terminated");
16244 if (RExC_flags & RXf_PMf_EXTENDED) {
16245 char * p = regpatws(pRExC_state, RExC_parse,
16246 TRUE); /* means recognize comments */
16247 if (p != RExC_parse) {
16257 S_regnode_guts(pTHX_ RExC_state_t *pRExC_state, const U8 op, const STRLEN extra_size, const char* const name)
16259 /* Allocate a regnode for 'op' and returns it, with 'extra_size' extra
16260 * space. In pass1, it aligns and increments RExC_size; in pass2,
16263 regnode * const ret = RExC_emit;
16264 GET_RE_DEBUG_FLAGS_DECL;
16266 PERL_ARGS_ASSERT_REGNODE_GUTS;
16268 assert(extra_size >= regarglen[op]);
16271 SIZE_ALIGN(RExC_size);
16272 RExC_size += 1 + extra_size;
16275 if (RExC_emit >= RExC_emit_bound)
16276 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d, %p>=%p",
16277 op, (void*)RExC_emit, (void*)RExC_emit_bound);
16279 NODE_ALIGN_FILL(ret);
16280 #ifndef RE_TRACK_PATTERN_OFFSETS
16281 PERL_UNUSED_ARG(name);
16283 if (RExC_offsets) { /* MJD */
16285 ("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
16288 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
16289 ? "Overwriting end of array!\n" : "OK",
16290 (UV)(RExC_emit - RExC_emit_start),
16291 (UV)(RExC_parse - RExC_start),
16292 (UV)RExC_offsets[0]));
16293 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
16300 - reg_node - emit a node
16302 STATIC regnode * /* Location. */
16303 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
16305 regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg_node");
16307 PERL_ARGS_ASSERT_REG_NODE;
16309 assert(regarglen[op] == 0);
16312 regnode *ptr = ret;
16313 FILL_ADVANCE_NODE(ptr, op);
16320 - reganode - emit a node with an argument
16322 STATIC regnode * /* Location. */
16323 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
16325 regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reganode");
16327 PERL_ARGS_ASSERT_REGANODE;
16329 assert(regarglen[op] == 1);
16332 regnode *ptr = ret;
16333 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
16340 S_reg2Lanode(pTHX_ RExC_state_t *pRExC_state, const U8 op, const U32 arg1, const I32 arg2)
16342 /* emit a node with U32 and I32 arguments */
16344 regnode * const ret = regnode_guts(pRExC_state, op, regarglen[op], "reg2Lanode");
16346 PERL_ARGS_ASSERT_REG2LANODE;
16348 assert(regarglen[op] == 2);
16351 regnode *ptr = ret;
16352 FILL_ADVANCE_NODE_2L_ARG(ptr, op, arg1, arg2);
16359 - reginsert - insert an operator in front of already-emitted operand
16361 * Means relocating the operand.
16364 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
16369 const int offset = regarglen[(U8)op];
16370 const int size = NODE_STEP_REGNODE + offset;
16371 GET_RE_DEBUG_FLAGS_DECL;
16373 PERL_ARGS_ASSERT_REGINSERT;
16374 PERL_UNUSED_CONTEXT;
16375 PERL_UNUSED_ARG(depth);
16376 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
16377 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
16386 if (RExC_open_parens) {
16388 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
16389 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
16390 if ( RExC_open_parens[paren] >= opnd ) {
16391 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
16392 RExC_open_parens[paren] += size;
16394 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
16396 if ( RExC_close_parens[paren] >= opnd ) {
16397 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
16398 RExC_close_parens[paren] += size;
16400 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
16405 while (src > opnd) {
16406 StructCopy(--src, --dst, regnode);
16407 #ifdef RE_TRACK_PATTERN_OFFSETS
16408 if (RExC_offsets) { /* MJD 20010112 */
16410 ("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
16414 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
16415 ? "Overwriting end of array!\n" : "OK",
16416 (UV)(src - RExC_emit_start),
16417 (UV)(dst - RExC_emit_start),
16418 (UV)RExC_offsets[0]));
16419 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
16420 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
16426 place = opnd; /* Op node, where operand used to be. */
16427 #ifdef RE_TRACK_PATTERN_OFFSETS
16428 if (RExC_offsets) { /* MJD */
16430 ("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
16434 (UV)(place - RExC_emit_start) > RExC_offsets[0]
16435 ? "Overwriting end of array!\n" : "OK",
16436 (UV)(place - RExC_emit_start),
16437 (UV)(RExC_parse - RExC_start),
16438 (UV)RExC_offsets[0]));
16439 Set_Node_Offset(place, RExC_parse);
16440 Set_Node_Length(place, 1);
16443 src = NEXTOPER(place);
16444 FILL_ADVANCE_NODE(place, op);
16445 Zero(src, offset, regnode);
16449 - regtail - set the next-pointer at the end of a node chain of p to val.
16450 - SEE ALSO: regtail_study
16452 /* TODO: All three parms should be const */
16454 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p,
16455 const regnode *val,U32 depth)
16458 GET_RE_DEBUG_FLAGS_DECL;
16460 PERL_ARGS_ASSERT_REGTAIL;
16462 PERL_UNUSED_ARG(depth);
16468 /* Find last node. */
16471 regnode * const temp = regnext(scan);
16473 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
16474 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
16475 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
16476 SvPV_nolen_const(RExC_mysv), REG_NODE_NUM(scan),
16477 (temp == NULL ? "->" : ""),
16478 (temp == NULL ? PL_reg_name[OP(val)] : "")
16486 if (reg_off_by_arg[OP(scan)]) {
16487 ARG_SET(scan, val - scan);
16490 NEXT_OFF(scan) = val - scan;
16496 - regtail_study - set the next-pointer at the end of a node chain of p to val.
16497 - Look for optimizable sequences at the same time.
16498 - currently only looks for EXACT chains.
16500 This is experimental code. The idea is to use this routine to perform
16501 in place optimizations on branches and groups as they are constructed,
16502 with the long term intention of removing optimization from study_chunk so
16503 that it is purely analytical.
16505 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
16506 to control which is which.
16509 /* TODO: All four parms should be const */
16512 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p,
16513 const regnode *val,U32 depth)
16517 #ifdef EXPERIMENTAL_INPLACESCAN
16520 GET_RE_DEBUG_FLAGS_DECL;
16522 PERL_ARGS_ASSERT_REGTAIL_STUDY;
16528 /* Find last node. */
16532 regnode * const temp = regnext(scan);
16533 #ifdef EXPERIMENTAL_INPLACESCAN
16534 if (PL_regkind[OP(scan)] == EXACT) {
16535 bool unfolded_multi_char; /* Unexamined in this routine */
16536 if (join_exact(pRExC_state, scan, &min,
16537 &unfolded_multi_char, 1, val, depth+1))
16542 switch (OP(scan)) {
16546 case EXACTFA_NO_TRIE:
16552 if( exact == PSEUDO )
16554 else if ( exact != OP(scan) )
16563 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
16564 regprop(RExC_rx, RExC_mysv, scan, NULL, pRExC_state);
16565 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
16566 SvPV_nolen_const(RExC_mysv),
16567 REG_NODE_NUM(scan),
16568 PL_reg_name[exact]);
16575 DEBUG_PARSE_MSG("");
16576 regprop(RExC_rx, RExC_mysv, val, NULL, pRExC_state);
16577 PerlIO_printf(Perl_debug_log,
16578 "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
16579 SvPV_nolen_const(RExC_mysv),
16580 (IV)REG_NODE_NUM(val),
16584 if (reg_off_by_arg[OP(scan)]) {
16585 ARG_SET(scan, val - scan);
16588 NEXT_OFF(scan) = val - scan;
16596 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
16601 S_regdump_intflags(pTHX_ const char *lead, const U32 flags)
16606 ASSUME(REG_INTFLAGS_NAME_SIZE <= sizeof(flags)*8);
16608 for (bit=0; bit<REG_INTFLAGS_NAME_SIZE; bit++) {
16609 if (flags & (1<<bit)) {
16610 if (!set++ && lead)
16611 PerlIO_printf(Perl_debug_log, "%s",lead);
16612 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_intflags_name[bit]);
16617 PerlIO_printf(Perl_debug_log, "\n");
16619 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
16624 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
16630 ASSUME(REG_EXTFLAGS_NAME_SIZE <= sizeof(flags)*8);
16632 for (bit=0; bit<REG_EXTFLAGS_NAME_SIZE; bit++) {
16633 if (flags & (1<<bit)) {
16634 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
16637 if (!set++ && lead)
16638 PerlIO_printf(Perl_debug_log, "%s",lead);
16639 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
16642 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
16643 if (!set++ && lead) {
16644 PerlIO_printf(Perl_debug_log, "%s",lead);
16647 case REGEX_UNICODE_CHARSET:
16648 PerlIO_printf(Perl_debug_log, "UNICODE");
16650 case REGEX_LOCALE_CHARSET:
16651 PerlIO_printf(Perl_debug_log, "LOCALE");
16653 case REGEX_ASCII_RESTRICTED_CHARSET:
16654 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
16656 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
16657 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
16660 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
16666 PerlIO_printf(Perl_debug_log, "\n");
16668 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
16674 Perl_regdump(pTHX_ const regexp *r)
16677 SV * const sv = sv_newmortal();
16678 SV *dsv= sv_newmortal();
16679 RXi_GET_DECL(r,ri);
16680 GET_RE_DEBUG_FLAGS_DECL;
16682 PERL_ARGS_ASSERT_REGDUMP;
16684 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
16686 /* Header fields of interest. */
16687 if (r->anchored_substr) {
16688 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
16689 RE_SV_DUMPLEN(r->anchored_substr), 30);
16690 PerlIO_printf(Perl_debug_log,
16691 "anchored %s%s at %"IVdf" ",
16692 s, RE_SV_TAIL(r->anchored_substr),
16693 (IV)r->anchored_offset);
16694 } else if (r->anchored_utf8) {
16695 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
16696 RE_SV_DUMPLEN(r->anchored_utf8), 30);
16697 PerlIO_printf(Perl_debug_log,
16698 "anchored utf8 %s%s at %"IVdf" ",
16699 s, RE_SV_TAIL(r->anchored_utf8),
16700 (IV)r->anchored_offset);
16702 if (r->float_substr) {
16703 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
16704 RE_SV_DUMPLEN(r->float_substr), 30);
16705 PerlIO_printf(Perl_debug_log,
16706 "floating %s%s at %"IVdf"..%"UVuf" ",
16707 s, RE_SV_TAIL(r->float_substr),
16708 (IV)r->float_min_offset, (UV)r->float_max_offset);
16709 } else if (r->float_utf8) {
16710 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
16711 RE_SV_DUMPLEN(r->float_utf8), 30);
16712 PerlIO_printf(Perl_debug_log,
16713 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
16714 s, RE_SV_TAIL(r->float_utf8),
16715 (IV)r->float_min_offset, (UV)r->float_max_offset);
16717 if (r->check_substr || r->check_utf8)
16718 PerlIO_printf(Perl_debug_log,
16720 (r->check_substr == r->float_substr
16721 && r->check_utf8 == r->float_utf8
16722 ? "(checking floating" : "(checking anchored"));
16723 if (r->intflags & PREGf_NOSCAN)
16724 PerlIO_printf(Perl_debug_log, " noscan");
16725 if (r->extflags & RXf_CHECK_ALL)
16726 PerlIO_printf(Perl_debug_log, " isall");
16727 if (r->check_substr || r->check_utf8)
16728 PerlIO_printf(Perl_debug_log, ") ");
16730 if (ri->regstclass) {
16731 regprop(r, sv, ri->regstclass, NULL, NULL);
16732 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
16734 if (r->intflags & PREGf_ANCH) {
16735 PerlIO_printf(Perl_debug_log, "anchored");
16736 if (r->intflags & PREGf_ANCH_MBOL)
16737 PerlIO_printf(Perl_debug_log, "(MBOL)");
16738 if (r->intflags & PREGf_ANCH_SBOL)
16739 PerlIO_printf(Perl_debug_log, "(SBOL)");
16740 if (r->intflags & PREGf_ANCH_GPOS)
16741 PerlIO_printf(Perl_debug_log, "(GPOS)");
16742 PerlIO_putc(Perl_debug_log, ' ');
16744 if (r->intflags & PREGf_GPOS_SEEN)
16745 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
16746 if (r->intflags & PREGf_SKIP)
16747 PerlIO_printf(Perl_debug_log, "plus ");
16748 if (r->intflags & PREGf_IMPLICIT)
16749 PerlIO_printf(Perl_debug_log, "implicit ");
16750 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
16751 if (r->extflags & RXf_EVAL_SEEN)
16752 PerlIO_printf(Perl_debug_log, "with eval ");
16753 PerlIO_printf(Perl_debug_log, "\n");
16755 regdump_extflags("r->extflags: ",r->extflags);
16756 regdump_intflags("r->intflags: ",r->intflags);
16759 PERL_ARGS_ASSERT_REGDUMP;
16760 PERL_UNUSED_CONTEXT;
16761 PERL_UNUSED_ARG(r);
16762 #endif /* DEBUGGING */
16766 - regprop - printable representation of opcode, with run time support
16770 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o, const regmatch_info *reginfo, const RExC_state_t *pRExC_state)
16775 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
16776 static const char * const anyofs[] = {
16777 #if _CC_WORDCHAR != 0 || _CC_DIGIT != 1 || _CC_ALPHA != 2 || _CC_LOWER != 3 \
16778 || _CC_UPPER != 4 || _CC_PUNCT != 5 || _CC_PRINT != 6 \
16779 || _CC_ALPHANUMERIC != 7 || _CC_GRAPH != 8 || _CC_CASED != 9 \
16780 || _CC_SPACE != 10 || _CC_BLANK != 11 || _CC_XDIGIT != 12 \
16781 || _CC_CNTRL != 13 || _CC_ASCII != 14 || _CC_VERTSPACE != 15
16782 #error Need to adjust order of anyofs[]
16817 RXi_GET_DECL(prog,progi);
16818 GET_RE_DEBUG_FLAGS_DECL;
16820 PERL_ARGS_ASSERT_REGPROP;
16822 sv_setpvn(sv, "", 0);
16824 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
16825 /* It would be nice to FAIL() here, but this may be called from
16826 regexec.c, and it would be hard to supply pRExC_state. */
16827 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
16828 (int)OP(o), (int)REGNODE_MAX);
16829 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
16831 k = PL_regkind[OP(o)];
16834 sv_catpvs(sv, " ");
16835 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
16836 * is a crude hack but it may be the best for now since
16837 * we have no flag "this EXACTish node was UTF-8"
16839 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
16840 PERL_PV_ESCAPE_UNI_DETECT |
16841 PERL_PV_ESCAPE_NONASCII |
16842 PERL_PV_PRETTY_ELLIPSES |
16843 PERL_PV_PRETTY_LTGT |
16844 PERL_PV_PRETTY_NOCLEAR
16846 } else if (k == TRIE) {
16847 /* print the details of the trie in dumpuntil instead, as
16848 * progi->data isn't available here */
16849 const char op = OP(o);
16850 const U32 n = ARG(o);
16851 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
16852 (reg_ac_data *)progi->data->data[n] :
16854 const reg_trie_data * const trie
16855 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
16857 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
16858 DEBUG_TRIE_COMPILE_r(
16859 Perl_sv_catpvf(aTHX_ sv,
16860 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
16861 (UV)trie->startstate,
16862 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
16863 (UV)trie->wordcount,
16866 (UV)TRIE_CHARCOUNT(trie),
16867 (UV)trie->uniquecharcount
16870 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
16871 sv_catpvs(sv, "[");
16872 (void) put_charclass_bitmap_innards(sv,
16873 (IS_ANYOF_TRIE(op))
16875 : TRIE_BITMAP(trie),
16877 sv_catpvs(sv, "]");
16880 } else if (k == CURLY) {
16881 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
16882 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
16883 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
16885 else if (k == WHILEM && o->flags) /* Ordinal/of */
16886 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
16887 else if (k == REF || k == OPEN || k == CLOSE
16888 || k == GROUPP || OP(o)==ACCEPT)
16890 AV *name_list= NULL;
16891 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
16892 if ( RXp_PAREN_NAMES(prog) ) {
16893 name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
16894 } else if ( pRExC_state ) {
16895 name_list= RExC_paren_name_list;
16898 if ( k != REF || (OP(o) < NREF)) {
16899 SV **name= av_fetch(name_list, ARG(o), 0 );
16901 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
16904 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
16905 I32 *nums=(I32*)SvPVX(sv_dat);
16906 SV **name= av_fetch(name_list, nums[0], 0 );
16909 for ( n=0; n<SvIVX(sv_dat); n++ ) {
16910 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
16911 (n ? "," : ""), (IV)nums[n]);
16913 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
16917 if ( k == REF && reginfo) {
16918 U32 n = ARG(o); /* which paren pair */
16919 I32 ln = prog->offs[n].start;
16920 if (prog->lastparen < n || ln == -1)
16921 Perl_sv_catpvf(aTHX_ sv, ": FAIL");
16922 else if (ln == prog->offs[n].end)
16923 Perl_sv_catpvf(aTHX_ sv, ": ACCEPT - EMPTY STRING");
16925 const char *s = reginfo->strbeg + ln;
16926 Perl_sv_catpvf(aTHX_ sv, ": ");
16927 Perl_pv_pretty( aTHX_ sv, s, prog->offs[n].end - prog->offs[n].start, 32, 0, 0,
16928 PERL_PV_ESCAPE_UNI_DETECT|PERL_PV_PRETTY_NOCLEAR|PERL_PV_PRETTY_ELLIPSES|PERL_PV_PRETTY_QUOTE );
16931 } else if (k == GOSUB) {
16932 AV *name_list= NULL;
16933 if ( RXp_PAREN_NAMES(prog) ) {
16934 name_list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
16935 } else if ( pRExC_state ) {
16936 name_list= RExC_paren_name_list;
16939 /* Paren and offset */
16940 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o));
16942 SV **name= av_fetch(name_list, ARG(o), 0 );
16944 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
16947 else if (k == VERB) {
16949 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
16950 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
16951 } else if (k == LOGICAL)
16952 /* 2: embedded, otherwise 1 */
16953 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags);
16954 else if (k == ANYOF) {
16955 const U8 flags = ANYOF_FLAGS(o);
16957 SV* bitmap_invlist; /* Will hold what the bit map contains */
16960 if (OP(o) == ANYOFL)
16961 sv_catpvs(sv, "{loc}");
16962 if (flags & ANYOF_LOC_FOLD)
16963 sv_catpvs(sv, "{i}");
16964 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
16965 if (flags & ANYOF_INVERT)
16966 sv_catpvs(sv, "^");
16968 /* output what the standard cp 0-NUM_ANYOF_CODE_POINTS-1 bitmap matches
16970 do_sep = put_charclass_bitmap_innards(sv, ANYOF_BITMAP(o),
16973 /* output any special charclass tests (used entirely under use
16975 if (ANYOF_POSIXL_TEST_ANY_SET(o)) {
16977 for (i = 0; i < ANYOF_POSIXL_MAX; i++) {
16978 if (ANYOF_POSIXL_TEST(o,i)) {
16979 sv_catpv(sv, anyofs[i]);
16985 if ((flags & (ANYOF_MATCHES_ALL_ABOVE_BITMAP
16986 |ANYOF_HAS_UTF8_NONBITMAP_MATCHES
16987 |ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES
16991 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]);
16992 if (flags & ANYOF_INVERT)
16993 /*make sure the invert info is in each */
16994 sv_catpvs(sv, "^");
16997 if (flags & ANYOF_MATCHES_ALL_NON_UTF8_NON_ASCII) {
16998 sv_catpvs(sv, "{non-utf8-latin1-all}");
17001 if (flags & ANYOF_MATCHES_ALL_ABOVE_BITMAP)
17002 sv_catpvs(sv, "{above_bitmap_all}");
17004 if (ARG(o) != ANYOF_ONLY_HAS_BITMAP) {
17005 SV *lv; /* Set if there is something outside the bit map. */
17006 bool byte_output = FALSE; /* If something has been output */
17007 SV *only_utf8_locale;
17009 /* Get the stuff that wasn't in the bitmap. 'bitmap_invlist'
17010 * is used to guarantee that nothing in the bitmap gets
17012 (void) _get_regclass_nonbitmap_data(prog, o, FALSE,
17013 &lv, &only_utf8_locale,
17015 if (lv && lv != &PL_sv_undef) {
17016 char *s = savesvpv(lv);
17017 char * const origs = s;
17019 while (*s && *s != '\n')
17023 const char * const t = ++s;
17025 if (flags & ANYOF_HAS_NONBITMAP_NON_UTF8_MATCHES) {
17026 sv_catpvs(sv, "{outside bitmap}");
17029 sv_catpvs(sv, "{utf8}");
17033 sv_catpvs(sv, " ");
17039 /* Truncate very long output */
17040 if (s - origs > 256) {
17041 Perl_sv_catpvf(aTHX_ sv,
17043 (int) (s - origs - 1),
17049 else if (*s == '\t') {
17063 SvREFCNT_dec_NN(lv);
17066 if ((flags & ANYOF_LOC_FOLD)
17067 && only_utf8_locale
17068 && only_utf8_locale != &PL_sv_undef)
17071 int max_entries = 256;
17073 sv_catpvs(sv, "{utf8 locale}");
17074 invlist_iterinit(only_utf8_locale);
17075 while (invlist_iternext(only_utf8_locale,
17077 put_range(sv, start, end, FALSE);
17079 if (max_entries < 0) {
17080 sv_catpvs(sv, "...");
17084 invlist_iterfinish(only_utf8_locale);
17088 SvREFCNT_dec(bitmap_invlist);
17091 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
17093 else if (k == POSIXD || k == NPOSIXD) {
17094 U8 index = FLAGS(o) * 2;
17095 if (index < C_ARRAY_LENGTH(anyofs)) {
17096 if (*anyofs[index] != '[') {
17099 sv_catpv(sv, anyofs[index]);
17100 if (*anyofs[index] != '[') {
17105 Perl_sv_catpvf(aTHX_ sv, "[illegal type=%d])", index);
17108 else if (k == BOUND || k == NBOUND) {
17109 /* Must be synced with order of 'bound_type' in regcomp.h */
17110 const char * const bounds[] = {
17111 "", /* Traditional */
17116 sv_catpv(sv, bounds[FLAGS(o)]);
17118 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
17119 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
17120 else if (OP(o) == SBOL)
17121 Perl_sv_catpvf(aTHX_ sv, " /%s/", o->flags ? "\\A" : "^");
17123 PERL_UNUSED_CONTEXT;
17124 PERL_UNUSED_ARG(sv);
17125 PERL_UNUSED_ARG(o);
17126 PERL_UNUSED_ARG(prog);
17127 PERL_UNUSED_ARG(reginfo);
17128 PERL_UNUSED_ARG(pRExC_state);
17129 #endif /* DEBUGGING */
17135 Perl_re_intuit_string(pTHX_ REGEXP * const r)
17136 { /* Assume that RE_INTUIT is set */
17137 struct regexp *const prog = ReANY(r);
17138 GET_RE_DEBUG_FLAGS_DECL;
17140 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
17141 PERL_UNUSED_CONTEXT;
17145 const char * const s = SvPV_nolen_const(RX_UTF8(r)
17146 ? prog->check_utf8 : prog->check_substr);
17148 if (!PL_colorset) reginitcolors();
17149 PerlIO_printf(Perl_debug_log,
17150 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
17152 RX_UTF8(r) ? "utf8 " : "",
17153 PL_colors[5],PL_colors[0],
17156 (strlen(s) > 60 ? "..." : ""));
17159 /* use UTF8 check substring if regexp pattern itself is in UTF8 */
17160 return RX_UTF8(r) ? prog->check_utf8 : prog->check_substr;
17166 handles refcounting and freeing the perl core regexp structure. When
17167 it is necessary to actually free the structure the first thing it
17168 does is call the 'free' method of the regexp_engine associated to
17169 the regexp, allowing the handling of the void *pprivate; member
17170 first. (This routine is not overridable by extensions, which is why
17171 the extensions free is called first.)
17173 See regdupe and regdupe_internal if you change anything here.
17175 #ifndef PERL_IN_XSUB_RE
17177 Perl_pregfree(pTHX_ REGEXP *r)
17183 Perl_pregfree2(pTHX_ REGEXP *rx)
17185 struct regexp *const r = ReANY(rx);
17186 GET_RE_DEBUG_FLAGS_DECL;
17188 PERL_ARGS_ASSERT_PREGFREE2;
17190 if (r->mother_re) {
17191 ReREFCNT_dec(r->mother_re);
17193 CALLREGFREE_PVT(rx); /* free the private data */
17194 SvREFCNT_dec(RXp_PAREN_NAMES(r));
17195 Safefree(r->xpv_len_u.xpvlenu_pv);
17198 SvREFCNT_dec(r->anchored_substr);
17199 SvREFCNT_dec(r->anchored_utf8);
17200 SvREFCNT_dec(r->float_substr);
17201 SvREFCNT_dec(r->float_utf8);
17202 Safefree(r->substrs);
17204 RX_MATCH_COPY_FREE(rx);
17205 #ifdef PERL_ANY_COW
17206 SvREFCNT_dec(r->saved_copy);
17209 SvREFCNT_dec(r->qr_anoncv);
17210 rx->sv_u.svu_rx = 0;
17215 This is a hacky workaround to the structural issue of match results
17216 being stored in the regexp structure which is in turn stored in
17217 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
17218 could be PL_curpm in multiple contexts, and could require multiple
17219 result sets being associated with the pattern simultaneously, such
17220 as when doing a recursive match with (??{$qr})
17222 The solution is to make a lightweight copy of the regexp structure
17223 when a qr// is returned from the code executed by (??{$qr}) this
17224 lightweight copy doesn't actually own any of its data except for
17225 the starp/end and the actual regexp structure itself.
17231 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
17233 struct regexp *ret;
17234 struct regexp *const r = ReANY(rx);
17235 const bool islv = ret_x && SvTYPE(ret_x) == SVt_PVLV;
17237 PERL_ARGS_ASSERT_REG_TEMP_COPY;
17240 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
17242 SvOK_off((SV *)ret_x);
17244 /* For PVLVs, SvANY points to the xpvlv body while sv_u points
17245 to the regexp. (For SVt_REGEXPs, sv_upgrade has already
17246 made both spots point to the same regexp body.) */
17247 REGEXP *temp = (REGEXP *)newSV_type(SVt_REGEXP);
17248 assert(!SvPVX(ret_x));
17249 ret_x->sv_u.svu_rx = temp->sv_any;
17250 temp->sv_any = NULL;
17251 SvFLAGS(temp) = (SvFLAGS(temp) & ~SVTYPEMASK) | SVt_NULL;
17252 SvREFCNT_dec_NN(temp);
17253 /* SvCUR still resides in the xpvlv struct, so the regexp copy-
17254 ing below will not set it. */
17255 SvCUR_set(ret_x, SvCUR(rx));
17258 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
17259 sv_force_normal(sv) is called. */
17261 ret = ReANY(ret_x);
17263 SvFLAGS(ret_x) |= SvUTF8(rx);
17264 /* We share the same string buffer as the original regexp, on which we
17265 hold a reference count, incremented when mother_re is set below.
17266 The string pointer is copied here, being part of the regexp struct.
17268 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
17269 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
17271 const I32 npar = r->nparens+1;
17272 Newx(ret->offs, npar, regexp_paren_pair);
17273 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
17276 Newx(ret->substrs, 1, struct reg_substr_data);
17277 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
17279 SvREFCNT_inc_void(ret->anchored_substr);
17280 SvREFCNT_inc_void(ret->anchored_utf8);
17281 SvREFCNT_inc_void(ret->float_substr);
17282 SvREFCNT_inc_void(ret->float_utf8);
17284 /* check_substr and check_utf8, if non-NULL, point to either their
17285 anchored or float namesakes, and don't hold a second reference. */
17287 RX_MATCH_COPIED_off(ret_x);
17288 #ifdef PERL_ANY_COW
17289 ret->saved_copy = NULL;
17291 ret->mother_re = ReREFCNT_inc(r->mother_re ? r->mother_re : rx);
17292 SvREFCNT_inc_void(ret->qr_anoncv);
17298 /* regfree_internal()
17300 Free the private data in a regexp. This is overloadable by
17301 extensions. Perl takes care of the regexp structure in pregfree(),
17302 this covers the *pprivate pointer which technically perl doesn't
17303 know about, however of course we have to handle the
17304 regexp_internal structure when no extension is in use.
17306 Note this is called before freeing anything in the regexp
17311 Perl_regfree_internal(pTHX_ REGEXP * const rx)
17313 struct regexp *const r = ReANY(rx);
17314 RXi_GET_DECL(r,ri);
17315 GET_RE_DEBUG_FLAGS_DECL;
17317 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
17323 SV *dsv= sv_newmortal();
17324 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
17325 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
17326 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
17327 PL_colors[4],PL_colors[5],s);
17330 #ifdef RE_TRACK_PATTERN_OFFSETS
17332 Safefree(ri->u.offsets); /* 20010421 MJD */
17334 if (ri->code_blocks) {
17336 for (n = 0; n < ri->num_code_blocks; n++)
17337 SvREFCNT_dec(ri->code_blocks[n].src_regex);
17338 Safefree(ri->code_blocks);
17342 int n = ri->data->count;
17345 /* If you add a ->what type here, update the comment in regcomp.h */
17346 switch (ri->data->what[n]) {
17352 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
17355 Safefree(ri->data->data[n]);
17361 { /* Aho Corasick add-on structure for a trie node.
17362 Used in stclass optimization only */
17364 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
17365 #ifdef USE_ITHREADS
17369 refcount = --aho->refcount;
17372 PerlMemShared_free(aho->states);
17373 PerlMemShared_free(aho->fail);
17374 /* do this last!!!! */
17375 PerlMemShared_free(ri->data->data[n]);
17376 /* we should only ever get called once, so
17377 * assert as much, and also guard the free
17378 * which /might/ happen twice. At the least
17379 * it will make code anlyzers happy and it
17380 * doesn't cost much. - Yves */
17381 assert(ri->regstclass);
17382 if (ri->regstclass) {
17383 PerlMemShared_free(ri->regstclass);
17384 ri->regstclass = 0;
17391 /* trie structure. */
17393 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
17394 #ifdef USE_ITHREADS
17398 refcount = --trie->refcount;
17401 PerlMemShared_free(trie->charmap);
17402 PerlMemShared_free(trie->states);
17403 PerlMemShared_free(trie->trans);
17405 PerlMemShared_free(trie->bitmap);
17407 PerlMemShared_free(trie->jump);
17408 PerlMemShared_free(trie->wordinfo);
17409 /* do this last!!!! */
17410 PerlMemShared_free(ri->data->data[n]);
17415 Perl_croak(aTHX_ "panic: regfree data code '%c'",
17416 ri->data->what[n]);
17419 Safefree(ri->data->what);
17420 Safefree(ri->data);
17426 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
17427 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
17428 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
17431 re_dup - duplicate a regexp.
17433 This routine is expected to clone a given regexp structure. It is only
17434 compiled under USE_ITHREADS.
17436 After all of the core data stored in struct regexp is duplicated
17437 the regexp_engine.dupe method is used to copy any private data
17438 stored in the *pprivate pointer. This allows extensions to handle
17439 any duplication it needs to do.
17441 See pregfree() and regfree_internal() if you change anything here.
17443 #if defined(USE_ITHREADS)
17444 #ifndef PERL_IN_XSUB_RE
17446 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
17450 const struct regexp *r = ReANY(sstr);
17451 struct regexp *ret = ReANY(dstr);
17453 PERL_ARGS_ASSERT_RE_DUP_GUTS;
17455 npar = r->nparens+1;
17456 Newx(ret->offs, npar, regexp_paren_pair);
17457 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
17459 if (ret->substrs) {
17460 /* Do it this way to avoid reading from *r after the StructCopy().
17461 That way, if any of the sv_dup_inc()s dislodge *r from the L1
17462 cache, it doesn't matter. */
17463 const bool anchored = r->check_substr
17464 ? r->check_substr == r->anchored_substr
17465 : r->check_utf8 == r->anchored_utf8;
17466 Newx(ret->substrs, 1, struct reg_substr_data);
17467 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
17469 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
17470 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
17471 ret->float_substr = sv_dup_inc(ret->float_substr, param);
17472 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
17474 /* check_substr and check_utf8, if non-NULL, point to either their
17475 anchored or float namesakes, and don't hold a second reference. */
17477 if (ret->check_substr) {
17479 assert(r->check_utf8 == r->anchored_utf8);
17480 ret->check_substr = ret->anchored_substr;
17481 ret->check_utf8 = ret->anchored_utf8;
17483 assert(r->check_substr == r->float_substr);
17484 assert(r->check_utf8 == r->float_utf8);
17485 ret->check_substr = ret->float_substr;
17486 ret->check_utf8 = ret->float_utf8;
17488 } else if (ret->check_utf8) {
17490 ret->check_utf8 = ret->anchored_utf8;
17492 ret->check_utf8 = ret->float_utf8;
17497 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
17498 ret->qr_anoncv = MUTABLE_CV(sv_dup_inc((const SV *)ret->qr_anoncv, param));
17501 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
17503 if (RX_MATCH_COPIED(dstr))
17504 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
17506 ret->subbeg = NULL;
17507 #ifdef PERL_ANY_COW
17508 ret->saved_copy = NULL;
17511 /* Whether mother_re be set or no, we need to copy the string. We
17512 cannot refrain from copying it when the storage points directly to
17513 our mother regexp, because that's
17514 1: a buffer in a different thread
17515 2: something we no longer hold a reference on
17516 so we need to copy it locally. */
17517 RX_WRAPPED(dstr) = SAVEPVN(RX_WRAPPED(sstr), SvCUR(sstr)+1);
17518 ret->mother_re = NULL;
17520 #endif /* PERL_IN_XSUB_RE */
17525 This is the internal complement to regdupe() which is used to copy
17526 the structure pointed to by the *pprivate pointer in the regexp.
17527 This is the core version of the extension overridable cloning hook.
17528 The regexp structure being duplicated will be copied by perl prior
17529 to this and will be provided as the regexp *r argument, however
17530 with the /old/ structures pprivate pointer value. Thus this routine
17531 may override any copying normally done by perl.
17533 It returns a pointer to the new regexp_internal structure.
17537 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
17540 struct regexp *const r = ReANY(rx);
17541 regexp_internal *reti;
17543 RXi_GET_DECL(r,ri);
17545 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
17549 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode),
17550 char, regexp_internal);
17551 Copy(ri->program, reti->program, len+1, regnode);
17553 reti->num_code_blocks = ri->num_code_blocks;
17554 if (ri->code_blocks) {
17556 Newxc(reti->code_blocks, ri->num_code_blocks, struct reg_code_block,
17557 struct reg_code_block);
17558 Copy(ri->code_blocks, reti->code_blocks, ri->num_code_blocks,
17559 struct reg_code_block);
17560 for (n = 0; n < ri->num_code_blocks; n++)
17561 reti->code_blocks[n].src_regex = (REGEXP*)
17562 sv_dup_inc((SV*)(ri->code_blocks[n].src_regex), param);
17565 reti->code_blocks = NULL;
17567 reti->regstclass = NULL;
17570 struct reg_data *d;
17571 const int count = ri->data->count;
17574 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
17575 char, struct reg_data);
17576 Newx(d->what, count, U8);
17579 for (i = 0; i < count; i++) {
17580 d->what[i] = ri->data->what[i];
17581 switch (d->what[i]) {
17582 /* see also regcomp.h and regfree_internal() */
17583 case 'a': /* actually an AV, but the dup function is identical. */
17587 case 'u': /* actually an HV, but the dup function is identical. */
17588 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
17591 /* This is cheating. */
17592 Newx(d->data[i], 1, regnode_ssc);
17593 StructCopy(ri->data->data[i], d->data[i], regnode_ssc);
17594 reti->regstclass = (regnode*)d->data[i];
17597 /* Trie stclasses are readonly and can thus be shared
17598 * without duplication. We free the stclass in pregfree
17599 * when the corresponding reg_ac_data struct is freed.
17601 reti->regstclass= ri->regstclass;
17605 ((reg_trie_data*)ri->data->data[i])->refcount++;
17610 d->data[i] = ri->data->data[i];
17613 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'",
17614 ri->data->what[i]);
17623 reti->name_list_idx = ri->name_list_idx;
17625 #ifdef RE_TRACK_PATTERN_OFFSETS
17626 if (ri->u.offsets) {
17627 Newx(reti->u.offsets, 2*len+1, U32);
17628 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
17631 SetProgLen(reti,len);
17634 return (void*)reti;
17637 #endif /* USE_ITHREADS */
17639 #ifndef PERL_IN_XSUB_RE
17642 - regnext - dig the "next" pointer out of a node
17645 Perl_regnext(pTHX_ regnode *p)
17652 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
17653 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d",
17654 (int)OP(p), (int)REGNODE_MAX);
17657 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
17666 S_re_croak2(pTHX_ bool utf8, const char* pat1,const char* pat2,...)
17669 STRLEN l1 = strlen(pat1);
17670 STRLEN l2 = strlen(pat2);
17673 const char *message;
17675 PERL_ARGS_ASSERT_RE_CROAK2;
17681 Copy(pat1, buf, l1 , char);
17682 Copy(pat2, buf + l1, l2 , char);
17683 buf[l1 + l2] = '\n';
17684 buf[l1 + l2 + 1] = '\0';
17685 va_start(args, pat2);
17686 msv = vmess(buf, &args);
17688 message = SvPV_const(msv,l1);
17691 Copy(message, buf, l1 , char);
17692 /* l1-1 to avoid \n */
17693 Perl_croak(aTHX_ "%"UTF8f, UTF8fARG(utf8, l1-1, buf));
17696 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
17698 #ifndef PERL_IN_XSUB_RE
17700 Perl_save_re_context(pTHX)
17705 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
17708 const REGEXP * const rx = PM_GETRE(PL_curpm);
17710 nparens = RX_NPARENS(rx);
17713 /* RT #124109. This is a complete hack; in the SWASHNEW case we know
17714 * that PL_curpm will be null, but that utf8.pm and the modules it
17715 * loads will only use $1..$3.
17716 * The t/porting/re_context.t test file checks this assumption.
17721 for (i = 1; i <= nparens; i++) {
17722 char digits[TYPE_CHARS(long)];
17723 const STRLEN len = my_snprintf(digits, sizeof(digits),
17725 GV *const *const gvp
17726 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
17729 GV * const gv = *gvp;
17730 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
17740 S_put_code_point(pTHX_ SV *sv, UV c)
17742 PERL_ARGS_ASSERT_PUT_CODE_POINT;
17745 Perl_sv_catpvf(aTHX_ sv, "\\x{%04"UVXf"}", c);
17747 else if (isPRINT(c)) {
17748 const char string = (char) c;
17749 if (isBACKSLASHED_PUNCT(c))
17750 sv_catpvs(sv, "\\");
17751 sv_catpvn(sv, &string, 1);
17754 const char * const mnemonic = cntrl_to_mnemonic((char) c);
17756 Perl_sv_catpvf(aTHX_ sv, "%s", mnemonic);
17759 Perl_sv_catpvf(aTHX_ sv, "\\x{%02X}", (U8) c);
17764 #define MAX_PRINT_A MAX_PRINT_A_FOR_USE_ONLY_BY_REGCOMP_DOT_C
17767 S_put_range(pTHX_ SV *sv, UV start, const UV end, const bool allow_literals)
17769 /* Appends to 'sv' a displayable version of the range of code points from
17770 * 'start' to 'end'. It assumes that only ASCII printables are displayable
17771 * as-is (though some of these will be escaped by put_code_point()). */
17773 const unsigned int min_range_count = 3;
17775 assert(start <= end);
17777 PERL_ARGS_ASSERT_PUT_RANGE;
17779 while (start <= end) {
17781 const char * format;
17783 if (end - start < min_range_count) {
17785 /* Individual chars in short ranges */
17786 for (; start <= end; start++) {
17787 put_code_point(sv, start);
17792 /* If permitted by the input options, and there is a possibility that
17793 * this range contains a printable literal, look to see if there is
17795 if (allow_literals && start <= MAX_PRINT_A) {
17797 /* If the range begin isn't an ASCII printable, effectively split
17798 * the range into two parts:
17799 * 1) the portion before the first such printable,
17801 * and output them separately. */
17802 if (! isPRINT_A(start)) {
17803 UV temp_end = start + 1;
17805 /* There is no point looking beyond the final possible
17806 * printable, in MAX_PRINT_A */
17807 UV max = MIN(end, MAX_PRINT_A);
17809 while (temp_end <= max && ! isPRINT_A(temp_end)) {
17813 /* Here, temp_end points to one beyond the first printable if
17814 * found, or to one beyond 'max' if not. If none found, make
17815 * sure that we use the entire range */
17816 if (temp_end > MAX_PRINT_A) {
17817 temp_end = end + 1;
17820 /* Output the first part of the split range, the part that
17821 * doesn't have printables, with no looking for literals
17822 * (otherwise we would infinitely recurse) */
17823 put_range(sv, start, temp_end - 1, FALSE);
17825 /* The 2nd part of the range (if any) starts here. */
17828 /* We continue instead of dropping down because even if the 2nd
17829 * part is non-empty, it could be so short that we want to
17830 * output it specially, as tested for at the top of this loop.
17835 /* Here, 'start' is a printable ASCII. If it is an alphanumeric,
17836 * output a sub-range of just the digits or letters, then process
17837 * the remaining portion as usual. */
17838 if (isALPHANUMERIC_A(start)) {
17839 UV mask = (isDIGIT_A(start))
17844 UV temp_end = start + 1;
17846 /* Find the end of the sub-range that includes just the
17847 * characters in the same class as the first character in it */
17848 while (temp_end <= end && _generic_isCC_A(temp_end, mask)) {
17853 /* For short ranges, don't duplicate the code above to output
17854 * them; just call recursively */
17855 if (temp_end - start < min_range_count) {
17856 put_range(sv, start, temp_end, FALSE);
17858 else { /* Output as a range */
17859 put_code_point(sv, start);
17860 sv_catpvs(sv, "-");
17861 put_code_point(sv, temp_end);
17863 start = temp_end + 1;
17867 /* We output any other printables as individual characters */
17868 if (isPUNCT_A(start) || isSPACE_A(start)) {
17869 while (start <= end && (isPUNCT_A(start)
17870 || isSPACE_A(start)))
17872 put_code_point(sv, start);
17877 } /* End of looking for literals */
17879 /* Here is not to output as a literal. Some control characters have
17880 * mnemonic names. Split off any of those at the beginning and end of
17881 * the range to print mnemonically. It isn't possible for many of
17882 * these to be in a row, so this won't overwhelm with output */
17883 while (isMNEMONIC_CNTRL(start) && start <= end) {
17884 put_code_point(sv, start);
17887 if (start < end && isMNEMONIC_CNTRL(end)) {
17889 /* Here, the final character in the range has a mnemonic name.
17890 * Work backwards from the end to find the final non-mnemonic */
17891 UV temp_end = end - 1;
17892 while (isMNEMONIC_CNTRL(temp_end)) {
17896 /* And separately output the range that doesn't have mnemonics */
17897 put_range(sv, start, temp_end, FALSE);
17899 /* Then output the mnemonic trailing controls */
17900 start = temp_end + 1;
17901 while (start <= end) {
17902 put_code_point(sv, start);
17908 /* As a final resort, output the range or subrange as hex. */
17910 this_end = (end < NUM_ANYOF_CODE_POINTS)
17912 : NUM_ANYOF_CODE_POINTS - 1;
17913 format = (this_end < 256)
17914 ? "\\x{%02"UVXf"}-\\x{%02"UVXf"}"
17915 : "\\x{%04"UVXf"}-\\x{%04"UVXf"}";
17916 GCC_DIAG_IGNORE(-Wformat-nonliteral);
17917 Perl_sv_catpvf(aTHX_ sv, format, start, this_end);
17924 S_put_charclass_bitmap_innards(pTHX_ SV *sv, char *bitmap, SV** bitmap_invlist)
17926 /* Appends to 'sv' a displayable version of the innards of the bracketed
17927 * character class whose bitmap is 'bitmap'; Returns 'TRUE' if it actually
17928 * output anything, and bitmap_invlist, if not NULL, will point to an
17929 * inversion list of what is in the bit map */
17933 unsigned int punct_count = 0;
17934 SV* invlist = NULL;
17935 SV** invlist_ptr; /* Temporary, in case bitmap_invlist is NULL */
17936 bool allow_literals = TRUE;
17938 PERL_ARGS_ASSERT_PUT_CHARCLASS_BITMAP_INNARDS;
17940 invlist_ptr = (bitmap_invlist) ? bitmap_invlist : &invlist;
17942 /* Worst case is exactly every-other code point is in the list */
17943 *invlist_ptr = _new_invlist(NUM_ANYOF_CODE_POINTS / 2);
17945 /* Convert the bit map to an inversion list, keeping track of how many
17946 * ASCII puncts are set, including an extra amount for the backslashed
17948 for (i = 0; i < NUM_ANYOF_CODE_POINTS; i++) {
17949 if (BITMAP_TEST(bitmap, i)) {
17950 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, i);
17951 if (isPUNCT_A(i)) {
17953 if isBACKSLASHED_PUNCT(i) {
17960 /* Nothing to output */
17961 if (_invlist_len(*invlist_ptr) == 0) {
17962 SvREFCNT_dec(invlist);
17966 /* Generally, it is more readable if printable characters are output as
17967 * literals, but if a range (nearly) spans all of them, it's best to output
17968 * it as a single range. This code will use a single range if all but 2
17969 * printables are in it */
17970 invlist_iterinit(*invlist_ptr);
17971 while (invlist_iternext(*invlist_ptr, &start, &end)) {
17973 /* If range starts beyond final printable, it doesn't have any in it */
17974 if (start > MAX_PRINT_A) {
17978 /* In both ASCII and EBCDIC, a SPACE is the lowest printable. To span
17979 * all but two, the range must start and end no later than 2 from
17981 if (start < ' ' + 2 && end > MAX_PRINT_A - 2) {
17982 if (end > MAX_PRINT_A) {
17988 if (end - start >= MAX_PRINT_A - ' ' - 2) {
17989 allow_literals = FALSE;
17994 invlist_iterfinish(*invlist_ptr);
17996 /* The legibility of the output depends mostly on how many punctuation
17997 * characters are output. There are 32 possible ASCII ones, and some have
17998 * an additional backslash, bringing it to currently 36, so if any more
17999 * than 18 are to be output, we can instead output it as its complement,
18000 * yielding fewer puncts, and making it more legible. But give some weight
18001 * to the fact that outputting it as a complement is less legible than a
18002 * straight output, so don't complement unless we are somewhat over the 18
18004 if (allow_literals && punct_count > 22) {
18005 sv_catpvs(sv, "^");
18007 /* Add everything remaining to the list, so when we invert it just
18008 * below, it will be excluded */
18009 _invlist_union_complement_2nd(*invlist_ptr, PL_InBitmap, invlist_ptr);
18010 _invlist_invert(*invlist_ptr);
18013 /* Here we have figured things out. Output each range */
18014 invlist_iterinit(*invlist_ptr);
18015 while (invlist_iternext(*invlist_ptr, &start, &end)) {
18016 if (start >= NUM_ANYOF_CODE_POINTS) {
18019 put_range(sv, start, end, allow_literals);
18021 invlist_iterfinish(*invlist_ptr);
18026 #define CLEAR_OPTSTART \
18027 if (optstart) STMT_START { \
18028 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, \
18029 " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
18033 #define DUMPUNTIL(b,e) \
18035 node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
18037 STATIC const regnode *
18038 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
18039 const regnode *last, const regnode *plast,
18040 SV* sv, I32 indent, U32 depth)
18042 U8 op = PSEUDO; /* Arbitrary non-END op. */
18043 const regnode *next;
18044 const regnode *optstart= NULL;
18046 RXi_GET_DECL(r,ri);
18047 GET_RE_DEBUG_FLAGS_DECL;
18049 PERL_ARGS_ASSERT_DUMPUNTIL;
18051 #ifdef DEBUG_DUMPUNTIL
18052 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
18053 last ? last-start : 0,plast ? plast-start : 0);
18056 if (plast && plast < last)
18059 while (PL_regkind[op] != END && (!last || node < last)) {
18061 /* While that wasn't END last time... */
18064 if (op == CLOSE || op == WHILEM)
18066 next = regnext((regnode *)node);
18069 if (OP(node) == OPTIMIZED) {
18070 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
18077 regprop(r, sv, node, NULL, NULL);
18078 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
18079 (int)(2*indent + 1), "", SvPVX_const(sv));
18081 if (OP(node) != OPTIMIZED) {
18082 if (next == NULL) /* Next ptr. */
18083 PerlIO_printf(Perl_debug_log, " (0)");
18084 else if (PL_regkind[(U8)op] == BRANCH
18085 && PL_regkind[OP(next)] != BRANCH )
18086 PerlIO_printf(Perl_debug_log, " (FAIL)");
18088 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
18089 (void)PerlIO_putc(Perl_debug_log, '\n');
18093 if (PL_regkind[(U8)op] == BRANCHJ) {
18096 const regnode *nnode = (OP(next) == LONGJMP
18097 ? regnext((regnode *)next)
18099 if (last && nnode > last)
18101 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
18104 else if (PL_regkind[(U8)op] == BRANCH) {
18106 DUMPUNTIL(NEXTOPER(node), next);
18108 else if ( PL_regkind[(U8)op] == TRIE ) {
18109 const regnode *this_trie = node;
18110 const char op = OP(node);
18111 const U32 n = ARG(node);
18112 const reg_ac_data * const ac = op>=AHOCORASICK ?
18113 (reg_ac_data *)ri->data->data[n] :
18115 const reg_trie_data * const trie =
18116 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
18118 AV *const trie_words
18119 = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
18121 const regnode *nextbranch= NULL;
18124 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
18125 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
18127 PerlIO_printf(Perl_debug_log, "%*s%s ",
18128 (int)(2*(indent+3)), "",
18130 ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr),
18131 SvCUR(*elem_ptr), 60,
18132 PL_colors[0], PL_colors[1],
18134 ? PERL_PV_ESCAPE_UNI
18136 | PERL_PV_PRETTY_ELLIPSES
18137 | PERL_PV_PRETTY_LTGT
18142 U16 dist= trie->jump[word_idx+1];
18143 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
18144 (UV)((dist ? this_trie + dist : next) - start));
18147 nextbranch= this_trie + trie->jump[0];
18148 DUMPUNTIL(this_trie + dist, nextbranch);
18150 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
18151 nextbranch= regnext((regnode *)nextbranch);
18153 PerlIO_printf(Perl_debug_log, "\n");
18156 if (last && next > last)
18161 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
18162 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
18163 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
18165 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
18167 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
18169 else if ( op == PLUS || op == STAR) {
18170 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
18172 else if (PL_regkind[(U8)op] == ANYOF) {
18173 /* arglen 1 + class block */
18174 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_MATCHES_POSIXL)
18175 ? ANYOF_POSIXL_SKIP
18177 node = NEXTOPER(node);
18179 else if (PL_regkind[(U8)op] == EXACT) {
18180 /* Literal string, where present. */
18181 node += NODE_SZ_STR(node) - 1;
18182 node = NEXTOPER(node);
18185 node = NEXTOPER(node);
18186 node += regarglen[(U8)op];
18188 if (op == CURLYX || op == OPEN)
18192 #ifdef DEBUG_DUMPUNTIL
18193 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
18198 #endif /* DEBUGGING */
18201 * ex: set ts=8 sts=4 sw=4 et: