5 * 'A fair jaw-cracker dwarf-language must be.' --Samwise Gamgee
7 * [p.285 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
10 /* This file contains functions for compiling a regular expression. See
11 * also regexec.c which funnily enough, contains functions for executing
12 * a regular expression.
14 * This file is also copied at build time to ext/re/re_comp.c, where
15 * it's built with -DPERL_EXT_RE_BUILD -DPERL_EXT_RE_DEBUG -DPERL_EXT.
16 * This causes the main functions to be compiled under new names and with
17 * debugging support added, which makes "use re 'debug'" work.
20 /* NOTE: this is derived from Henry Spencer's regexp code, and should not
21 * confused with the original package (see point 3 below). Thanks, Henry!
24 /* Additional note: this code is very heavily munged from Henry's version
25 * in places. In some spots I've traded clarity for efficiency, so don't
26 * blame Henry for some of the lack of readability.
29 /* The names of the functions have been changed from regcomp and
30 * regexec to pregcomp and pregexec in order to avoid conflicts
31 * with the POSIX routines of the same names.
34 #ifdef PERL_EXT_RE_BUILD
39 * pregcomp and pregexec -- regsub and regerror are not used in perl
41 * Copyright (c) 1986 by University of Toronto.
42 * Written by Henry Spencer. Not derived from licensed software.
44 * Permission is granted to anyone to use this software for any
45 * purpose on any computer system, and to redistribute it freely,
46 * subject to the following restrictions:
48 * 1. The author is not responsible for the consequences of use of
49 * this software, no matter how awful, even if they arise
52 * 2. The origin of this software must not be misrepresented, either
53 * by explicit claim or by omission.
55 * 3. Altered versions must be plainly marked as such, and must not
56 * be misrepresented as being the original software.
59 **** Alterations to Henry's code are...
61 **** Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
62 **** 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
63 **** by Larry Wall and others
65 **** You may distribute under the terms of either the GNU General Public
66 **** License or the Artistic License, as specified in the README file.
69 * Beware that some of this code is subtly aware of the way operator
70 * precedence is structured in regular expressions. Serious changes in
71 * regular-expression syntax might require a total rethink.
74 #define PERL_IN_REGCOMP_C
77 #ifndef PERL_IN_XSUB_RE
82 #ifdef PERL_IN_XSUB_RE
88 #include "dquote_static.c"
95 # if defined(BUGGY_MSC6)
96 /* MSC 6.00A breaks on op/regexp.t test 85 unless we turn this off */
97 # pragma optimize("a",off)
98 /* But MSC 6.00A is happy with 'w', for aliases only across function calls*/
99 # pragma optimize("w",on )
100 # endif /* BUGGY_MSC6 */
104 #define STATIC static
107 typedef struct RExC_state_t {
108 U32 flags; /* are we folding, multilining? */
109 char *precomp; /* uncompiled string. */
110 REGEXP *rx_sv; /* The SV that is the regexp. */
111 regexp *rx; /* perl core regexp structure */
112 regexp_internal *rxi; /* internal data for regexp object pprivate field */
113 char *start; /* Start of input for compile */
114 char *end; /* End of input for compile */
115 char *parse; /* Input-scan pointer. */
116 I32 whilem_seen; /* number of WHILEM in this expr */
117 regnode *emit_start; /* Start of emitted-code area */
118 regnode *emit_bound; /* First regnode outside of the allocated space */
119 regnode *emit; /* Code-emit pointer; ®dummy = don't = compiling */
120 I32 naughty; /* How bad is this pattern? */
121 I32 sawback; /* Did we see \1, ...? */
123 I32 size; /* Code size. */
124 I32 npar; /* Capture buffer count, (OPEN). */
125 I32 cpar; /* Capture buffer count, (CLOSE). */
126 I32 nestroot; /* root parens we are in - used by accept */
130 regnode **open_parens; /* pointers to open parens */
131 regnode **close_parens; /* pointers to close parens */
132 regnode *opend; /* END node in program */
133 I32 utf8; /* whether the pattern is utf8 or not */
134 I32 orig_utf8; /* whether the pattern was originally in utf8 */
135 /* XXX use this for future optimisation of case
136 * where pattern must be upgraded to utf8. */
137 I32 uni_semantics; /* If a d charset modifier should use unicode
138 rules, even if the pattern is not in
140 HV *paren_names; /* Paren names */
142 regnode **recurse; /* Recurse regops */
143 I32 recurse_count; /* Number of recurse regops */
146 I32 override_recoding;
148 char *starttry; /* -Dr: where regtry was called. */
149 #define RExC_starttry (pRExC_state->starttry)
152 const char *lastparse;
154 AV *paren_name_list; /* idx -> name */
155 #define RExC_lastparse (pRExC_state->lastparse)
156 #define RExC_lastnum (pRExC_state->lastnum)
157 #define RExC_paren_name_list (pRExC_state->paren_name_list)
161 #define RExC_flags (pRExC_state->flags)
162 #define RExC_precomp (pRExC_state->precomp)
163 #define RExC_rx_sv (pRExC_state->rx_sv)
164 #define RExC_rx (pRExC_state->rx)
165 #define RExC_rxi (pRExC_state->rxi)
166 #define RExC_start (pRExC_state->start)
167 #define RExC_end (pRExC_state->end)
168 #define RExC_parse (pRExC_state->parse)
169 #define RExC_whilem_seen (pRExC_state->whilem_seen)
170 #ifdef RE_TRACK_PATTERN_OFFSETS
171 #define RExC_offsets (pRExC_state->rxi->u.offsets) /* I am not like the others */
173 #define RExC_emit (pRExC_state->emit)
174 #define RExC_emit_start (pRExC_state->emit_start)
175 #define RExC_emit_bound (pRExC_state->emit_bound)
176 #define RExC_naughty (pRExC_state->naughty)
177 #define RExC_sawback (pRExC_state->sawback)
178 #define RExC_seen (pRExC_state->seen)
179 #define RExC_size (pRExC_state->size)
180 #define RExC_npar (pRExC_state->npar)
181 #define RExC_nestroot (pRExC_state->nestroot)
182 #define RExC_extralen (pRExC_state->extralen)
183 #define RExC_seen_zerolen (pRExC_state->seen_zerolen)
184 #define RExC_seen_evals (pRExC_state->seen_evals)
185 #define RExC_utf8 (pRExC_state->utf8)
186 #define RExC_uni_semantics (pRExC_state->uni_semantics)
187 #define RExC_orig_utf8 (pRExC_state->orig_utf8)
188 #define RExC_open_parens (pRExC_state->open_parens)
189 #define RExC_close_parens (pRExC_state->close_parens)
190 #define RExC_opend (pRExC_state->opend)
191 #define RExC_paren_names (pRExC_state->paren_names)
192 #define RExC_recurse (pRExC_state->recurse)
193 #define RExC_recurse_count (pRExC_state->recurse_count)
194 #define RExC_in_lookbehind (pRExC_state->in_lookbehind)
195 #define RExC_contains_locale (pRExC_state->contains_locale)
196 #define RExC_override_recoding (pRExC_state->override_recoding)
199 #define ISMULT1(c) ((c) == '*' || (c) == '+' || (c) == '?')
200 #define ISMULT2(s) ((*s) == '*' || (*s) == '+' || (*s) == '?' || \
201 ((*s) == '{' && regcurly(s)))
204 #undef SPSTART /* dratted cpp namespace... */
207 * Flags to be passed up and down.
209 #define WORST 0 /* Worst case. */
210 #define HASWIDTH 0x01 /* Known to match non-null strings. */
212 /* Simple enough to be STAR/PLUS operand, in an EXACT node must be a single
213 * character, and if utf8, must be invariant. Note that this is not the same thing as REGNODE_SIMPLE */
215 #define SPSTART 0x04 /* Starts with * or +. */
216 #define TRYAGAIN 0x08 /* Weeded out a declaration. */
217 #define POSTPONED 0x10 /* (?1),(?&name), (??{...}) or similar */
219 #define REG_NODE_NUM(x) ((x) ? (int)((x)-RExC_emit_start) : -1)
221 /* whether trie related optimizations are enabled */
222 #if PERL_ENABLE_EXTENDED_TRIE_OPTIMISATION
223 #define TRIE_STUDY_OPT
224 #define FULL_TRIE_STUDY
230 #define PBYTE(u8str,paren) ((U8*)(u8str))[(paren) >> 3]
231 #define PBITVAL(paren) (1 << ((paren) & 7))
232 #define PAREN_TEST(u8str,paren) ( PBYTE(u8str,paren) & PBITVAL(paren))
233 #define PAREN_SET(u8str,paren) PBYTE(u8str,paren) |= PBITVAL(paren)
234 #define PAREN_UNSET(u8str,paren) PBYTE(u8str,paren) &= (~PBITVAL(paren))
236 /* If not already in utf8, do a longjmp back to the beginning */
237 #define UTF8_LONGJMP 42 /* Choose a value not likely to ever conflict */
238 #define REQUIRE_UTF8 STMT_START { \
239 if (! UTF) JMPENV_JUMP(UTF8_LONGJMP); \
242 /* About scan_data_t.
244 During optimisation we recurse through the regexp program performing
245 various inplace (keyhole style) optimisations. In addition study_chunk
246 and scan_commit populate this data structure with information about
247 what strings MUST appear in the pattern. We look for the longest
248 string that must appear at a fixed location, and we look for the
249 longest string that may appear at a floating location. So for instance
254 Both 'FOO' and 'A' are fixed strings. Both 'B' and 'BAR' are floating
255 strings (because they follow a .* construct). study_chunk will identify
256 both FOO and BAR as being the longest fixed and floating strings respectively.
258 The strings can be composites, for instance
262 will result in a composite fixed substring 'foo'.
264 For each string some basic information is maintained:
266 - offset or min_offset
267 This is the position the string must appear at, or not before.
268 It also implicitly (when combined with minlenp) tells us how many
269 characters must match before the string we are searching for.
270 Likewise when combined with minlenp and the length of the string it
271 tells us how many characters must appear after the string we have
275 Only used for floating strings. This is the rightmost point that
276 the string can appear at. If set to I32 max it indicates that the
277 string can occur infinitely far to the right.
280 A pointer to the minimum length of the pattern that the string
281 was found inside. This is important as in the case of positive
282 lookahead or positive lookbehind we can have multiple patterns
287 The minimum length of the pattern overall is 3, the minimum length
288 of the lookahead part is 3, but the minimum length of the part that
289 will actually match is 1. So 'FOO's minimum length is 3, but the
290 minimum length for the F is 1. This is important as the minimum length
291 is used to determine offsets in front of and behind the string being
292 looked for. Since strings can be composites this is the length of the
293 pattern at the time it was committed with a scan_commit. Note that
294 the length is calculated by study_chunk, so that the minimum lengths
295 are not known until the full pattern has been compiled, thus the
296 pointer to the value.
300 In the case of lookbehind the string being searched for can be
301 offset past the start point of the final matching string.
302 If this value was just blithely removed from the min_offset it would
303 invalidate some of the calculations for how many chars must match
304 before or after (as they are derived from min_offset and minlen and
305 the length of the string being searched for).
306 When the final pattern is compiled and the data is moved from the
307 scan_data_t structure into the regexp structure the information
308 about lookbehind is factored in, with the information that would
309 have been lost precalculated in the end_shift field for the
312 The fields pos_min and pos_delta are used to store the minimum offset
313 and the delta to the maximum offset at the current point in the pattern.
317 typedef struct scan_data_t {
318 /*I32 len_min; unused */
319 /*I32 len_delta; unused */
323 I32 last_end; /* min value, <0 unless valid. */
326 SV **longest; /* Either &l_fixed, or &l_float. */
327 SV *longest_fixed; /* longest fixed string found in pattern */
328 I32 offset_fixed; /* offset where it starts */
329 I32 *minlen_fixed; /* pointer to the minlen relevant to the string */
330 I32 lookbehind_fixed; /* is the position of the string modfied by LB */
331 SV *longest_float; /* longest floating string found in pattern */
332 I32 offset_float_min; /* earliest point in string it can appear */
333 I32 offset_float_max; /* latest point in string it can appear */
334 I32 *minlen_float; /* pointer to the minlen relevant to the string */
335 I32 lookbehind_float; /* is the position of the string modified by LB */
339 struct regnode_charclass_class *start_class;
343 * Forward declarations for pregcomp()'s friends.
346 static const scan_data_t zero_scan_data =
347 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ,0};
349 #define SF_BEFORE_EOL (SF_BEFORE_SEOL|SF_BEFORE_MEOL)
350 #define SF_BEFORE_SEOL 0x0001
351 #define SF_BEFORE_MEOL 0x0002
352 #define SF_FIX_BEFORE_EOL (SF_FIX_BEFORE_SEOL|SF_FIX_BEFORE_MEOL)
353 #define SF_FL_BEFORE_EOL (SF_FL_BEFORE_SEOL|SF_FL_BEFORE_MEOL)
356 # define SF_FIX_SHIFT_EOL (0+2)
357 # define SF_FL_SHIFT_EOL (0+4)
359 # define SF_FIX_SHIFT_EOL (+2)
360 # define SF_FL_SHIFT_EOL (+4)
363 #define SF_FIX_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FIX_SHIFT_EOL)
364 #define SF_FIX_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FIX_SHIFT_EOL)
366 #define SF_FL_BEFORE_SEOL (SF_BEFORE_SEOL << SF_FL_SHIFT_EOL)
367 #define SF_FL_BEFORE_MEOL (SF_BEFORE_MEOL << SF_FL_SHIFT_EOL) /* 0x20 */
368 #define SF_IS_INF 0x0040
369 #define SF_HAS_PAR 0x0080
370 #define SF_IN_PAR 0x0100
371 #define SF_HAS_EVAL 0x0200
372 #define SCF_DO_SUBSTR 0x0400
373 #define SCF_DO_STCLASS_AND 0x0800
374 #define SCF_DO_STCLASS_OR 0x1000
375 #define SCF_DO_STCLASS (SCF_DO_STCLASS_AND|SCF_DO_STCLASS_OR)
376 #define SCF_WHILEM_VISITED_POS 0x2000
378 #define SCF_TRIE_RESTUDY 0x4000 /* Do restudy? */
379 #define SCF_SEEN_ACCEPT 0x8000
381 #define UTF cBOOL(RExC_utf8)
382 #define LOC (get_regex_charset(RExC_flags) == REGEX_LOCALE_CHARSET)
383 #define UNI_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_UNICODE_CHARSET)
384 #define DEPENDS_SEMANTICS (get_regex_charset(RExC_flags) == REGEX_DEPENDS_CHARSET)
385 #define AT_LEAST_UNI_SEMANTICS (get_regex_charset(RExC_flags) >= REGEX_UNICODE_CHARSET)
386 #define ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_RESTRICTED_CHARSET)
387 #define MORE_ASCII_RESTRICTED (get_regex_charset(RExC_flags) == REGEX_ASCII_MORE_RESTRICTED_CHARSET)
388 #define AT_LEAST_ASCII_RESTRICTED (get_regex_charset(RExC_flags) >= REGEX_ASCII_RESTRICTED_CHARSET)
390 #define FOLD cBOOL(RExC_flags & RXf_PMf_FOLD)
392 #define OOB_UNICODE 12345678
393 #define OOB_NAMEDCLASS -1
395 #define CHR_SVLEN(sv) (UTF ? sv_len_utf8(sv) : SvCUR(sv))
396 #define CHR_DIST(a,b) (UTF ? utf8_distance(a,b) : a - b)
399 /* length of regex to show in messages that don't mark a position within */
400 #define RegexLengthToShowInErrorMessages 127
403 * If MARKER[12] are adjusted, be sure to adjust the constants at the top
404 * of t/op/regmesg.t, the tests in t/op/re_tests, and those in
405 * op/pragma/warn/regcomp.
407 #define MARKER1 "<-- HERE" /* marker as it appears in the description */
408 #define MARKER2 " <-- HERE " /* marker as it appears within the regex */
410 #define REPORT_LOCATION " in regex; marked by " MARKER1 " in m/%.*s" MARKER2 "%s/"
413 * Calls SAVEDESTRUCTOR_X if needed, then calls Perl_croak with the given
414 * arg. Show regex, up to a maximum length. If it's too long, chop and add
417 #define _FAIL(code) STMT_START { \
418 const char *ellipses = ""; \
419 IV len = RExC_end - RExC_precomp; \
422 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
423 if (len > RegexLengthToShowInErrorMessages) { \
424 /* chop 10 shorter than the max, to ensure meaning of "..." */ \
425 len = RegexLengthToShowInErrorMessages - 10; \
431 #define FAIL(msg) _FAIL( \
432 Perl_croak(aTHX_ "%s in regex m/%.*s%s/", \
433 msg, (int)len, RExC_precomp, ellipses))
435 #define FAIL2(msg,arg) _FAIL( \
436 Perl_croak(aTHX_ msg " in regex m/%.*s%s/", \
437 arg, (int)len, RExC_precomp, ellipses))
440 * Simple_vFAIL -- like FAIL, but marks the current location in the scan
442 #define Simple_vFAIL(m) STMT_START { \
443 const IV offset = RExC_parse - RExC_precomp; \
444 Perl_croak(aTHX_ "%s" REPORT_LOCATION, \
445 m, (int)offset, RExC_precomp, RExC_precomp + offset); \
449 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL()
451 #define vFAIL(m) STMT_START { \
453 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
458 * Like Simple_vFAIL(), but accepts two arguments.
460 #define Simple_vFAIL2(m,a1) STMT_START { \
461 const IV offset = RExC_parse - RExC_precomp; \
462 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, \
463 (int)offset, RExC_precomp, RExC_precomp + offset); \
467 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL2().
469 #define vFAIL2(m,a1) STMT_START { \
471 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
472 Simple_vFAIL2(m, a1); \
477 * Like Simple_vFAIL(), but accepts three arguments.
479 #define Simple_vFAIL3(m, a1, a2) STMT_START { \
480 const IV offset = RExC_parse - RExC_precomp; \
481 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, \
482 (int)offset, RExC_precomp, RExC_precomp + offset); \
486 * Calls SAVEDESTRUCTOR_X if needed, then Simple_vFAIL3().
488 #define vFAIL3(m,a1,a2) STMT_START { \
490 SAVEDESTRUCTOR_X(clear_re,(void*)RExC_rx_sv); \
491 Simple_vFAIL3(m, a1, a2); \
495 * Like Simple_vFAIL(), but accepts four arguments.
497 #define Simple_vFAIL4(m, a1, a2, a3) STMT_START { \
498 const IV offset = RExC_parse - RExC_precomp; \
499 S_re_croak2(aTHX_ m, REPORT_LOCATION, a1, a2, a3, \
500 (int)offset, RExC_precomp, RExC_precomp + offset); \
503 #define ckWARNreg(loc,m) STMT_START { \
504 const IV offset = loc - RExC_precomp; \
505 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
506 (int)offset, RExC_precomp, RExC_precomp + offset); \
509 #define ckWARNregdep(loc,m) STMT_START { \
510 const IV offset = loc - RExC_precomp; \
511 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
513 (int)offset, RExC_precomp, RExC_precomp + offset); \
516 #define ckWARN2regdep(loc,m, a1) STMT_START { \
517 const IV offset = loc - RExC_precomp; \
518 Perl_ck_warner_d(aTHX_ packWARN2(WARN_DEPRECATED, WARN_REGEXP), \
520 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
523 #define ckWARN2reg(loc, m, a1) STMT_START { \
524 const IV offset = loc - RExC_precomp; \
525 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
526 a1, (int)offset, RExC_precomp, RExC_precomp + offset); \
529 #define vWARN3(loc, m, a1, a2) STMT_START { \
530 const IV offset = loc - RExC_precomp; \
531 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
532 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
535 #define ckWARN3reg(loc, m, a1, a2) STMT_START { \
536 const IV offset = loc - RExC_precomp; \
537 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
538 a1, a2, (int)offset, RExC_precomp, RExC_precomp + offset); \
541 #define vWARN4(loc, m, a1, a2, a3) STMT_START { \
542 const IV offset = loc - RExC_precomp; \
543 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
544 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
547 #define ckWARN4reg(loc, m, a1, a2, a3) STMT_START { \
548 const IV offset = loc - RExC_precomp; \
549 Perl_ck_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
550 a1, a2, a3, (int)offset, RExC_precomp, RExC_precomp + offset); \
553 #define vWARN5(loc, m, a1, a2, a3, a4) STMT_START { \
554 const IV offset = loc - RExC_precomp; \
555 Perl_warner(aTHX_ packWARN(WARN_REGEXP), m REPORT_LOCATION, \
556 a1, a2, a3, a4, (int)offset, RExC_precomp, RExC_precomp + offset); \
560 /* Allow for side effects in s */
561 #define REGC(c,s) STMT_START { \
562 if (!SIZE_ONLY) *(s) = (c); else (void)(s); \
565 /* Macros for recording node offsets. 20001227 mjd@plover.com
566 * Nodes are numbered 1, 2, 3, 4. Node #n's position is recorded in
567 * element 2*n-1 of the array. Element #2n holds the byte length node #n.
568 * Element 0 holds the number n.
569 * Position is 1 indexed.
571 #ifndef RE_TRACK_PATTERN_OFFSETS
572 #define Set_Node_Offset_To_R(node,byte)
573 #define Set_Node_Offset(node,byte)
574 #define Set_Cur_Node_Offset
575 #define Set_Node_Length_To_R(node,len)
576 #define Set_Node_Length(node,len)
577 #define Set_Node_Cur_Length(node)
578 #define Node_Offset(n)
579 #define Node_Length(n)
580 #define Set_Node_Offset_Length(node,offset,len)
581 #define ProgLen(ri) ri->u.proglen
582 #define SetProgLen(ri,x) ri->u.proglen = x
584 #define ProgLen(ri) ri->u.offsets[0]
585 #define SetProgLen(ri,x) ri->u.offsets[0] = x
586 #define Set_Node_Offset_To_R(node,byte) STMT_START { \
588 MJD_OFFSET_DEBUG(("** (%d) offset of node %d is %d.\n", \
589 __LINE__, (int)(node), (int)(byte))); \
591 Perl_croak(aTHX_ "value of node is %d in Offset macro", (int)(node)); \
593 RExC_offsets[2*(node)-1] = (byte); \
598 #define Set_Node_Offset(node,byte) \
599 Set_Node_Offset_To_R((node)-RExC_emit_start, (byte)-RExC_start)
600 #define Set_Cur_Node_Offset Set_Node_Offset(RExC_emit, RExC_parse)
602 #define Set_Node_Length_To_R(node,len) STMT_START { \
604 MJD_OFFSET_DEBUG(("** (%d) size of node %d is %d.\n", \
605 __LINE__, (int)(node), (int)(len))); \
607 Perl_croak(aTHX_ "value of node is %d in Length macro", (int)(node)); \
609 RExC_offsets[2*(node)] = (len); \
614 #define Set_Node_Length(node,len) \
615 Set_Node_Length_To_R((node)-RExC_emit_start, len)
616 #define Set_Cur_Node_Length(len) Set_Node_Length(RExC_emit, len)
617 #define Set_Node_Cur_Length(node) \
618 Set_Node_Length(node, RExC_parse - parse_start)
620 /* Get offsets and lengths */
621 #define Node_Offset(n) (RExC_offsets[2*((n)-RExC_emit_start)-1])
622 #define Node_Length(n) (RExC_offsets[2*((n)-RExC_emit_start)])
624 #define Set_Node_Offset_Length(node,offset,len) STMT_START { \
625 Set_Node_Offset_To_R((node)-RExC_emit_start, (offset)); \
626 Set_Node_Length_To_R((node)-RExC_emit_start, (len)); \
630 #if PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS
631 #define EXPERIMENTAL_INPLACESCAN
632 #endif /*PERL_ENABLE_EXPERIMENTAL_REGEX_OPTIMISATIONS*/
634 #define DEBUG_STUDYDATA(str,data,depth) \
635 DEBUG_OPTIMISE_MORE_r(if(data){ \
636 PerlIO_printf(Perl_debug_log, \
637 "%*s" str "Pos:%"IVdf"/%"IVdf \
638 " Flags: 0x%"UVXf" Whilem_c: %"IVdf" Lcp: %"IVdf" %s", \
639 (int)(depth)*2, "", \
640 (IV)((data)->pos_min), \
641 (IV)((data)->pos_delta), \
642 (UV)((data)->flags), \
643 (IV)((data)->whilem_c), \
644 (IV)((data)->last_closep ? *((data)->last_closep) : -1), \
645 is_inf ? "INF " : "" \
647 if ((data)->last_found) \
648 PerlIO_printf(Perl_debug_log, \
649 "Last:'%s' %"IVdf":%"IVdf"/%"IVdf" %sFixed:'%s' @ %"IVdf \
650 " %sFloat: '%s' @ %"IVdf"/%"IVdf"", \
651 SvPVX_const((data)->last_found), \
652 (IV)((data)->last_end), \
653 (IV)((data)->last_start_min), \
654 (IV)((data)->last_start_max), \
655 ((data)->longest && \
656 (data)->longest==&((data)->longest_fixed)) ? "*" : "", \
657 SvPVX_const((data)->longest_fixed), \
658 (IV)((data)->offset_fixed), \
659 ((data)->longest && \
660 (data)->longest==&((data)->longest_float)) ? "*" : "", \
661 SvPVX_const((data)->longest_float), \
662 (IV)((data)->offset_float_min), \
663 (IV)((data)->offset_float_max) \
665 PerlIO_printf(Perl_debug_log,"\n"); \
668 static void clear_re(pTHX_ void *r);
670 /* Mark that we cannot extend a found fixed substring at this point.
671 Update the longest found anchored substring and the longest found
672 floating substrings if needed. */
675 S_scan_commit(pTHX_ const RExC_state_t *pRExC_state, scan_data_t *data, I32 *minlenp, int is_inf)
677 const STRLEN l = CHR_SVLEN(data->last_found);
678 const STRLEN old_l = CHR_SVLEN(*data->longest);
679 GET_RE_DEBUG_FLAGS_DECL;
681 PERL_ARGS_ASSERT_SCAN_COMMIT;
683 if ((l >= old_l) && ((l > old_l) || (data->flags & SF_BEFORE_EOL))) {
684 SvSetMagicSV(*data->longest, data->last_found);
685 if (*data->longest == data->longest_fixed) {
686 data->offset_fixed = l ? data->last_start_min : data->pos_min;
687 if (data->flags & SF_BEFORE_EOL)
689 |= ((data->flags & SF_BEFORE_EOL) << SF_FIX_SHIFT_EOL);
691 data->flags &= ~SF_FIX_BEFORE_EOL;
692 data->minlen_fixed=minlenp;
693 data->lookbehind_fixed=0;
695 else { /* *data->longest == data->longest_float */
696 data->offset_float_min = l ? data->last_start_min : data->pos_min;
697 data->offset_float_max = (l
698 ? data->last_start_max
699 : data->pos_min + data->pos_delta);
700 if (is_inf || (U32)data->offset_float_max > (U32)I32_MAX)
701 data->offset_float_max = I32_MAX;
702 if (data->flags & SF_BEFORE_EOL)
704 |= ((data->flags & SF_BEFORE_EOL) << SF_FL_SHIFT_EOL);
706 data->flags &= ~SF_FL_BEFORE_EOL;
707 data->minlen_float=minlenp;
708 data->lookbehind_float=0;
711 SvCUR_set(data->last_found, 0);
713 SV * const sv = data->last_found;
714 if (SvUTF8(sv) && SvMAGICAL(sv)) {
715 MAGIC * const mg = mg_find(sv, PERL_MAGIC_utf8);
721 data->flags &= ~SF_BEFORE_EOL;
722 DEBUG_STUDYDATA("commit: ",data,0);
725 /* Can match anything (initialization) */
727 S_cl_anything(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
729 PERL_ARGS_ASSERT_CL_ANYTHING;
731 ANYOF_BITMAP_SETALL(cl);
732 cl->flags = ANYOF_CLASS|ANYOF_EOS|ANYOF_UNICODE_ALL
733 |ANYOF_LOC_NONBITMAP_FOLD|ANYOF_NON_UTF8_LATIN1_ALL;
735 /* If any portion of the regex is to operate under locale rules,
736 * initialization includes it. The reason this isn't done for all regexes
737 * is that the optimizer was written under the assumption that locale was
738 * all-or-nothing. Given the complexity and lack of documentation in the
739 * optimizer, and that there are inadequate test cases for locale, so many
740 * parts of it may not work properly, it is safest to avoid locale unless
742 if (RExC_contains_locale) {
743 ANYOF_CLASS_SETALL(cl); /* /l uses class */
744 cl->flags |= ANYOF_LOCALE;
747 ANYOF_CLASS_ZERO(cl); /* Only /l uses class now */
751 /* Can match anything (initialization) */
753 S_cl_is_anything(const struct regnode_charclass_class *cl)
757 PERL_ARGS_ASSERT_CL_IS_ANYTHING;
759 for (value = 0; value <= ANYOF_MAX; value += 2)
760 if (ANYOF_CLASS_TEST(cl, value) && ANYOF_CLASS_TEST(cl, value + 1))
762 if (!(cl->flags & ANYOF_UNICODE_ALL))
764 if (!ANYOF_BITMAP_TESTALLSET((const void*)cl))
769 /* Can match anything (initialization) */
771 S_cl_init(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl)
773 PERL_ARGS_ASSERT_CL_INIT;
775 Zero(cl, 1, struct regnode_charclass_class);
777 cl_anything(pRExC_state, cl);
778 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
781 /* These two functions currently do the exact same thing */
782 #define cl_init_zero S_cl_init
784 /* 'AND' a given class with another one. Can create false positives. 'cl'
785 * should not be inverted. 'and_with->flags & ANYOF_CLASS' should be 0 if
786 * 'and_with' is a regnode_charclass instead of a regnode_charclass_class. */
788 S_cl_and(struct regnode_charclass_class *cl,
789 const struct regnode_charclass_class *and_with)
791 PERL_ARGS_ASSERT_CL_AND;
793 assert(and_with->type == ANYOF);
795 /* I (khw) am not sure all these restrictions are necessary XXX */
796 if (!(ANYOF_CLASS_TEST_ANY_SET(and_with))
797 && !(ANYOF_CLASS_TEST_ANY_SET(cl))
798 && (and_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
799 && !(and_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
800 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) {
803 if (and_with->flags & ANYOF_INVERT)
804 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
805 cl->bitmap[i] &= ~and_with->bitmap[i];
807 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
808 cl->bitmap[i] &= and_with->bitmap[i];
809 } /* XXXX: logic is complicated otherwise, leave it along for a moment. */
811 if (and_with->flags & ANYOF_INVERT) {
813 /* Here, the and'ed node is inverted. Get the AND of the flags that
814 * aren't affected by the inversion. Those that are affected are
815 * handled individually below */
816 U8 affected_flags = cl->flags & ~INVERSION_UNAFFECTED_FLAGS;
817 cl->flags &= (and_with->flags & INVERSION_UNAFFECTED_FLAGS);
818 cl->flags |= affected_flags;
820 /* We currently don't know how to deal with things that aren't in the
821 * bitmap, but we know that the intersection is no greater than what
822 * is already in cl, so let there be false positives that get sorted
823 * out after the synthetic start class succeeds, and the node is
824 * matched for real. */
826 /* The inversion of these two flags indicate that the resulting
827 * intersection doesn't have them */
828 if (and_with->flags & ANYOF_UNICODE_ALL) {
829 cl->flags &= ~ANYOF_UNICODE_ALL;
831 if (and_with->flags & ANYOF_NON_UTF8_LATIN1_ALL) {
832 cl->flags &= ~ANYOF_NON_UTF8_LATIN1_ALL;
835 else { /* and'd node is not inverted */
836 U8 outside_bitmap_but_not_utf8; /* Temp variable */
838 if (! ANYOF_NONBITMAP(and_with)) {
840 /* Here 'and_with' doesn't match anything outside the bitmap
841 * (except possibly ANYOF_UNICODE_ALL), which means the
842 * intersection can't either, except for ANYOF_UNICODE_ALL, in
843 * which case we don't know what the intersection is, but it's no
844 * greater than what cl already has, so can just leave it alone,
845 * with possible false positives */
846 if (! (and_with->flags & ANYOF_UNICODE_ALL)) {
847 ARG_SET(cl, ANYOF_NONBITMAP_EMPTY);
848 cl->flags &= ~ANYOF_NONBITMAP_NON_UTF8;
851 else if (! ANYOF_NONBITMAP(cl)) {
853 /* Here, 'and_with' does match something outside the bitmap, and cl
854 * doesn't have a list of things to match outside the bitmap. If
855 * cl can match all code points above 255, the intersection will
856 * be those above-255 code points that 'and_with' matches. If cl
857 * can't match all Unicode code points, it means that it can't
858 * match anything outside the bitmap (since the 'if' that got us
859 * into this block tested for that), so we leave the bitmap empty.
861 if (cl->flags & ANYOF_UNICODE_ALL) {
862 ARG_SET(cl, ARG(and_with));
864 /* and_with's ARG may match things that don't require UTF8.
865 * And now cl's will too, in spite of this being an 'and'. See
866 * the comments below about the kludge */
867 cl->flags |= and_with->flags & ANYOF_NONBITMAP_NON_UTF8;
871 /* Here, both 'and_with' and cl match something outside the
872 * bitmap. Currently we do not do the intersection, so just match
873 * whatever cl had at the beginning. */
877 /* Take the intersection of the two sets of flags. However, the
878 * ANYOF_NONBITMAP_NON_UTF8 flag is treated as an 'or'. This is a
879 * kludge around the fact that this flag is not treated like the others
880 * which are initialized in cl_anything(). The way the optimizer works
881 * is that the synthetic start class (SSC) is initialized to match
882 * anything, and then the first time a real node is encountered, its
883 * values are AND'd with the SSC's with the result being the values of
884 * the real node. However, there are paths through the optimizer where
885 * the AND never gets called, so those initialized bits are set
886 * inappropriately, which is not usually a big deal, as they just cause
887 * false positives in the SSC, which will just mean a probably
888 * imperceptible slow down in execution. However this bit has a
889 * higher false positive consequence in that it can cause utf8.pm,
890 * utf8_heavy.pl ... to be loaded when not necessary, which is a much
891 * bigger slowdown and also causes significant extra memory to be used.
892 * In order to prevent this, the code now takes a different tack. The
893 * bit isn't set unless some part of the regular expression needs it,
894 * but once set it won't get cleared. This means that these extra
895 * modules won't get loaded unless there was some path through the
896 * pattern that would have required them anyway, and so any false
897 * positives that occur by not ANDing them out when they could be
898 * aren't as severe as they would be if we treated this bit like all
900 outside_bitmap_but_not_utf8 = (cl->flags | and_with->flags)
901 & ANYOF_NONBITMAP_NON_UTF8;
902 cl->flags &= and_with->flags;
903 cl->flags |= outside_bitmap_but_not_utf8;
907 /* 'OR' a given class with another one. Can create false positives. 'cl'
908 * should not be inverted. 'or_with->flags & ANYOF_CLASS' should be 0 if
909 * 'or_with' is a regnode_charclass instead of a regnode_charclass_class. */
911 S_cl_or(const RExC_state_t *pRExC_state, struct regnode_charclass_class *cl, const struct regnode_charclass_class *or_with)
913 PERL_ARGS_ASSERT_CL_OR;
915 if (or_with->flags & ANYOF_INVERT) {
917 /* Here, the or'd node is to be inverted. This means we take the
918 * complement of everything not in the bitmap, but currently we don't
919 * know what that is, so give up and match anything */
920 if (ANYOF_NONBITMAP(or_with)) {
921 cl_anything(pRExC_state, cl);
924 * (B1 | CL1) | (!B2 & !CL2) = (B1 | !B2 & !CL2) | (CL1 | (!B2 & !CL2))
925 * <= (B1 | !B2) | (CL1 | !CL2)
926 * which is wasteful if CL2 is small, but we ignore CL2:
927 * (B1 | CL1) | (!B2 & !CL2) <= (B1 | CL1) | !B2 = (B1 | !B2) | CL1
928 * XXXX Can we handle case-fold? Unclear:
929 * (OK1(i) | OK1(i')) | !(OK1(i) | OK1(i')) =
930 * (OK1(i) | OK1(i')) | (!OK1(i) & !OK1(i'))
932 else if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
933 && !(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
934 && !(cl->flags & ANYOF_LOC_NONBITMAP_FOLD) ) {
937 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
938 cl->bitmap[i] |= ~or_with->bitmap[i];
939 } /* XXXX: logic is complicated otherwise */
941 cl_anything(pRExC_state, cl);
944 /* And, we can just take the union of the flags that aren't affected
945 * by the inversion */
946 cl->flags |= or_with->flags & INVERSION_UNAFFECTED_FLAGS;
948 /* For the remaining flags:
949 ANYOF_UNICODE_ALL and inverted means to not match anything above
950 255, which means that the union with cl should just be
951 what cl has in it, so can ignore this flag
952 ANYOF_NON_UTF8_LATIN1_ALL and inverted means if not utf8 and ord
953 is 127-255 to match them, but then invert that, so the
954 union with cl should just be what cl has in it, so can
957 } else { /* 'or_with' is not inverted */
958 /* (B1 | CL1) | (B2 | CL2) = (B1 | B2) | (CL1 | CL2)) */
959 if ( (or_with->flags & ANYOF_LOCALE) == (cl->flags & ANYOF_LOCALE)
960 && (!(or_with->flags & ANYOF_LOC_NONBITMAP_FOLD)
961 || (cl->flags & ANYOF_LOC_NONBITMAP_FOLD)) ) {
964 /* OR char bitmap and class bitmap separately */
965 for (i = 0; i < ANYOF_BITMAP_SIZE; i++)
966 cl->bitmap[i] |= or_with->bitmap[i];
967 if (ANYOF_CLASS_TEST_ANY_SET(or_with)) {
968 for (i = 0; i < ANYOF_CLASSBITMAP_SIZE; i++)
969 cl->classflags[i] |= or_with->classflags[i];
970 cl->flags |= ANYOF_CLASS;
973 else { /* XXXX: logic is complicated, leave it along for a moment. */
974 cl_anything(pRExC_state, cl);
977 if (ANYOF_NONBITMAP(or_with)) {
979 /* Use the added node's outside-the-bit-map match if there isn't a
980 * conflict. If there is a conflict (both nodes match something
981 * outside the bitmap, but what they match outside is not the same
982 * pointer, and hence not easily compared until XXX we extend
983 * inversion lists this far), give up and allow the start class to
984 * match everything outside the bitmap. If that stuff is all above
985 * 255, can just set UNICODE_ALL, otherwise caould be anything. */
986 if (! ANYOF_NONBITMAP(cl)) {
987 ARG_SET(cl, ARG(or_with));
989 else if (ARG(cl) != ARG(or_with)) {
991 if ((or_with->flags & ANYOF_NONBITMAP_NON_UTF8)) {
992 cl_anything(pRExC_state, cl);
995 cl->flags |= ANYOF_UNICODE_ALL;
1000 /* Take the union */
1001 cl->flags |= or_with->flags;
1005 #define TRIE_LIST_ITEM(state,idx) (trie->states[state].trans.list)[ idx ]
1006 #define TRIE_LIST_CUR(state) ( TRIE_LIST_ITEM( state, 0 ).forid )
1007 #define TRIE_LIST_LEN(state) ( TRIE_LIST_ITEM( state, 0 ).newstate )
1008 #define TRIE_LIST_USED(idx) ( trie->states[state].trans.list ? (TRIE_LIST_CUR( idx ) - 1) : 0 )
1013 dump_trie(trie,widecharmap,revcharmap)
1014 dump_trie_interim_list(trie,widecharmap,revcharmap,next_alloc)
1015 dump_trie_interim_table(trie,widecharmap,revcharmap,next_alloc)
1017 These routines dump out a trie in a somewhat readable format.
1018 The _interim_ variants are used for debugging the interim
1019 tables that are used to generate the final compressed
1020 representation which is what dump_trie expects.
1022 Part of the reason for their existence is to provide a form
1023 of documentation as to how the different representations function.
1028 Dumps the final compressed table form of the trie to Perl_debug_log.
1029 Used for debugging make_trie().
1033 S_dump_trie(pTHX_ const struct _reg_trie_data *trie, HV *widecharmap,
1034 AV *revcharmap, U32 depth)
1037 SV *sv=sv_newmortal();
1038 int colwidth= widecharmap ? 6 : 4;
1040 GET_RE_DEBUG_FLAGS_DECL;
1042 PERL_ARGS_ASSERT_DUMP_TRIE;
1044 PerlIO_printf( Perl_debug_log, "%*sChar : %-6s%-6s%-4s ",
1045 (int)depth * 2 + 2,"",
1046 "Match","Base","Ofs" );
1048 for( state = 0 ; state < trie->uniquecharcount ; state++ ) {
1049 SV ** const tmp = av_fetch( revcharmap, state, 0);
1051 PerlIO_printf( Perl_debug_log, "%*s",
1053 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1054 PL_colors[0], PL_colors[1],
1055 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1056 PERL_PV_ESCAPE_FIRSTCHAR
1061 PerlIO_printf( Perl_debug_log, "\n%*sState|-----------------------",
1062 (int)depth * 2 + 2,"");
1064 for( state = 0 ; state < trie->uniquecharcount ; state++ )
1065 PerlIO_printf( Perl_debug_log, "%.*s", colwidth, "--------");
1066 PerlIO_printf( Perl_debug_log, "\n");
1068 for( state = 1 ; state < trie->statecount ; state++ ) {
1069 const U32 base = trie->states[ state ].trans.base;
1071 PerlIO_printf( Perl_debug_log, "%*s#%4"UVXf"|", (int)depth * 2 + 2,"", (UV)state);
1073 if ( trie->states[ state ].wordnum ) {
1074 PerlIO_printf( Perl_debug_log, " W%4X", trie->states[ state ].wordnum );
1076 PerlIO_printf( Perl_debug_log, "%6s", "" );
1079 PerlIO_printf( Perl_debug_log, " @%4"UVXf" ", (UV)base );
1084 while( ( base + ofs < trie->uniquecharcount ) ||
1085 ( base + ofs - trie->uniquecharcount < trie->lasttrans
1086 && trie->trans[ base + ofs - trie->uniquecharcount ].check != state))
1089 PerlIO_printf( Perl_debug_log, "+%2"UVXf"[ ", (UV)ofs);
1091 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
1092 if ( ( base + ofs >= trie->uniquecharcount ) &&
1093 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
1094 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
1096 PerlIO_printf( Perl_debug_log, "%*"UVXf,
1098 (UV)trie->trans[ base + ofs - trie->uniquecharcount ].next );
1100 PerlIO_printf( Perl_debug_log, "%*s",colwidth," ." );
1104 PerlIO_printf( Perl_debug_log, "]");
1107 PerlIO_printf( Perl_debug_log, "\n" );
1109 PerlIO_printf(Perl_debug_log, "%*sword_info N:(prev,len)=", (int)depth*2, "");
1110 for (word=1; word <= trie->wordcount; word++) {
1111 PerlIO_printf(Perl_debug_log, " %d:(%d,%d)",
1112 (int)word, (int)(trie->wordinfo[word].prev),
1113 (int)(trie->wordinfo[word].len));
1115 PerlIO_printf(Perl_debug_log, "\n" );
1118 Dumps a fully constructed but uncompressed trie in list form.
1119 List tries normally only are used for construction when the number of
1120 possible chars (trie->uniquecharcount) is very high.
1121 Used for debugging make_trie().
1124 S_dump_trie_interim_list(pTHX_ const struct _reg_trie_data *trie,
1125 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1129 SV *sv=sv_newmortal();
1130 int colwidth= widecharmap ? 6 : 4;
1131 GET_RE_DEBUG_FLAGS_DECL;
1133 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_LIST;
1135 /* print out the table precompression. */
1136 PerlIO_printf( Perl_debug_log, "%*sState :Word | Transition Data\n%*s%s",
1137 (int)depth * 2 + 2,"", (int)depth * 2 + 2,"",
1138 "------:-----+-----------------\n" );
1140 for( state=1 ; state < next_alloc ; state ++ ) {
1143 PerlIO_printf( Perl_debug_log, "%*s %4"UVXf" :",
1144 (int)depth * 2 + 2,"", (UV)state );
1145 if ( ! trie->states[ state ].wordnum ) {
1146 PerlIO_printf( Perl_debug_log, "%5s| ","");
1148 PerlIO_printf( Perl_debug_log, "W%4x| ",
1149 trie->states[ state ].wordnum
1152 for( charid = 1 ; charid <= TRIE_LIST_USED( state ) ; charid++ ) {
1153 SV ** const tmp = av_fetch( revcharmap, TRIE_LIST_ITEM(state,charid).forid, 0);
1155 PerlIO_printf( Perl_debug_log, "%*s:%3X=%4"UVXf" | ",
1157 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1158 PL_colors[0], PL_colors[1],
1159 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1160 PERL_PV_ESCAPE_FIRSTCHAR
1162 TRIE_LIST_ITEM(state,charid).forid,
1163 (UV)TRIE_LIST_ITEM(state,charid).newstate
1166 PerlIO_printf(Perl_debug_log, "\n%*s| ",
1167 (int)((depth * 2) + 14), "");
1170 PerlIO_printf( Perl_debug_log, "\n");
1175 Dumps a fully constructed but uncompressed trie in table form.
1176 This is the normal DFA style state transition table, with a few
1177 twists to facilitate compression later.
1178 Used for debugging make_trie().
1181 S_dump_trie_interim_table(pTHX_ const struct _reg_trie_data *trie,
1182 HV *widecharmap, AV *revcharmap, U32 next_alloc,
1187 SV *sv=sv_newmortal();
1188 int colwidth= widecharmap ? 6 : 4;
1189 GET_RE_DEBUG_FLAGS_DECL;
1191 PERL_ARGS_ASSERT_DUMP_TRIE_INTERIM_TABLE;
1194 print out the table precompression so that we can do a visual check
1195 that they are identical.
1198 PerlIO_printf( Perl_debug_log, "%*sChar : ",(int)depth * 2 + 2,"" );
1200 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1201 SV ** const tmp = av_fetch( revcharmap, charid, 0);
1203 PerlIO_printf( Perl_debug_log, "%*s",
1205 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), colwidth,
1206 PL_colors[0], PL_colors[1],
1207 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
1208 PERL_PV_ESCAPE_FIRSTCHAR
1214 PerlIO_printf( Perl_debug_log, "\n%*sState+-",(int)depth * 2 + 2,"" );
1216 for( charid=0 ; charid < trie->uniquecharcount ; charid++ ) {
1217 PerlIO_printf( Perl_debug_log, "%.*s", colwidth,"--------");
1220 PerlIO_printf( Perl_debug_log, "\n" );
1222 for( state=1 ; state < next_alloc ; state += trie->uniquecharcount ) {
1224 PerlIO_printf( Perl_debug_log, "%*s%4"UVXf" : ",
1225 (int)depth * 2 + 2,"",
1226 (UV)TRIE_NODENUM( state ) );
1228 for( charid = 0 ; charid < trie->uniquecharcount ; charid++ ) {
1229 UV v=(UV)SAFE_TRIE_NODENUM( trie->trans[ state + charid ].next );
1231 PerlIO_printf( Perl_debug_log, "%*"UVXf, colwidth, v );
1233 PerlIO_printf( Perl_debug_log, "%*s", colwidth, "." );
1235 if ( ! trie->states[ TRIE_NODENUM( state ) ].wordnum ) {
1236 PerlIO_printf( Perl_debug_log, " (%4"UVXf")\n", (UV)trie->trans[ state ].check );
1238 PerlIO_printf( Perl_debug_log, " (%4"UVXf") W%4X\n", (UV)trie->trans[ state ].check,
1239 trie->states[ TRIE_NODENUM( state ) ].wordnum );
1247 /* make_trie(startbranch,first,last,tail,word_count,flags,depth)
1248 startbranch: the first branch in the whole branch sequence
1249 first : start branch of sequence of branch-exact nodes.
1250 May be the same as startbranch
1251 last : Thing following the last branch.
1252 May be the same as tail.
1253 tail : item following the branch sequence
1254 count : words in the sequence
1255 flags : currently the OP() type we will be building one of /EXACT(|F|Fl)/
1256 depth : indent depth
1258 Inplace optimizes a sequence of 2 or more Branch-Exact nodes into a TRIE node.
1260 A trie is an N'ary tree where the branches are determined by digital
1261 decomposition of the key. IE, at the root node you look up the 1st character and
1262 follow that branch repeat until you find the end of the branches. Nodes can be
1263 marked as "accepting" meaning they represent a complete word. Eg:
1267 would convert into the following structure. Numbers represent states, letters
1268 following numbers represent valid transitions on the letter from that state, if
1269 the number is in square brackets it represents an accepting state, otherwise it
1270 will be in parenthesis.
1272 +-h->+-e->[3]-+-r->(8)-+-s->[9]
1276 (1) +-i->(6)-+-s->[7]
1278 +-s->(3)-+-h->(4)-+-e->[5]
1280 Accept Word Mapping: 3=>1 (he),5=>2 (she), 7=>3 (his), 9=>4 (hers)
1282 This shows that when matching against the string 'hers' we will begin at state 1
1283 read 'h' and move to state 2, read 'e' and move to state 3 which is accepting,
1284 then read 'r' and go to state 8 followed by 's' which takes us to state 9 which
1285 is also accepting. Thus we know that we can match both 'he' and 'hers' with a
1286 single traverse. We store a mapping from accepting to state to which word was
1287 matched, and then when we have multiple possibilities we try to complete the
1288 rest of the regex in the order in which they occured in the alternation.
1290 The only prior NFA like behaviour that would be changed by the TRIE support is
1291 the silent ignoring of duplicate alternations which are of the form:
1293 / (DUPE|DUPE) X? (?{ ... }) Y /x
1295 Thus EVAL blocks following a trie may be called a different number of times with
1296 and without the optimisation. With the optimisations dupes will be silently
1297 ignored. This inconsistent behaviour of EVAL type nodes is well established as
1298 the following demonstrates:
1300 'words'=~/(word|word|word)(?{ print $1 })[xyz]/
1302 which prints out 'word' three times, but
1304 'words'=~/(word|word|word)(?{ print $1 })S/
1306 which doesnt print it out at all. This is due to other optimisations kicking in.
1308 Example of what happens on a structural level:
1310 The regexp /(ac|ad|ab)+/ will produce the following debug output:
1312 1: CURLYM[1] {1,32767}(18)
1323 This would be optimizable with startbranch=5, first=5, last=16, tail=16
1324 and should turn into:
1326 1: CURLYM[1] {1,32767}(18)
1328 [Words:3 Chars Stored:6 Unique Chars:4 States:5 NCP:1]
1336 Cases where tail != last would be like /(?foo|bar)baz/:
1346 which would be optimizable with startbranch=1, first=1, last=7, tail=8
1347 and would end up looking like:
1350 [Words:2 Chars Stored:6 Unique Chars:5 States:7 NCP:1]
1357 d = uvuni_to_utf8_flags(d, uv, 0);
1359 is the recommended Unicode-aware way of saying
1364 #define TRIE_STORE_REVCHAR \
1367 SV *zlopp = newSV(2); \
1368 unsigned char *flrbbbbb = (unsigned char *) SvPVX(zlopp); \
1369 unsigned const char *const kapow = uvuni_to_utf8(flrbbbbb, uvc & 0xFF); \
1370 SvCUR_set(zlopp, kapow - flrbbbbb); \
1373 av_push(revcharmap, zlopp); \
1375 char ooooff = (char)uvc; \
1376 av_push(revcharmap, newSVpvn(&ooooff, 1)); \
1380 #define TRIE_READ_CHAR STMT_START { \
1384 if ( foldlen > 0 ) { \
1385 uvc = utf8n_to_uvuni( scan, UTF8_MAXLEN, &len, uniflags ); \
1390 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1391 uvc = to_uni_fold( uvc, foldbuf, &foldlen ); \
1392 foldlen -= UNISKIP( uvc ); \
1393 scan = foldbuf + UNISKIP( uvc ); \
1396 uvc = utf8n_to_uvuni( (const U8*)uc, UTF8_MAXLEN, &len, uniflags);\
1406 #define TRIE_LIST_PUSH(state,fid,ns) STMT_START { \
1407 if ( TRIE_LIST_CUR( state ) >=TRIE_LIST_LEN( state ) ) { \
1408 U32 ging = TRIE_LIST_LEN( state ) *= 2; \
1409 Renew( trie->states[ state ].trans.list, ging, reg_trie_trans_le ); \
1411 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).forid = fid; \
1412 TRIE_LIST_ITEM( state, TRIE_LIST_CUR( state ) ).newstate = ns; \
1413 TRIE_LIST_CUR( state )++; \
1416 #define TRIE_LIST_NEW(state) STMT_START { \
1417 Newxz( trie->states[ state ].trans.list, \
1418 4, reg_trie_trans_le ); \
1419 TRIE_LIST_CUR( state ) = 1; \
1420 TRIE_LIST_LEN( state ) = 4; \
1423 #define TRIE_HANDLE_WORD(state) STMT_START { \
1424 U16 dupe= trie->states[ state ].wordnum; \
1425 regnode * const noper_next = regnext( noper ); \
1428 /* store the word for dumping */ \
1430 if (OP(noper) != NOTHING) \
1431 tmp = newSVpvn_utf8(STRING(noper), STR_LEN(noper), UTF); \
1433 tmp = newSVpvn_utf8( "", 0, UTF ); \
1434 av_push( trie_words, tmp ); \
1438 trie->wordinfo[curword].prev = 0; \
1439 trie->wordinfo[curword].len = wordlen; \
1440 trie->wordinfo[curword].accept = state; \
1442 if ( noper_next < tail ) { \
1444 trie->jump = (U16 *) PerlMemShared_calloc( word_count + 1, sizeof(U16) ); \
1445 trie->jump[curword] = (U16)(noper_next - convert); \
1447 jumper = noper_next; \
1449 nextbranch= regnext(cur); \
1453 /* It's a dupe. Pre-insert into the wordinfo[].prev */\
1454 /* chain, so that when the bits of chain are later */\
1455 /* linked together, the dups appear in the chain */\
1456 trie->wordinfo[curword].prev = trie->wordinfo[dupe].prev; \
1457 trie->wordinfo[dupe].prev = curword; \
1459 /* we haven't inserted this word yet. */ \
1460 trie->states[ state ].wordnum = curword; \
1465 #define TRIE_TRANS_STATE(state,base,ucharcount,charid,special) \
1466 ( ( base + charid >= ucharcount \
1467 && base + charid < ubound \
1468 && state == trie->trans[ base - ucharcount + charid ].check \
1469 && trie->trans[ base - ucharcount + charid ].next ) \
1470 ? trie->trans[ base - ucharcount + charid ].next \
1471 : ( state==1 ? special : 0 ) \
1475 #define MADE_JUMP_TRIE 2
1476 #define MADE_EXACT_TRIE 4
1479 S_make_trie(pTHX_ RExC_state_t *pRExC_state, regnode *startbranch, regnode *first, regnode *last, regnode *tail, U32 word_count, U32 flags, U32 depth)
1482 /* first pass, loop through and scan words */
1483 reg_trie_data *trie;
1484 HV *widecharmap = NULL;
1485 AV *revcharmap = newAV();
1487 const U32 uniflags = UTF8_ALLOW_DEFAULT;
1492 regnode *jumper = NULL;
1493 regnode *nextbranch = NULL;
1494 regnode *convert = NULL;
1495 U32 *prev_states; /* temp array mapping each state to previous one */
1496 /* we just use folder as a flag in utf8 */
1497 const U8 * folder = NULL;
1500 const U32 data_slot = add_data( pRExC_state, 4, "tuuu" );
1501 AV *trie_words = NULL;
1502 /* along with revcharmap, this only used during construction but both are
1503 * useful during debugging so we store them in the struct when debugging.
1506 const U32 data_slot = add_data( pRExC_state, 2, "tu" );
1507 STRLEN trie_charcount=0;
1509 SV *re_trie_maxbuff;
1510 GET_RE_DEBUG_FLAGS_DECL;
1512 PERL_ARGS_ASSERT_MAKE_TRIE;
1514 PERL_UNUSED_ARG(depth);
1519 case EXACTFU: folder = PL_fold_latin1; break;
1520 case EXACTF: folder = PL_fold; break;
1521 case EXACTFL: folder = PL_fold_locale; break;
1524 trie = (reg_trie_data *) PerlMemShared_calloc( 1, sizeof(reg_trie_data) );
1526 trie->startstate = 1;
1527 trie->wordcount = word_count;
1528 RExC_rxi->data->data[ data_slot ] = (void*)trie;
1529 trie->charmap = (U16 *) PerlMemShared_calloc( 256, sizeof(U16) );
1530 if (!(UTF && folder))
1531 trie->bitmap = (char *) PerlMemShared_calloc( ANYOF_BITMAP_SIZE, 1 );
1532 trie->wordinfo = (reg_trie_wordinfo *) PerlMemShared_calloc(
1533 trie->wordcount+1, sizeof(reg_trie_wordinfo));
1536 trie_words = newAV();
1539 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
1540 if (!SvIOK(re_trie_maxbuff)) {
1541 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
1544 PerlIO_printf( Perl_debug_log,
1545 "%*smake_trie start==%d, first==%d, last==%d, tail==%d depth=%d\n",
1546 (int)depth * 2 + 2, "",
1547 REG_NODE_NUM(startbranch),REG_NODE_NUM(first),
1548 REG_NODE_NUM(last), REG_NODE_NUM(tail),
1552 /* Find the node we are going to overwrite */
1553 if ( first == startbranch && OP( last ) != BRANCH ) {
1554 /* whole branch chain */
1557 /* branch sub-chain */
1558 convert = NEXTOPER( first );
1561 /* -- First loop and Setup --
1563 We first traverse the branches and scan each word to determine if it
1564 contains widechars, and how many unique chars there are, this is
1565 important as we have to build a table with at least as many columns as we
1568 We use an array of integers to represent the character codes 0..255
1569 (trie->charmap) and we use a an HV* to store Unicode characters. We use the
1570 native representation of the character value as the key and IV's for the
1573 *TODO* If we keep track of how many times each character is used we can
1574 remap the columns so that the table compression later on is more
1575 efficient in terms of memory by ensuring the most common value is in the
1576 middle and the least common are on the outside. IMO this would be better
1577 than a most to least common mapping as theres a decent chance the most
1578 common letter will share a node with the least common, meaning the node
1579 will not be compressible. With a middle is most common approach the worst
1580 case is when we have the least common nodes twice.
1584 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1585 regnode * const noper = NEXTOPER( cur );
1586 const U8 *uc = (U8*)STRING( noper );
1587 const U8 * const e = uc + STR_LEN( noper );
1589 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1590 const U8 *scan = (U8*)NULL;
1591 U32 wordlen = 0; /* required init */
1593 bool set_bit = trie->bitmap ? 1 : 0; /*store the first char in the bitmap?*/
1595 if (OP(noper) == NOTHING) {
1599 if ( set_bit ) /* bitmap only alloced when !(UTF&&Folding) */
1600 TRIE_BITMAP_SET(trie,*uc); /* store the raw first byte
1601 regardless of encoding */
1603 for ( ; uc < e ; uc += len ) {
1604 TRIE_CHARCOUNT(trie)++;
1608 if ( !trie->charmap[ uvc ] ) {
1609 trie->charmap[ uvc ]=( ++trie->uniquecharcount );
1611 trie->charmap[ folder[ uvc ] ] = trie->charmap[ uvc ];
1615 /* store the codepoint in the bitmap, and its folded
1617 TRIE_BITMAP_SET(trie,uvc);
1619 /* store the folded codepoint */
1620 if ( folder ) TRIE_BITMAP_SET(trie,folder[ uvc ]);
1623 /* store first byte of utf8 representation of
1624 variant codepoints */
1625 if (! UNI_IS_INVARIANT(uvc)) {
1626 TRIE_BITMAP_SET(trie, UTF8_TWO_BYTE_HI(uvc));
1629 set_bit = 0; /* We've done our bit :-) */
1634 widecharmap = newHV();
1636 svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 1 );
1639 Perl_croak( aTHX_ "error creating/fetching widecharmap entry for 0x%"UVXf, uvc );
1641 if ( !SvTRUE( *svpp ) ) {
1642 sv_setiv( *svpp, ++trie->uniquecharcount );
1647 if( cur == first ) {
1650 } else if (chars < trie->minlen) {
1652 } else if (chars > trie->maxlen) {
1656 } /* end first pass */
1657 DEBUG_TRIE_COMPILE_r(
1658 PerlIO_printf( Perl_debug_log, "%*sTRIE(%s): W:%d C:%d Uq:%d Min:%d Max:%d\n",
1659 (int)depth * 2 + 2,"",
1660 ( widecharmap ? "UTF8" : "NATIVE" ), (int)word_count,
1661 (int)TRIE_CHARCOUNT(trie), trie->uniquecharcount,
1662 (int)trie->minlen, (int)trie->maxlen )
1666 We now know what we are dealing with in terms of unique chars and
1667 string sizes so we can calculate how much memory a naive
1668 representation using a flat table will take. If it's over a reasonable
1669 limit (as specified by ${^RE_TRIE_MAXBUF}) we use a more memory
1670 conservative but potentially much slower representation using an array
1673 At the end we convert both representations into the same compressed
1674 form that will be used in regexec.c for matching with. The latter
1675 is a form that cannot be used to construct with but has memory
1676 properties similar to the list form and access properties similar
1677 to the table form making it both suitable for fast searches and
1678 small enough that its feasable to store for the duration of a program.
1680 See the comment in the code where the compressed table is produced
1681 inplace from the flat tabe representation for an explanation of how
1682 the compression works.
1687 Newx(prev_states, TRIE_CHARCOUNT(trie) + 2, U32);
1690 if ( (IV)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1) > SvIV(re_trie_maxbuff) ) {
1692 Second Pass -- Array Of Lists Representation
1694 Each state will be represented by a list of charid:state records
1695 (reg_trie_trans_le) the first such element holds the CUR and LEN
1696 points of the allocated array. (See defines above).
1698 We build the initial structure using the lists, and then convert
1699 it into the compressed table form which allows faster lookups
1700 (but cant be modified once converted).
1703 STRLEN transcount = 1;
1705 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1706 "%*sCompiling trie using list compiler\n",
1707 (int)depth * 2 + 2, ""));
1709 trie->states = (reg_trie_state *)
1710 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1711 sizeof(reg_trie_state) );
1715 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1717 regnode * const noper = NEXTOPER( cur );
1718 U8 *uc = (U8*)STRING( noper );
1719 const U8 * const e = uc + STR_LEN( noper );
1720 U32 state = 1; /* required init */
1721 U16 charid = 0; /* sanity init */
1722 U8 *scan = (U8*)NULL; /* sanity init */
1723 STRLEN foldlen = 0; /* required init */
1724 U32 wordlen = 0; /* required init */
1725 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1727 if (OP(noper) != NOTHING) {
1728 for ( ; uc < e ; uc += len ) {
1733 charid = trie->charmap[ uvc ];
1735 SV** const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1739 charid=(U16)SvIV( *svpp );
1742 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1749 if ( !trie->states[ state ].trans.list ) {
1750 TRIE_LIST_NEW( state );
1752 for ( check = 1; check <= TRIE_LIST_USED( state ); check++ ) {
1753 if ( TRIE_LIST_ITEM( state, check ).forid == charid ) {
1754 newstate = TRIE_LIST_ITEM( state, check ).newstate;
1759 newstate = next_alloc++;
1760 prev_states[newstate] = state;
1761 TRIE_LIST_PUSH( state, charid, newstate );
1766 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1770 TRIE_HANDLE_WORD(state);
1772 } /* end second pass */
1774 /* next alloc is the NEXT state to be allocated */
1775 trie->statecount = next_alloc;
1776 trie->states = (reg_trie_state *)
1777 PerlMemShared_realloc( trie->states,
1779 * sizeof(reg_trie_state) );
1781 /* and now dump it out before we compress it */
1782 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_list(trie, widecharmap,
1783 revcharmap, next_alloc,
1787 trie->trans = (reg_trie_trans *)
1788 PerlMemShared_calloc( transcount, sizeof(reg_trie_trans) );
1795 for( state=1 ; state < next_alloc ; state ++ ) {
1799 DEBUG_TRIE_COMPILE_MORE_r(
1800 PerlIO_printf( Perl_debug_log, "tp: %d zp: %d ",tp,zp)
1804 if (trie->states[state].trans.list) {
1805 U16 minid=TRIE_LIST_ITEM( state, 1).forid;
1809 for( idx = 2 ; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1810 const U16 forid = TRIE_LIST_ITEM( state, idx).forid;
1811 if ( forid < minid ) {
1813 } else if ( forid > maxid ) {
1817 if ( transcount < tp + maxid - minid + 1) {
1819 trie->trans = (reg_trie_trans *)
1820 PerlMemShared_realloc( trie->trans,
1822 * sizeof(reg_trie_trans) );
1823 Zero( trie->trans + (transcount / 2), transcount / 2 , reg_trie_trans );
1825 base = trie->uniquecharcount + tp - minid;
1826 if ( maxid == minid ) {
1828 for ( ; zp < tp ; zp++ ) {
1829 if ( ! trie->trans[ zp ].next ) {
1830 base = trie->uniquecharcount + zp - minid;
1831 trie->trans[ zp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1832 trie->trans[ zp ].check = state;
1838 trie->trans[ tp ].next = TRIE_LIST_ITEM( state, 1).newstate;
1839 trie->trans[ tp ].check = state;
1844 for ( idx=1; idx <= TRIE_LIST_USED( state ) ; idx++ ) {
1845 const U32 tid = base - trie->uniquecharcount + TRIE_LIST_ITEM( state, idx ).forid;
1846 trie->trans[ tid ].next = TRIE_LIST_ITEM( state, idx ).newstate;
1847 trie->trans[ tid ].check = state;
1849 tp += ( maxid - minid + 1 );
1851 Safefree(trie->states[ state ].trans.list);
1854 DEBUG_TRIE_COMPILE_MORE_r(
1855 PerlIO_printf( Perl_debug_log, " base: %d\n",base);
1858 trie->states[ state ].trans.base=base;
1860 trie->lasttrans = tp + 1;
1864 Second Pass -- Flat Table Representation.
1866 we dont use the 0 slot of either trans[] or states[] so we add 1 to each.
1867 We know that we will need Charcount+1 trans at most to store the data
1868 (one row per char at worst case) So we preallocate both structures
1869 assuming worst case.
1871 We then construct the trie using only the .next slots of the entry
1874 We use the .check field of the first entry of the node temporarily to
1875 make compression both faster and easier by keeping track of how many non
1876 zero fields are in the node.
1878 Since trans are numbered from 1 any 0 pointer in the table is a FAIL
1881 There are two terms at use here: state as a TRIE_NODEIDX() which is a
1882 number representing the first entry of the node, and state as a
1883 TRIE_NODENUM() which is the trans number. state 1 is TRIE_NODEIDX(1) and
1884 TRIE_NODENUM(1), state 2 is TRIE_NODEIDX(2) and TRIE_NODENUM(3) if there
1885 are 2 entrys per node. eg:
1893 The table is internally in the right hand, idx form. However as we also
1894 have to deal with the states array which is indexed by nodenum we have to
1895 use TRIE_NODENUM() to convert.
1898 DEBUG_TRIE_COMPILE_MORE_r( PerlIO_printf( Perl_debug_log,
1899 "%*sCompiling trie using table compiler\n",
1900 (int)depth * 2 + 2, ""));
1902 trie->trans = (reg_trie_trans *)
1903 PerlMemShared_calloc( ( TRIE_CHARCOUNT(trie) + 1 )
1904 * trie->uniquecharcount + 1,
1905 sizeof(reg_trie_trans) );
1906 trie->states = (reg_trie_state *)
1907 PerlMemShared_calloc( TRIE_CHARCOUNT(trie) + 2,
1908 sizeof(reg_trie_state) );
1909 next_alloc = trie->uniquecharcount + 1;
1912 for ( cur = first ; cur < last ; cur = regnext( cur ) ) {
1914 regnode * const noper = NEXTOPER( cur );
1915 const U8 *uc = (U8*)STRING( noper );
1916 const U8 * const e = uc + STR_LEN( noper );
1918 U32 state = 1; /* required init */
1920 U16 charid = 0; /* sanity init */
1921 U32 accept_state = 0; /* sanity init */
1922 U8 *scan = (U8*)NULL; /* sanity init */
1924 STRLEN foldlen = 0; /* required init */
1925 U32 wordlen = 0; /* required init */
1926 U8 foldbuf[ UTF8_MAXBYTES_CASE + 1 ];
1928 if ( OP(noper) != NOTHING ) {
1929 for ( ; uc < e ; uc += len ) {
1934 charid = trie->charmap[ uvc ];
1936 SV* const * const svpp = hv_fetch( widecharmap, (char*)&uvc, sizeof( UV ), 0);
1937 charid = svpp ? (U16)SvIV(*svpp) : 0;
1941 if ( !trie->trans[ state + charid ].next ) {
1942 trie->trans[ state + charid ].next = next_alloc;
1943 trie->trans[ state ].check++;
1944 prev_states[TRIE_NODENUM(next_alloc)]
1945 = TRIE_NODENUM(state);
1946 next_alloc += trie->uniquecharcount;
1948 state = trie->trans[ state + charid ].next;
1950 Perl_croak( aTHX_ "panic! In trie construction, no char mapping for %"IVdf, uvc );
1952 /* charid is now 0 if we dont know the char read, or nonzero if we do */
1955 accept_state = TRIE_NODENUM( state );
1956 TRIE_HANDLE_WORD(accept_state);
1958 } /* end second pass */
1960 /* and now dump it out before we compress it */
1961 DEBUG_TRIE_COMPILE_MORE_r(dump_trie_interim_table(trie, widecharmap,
1963 next_alloc, depth+1));
1967 * Inplace compress the table.*
1969 For sparse data sets the table constructed by the trie algorithm will
1970 be mostly 0/FAIL transitions or to put it another way mostly empty.
1971 (Note that leaf nodes will not contain any transitions.)
1973 This algorithm compresses the tables by eliminating most such
1974 transitions, at the cost of a modest bit of extra work during lookup:
1976 - Each states[] entry contains a .base field which indicates the
1977 index in the state[] array wheres its transition data is stored.
1979 - If .base is 0 there are no valid transitions from that node.
1981 - If .base is nonzero then charid is added to it to find an entry in
1984 -If trans[states[state].base+charid].check!=state then the
1985 transition is taken to be a 0/Fail transition. Thus if there are fail
1986 transitions at the front of the node then the .base offset will point
1987 somewhere inside the previous nodes data (or maybe even into a node
1988 even earlier), but the .check field determines if the transition is
1992 The following process inplace converts the table to the compressed
1993 table: We first do not compress the root node 1,and mark all its
1994 .check pointers as 1 and set its .base pointer as 1 as well. This
1995 allows us to do a DFA construction from the compressed table later,
1996 and ensures that any .base pointers we calculate later are greater
1999 - We set 'pos' to indicate the first entry of the second node.
2001 - We then iterate over the columns of the node, finding the first and
2002 last used entry at l and m. We then copy l..m into pos..(pos+m-l),
2003 and set the .check pointers accordingly, and advance pos
2004 appropriately and repreat for the next node. Note that when we copy
2005 the next pointers we have to convert them from the original
2006 NODEIDX form to NODENUM form as the former is not valid post
2009 - If a node has no transitions used we mark its base as 0 and do not
2010 advance the pos pointer.
2012 - If a node only has one transition we use a second pointer into the
2013 structure to fill in allocated fail transitions from other states.
2014 This pointer is independent of the main pointer and scans forward
2015 looking for null transitions that are allocated to a state. When it
2016 finds one it writes the single transition into the "hole". If the
2017 pointer doesnt find one the single transition is appended as normal.
2019 - Once compressed we can Renew/realloc the structures to release the
2022 See "Table-Compression Methods" in sec 3.9 of the Red Dragon,
2023 specifically Fig 3.47 and the associated pseudocode.
2027 const U32 laststate = TRIE_NODENUM( next_alloc );
2030 trie->statecount = laststate;
2032 for ( state = 1 ; state < laststate ; state++ ) {
2034 const U32 stateidx = TRIE_NODEIDX( state );
2035 const U32 o_used = trie->trans[ stateidx ].check;
2036 U32 used = trie->trans[ stateidx ].check;
2037 trie->trans[ stateidx ].check = 0;
2039 for ( charid = 0 ; used && charid < trie->uniquecharcount ; charid++ ) {
2040 if ( flag || trie->trans[ stateidx + charid ].next ) {
2041 if ( trie->trans[ stateidx + charid ].next ) {
2043 for ( ; zp < pos ; zp++ ) {
2044 if ( ! trie->trans[ zp ].next ) {
2048 trie->states[ state ].trans.base = zp + trie->uniquecharcount - charid ;
2049 trie->trans[ zp ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2050 trie->trans[ zp ].check = state;
2051 if ( ++zp > pos ) pos = zp;
2058 trie->states[ state ].trans.base = pos + trie->uniquecharcount - charid ;
2060 trie->trans[ pos ].next = SAFE_TRIE_NODENUM( trie->trans[ stateidx + charid ].next );
2061 trie->trans[ pos ].check = state;
2066 trie->lasttrans = pos + 1;
2067 trie->states = (reg_trie_state *)
2068 PerlMemShared_realloc( trie->states, laststate
2069 * sizeof(reg_trie_state) );
2070 DEBUG_TRIE_COMPILE_MORE_r(
2071 PerlIO_printf( Perl_debug_log,
2072 "%*sAlloc: %d Orig: %"IVdf" elements, Final:%"IVdf". Savings of %%%5.2f\n",
2073 (int)depth * 2 + 2,"",
2074 (int)( ( TRIE_CHARCOUNT(trie) + 1 ) * trie->uniquecharcount + 1 ),
2077 ( ( next_alloc - pos ) * 100 ) / (double)next_alloc );
2080 } /* end table compress */
2082 DEBUG_TRIE_COMPILE_MORE_r(
2083 PerlIO_printf(Perl_debug_log, "%*sStatecount:%"UVxf" Lasttrans:%"UVxf"\n",
2084 (int)depth * 2 + 2, "",
2085 (UV)trie->statecount,
2086 (UV)trie->lasttrans)
2088 /* resize the trans array to remove unused space */
2089 trie->trans = (reg_trie_trans *)
2090 PerlMemShared_realloc( trie->trans, trie->lasttrans
2091 * sizeof(reg_trie_trans) );
2093 { /* Modify the program and insert the new TRIE node */
2094 U8 nodetype =(U8)(flags & 0xFF);
2098 regnode *optimize = NULL;
2099 #ifdef RE_TRACK_PATTERN_OFFSETS
2102 U32 mjd_nodelen = 0;
2103 #endif /* RE_TRACK_PATTERN_OFFSETS */
2104 #endif /* DEBUGGING */
2106 This means we convert either the first branch or the first Exact,
2107 depending on whether the thing following (in 'last') is a branch
2108 or not and whther first is the startbranch (ie is it a sub part of
2109 the alternation or is it the whole thing.)
2110 Assuming its a sub part we convert the EXACT otherwise we convert
2111 the whole branch sequence, including the first.
2113 /* Find the node we are going to overwrite */
2114 if ( first != startbranch || OP( last ) == BRANCH ) {
2115 /* branch sub-chain */
2116 NEXT_OFF( first ) = (U16)(last - first);
2117 #ifdef RE_TRACK_PATTERN_OFFSETS
2119 mjd_offset= Node_Offset((convert));
2120 mjd_nodelen= Node_Length((convert));
2123 /* whole branch chain */
2125 #ifdef RE_TRACK_PATTERN_OFFSETS
2128 const regnode *nop = NEXTOPER( convert );
2129 mjd_offset= Node_Offset((nop));
2130 mjd_nodelen= Node_Length((nop));
2134 PerlIO_printf(Perl_debug_log, "%*sMJD offset:%"UVuf" MJD length:%"UVuf"\n",
2135 (int)depth * 2 + 2, "",
2136 (UV)mjd_offset, (UV)mjd_nodelen)
2139 /* But first we check to see if there is a common prefix we can
2140 split out as an EXACT and put in front of the TRIE node. */
2141 trie->startstate= 1;
2142 if ( trie->bitmap && !widecharmap && !trie->jump ) {
2144 for ( state = 1 ; state < trie->statecount-1 ; state++ ) {
2148 const U32 base = trie->states[ state ].trans.base;
2150 if ( trie->states[state].wordnum )
2153 for ( ofs = 0 ; ofs < trie->uniquecharcount ; ofs++ ) {
2154 if ( ( base + ofs >= trie->uniquecharcount ) &&
2155 ( base + ofs - trie->uniquecharcount < trie->lasttrans ) &&
2156 trie->trans[ base + ofs - trie->uniquecharcount ].check == state )
2158 if ( ++count > 1 ) {
2159 SV **tmp = av_fetch( revcharmap, ofs, 0);
2160 const U8 *ch = (U8*)SvPV_nolen_const( *tmp );
2161 if ( state == 1 ) break;
2163 Zero(trie->bitmap, ANYOF_BITMAP_SIZE, char);
2165 PerlIO_printf(Perl_debug_log,
2166 "%*sNew Start State=%"UVuf" Class: [",
2167 (int)depth * 2 + 2, "",
2170 SV ** const tmp = av_fetch( revcharmap, idx, 0);
2171 const U8 * const ch = (U8*)SvPV_nolen_const( *tmp );
2173 TRIE_BITMAP_SET(trie,*ch);
2175 TRIE_BITMAP_SET(trie, folder[ *ch ]);
2177 PerlIO_printf(Perl_debug_log, "%s", (char*)ch)
2181 TRIE_BITMAP_SET(trie,*ch);
2183 TRIE_BITMAP_SET(trie,folder[ *ch ]);
2184 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"%s", ch));
2190 SV **tmp = av_fetch( revcharmap, idx, 0);
2192 char *ch = SvPV( *tmp, len );
2194 SV *sv=sv_newmortal();
2195 PerlIO_printf( Perl_debug_log,
2196 "%*sPrefix State: %"UVuf" Idx:%"UVuf" Char='%s'\n",
2197 (int)depth * 2 + 2, "",
2199 pv_pretty(sv, SvPV_nolen_const(*tmp), SvCUR(*tmp), 6,
2200 PL_colors[0], PL_colors[1],
2201 (SvUTF8(*tmp) ? PERL_PV_ESCAPE_UNI : 0) |
2202 PERL_PV_ESCAPE_FIRSTCHAR
2207 OP( convert ) = nodetype;
2208 str=STRING(convert);
2211 STR_LEN(convert) += len;
2217 DEBUG_OPTIMISE_r(PerlIO_printf( Perl_debug_log,"]\n"));
2222 trie->prefixlen = (state-1);
2224 regnode *n = convert+NODE_SZ_STR(convert);
2225 NEXT_OFF(convert) = NODE_SZ_STR(convert);
2226 trie->startstate = state;
2227 trie->minlen -= (state - 1);
2228 trie->maxlen -= (state - 1);
2230 /* At least the UNICOS C compiler choked on this
2231 * being argument to DEBUG_r(), so let's just have
2234 #ifdef PERL_EXT_RE_BUILD
2240 regnode *fix = convert;
2241 U32 word = trie->wordcount;
2243 Set_Node_Offset_Length(convert, mjd_offset, state - 1);
2244 while( ++fix < n ) {
2245 Set_Node_Offset_Length(fix, 0, 0);
2248 SV ** const tmp = av_fetch( trie_words, word, 0 );
2250 if ( STR_LEN(convert) <= SvCUR(*tmp) )
2251 sv_chop(*tmp, SvPV_nolen(*tmp) + STR_LEN(convert));
2253 sv_chop(*tmp, SvPV_nolen(*tmp) + SvCUR(*tmp));
2261 NEXT_OFF(convert) = (U16)(tail - convert);
2262 DEBUG_r(optimize= n);
2268 if ( trie->maxlen ) {
2269 NEXT_OFF( convert ) = (U16)(tail - convert);
2270 ARG_SET( convert, data_slot );
2271 /* Store the offset to the first unabsorbed branch in
2272 jump[0], which is otherwise unused by the jump logic.
2273 We use this when dumping a trie and during optimisation. */
2275 trie->jump[0] = (U16)(nextbranch - convert);
2277 /* If the start state is not accepting (meaning there is no empty string/NOTHING)
2278 * and there is a bitmap
2279 * and the first "jump target" node we found leaves enough room
2280 * then convert the TRIE node into a TRIEC node, with the bitmap
2281 * embedded inline in the opcode - this is hypothetically faster.
2283 if ( !trie->states[trie->startstate].wordnum
2285 && ( (char *)jumper - (char *)convert) >= (int)sizeof(struct regnode_charclass) )
2287 OP( convert ) = TRIEC;
2288 Copy(trie->bitmap, ((struct regnode_charclass *)convert)->bitmap, ANYOF_BITMAP_SIZE, char);
2289 PerlMemShared_free(trie->bitmap);
2292 OP( convert ) = TRIE;
2294 /* store the type in the flags */
2295 convert->flags = nodetype;
2299 + regarglen[ OP( convert ) ];
2301 /* XXX We really should free up the resource in trie now,
2302 as we won't use them - (which resources?) dmq */
2304 /* needed for dumping*/
2305 DEBUG_r(if (optimize) {
2306 regnode *opt = convert;
2308 while ( ++opt < optimize) {
2309 Set_Node_Offset_Length(opt,0,0);
2312 Try to clean up some of the debris left after the
2315 while( optimize < jumper ) {
2316 mjd_nodelen += Node_Length((optimize));
2317 OP( optimize ) = OPTIMIZED;
2318 Set_Node_Offset_Length(optimize,0,0);
2321 Set_Node_Offset_Length(convert,mjd_offset,mjd_nodelen);
2323 } /* end node insert */
2325 /* Finish populating the prev field of the wordinfo array. Walk back
2326 * from each accept state until we find another accept state, and if
2327 * so, point the first word's .prev field at the second word. If the
2328 * second already has a .prev field set, stop now. This will be the
2329 * case either if we've already processed that word's accept state,
2330 * or that state had multiple words, and the overspill words were
2331 * already linked up earlier.
2338 for (word=1; word <= trie->wordcount; word++) {
2340 if (trie->wordinfo[word].prev)
2342 state = trie->wordinfo[word].accept;
2344 state = prev_states[state];
2347 prev = trie->states[state].wordnum;
2351 trie->wordinfo[word].prev = prev;
2353 Safefree(prev_states);
2357 /* and now dump out the compressed format */
2358 DEBUG_TRIE_COMPILE_r(dump_trie(trie, widecharmap, revcharmap, depth+1));
2360 RExC_rxi->data->data[ data_slot + 1 ] = (void*)widecharmap;
2362 RExC_rxi->data->data[ data_slot + TRIE_WORDS_OFFSET ] = (void*)trie_words;
2363 RExC_rxi->data->data[ data_slot + 3 ] = (void*)revcharmap;
2365 SvREFCNT_dec(revcharmap);
2369 : trie->startstate>1
2375 S_make_trie_failtable(pTHX_ RExC_state_t *pRExC_state, regnode *source, regnode *stclass, U32 depth)
2377 /* The Trie is constructed and compressed now so we can build a fail array if it's needed
2379 This is basically the Aho-Corasick algorithm. Its from exercise 3.31 and 3.32 in the
2380 "Red Dragon" -- Compilers, principles, techniques, and tools. Aho, Sethi, Ullman 1985/88
2383 We find the fail state for each state in the trie, this state is the longest proper
2384 suffix of the current state's 'word' that is also a proper prefix of another word in our
2385 trie. State 1 represents the word '' and is thus the default fail state. This allows
2386 the DFA not to have to restart after its tried and failed a word at a given point, it
2387 simply continues as though it had been matching the other word in the first place.
2389 'abcdgu'=~/abcdefg|cdgu/
2390 When we get to 'd' we are still matching the first word, we would encounter 'g' which would
2391 fail, which would bring us to the state representing 'd' in the second word where we would
2392 try 'g' and succeed, proceeding to match 'cdgu'.
2394 /* add a fail transition */
2395 const U32 trie_offset = ARG(source);
2396 reg_trie_data *trie=(reg_trie_data *)RExC_rxi->data->data[trie_offset];
2398 const U32 ucharcount = trie->uniquecharcount;
2399 const U32 numstates = trie->statecount;
2400 const U32 ubound = trie->lasttrans + ucharcount;
2404 U32 base = trie->states[ 1 ].trans.base;
2407 const U32 data_slot = add_data( pRExC_state, 1, "T" );
2408 GET_RE_DEBUG_FLAGS_DECL;
2410 PERL_ARGS_ASSERT_MAKE_TRIE_FAILTABLE;
2412 PERL_UNUSED_ARG(depth);
2416 ARG_SET( stclass, data_slot );
2417 aho = (reg_ac_data *) PerlMemShared_calloc( 1, sizeof(reg_ac_data) );
2418 RExC_rxi->data->data[ data_slot ] = (void*)aho;
2419 aho->trie=trie_offset;
2420 aho->states=(reg_trie_state *)PerlMemShared_malloc( numstates * sizeof(reg_trie_state) );
2421 Copy( trie->states, aho->states, numstates, reg_trie_state );
2422 Newxz( q, numstates, U32);
2423 aho->fail = (U32 *) PerlMemShared_calloc( numstates, sizeof(U32) );
2426 /* initialize fail[0..1] to be 1 so that we always have
2427 a valid final fail state */
2428 fail[ 0 ] = fail[ 1 ] = 1;
2430 for ( charid = 0; charid < ucharcount ; charid++ ) {
2431 const U32 newstate = TRIE_TRANS_STATE( 1, base, ucharcount, charid, 0 );
2433 q[ q_write ] = newstate;
2434 /* set to point at the root */
2435 fail[ q[ q_write++ ] ]=1;
2438 while ( q_read < q_write) {
2439 const U32 cur = q[ q_read++ % numstates ];
2440 base = trie->states[ cur ].trans.base;
2442 for ( charid = 0 ; charid < ucharcount ; charid++ ) {
2443 const U32 ch_state = TRIE_TRANS_STATE( cur, base, ucharcount, charid, 1 );
2445 U32 fail_state = cur;
2448 fail_state = fail[ fail_state ];
2449 fail_base = aho->states[ fail_state ].trans.base;
2450 } while ( !TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 ) );
2452 fail_state = TRIE_TRANS_STATE( fail_state, fail_base, ucharcount, charid, 1 );
2453 fail[ ch_state ] = fail_state;
2454 if ( !aho->states[ ch_state ].wordnum && aho->states[ fail_state ].wordnum )
2456 aho->states[ ch_state ].wordnum = aho->states[ fail_state ].wordnum;
2458 q[ q_write++ % numstates] = ch_state;
2462 /* restore fail[0..1] to 0 so that we "fall out" of the AC loop
2463 when we fail in state 1, this allows us to use the
2464 charclass scan to find a valid start char. This is based on the principle
2465 that theres a good chance the string being searched contains lots of stuff
2466 that cant be a start char.
2468 fail[ 0 ] = fail[ 1 ] = 0;
2469 DEBUG_TRIE_COMPILE_r({
2470 PerlIO_printf(Perl_debug_log,
2471 "%*sStclass Failtable (%"UVuf" states): 0",
2472 (int)(depth * 2), "", (UV)numstates
2474 for( q_read=1; q_read<numstates; q_read++ ) {
2475 PerlIO_printf(Perl_debug_log, ", %"UVuf, (UV)fail[q_read]);
2477 PerlIO_printf(Perl_debug_log, "\n");
2480 /*RExC_seen |= REG_SEEN_TRIEDFA;*/
2485 * There are strange code-generation bugs caused on sparc64 by gcc-2.95.2.
2486 * These need to be revisited when a newer toolchain becomes available.
2488 #if defined(__sparc64__) && defined(__GNUC__)
2489 # if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 96)
2490 # undef SPARC64_GCC_WORKAROUND
2491 # define SPARC64_GCC_WORKAROUND 1
2495 #define DEBUG_PEEP(str,scan,depth) \
2496 DEBUG_OPTIMISE_r({if (scan){ \
2497 SV * const mysv=sv_newmortal(); \
2498 regnode *Next = regnext(scan); \
2499 regprop(RExC_rx, mysv, scan); \
2500 PerlIO_printf(Perl_debug_log, "%*s" str ">%3d: %s (%d)\n", \
2501 (int)depth*2, "", REG_NODE_NUM(scan), SvPV_nolen_const(mysv),\
2502 Next ? (REG_NODE_NUM(Next)) : 0 ); \
2509 #define JOIN_EXACT(scan,min,flags) \
2510 if (PL_regkind[OP(scan)] == EXACT) \
2511 join_exact(pRExC_state,(scan),(min),(flags),NULL,depth+1)
2514 S_join_exact(pTHX_ RExC_state_t *pRExC_state, regnode *scan, I32 *min, U32 flags,regnode *val, U32 depth) {
2515 /* Merge several consecutive EXACTish nodes into one. */
2516 regnode *n = regnext(scan);
2518 regnode *next = scan + NODE_SZ_STR(scan);
2522 regnode *stop = scan;
2523 GET_RE_DEBUG_FLAGS_DECL;
2525 PERL_UNUSED_ARG(depth);
2528 PERL_ARGS_ASSERT_JOIN_EXACT;
2529 #ifndef EXPERIMENTAL_INPLACESCAN
2530 PERL_UNUSED_ARG(flags);
2531 PERL_UNUSED_ARG(val);
2533 DEBUG_PEEP("join",scan,depth);
2535 /* Skip NOTHING, merge EXACT*. */
2537 ( PL_regkind[OP(n)] == NOTHING ||
2538 (stringok && (OP(n) == OP(scan))))
2540 && NEXT_OFF(scan) + NEXT_OFF(n) < I16_MAX) {
2542 if (OP(n) == TAIL || n > next)
2544 if (PL_regkind[OP(n)] == NOTHING) {
2545 DEBUG_PEEP("skip:",n,depth);
2546 NEXT_OFF(scan) += NEXT_OFF(n);
2547 next = n + NODE_STEP_REGNODE;
2554 else if (stringok) {
2555 const unsigned int oldl = STR_LEN(scan);
2556 regnode * const nnext = regnext(n);
2558 DEBUG_PEEP("merg",n,depth);
2561 if (oldl + STR_LEN(n) > U8_MAX)
2563 NEXT_OFF(scan) += NEXT_OFF(n);
2564 STR_LEN(scan) += STR_LEN(n);
2565 next = n + NODE_SZ_STR(n);
2566 /* Now we can overwrite *n : */
2567 Move(STRING(n), STRING(scan) + oldl, STR_LEN(n), char);
2575 #ifdef EXPERIMENTAL_INPLACESCAN
2576 if (flags && !NEXT_OFF(n)) {
2577 DEBUG_PEEP("atch", val, depth);
2578 if (reg_off_by_arg[OP(n)]) {
2579 ARG_SET(n, val - n);
2582 NEXT_OFF(n) = val - n;
2588 #define GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS 0x0390
2589 #define IOTA_D_T GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS
2590 #define GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS 0x03B0
2591 #define UPSILON_D_T GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS
2594 && ( OP(scan) == EXACTF || OP(scan) == EXACTFU || OP(scan) == EXACTFA)
2595 && ( STR_LEN(scan) >= 6 ) )
2598 Two problematic code points in Unicode casefolding of EXACT nodes:
2600 U+0390 - GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS
2601 U+03B0 - GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS
2607 U+03B9 U+0308 U+0301 0xCE 0xB9 0xCC 0x88 0xCC 0x81
2608 U+03C5 U+0308 U+0301 0xCF 0x85 0xCC 0x88 0xCC 0x81
2610 This means that in case-insensitive matching (or "loose matching",
2611 as Unicode calls it), an EXACTF of length six (the UTF-8 encoded byte
2612 length of the above casefolded versions) can match a target string
2613 of length two (the byte length of UTF-8 encoded U+0390 or U+03B0).
2614 This would rather mess up the minimum length computation.
2616 What we'll do is to look for the tail four bytes, and then peek
2617 at the preceding two bytes to see whether we need to decrease
2618 the minimum length by four (six minus two).
2620 Thanks to the design of UTF-8, there cannot be false matches:
2621 A sequence of valid UTF-8 bytes cannot be a subsequence of
2622 another valid sequence of UTF-8 bytes.
2625 char * const s0 = STRING(scan), *s, *t;
2626 char * const s1 = s0 + STR_LEN(scan) - 1;
2627 char * const s2 = s1 - 4;
2628 #ifdef EBCDIC /* RD tunifold greek 0390 and 03B0 */
2629 const char t0[] = "\xaf\x49\xaf\x42";
2631 const char t0[] = "\xcc\x88\xcc\x81";
2633 const char * const t1 = t0 + 3;
2636 s < s2 && (t = ninstr(s, s1, t0, t1));
2639 if (((U8)t[-1] == 0x68 && (U8)t[-2] == 0xB4) ||
2640 ((U8)t[-1] == 0x46 && (U8)t[-2] == 0xB5))
2642 if (((U8)t[-1] == 0xB9 && (U8)t[-2] == 0xCE) ||
2643 ((U8)t[-1] == 0x85 && (U8)t[-2] == 0xCF))
2651 n = scan + NODE_SZ_STR(scan);
2653 if (PL_regkind[OP(n)] != NOTHING || OP(n) == NOTHING) {
2660 DEBUG_OPTIMISE_r(if (merged){DEBUG_PEEP("finl",scan,depth)});
2664 /* REx optimizer. Converts nodes into quicker variants "in place".
2665 Finds fixed substrings. */
2667 /* Stops at toplevel WHILEM as well as at "last". At end *scanp is set
2668 to the position after last scanned or to NULL. */
2670 #define INIT_AND_WITHP \
2671 assert(!and_withp); \
2672 Newx(and_withp,1,struct regnode_charclass_class); \
2673 SAVEFREEPV(and_withp)
2675 /* this is a chain of data about sub patterns we are processing that
2676 need to be handled separately/specially in study_chunk. Its so
2677 we can simulate recursion without losing state. */
2679 typedef struct scan_frame {
2680 regnode *last; /* last node to process in this frame */
2681 regnode *next; /* next node to process when last is reached */
2682 struct scan_frame *prev; /*previous frame*/
2683 I32 stop; /* what stopparen do we use */
2687 #define SCAN_COMMIT(s, data, m) scan_commit(s, data, m, is_inf)
2689 #define CASE_SYNST_FNC(nAmE) \
2691 if (flags & SCF_DO_STCLASS_AND) { \
2692 for (value = 0; value < 256; value++) \
2693 if (!is_ ## nAmE ## _cp(value)) \
2694 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2697 for (value = 0; value < 256; value++) \
2698 if (is_ ## nAmE ## _cp(value)) \
2699 ANYOF_BITMAP_SET(data->start_class, value); \
2703 if (flags & SCF_DO_STCLASS_AND) { \
2704 for (value = 0; value < 256; value++) \
2705 if (is_ ## nAmE ## _cp(value)) \
2706 ANYOF_BITMAP_CLEAR(data->start_class, value); \
2709 for (value = 0; value < 256; value++) \
2710 if (!is_ ## nAmE ## _cp(value)) \
2711 ANYOF_BITMAP_SET(data->start_class, value); \
2718 S_study_chunk(pTHX_ RExC_state_t *pRExC_state, regnode **scanp,
2719 I32 *minlenp, I32 *deltap,
2724 struct regnode_charclass_class *and_withp,
2725 U32 flags, U32 depth)
2726 /* scanp: Start here (read-write). */
2727 /* deltap: Write maxlen-minlen here. */
2728 /* last: Stop before this one. */
2729 /* data: string data about the pattern */
2730 /* stopparen: treat close N as END */
2731 /* recursed: which subroutines have we recursed into */
2732 /* and_withp: Valid if flags & SCF_DO_STCLASS_OR */
2735 I32 min = 0, pars = 0, code;
2736 regnode *scan = *scanp, *next;
2738 int is_inf = (flags & SCF_DO_SUBSTR) && (data->flags & SF_IS_INF);
2739 int is_inf_internal = 0; /* The studied chunk is infinite */
2740 I32 is_par = OP(scan) == OPEN ? ARG(scan) : 0;
2741 scan_data_t data_fake;
2742 SV *re_trie_maxbuff = NULL;
2743 regnode *first_non_open = scan;
2744 I32 stopmin = I32_MAX;
2745 scan_frame *frame = NULL;
2746 GET_RE_DEBUG_FLAGS_DECL;
2748 PERL_ARGS_ASSERT_STUDY_CHUNK;
2751 StructCopy(&zero_scan_data, &data_fake, scan_data_t);
2755 while (first_non_open && OP(first_non_open) == OPEN)
2756 first_non_open=regnext(first_non_open);
2761 while ( scan && OP(scan) != END && scan < last ){
2762 /* Peephole optimizer: */
2763 DEBUG_STUDYDATA("Peep:", data,depth);
2764 DEBUG_PEEP("Peep",scan,depth);
2765 JOIN_EXACT(scan,&min,0);
2767 /* Follow the next-chain of the current node and optimize
2768 away all the NOTHINGs from it. */
2769 if (OP(scan) != CURLYX) {
2770 const int max = (reg_off_by_arg[OP(scan)]
2772 /* I32 may be smaller than U16 on CRAYs! */
2773 : (I32_MAX < U16_MAX ? I32_MAX : U16_MAX));
2774 int off = (reg_off_by_arg[OP(scan)] ? ARG(scan) : NEXT_OFF(scan));
2778 /* Skip NOTHING and LONGJMP. */
2779 while ((n = regnext(n))
2780 && ((PL_regkind[OP(n)] == NOTHING && (noff = NEXT_OFF(n)))
2781 || ((OP(n) == LONGJMP) && (noff = ARG(n))))
2782 && off + noff < max)
2784 if (reg_off_by_arg[OP(scan)])
2787 NEXT_OFF(scan) = off;
2792 /* The principal pseudo-switch. Cannot be a switch, since we
2793 look into several different things. */
2794 if (OP(scan) == BRANCH || OP(scan) == BRANCHJ
2795 || OP(scan) == IFTHEN) {
2796 next = regnext(scan);
2798 /* demq: the op(next)==code check is to see if we have "branch-branch" AFAICT */
2800 if (OP(next) == code || code == IFTHEN) {
2801 /* NOTE - There is similar code to this block below for handling
2802 TRIE nodes on a re-study. If you change stuff here check there
2804 I32 max1 = 0, min1 = I32_MAX, num = 0;
2805 struct regnode_charclass_class accum;
2806 regnode * const startbranch=scan;
2808 if (flags & SCF_DO_SUBSTR)
2809 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot merge strings after this. */
2810 if (flags & SCF_DO_STCLASS)
2811 cl_init_zero(pRExC_state, &accum);
2813 while (OP(scan) == code) {
2814 I32 deltanext, minnext, f = 0, fake;
2815 struct regnode_charclass_class this_class;
2818 data_fake.flags = 0;
2820 data_fake.whilem_c = data->whilem_c;
2821 data_fake.last_closep = data->last_closep;
2824 data_fake.last_closep = &fake;
2826 data_fake.pos_delta = delta;
2827 next = regnext(scan);
2828 scan = NEXTOPER(scan);
2830 scan = NEXTOPER(scan);
2831 if (flags & SCF_DO_STCLASS) {
2832 cl_init(pRExC_state, &this_class);
2833 data_fake.start_class = &this_class;
2834 f = SCF_DO_STCLASS_AND;
2836 if (flags & SCF_WHILEM_VISITED_POS)
2837 f |= SCF_WHILEM_VISITED_POS;
2839 /* we suppose the run is continuous, last=next...*/
2840 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
2842 stopparen, recursed, NULL, f,depth+1);
2845 if (max1 < minnext + deltanext)
2846 max1 = minnext + deltanext;
2847 if (deltanext == I32_MAX)
2848 is_inf = is_inf_internal = 1;
2850 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
2852 if (data_fake.flags & SCF_SEEN_ACCEPT) {
2853 if ( stopmin > minnext)
2854 stopmin = min + min1;
2855 flags &= ~SCF_DO_SUBSTR;
2857 data->flags |= SCF_SEEN_ACCEPT;
2860 if (data_fake.flags & SF_HAS_EVAL)
2861 data->flags |= SF_HAS_EVAL;
2862 data->whilem_c = data_fake.whilem_c;
2864 if (flags & SCF_DO_STCLASS)
2865 cl_or(pRExC_state, &accum, &this_class);
2867 if (code == IFTHEN && num < 2) /* Empty ELSE branch */
2869 if (flags & SCF_DO_SUBSTR) {
2870 data->pos_min += min1;
2871 data->pos_delta += max1 - min1;
2872 if (max1 != min1 || is_inf)
2873 data->longest = &(data->longest_float);
2876 delta += max1 - min1;
2877 if (flags & SCF_DO_STCLASS_OR) {
2878 cl_or(pRExC_state, data->start_class, &accum);
2880 cl_and(data->start_class, and_withp);
2881 flags &= ~SCF_DO_STCLASS;
2884 else if (flags & SCF_DO_STCLASS_AND) {
2886 cl_and(data->start_class, &accum);
2887 flags &= ~SCF_DO_STCLASS;
2890 /* Switch to OR mode: cache the old value of
2891 * data->start_class */
2893 StructCopy(data->start_class, and_withp,
2894 struct regnode_charclass_class);
2895 flags &= ~SCF_DO_STCLASS_AND;
2896 StructCopy(&accum, data->start_class,
2897 struct regnode_charclass_class);
2898 flags |= SCF_DO_STCLASS_OR;
2899 data->start_class->flags |= ANYOF_EOS;
2903 if (PERL_ENABLE_TRIE_OPTIMISATION && OP( startbranch ) == BRANCH ) {
2906 Assuming this was/is a branch we are dealing with: 'scan' now
2907 points at the item that follows the branch sequence, whatever
2908 it is. We now start at the beginning of the sequence and look
2915 which would be constructed from a pattern like /A|LIST|OF|WORDS/
2917 If we can find such a subsequence we need to turn the first
2918 element into a trie and then add the subsequent branch exact
2919 strings to the trie.
2923 1. patterns where the whole set of branches can be converted.
2925 2. patterns where only a subset can be converted.
2927 In case 1 we can replace the whole set with a single regop
2928 for the trie. In case 2 we need to keep the start and end
2931 'BRANCH EXACT; BRANCH EXACT; BRANCH X'
2932 becomes BRANCH TRIE; BRANCH X;
2934 There is an additional case, that being where there is a
2935 common prefix, which gets split out into an EXACT like node
2936 preceding the TRIE node.
2938 If x(1..n)==tail then we can do a simple trie, if not we make
2939 a "jump" trie, such that when we match the appropriate word
2940 we "jump" to the appropriate tail node. Essentially we turn
2941 a nested if into a case structure of sorts.
2946 if (!re_trie_maxbuff) {
2947 re_trie_maxbuff = get_sv(RE_TRIE_MAXBUF_NAME, 1);
2948 if (!SvIOK(re_trie_maxbuff))
2949 sv_setiv(re_trie_maxbuff, RE_TRIE_MAXBUF_INIT);
2951 if ( SvIV(re_trie_maxbuff)>=0 ) {
2953 regnode *first = (regnode *)NULL;
2954 regnode *last = (regnode *)NULL;
2955 regnode *tail = scan;
2960 SV * const mysv = sv_newmortal(); /* for dumping */
2962 /* var tail is used because there may be a TAIL
2963 regop in the way. Ie, the exacts will point to the
2964 thing following the TAIL, but the last branch will
2965 point at the TAIL. So we advance tail. If we
2966 have nested (?:) we may have to move through several
2970 while ( OP( tail ) == TAIL ) {
2971 /* this is the TAIL generated by (?:) */
2972 tail = regnext( tail );
2977 regprop(RExC_rx, mysv, tail );
2978 PerlIO_printf( Perl_debug_log, "%*s%s%s\n",
2979 (int)depth * 2 + 2, "",
2980 "Looking for TRIE'able sequences. Tail node is: ",
2981 SvPV_nolen_const( mysv )
2987 step through the branches, cur represents each
2988 branch, noper is the first thing to be matched
2989 as part of that branch and noper_next is the
2990 regnext() of that node. if noper is an EXACT
2991 and noper_next is the same as scan (our current
2992 position in the regex) then the EXACT branch is
2993 a possible optimization target. Once we have
2994 two or more consecutive such branches we can
2995 create a trie of the EXACT's contents and stich
2996 it in place. If the sequence represents all of
2997 the branches we eliminate the whole thing and
2998 replace it with a single TRIE. If it is a
2999 subsequence then we need to stitch it in. This
3000 means the first branch has to remain, and needs
3001 to be repointed at the item on the branch chain
3002 following the last branch optimized. This could
3003 be either a BRANCH, in which case the
3004 subsequence is internal, or it could be the
3005 item following the branch sequence in which
3006 case the subsequence is at the end.
3010 /* dont use tail as the end marker for this traverse */
3011 for ( cur = startbranch ; cur != scan ; cur = regnext( cur ) ) {
3012 regnode * const noper = NEXTOPER( cur );
3013 #if defined(DEBUGGING) || defined(NOJUMPTRIE)
3014 regnode * const noper_next = regnext( noper );
3018 regprop(RExC_rx, mysv, cur);
3019 PerlIO_printf( Perl_debug_log, "%*s- %s (%d)",
3020 (int)depth * 2 + 2,"", SvPV_nolen_const( mysv ), REG_NODE_NUM(cur) );
3022 regprop(RExC_rx, mysv, noper);
3023 PerlIO_printf( Perl_debug_log, " -> %s",
3024 SvPV_nolen_const(mysv));
3027 regprop(RExC_rx, mysv, noper_next );
3028 PerlIO_printf( Perl_debug_log,"\t=> %s\t",
3029 SvPV_nolen_const(mysv));
3031 PerlIO_printf( Perl_debug_log, "(First==%d,Last==%d,Cur==%d)\n",
3032 REG_NODE_NUM(first), REG_NODE_NUM(last), REG_NODE_NUM(cur) );
3034 if ( (((first && optype!=NOTHING) ? OP( noper ) == optype
3035 : PL_regkind[ OP( noper ) ] == EXACT )
3036 || OP(noper) == NOTHING )
3038 && noper_next == tail
3043 if ( !first || optype == NOTHING ) {
3044 if (!first) first = cur;
3045 optype = OP( noper );
3051 Currently we do not believe that the trie logic can
3052 handle case insensitive matching properly when the
3053 pattern is not unicode (thus forcing unicode semantics).
3055 If/when this is fixed the following define can be swapped
3056 in below to fully enable trie logic.
3058 XXX It may work if not UTF and/or /a (AT_LEAST_UNI_SEMANTICS) but perhaps
3061 #define TRIE_TYPE_IS_SAFE 1
3064 #define TRIE_TYPE_IS_SAFE ((UTF && UNI_SEMANTICS) || optype==EXACT)
3066 if ( last && TRIE_TYPE_IS_SAFE ) {
3067 make_trie( pRExC_state,
3068 startbranch, first, cur, tail, count,
3071 if ( PL_regkind[ OP( noper ) ] == EXACT
3073 && noper_next == tail
3078 optype = OP( noper );
3088 regprop(RExC_rx, mysv, cur);
3089 PerlIO_printf( Perl_debug_log,
3090 "%*s- %s (%d) <SCAN FINISHED>\n", (int)depth * 2 + 2,
3091 "", SvPV_nolen_const( mysv ),REG_NODE_NUM(cur));
3095 if ( last && TRIE_TYPE_IS_SAFE ) {
3096 made= make_trie( pRExC_state, startbranch, first, scan, tail, count, optype, depth+1 );
3097 #ifdef TRIE_STUDY_OPT
3098 if ( ((made == MADE_EXACT_TRIE &&
3099 startbranch == first)
3100 || ( first_non_open == first )) &&
3102 flags |= SCF_TRIE_RESTUDY;
3103 if ( startbranch == first
3106 RExC_seen &=~REG_TOP_LEVEL_BRANCHES;
3116 else if ( code == BRANCHJ ) { /* single branch is optimized. */
3117 scan = NEXTOPER(NEXTOPER(scan));
3118 } else /* single branch is optimized. */
3119 scan = NEXTOPER(scan);
3121 } else if (OP(scan) == SUSPEND || OP(scan) == GOSUB || OP(scan) == GOSTART) {
3122 scan_frame *newframe = NULL;
3127 if (OP(scan) != SUSPEND) {
3128 /* set the pointer */
3129 if (OP(scan) == GOSUB) {
3131 RExC_recurse[ARG2L(scan)] = scan;
3132 start = RExC_open_parens[paren-1];
3133 end = RExC_close_parens[paren-1];
3136 start = RExC_rxi->program + 1;
3140 Newxz(recursed, (((RExC_npar)>>3) +1), U8);
3141 SAVEFREEPV(recursed);
3143 if (!PAREN_TEST(recursed,paren+1)) {
3144 PAREN_SET(recursed,paren+1);
3145 Newx(newframe,1,scan_frame);
3147 if (flags & SCF_DO_SUBSTR) {
3148 SCAN_COMMIT(pRExC_state,data,minlenp);
3149 data->longest = &(data->longest_float);
3151 is_inf = is_inf_internal = 1;
3152 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3153 cl_anything(pRExC_state, data->start_class);
3154 flags &= ~SCF_DO_STCLASS;
3157 Newx(newframe,1,scan_frame);
3160 end = regnext(scan);
3165 SAVEFREEPV(newframe);
3166 newframe->next = regnext(scan);
3167 newframe->last = last;
3168 newframe->stop = stopparen;
3169 newframe->prev = frame;
3179 else if (OP(scan) == EXACT) {
3180 I32 l = STR_LEN(scan);
3183 const U8 * const s = (U8*)STRING(scan);
3184 l = utf8_length(s, s + l);
3185 uc = utf8_to_uvchr(s, NULL);
3187 uc = *((U8*)STRING(scan));
3190 if (flags & SCF_DO_SUBSTR) { /* Update longest substr. */
3191 /* The code below prefers earlier match for fixed
3192 offset, later match for variable offset. */
3193 if (data->last_end == -1) { /* Update the start info. */
3194 data->last_start_min = data->pos_min;
3195 data->last_start_max = is_inf
3196 ? I32_MAX : data->pos_min + data->pos_delta;
3198 sv_catpvn(data->last_found, STRING(scan), STR_LEN(scan));
3200 SvUTF8_on(data->last_found);
3202 SV * const sv = data->last_found;
3203 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3204 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3205 if (mg && mg->mg_len >= 0)
3206 mg->mg_len += utf8_length((U8*)STRING(scan),
3207 (U8*)STRING(scan)+STR_LEN(scan));
3209 data->last_end = data->pos_min + l;
3210 data->pos_min += l; /* As in the first entry. */
3211 data->flags &= ~SF_BEFORE_EOL;
3213 if (flags & SCF_DO_STCLASS_AND) {
3214 /* Check whether it is compatible with what we know already! */
3218 /* If compatible, we or it in below. It is compatible if is
3219 * in the bitmp and either 1) its bit or its fold is set, or 2)
3220 * it's for a locale. Even if there isn't unicode semantics
3221 * here, at runtime there may be because of matching against a
3222 * utf8 string, so accept a possible false positive for
3223 * latin1-range folds */
3225 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3226 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3227 && (!(data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD)
3228 || !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3233 ANYOF_CLASS_ZERO(data->start_class);
3234 ANYOF_BITMAP_ZERO(data->start_class);
3236 ANYOF_BITMAP_SET(data->start_class, uc);
3237 else if (uc >= 0x100) {
3240 /* Some Unicode code points fold to the Latin1 range; as
3241 * XXX temporary code, instead of figuring out if this is
3242 * one, just assume it is and set all the start class bits
3243 * that could be some such above 255 code point's fold
3244 * which will generate fals positives. As the code
3245 * elsewhere that does compute the fold settles down, it
3246 * can be extracted out and re-used here */
3247 for (i = 0; i < 256; i++){
3248 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3249 ANYOF_BITMAP_SET(data->start_class, i);
3253 data->start_class->flags &= ~ANYOF_EOS;
3255 data->start_class->flags &= ~ANYOF_UNICODE_ALL;
3257 else if (flags & SCF_DO_STCLASS_OR) {
3258 /* false positive possible if the class is case-folded */
3260 ANYOF_BITMAP_SET(data->start_class, uc);
3262 data->start_class->flags |= ANYOF_UNICODE_ALL;
3263 data->start_class->flags &= ~ANYOF_EOS;
3264 cl_and(data->start_class, and_withp);
3266 flags &= ~SCF_DO_STCLASS;
3268 else if (PL_regkind[OP(scan)] == EXACT) { /* But OP != EXACT! */
3269 I32 l = STR_LEN(scan);
3270 UV uc = *((U8*)STRING(scan));
3272 /* Search for fixed substrings supports EXACT only. */
3273 if (flags & SCF_DO_SUBSTR) {
3275 SCAN_COMMIT(pRExC_state, data, minlenp);
3278 const U8 * const s = (U8 *)STRING(scan);
3279 l = utf8_length(s, s + l);
3280 uc = utf8_to_uvchr(s, NULL);
3283 if (flags & SCF_DO_SUBSTR)
3285 if (flags & SCF_DO_STCLASS_AND) {
3286 /* Check whether it is compatible with what we know already! */
3289 (!(data->start_class->flags & (ANYOF_CLASS | ANYOF_LOCALE))
3290 && !ANYOF_BITMAP_TEST(data->start_class, uc)
3291 && !ANYOF_BITMAP_TEST(data->start_class, PL_fold_latin1[uc])))
3295 ANYOF_CLASS_ZERO(data->start_class);
3296 ANYOF_BITMAP_ZERO(data->start_class);
3298 ANYOF_BITMAP_SET(data->start_class, uc);
3299 data->start_class->flags &= ~ANYOF_EOS;
3300 data->start_class->flags |= ANYOF_LOC_NONBITMAP_FOLD;
3301 if (OP(scan) == EXACTFL) {
3302 /* XXX This set is probably no longer necessary, and
3303 * probably wrong as LOCALE now is on in the initial
3305 data->start_class->flags |= ANYOF_LOCALE;
3309 /* Also set the other member of the fold pair. In case
3310 * that unicode semantics is called for at runtime, use
3311 * the full latin1 fold. (Can't do this for locale,
3312 * because not known until runtime */
3313 ANYOF_BITMAP_SET(data->start_class, PL_fold_latin1[uc]);
3316 else if (uc >= 0x100) {
3318 for (i = 0; i < 256; i++){
3319 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(i)) {
3320 ANYOF_BITMAP_SET(data->start_class, i);
3325 else if (flags & SCF_DO_STCLASS_OR) {
3326 if (data->start_class->flags & ANYOF_LOC_NONBITMAP_FOLD) {
3327 /* false positive possible if the class is case-folded.
3328 Assume that the locale settings are the same... */
3330 ANYOF_BITMAP_SET(data->start_class, uc);
3331 if (OP(scan) != EXACTFL) {
3333 /* And set the other member of the fold pair, but
3334 * can't do that in locale because not known until
3336 ANYOF_BITMAP_SET(data->start_class,
3337 PL_fold_latin1[uc]);
3340 data->start_class->flags &= ~ANYOF_EOS;
3342 cl_and(data->start_class, and_withp);
3344 flags &= ~SCF_DO_STCLASS;
3346 else if (REGNODE_VARIES(OP(scan))) {
3347 I32 mincount, maxcount, minnext, deltanext, fl = 0;
3348 I32 f = flags, pos_before = 0;
3349 regnode * const oscan = scan;
3350 struct regnode_charclass_class this_class;
3351 struct regnode_charclass_class *oclass = NULL;
3352 I32 next_is_eval = 0;
3354 switch (PL_regkind[OP(scan)]) {
3355 case WHILEM: /* End of (?:...)* . */
3356 scan = NEXTOPER(scan);
3359 if (flags & (SCF_DO_SUBSTR | SCF_DO_STCLASS)) {
3360 next = NEXTOPER(scan);
3361 if (OP(next) == EXACT || (flags & SCF_DO_STCLASS)) {
3363 maxcount = REG_INFTY;
3364 next = regnext(scan);
3365 scan = NEXTOPER(scan);
3369 if (flags & SCF_DO_SUBSTR)
3374 if (flags & SCF_DO_STCLASS) {
3376 maxcount = REG_INFTY;
3377 next = regnext(scan);
3378 scan = NEXTOPER(scan);
3381 is_inf = is_inf_internal = 1;
3382 scan = regnext(scan);
3383 if (flags & SCF_DO_SUBSTR) {
3384 SCAN_COMMIT(pRExC_state, data, minlenp); /* Cannot extend fixed substrings */
3385 data->longest = &(data->longest_float);
3387 goto optimize_curly_tail;
3389 if (stopparen>0 && (OP(scan)==CURLYN || OP(scan)==CURLYM)
3390 && (scan->flags == stopparen))
3395 mincount = ARG1(scan);
3396 maxcount = ARG2(scan);
3398 next = regnext(scan);
3399 if (OP(scan) == CURLYX) {
3400 I32 lp = (data ? *(data->last_closep) : 0);
3401 scan->flags = ((lp <= (I32)U8_MAX) ? (U8)lp : U8_MAX);
3403 scan = NEXTOPER(scan) + EXTRA_STEP_2ARGS;
3404 next_is_eval = (OP(scan) == EVAL);
3406 if (flags & SCF_DO_SUBSTR) {
3407 if (mincount == 0) SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot extend fixed substrings */
3408 pos_before = data->pos_min;
3412 data->flags &= ~(SF_HAS_PAR|SF_IN_PAR|SF_HAS_EVAL);
3414 data->flags |= SF_IS_INF;
3416 if (flags & SCF_DO_STCLASS) {
3417 cl_init(pRExC_state, &this_class);
3418 oclass = data->start_class;
3419 data->start_class = &this_class;
3420 f |= SCF_DO_STCLASS_AND;
3421 f &= ~SCF_DO_STCLASS_OR;
3423 /* Exclude from super-linear cache processing any {n,m}
3424 regops for which the combination of input pos and regex
3425 pos is not enough information to determine if a match
3428 For example, in the regex /foo(bar\s*){4,8}baz/ with the
3429 regex pos at the \s*, the prospects for a match depend not
3430 only on the input position but also on how many (bar\s*)
3431 repeats into the {4,8} we are. */
3432 if ((mincount > 1) || (maxcount > 1 && maxcount != REG_INFTY))
3433 f &= ~SCF_WHILEM_VISITED_POS;
3435 /* This will finish on WHILEM, setting scan, or on NULL: */
3436 minnext = study_chunk(pRExC_state, &scan, minlenp, &deltanext,
3437 last, data, stopparen, recursed, NULL,
3439 ? (f & ~SCF_DO_SUBSTR) : f),depth+1);
3441 if (flags & SCF_DO_STCLASS)
3442 data->start_class = oclass;
3443 if (mincount == 0 || minnext == 0) {
3444 if (flags & SCF_DO_STCLASS_OR) {
3445 cl_or(pRExC_state, data->start_class, &this_class);
3447 else if (flags & SCF_DO_STCLASS_AND) {
3448 /* Switch to OR mode: cache the old value of
3449 * data->start_class */
3451 StructCopy(data->start_class, and_withp,
3452 struct regnode_charclass_class);
3453 flags &= ~SCF_DO_STCLASS_AND;
3454 StructCopy(&this_class, data->start_class,
3455 struct regnode_charclass_class);
3456 flags |= SCF_DO_STCLASS_OR;
3457 data->start_class->flags |= ANYOF_EOS;
3459 } else { /* Non-zero len */
3460 if (flags & SCF_DO_STCLASS_OR) {
3461 cl_or(pRExC_state, data->start_class, &this_class);
3462 cl_and(data->start_class, and_withp);
3464 else if (flags & SCF_DO_STCLASS_AND)
3465 cl_and(data->start_class, &this_class);
3466 flags &= ~SCF_DO_STCLASS;
3468 if (!scan) /* It was not CURLYX, but CURLY. */
3470 if ( /* ? quantifier ok, except for (?{ ... }) */
3471 (next_is_eval || !(mincount == 0 && maxcount == 1))
3472 && (minnext == 0) && (deltanext == 0)
3473 && data && !(data->flags & (SF_HAS_PAR|SF_IN_PAR))
3474 && maxcount <= REG_INFTY/3) /* Complement check for big count */
3476 ckWARNreg(RExC_parse,
3477 "Quantifier unexpected on zero-length expression");
3480 min += minnext * mincount;
3481 is_inf_internal |= ((maxcount == REG_INFTY
3482 && (minnext + deltanext) > 0)
3483 || deltanext == I32_MAX);
3484 is_inf |= is_inf_internal;
3485 delta += (minnext + deltanext) * maxcount - minnext * mincount;
3487 /* Try powerful optimization CURLYX => CURLYN. */
3488 if ( OP(oscan) == CURLYX && data
3489 && data->flags & SF_IN_PAR
3490 && !(data->flags & SF_HAS_EVAL)
3491 && !deltanext && minnext == 1 ) {
3492 /* Try to optimize to CURLYN. */
3493 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS;
3494 regnode * const nxt1 = nxt;
3501 if (!REGNODE_SIMPLE(OP(nxt))
3502 && !(PL_regkind[OP(nxt)] == EXACT
3503 && STR_LEN(nxt) == 1))
3509 if (OP(nxt) != CLOSE)
3511 if (RExC_open_parens) {
3512 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3513 RExC_close_parens[ARG(nxt1)-1]=nxt+2; /*close->while*/
3515 /* Now we know that nxt2 is the only contents: */
3516 oscan->flags = (U8)ARG(nxt);
3518 OP(nxt1) = NOTHING; /* was OPEN. */
3521 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3522 NEXT_OFF(nxt1+ 1) = 0; /* just for consistency. */
3523 NEXT_OFF(nxt2) = 0; /* just for consistency with CURLY. */
3524 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3525 OP(nxt + 1) = OPTIMIZED; /* was count. */
3526 NEXT_OFF(nxt+ 1) = 0; /* just for consistency. */
3531 /* Try optimization CURLYX => CURLYM. */
3532 if ( OP(oscan) == CURLYX && data
3533 && !(data->flags & SF_HAS_PAR)
3534 && !(data->flags & SF_HAS_EVAL)
3535 && !deltanext /* atom is fixed width */
3536 && minnext != 0 /* CURLYM can't handle zero width */
3538 /* XXXX How to optimize if data == 0? */
3539 /* Optimize to a simpler form. */
3540 regnode *nxt = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN */
3544 while ( (nxt2 = regnext(nxt)) /* skip over embedded stuff*/
3545 && (OP(nxt2) != WHILEM))
3547 OP(nxt2) = SUCCEED; /* Whas WHILEM */
3548 /* Need to optimize away parenths. */
3549 if ((data->flags & SF_IN_PAR) && OP(nxt) == CLOSE) {
3550 /* Set the parenth number. */
3551 regnode *nxt1 = NEXTOPER(oscan) + EXTRA_STEP_2ARGS; /* OPEN*/
3553 oscan->flags = (U8)ARG(nxt);
3554 if (RExC_open_parens) {
3555 RExC_open_parens[ARG(nxt1)-1]=oscan; /*open->CURLYM*/
3556 RExC_close_parens[ARG(nxt1)-1]=nxt2+1; /*close->NOTHING*/
3558 OP(nxt1) = OPTIMIZED; /* was OPEN. */
3559 OP(nxt) = OPTIMIZED; /* was CLOSE. */
3562 OP(nxt1 + 1) = OPTIMIZED; /* was count. */
3563 OP(nxt + 1) = OPTIMIZED; /* was count. */
3564 NEXT_OFF(nxt1 + 1) = 0; /* just for consistency. */
3565 NEXT_OFF(nxt + 1) = 0; /* just for consistency. */
3568 while ( nxt1 && (OP(nxt1) != WHILEM)) {
3569 regnode *nnxt = regnext(nxt1);
3571 if (reg_off_by_arg[OP(nxt1)])
3572 ARG_SET(nxt1, nxt2 - nxt1);
3573 else if (nxt2 - nxt1 < U16_MAX)
3574 NEXT_OFF(nxt1) = nxt2 - nxt1;
3576 OP(nxt) = NOTHING; /* Cannot beautify */
3581 /* Optimize again: */
3582 study_chunk(pRExC_state, &nxt1, minlenp, &deltanext, nxt,
3583 NULL, stopparen, recursed, NULL, 0,depth+1);
3588 else if ((OP(oscan) == CURLYX)
3589 && (flags & SCF_WHILEM_VISITED_POS)
3590 /* See the comment on a similar expression above.
3591 However, this time it's not a subexpression
3592 we care about, but the expression itself. */
3593 && (maxcount == REG_INFTY)
3594 && data && ++data->whilem_c < 16) {
3595 /* This stays as CURLYX, we can put the count/of pair. */
3596 /* Find WHILEM (as in regexec.c) */
3597 regnode *nxt = oscan + NEXT_OFF(oscan);
3599 if (OP(PREVOPER(nxt)) == NOTHING) /* LONGJMP */
3601 PREVOPER(nxt)->flags = (U8)(data->whilem_c
3602 | (RExC_whilem_seen << 4)); /* On WHILEM */
3604 if (data && fl & (SF_HAS_PAR|SF_IN_PAR))
3606 if (flags & SCF_DO_SUBSTR) {
3607 SV *last_str = NULL;
3608 int counted = mincount != 0;
3610 if (data->last_end > 0 && mincount != 0) { /* Ends with a string. */
3611 #if defined(SPARC64_GCC_WORKAROUND)
3614 const char *s = NULL;
3617 if (pos_before >= data->last_start_min)
3620 b = data->last_start_min;
3623 s = SvPV_const(data->last_found, l);
3624 old = b - data->last_start_min;
3627 I32 b = pos_before >= data->last_start_min
3628 ? pos_before : data->last_start_min;
3630 const char * const s = SvPV_const(data->last_found, l);
3631 I32 old = b - data->last_start_min;
3635 old = utf8_hop((U8*)s, old) - (U8*)s;
3637 /* Get the added string: */
3638 last_str = newSVpvn_utf8(s + old, l, UTF);
3639 if (deltanext == 0 && pos_before == b) {
3640 /* What was added is a constant string */
3642 SvGROW(last_str, (mincount * l) + 1);
3643 repeatcpy(SvPVX(last_str) + l,
3644 SvPVX_const(last_str), l, mincount - 1);
3645 SvCUR_set(last_str, SvCUR(last_str) * mincount);
3646 /* Add additional parts. */
3647 SvCUR_set(data->last_found,
3648 SvCUR(data->last_found) - l);
3649 sv_catsv(data->last_found, last_str);
3651 SV * sv = data->last_found;
3653 SvUTF8(sv) && SvMAGICAL(sv) ?
3654 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3655 if (mg && mg->mg_len >= 0)
3656 mg->mg_len += CHR_SVLEN(last_str) - l;
3658 data->last_end += l * (mincount - 1);
3661 /* start offset must point into the last copy */
3662 data->last_start_min += minnext * (mincount - 1);
3663 data->last_start_max += is_inf ? I32_MAX
3664 : (maxcount - 1) * (minnext + data->pos_delta);
3667 /* It is counted once already... */
3668 data->pos_min += minnext * (mincount - counted);
3669 data->pos_delta += - counted * deltanext +
3670 (minnext + deltanext) * maxcount - minnext * mincount;
3671 if (mincount != maxcount) {
3672 /* Cannot extend fixed substrings found inside
3674 SCAN_COMMIT(pRExC_state,data,minlenp);
3675 if (mincount && last_str) {
3676 SV * const sv = data->last_found;
3677 MAGIC * const mg = SvUTF8(sv) && SvMAGICAL(sv) ?
3678 mg_find(sv, PERL_MAGIC_utf8) : NULL;
3682 sv_setsv(sv, last_str);
3683 data->last_end = data->pos_min;
3684 data->last_start_min =
3685 data->pos_min - CHR_SVLEN(last_str);
3686 data->last_start_max = is_inf
3688 : data->pos_min + data->pos_delta
3689 - CHR_SVLEN(last_str);
3691 data->longest = &(data->longest_float);
3693 SvREFCNT_dec(last_str);
3695 if (data && (fl & SF_HAS_EVAL))
3696 data->flags |= SF_HAS_EVAL;
3697 optimize_curly_tail:
3698 if (OP(oscan) != CURLYX) {
3699 while (PL_regkind[OP(next = regnext(oscan))] == NOTHING
3701 NEXT_OFF(oscan) += NEXT_OFF(next);
3704 default: /* REF, ANYOFV, and CLUMP only? */
3705 if (flags & SCF_DO_SUBSTR) {
3706 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3707 data->longest = &(data->longest_float);
3709 is_inf = is_inf_internal = 1;
3710 if (flags & SCF_DO_STCLASS_OR)
3711 cl_anything(pRExC_state, data->start_class);
3712 flags &= ~SCF_DO_STCLASS;
3716 else if (OP(scan) == LNBREAK) {
3717 if (flags & SCF_DO_STCLASS) {
3719 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3720 if (flags & SCF_DO_STCLASS_AND) {
3721 for (value = 0; value < 256; value++)
3722 if (!is_VERTWS_cp(value))
3723 ANYOF_BITMAP_CLEAR(data->start_class, value);
3726 for (value = 0; value < 256; value++)
3727 if (is_VERTWS_cp(value))
3728 ANYOF_BITMAP_SET(data->start_class, value);
3730 if (flags & SCF_DO_STCLASS_OR)
3731 cl_and(data->start_class, and_withp);
3732 flags &= ~SCF_DO_STCLASS;
3736 if (flags & SCF_DO_SUBSTR) {
3737 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3739 data->pos_delta += 1;
3740 data->longest = &(data->longest_float);
3743 else if (OP(scan) == FOLDCHAR) {
3744 int d = ARG(scan) == LATIN_SMALL_LETTER_SHARP_S ? 1 : 2;
3745 flags &= ~SCF_DO_STCLASS;
3748 if (flags & SCF_DO_SUBSTR) {
3749 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
3751 data->pos_delta += d;
3752 data->longest = &(data->longest_float);
3755 else if (REGNODE_SIMPLE(OP(scan))) {
3758 if (flags & SCF_DO_SUBSTR) {
3759 SCAN_COMMIT(pRExC_state,data,minlenp);
3763 if (flags & SCF_DO_STCLASS) {
3764 data->start_class->flags &= ~ANYOF_EOS; /* No match on empty */
3766 /* Some of the logic below assumes that switching
3767 locale on will only add false positives. */
3768 switch (PL_regkind[OP(scan)]) {
3772 /* Perl_croak(aTHX_ "panic: unexpected simple REx opcode %d", OP(scan)); */
3773 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
3774 cl_anything(pRExC_state, data->start_class);
3777 if (OP(scan) == SANY)
3779 if (flags & SCF_DO_STCLASS_OR) { /* Everything but \n */
3780 value = (ANYOF_BITMAP_TEST(data->start_class,'\n')
3781 || ANYOF_CLASS_TEST_ANY_SET(data->start_class));
3782 cl_anything(pRExC_state, data->start_class);
3784 if (flags & SCF_DO_STCLASS_AND || !value)
3785 ANYOF_BITMAP_CLEAR(data->start_class,'\n');
3788 if (flags & SCF_DO_STCLASS_AND)
3789 cl_and(data->start_class,
3790 (struct regnode_charclass_class*)scan);
3792 cl_or(pRExC_state, data->start_class,
3793 (struct regnode_charclass_class*)scan);
3796 if (flags & SCF_DO_STCLASS_AND) {
3797 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3798 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NALNUM);
3799 if (OP(scan) == ALNUMU) {
3800 for (value = 0; value < 256; value++) {
3801 if (!isWORDCHAR_L1(value)) {
3802 ANYOF_BITMAP_CLEAR(data->start_class, value);
3806 for (value = 0; value < 256; value++) {
3807 if (!isALNUM(value)) {
3808 ANYOF_BITMAP_CLEAR(data->start_class, value);
3815 if (data->start_class->flags & ANYOF_LOCALE)
3816 ANYOF_CLASS_SET(data->start_class,ANYOF_ALNUM);
3818 /* Even if under locale, set the bits for non-locale
3819 * in case it isn't a true locale-node. This will
3820 * create false positives if it truly is locale */
3821 if (OP(scan) == ALNUMU) {
3822 for (value = 0; value < 256; value++) {
3823 if (isWORDCHAR_L1(value)) {
3824 ANYOF_BITMAP_SET(data->start_class, value);
3828 for (value = 0; value < 256; value++) {
3829 if (isALNUM(value)) {
3830 ANYOF_BITMAP_SET(data->start_class, value);
3837 if (flags & SCF_DO_STCLASS_AND) {
3838 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3839 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_ALNUM);
3840 if (OP(scan) == NALNUMU) {
3841 for (value = 0; value < 256; value++) {
3842 if (isWORDCHAR_L1(value)) {
3843 ANYOF_BITMAP_CLEAR(data->start_class, value);
3847 for (value = 0; value < 256; value++) {
3848 if (isALNUM(value)) {
3849 ANYOF_BITMAP_CLEAR(data->start_class, value);
3856 if (data->start_class->flags & ANYOF_LOCALE)
3857 ANYOF_CLASS_SET(data->start_class,ANYOF_NALNUM);
3859 /* Even if under locale, set the bits for non-locale in
3860 * case it isn't a true locale-node. This will create
3861 * false positives if it truly is locale */
3862 if (OP(scan) == NALNUMU) {
3863 for (value = 0; value < 256; value++) {
3864 if (! isWORDCHAR_L1(value)) {
3865 ANYOF_BITMAP_SET(data->start_class, value);
3869 for (value = 0; value < 256; value++) {
3870 if (! isALNUM(value)) {
3871 ANYOF_BITMAP_SET(data->start_class, value);
3878 if (flags & SCF_DO_STCLASS_AND) {
3879 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3880 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NSPACE);
3881 if (OP(scan) == SPACEU) {
3882 for (value = 0; value < 256; value++) {
3883 if (!isSPACE_L1(value)) {
3884 ANYOF_BITMAP_CLEAR(data->start_class, value);
3888 for (value = 0; value < 256; value++) {
3889 if (!isSPACE(value)) {
3890 ANYOF_BITMAP_CLEAR(data->start_class, value);
3897 if (data->start_class->flags & ANYOF_LOCALE) {
3898 ANYOF_CLASS_SET(data->start_class,ANYOF_SPACE);
3900 if (OP(scan) == SPACEU) {
3901 for (value = 0; value < 256; value++) {
3902 if (isSPACE_L1(value)) {
3903 ANYOF_BITMAP_SET(data->start_class, value);
3907 for (value = 0; value < 256; value++) {
3908 if (isSPACE(value)) {
3909 ANYOF_BITMAP_SET(data->start_class, value);
3916 if (flags & SCF_DO_STCLASS_AND) {
3917 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3918 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_SPACE);
3919 if (OP(scan) == NSPACEU) {
3920 for (value = 0; value < 256; value++) {
3921 if (isSPACE_L1(value)) {
3922 ANYOF_BITMAP_CLEAR(data->start_class, value);
3926 for (value = 0; value < 256; value++) {
3927 if (isSPACE(value)) {
3928 ANYOF_BITMAP_CLEAR(data->start_class, value);
3935 if (data->start_class->flags & ANYOF_LOCALE)
3936 ANYOF_CLASS_SET(data->start_class,ANYOF_NSPACE);
3937 if (OP(scan) == NSPACEU) {
3938 for (value = 0; value < 256; value++) {
3939 if (!isSPACE_L1(value)) {
3940 ANYOF_BITMAP_SET(data->start_class, value);
3945 for (value = 0; value < 256; value++) {
3946 if (!isSPACE(value)) {
3947 ANYOF_BITMAP_SET(data->start_class, value);
3954 if (flags & SCF_DO_STCLASS_AND) {
3955 if (!(data->start_class->flags & ANYOF_LOCALE)) {
3956 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_NDIGIT);
3957 for (value = 0; value < 256; value++)
3958 if (!isDIGIT(value))
3959 ANYOF_BITMAP_CLEAR(data->start_class, value);
3963 if (data->start_class->flags & ANYOF_LOCALE)
3964 ANYOF_CLASS_SET(data->start_class,ANYOF_DIGIT);
3965 for (value = 0; value < 256; value++)
3967 ANYOF_BITMAP_SET(data->start_class, value);
3971 if (flags & SCF_DO_STCLASS_AND) {
3972 if (!(data->start_class->flags & ANYOF_LOCALE))
3973 ANYOF_CLASS_CLEAR(data->start_class,ANYOF_DIGIT);
3974 for (value = 0; value < 256; value++)
3976 ANYOF_BITMAP_CLEAR(data->start_class, value);
3979 if (data->start_class->flags & ANYOF_LOCALE)
3980 ANYOF_CLASS_SET(data->start_class,ANYOF_NDIGIT);
3981 for (value = 0; value < 256; value++)
3982 if (!isDIGIT(value))
3983 ANYOF_BITMAP_SET(data->start_class, value);
3986 CASE_SYNST_FNC(VERTWS);
3987 CASE_SYNST_FNC(HORIZWS);
3990 if (flags & SCF_DO_STCLASS_OR)
3991 cl_and(data->start_class, and_withp);
3992 flags &= ~SCF_DO_STCLASS;
3995 else if (PL_regkind[OP(scan)] == EOL && flags & SCF_DO_SUBSTR) {
3996 data->flags |= (OP(scan) == MEOL
4000 else if ( PL_regkind[OP(scan)] == BRANCHJ
4001 /* Lookbehind, or need to calculate parens/evals/stclass: */
4002 && (scan->flags || data || (flags & SCF_DO_STCLASS))
4003 && (OP(scan) == IFMATCH || OP(scan) == UNLESSM)) {
4004 if ( !PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4005 || OP(scan) == UNLESSM )
4007 /* Negative Lookahead/lookbehind
4008 In this case we can't do fixed string optimisation.
4011 I32 deltanext, minnext, fake = 0;
4013 struct regnode_charclass_class intrnl;
4016 data_fake.flags = 0;
4018 data_fake.whilem_c = data->whilem_c;
4019 data_fake.last_closep = data->last_closep;
4022 data_fake.last_closep = &fake;
4023 data_fake.pos_delta = delta;
4024 if ( flags & SCF_DO_STCLASS && !scan->flags
4025 && OP(scan) == IFMATCH ) { /* Lookahead */
4026 cl_init(pRExC_state, &intrnl);
4027 data_fake.start_class = &intrnl;
4028 f |= SCF_DO_STCLASS_AND;
4030 if (flags & SCF_WHILEM_VISITED_POS)
4031 f |= SCF_WHILEM_VISITED_POS;
4032 next = regnext(scan);
4033 nscan = NEXTOPER(NEXTOPER(scan));
4034 minnext = study_chunk(pRExC_state, &nscan, minlenp, &deltanext,
4035 last, &data_fake, stopparen, recursed, NULL, f, depth+1);
4038 FAIL("Variable length lookbehind not implemented");
4040 else if (minnext > (I32)U8_MAX) {
4041 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4043 scan->flags = (U8)minnext;
4046 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4048 if (data_fake.flags & SF_HAS_EVAL)
4049 data->flags |= SF_HAS_EVAL;
4050 data->whilem_c = data_fake.whilem_c;
4052 if (f & SCF_DO_STCLASS_AND) {
4053 if (flags & SCF_DO_STCLASS_OR) {
4054 /* OR before, AND after: ideally we would recurse with
4055 * data_fake to get the AND applied by study of the
4056 * remainder of the pattern, and then derecurse;
4057 * *** HACK *** for now just treat as "no information".
4058 * See [perl #56690].
4060 cl_init(pRExC_state, data->start_class);
4062 /* AND before and after: combine and continue */
4063 const int was = (data->start_class->flags & ANYOF_EOS);
4065 cl_and(data->start_class, &intrnl);
4067 data->start_class->flags |= ANYOF_EOS;
4071 #if PERL_ENABLE_POSITIVE_ASSERTION_STUDY
4073 /* Positive Lookahead/lookbehind
4074 In this case we can do fixed string optimisation,
4075 but we must be careful about it. Note in the case of
4076 lookbehind the positions will be offset by the minimum
4077 length of the pattern, something we won't know about
4078 until after the recurse.
4080 I32 deltanext, fake = 0;
4082 struct regnode_charclass_class intrnl;
4084 /* We use SAVEFREEPV so that when the full compile
4085 is finished perl will clean up the allocated
4086 minlens when it's all done. This way we don't
4087 have to worry about freeing them when we know
4088 they wont be used, which would be a pain.
4091 Newx( minnextp, 1, I32 );
4092 SAVEFREEPV(minnextp);
4095 StructCopy(data, &data_fake, scan_data_t);
4096 if ((flags & SCF_DO_SUBSTR) && data->last_found) {
4099 SCAN_COMMIT(pRExC_state, &data_fake,minlenp);
4100 data_fake.last_found=newSVsv(data->last_found);
4104 data_fake.last_closep = &fake;
4105 data_fake.flags = 0;
4106 data_fake.pos_delta = delta;
4108 data_fake.flags |= SF_IS_INF;
4109 if ( flags & SCF_DO_STCLASS && !scan->flags
4110 && OP(scan) == IFMATCH ) { /* Lookahead */
4111 cl_init(pRExC_state, &intrnl);
4112 data_fake.start_class = &intrnl;
4113 f |= SCF_DO_STCLASS_AND;
4115 if (flags & SCF_WHILEM_VISITED_POS)
4116 f |= SCF_WHILEM_VISITED_POS;
4117 next = regnext(scan);
4118 nscan = NEXTOPER(NEXTOPER(scan));
4120 *minnextp = study_chunk(pRExC_state, &nscan, minnextp, &deltanext,
4121 last, &data_fake, stopparen, recursed, NULL, f,depth+1);
4124 FAIL("Variable length lookbehind not implemented");
4126 else if (*minnextp > (I32)U8_MAX) {
4127 FAIL2("Lookbehind longer than %"UVuf" not implemented", (UV)U8_MAX);
4129 scan->flags = (U8)*minnextp;
4134 if (f & SCF_DO_STCLASS_AND) {
4135 const int was = (data->start_class->flags & ANYOF_EOS);
4137 cl_and(data->start_class, &intrnl);
4139 data->start_class->flags |= ANYOF_EOS;
4142 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4144 if (data_fake.flags & SF_HAS_EVAL)
4145 data->flags |= SF_HAS_EVAL;
4146 data->whilem_c = data_fake.whilem_c;
4147 if ((flags & SCF_DO_SUBSTR) && data_fake.last_found) {
4148 if (RExC_rx->minlen<*minnextp)
4149 RExC_rx->minlen=*minnextp;
4150 SCAN_COMMIT(pRExC_state, &data_fake, minnextp);
4151 SvREFCNT_dec(data_fake.last_found);
4153 if ( data_fake.minlen_fixed != minlenp )
4155 data->offset_fixed= data_fake.offset_fixed;
4156 data->minlen_fixed= data_fake.minlen_fixed;
4157 data->lookbehind_fixed+= scan->flags;
4159 if ( data_fake.minlen_float != minlenp )
4161 data->minlen_float= data_fake.minlen_float;
4162 data->offset_float_min=data_fake.offset_float_min;
4163 data->offset_float_max=data_fake.offset_float_max;
4164 data->lookbehind_float+= scan->flags;
4173 else if (OP(scan) == OPEN) {
4174 if (stopparen != (I32)ARG(scan))
4177 else if (OP(scan) == CLOSE) {
4178 if (stopparen == (I32)ARG(scan)) {
4181 if ((I32)ARG(scan) == is_par) {
4182 next = regnext(scan);
4184 if ( next && (OP(next) != WHILEM) && next < last)
4185 is_par = 0; /* Disable optimization */
4188 *(data->last_closep) = ARG(scan);
4190 else if (OP(scan) == EVAL) {
4192 data->flags |= SF_HAS_EVAL;
4194 else if ( PL_regkind[OP(scan)] == ENDLIKE ) {
4195 if (flags & SCF_DO_SUBSTR) {
4196 SCAN_COMMIT(pRExC_state,data,minlenp);
4197 flags &= ~SCF_DO_SUBSTR;
4199 if (data && OP(scan)==ACCEPT) {
4200 data->flags |= SCF_SEEN_ACCEPT;
4205 else if (OP(scan) == LOGICAL && scan->flags == 2) /* Embedded follows */
4207 if (flags & SCF_DO_SUBSTR) {
4208 SCAN_COMMIT(pRExC_state,data,minlenp);
4209 data->longest = &(data->longest_float);
4211 is_inf = is_inf_internal = 1;
4212 if (flags & SCF_DO_STCLASS_OR) /* Allow everything */
4213 cl_anything(pRExC_state, data->start_class);
4214 flags &= ~SCF_DO_STCLASS;
4216 else if (OP(scan) == GPOS) {
4217 if (!(RExC_rx->extflags & RXf_GPOS_FLOAT) &&
4218 !(delta || is_inf || (data && data->pos_delta)))
4220 if (!(RExC_rx->extflags & RXf_ANCH) && (flags & SCF_DO_SUBSTR))
4221 RExC_rx->extflags |= RXf_ANCH_GPOS;
4222 if (RExC_rx->gofs < (U32)min)
4223 RExC_rx->gofs = min;
4225 RExC_rx->extflags |= RXf_GPOS_FLOAT;
4229 #ifdef TRIE_STUDY_OPT
4230 #ifdef FULL_TRIE_STUDY
4231 else if (PL_regkind[OP(scan)] == TRIE) {
4232 /* NOTE - There is similar code to this block above for handling
4233 BRANCH nodes on the initial study. If you change stuff here
4235 regnode *trie_node= scan;
4236 regnode *tail= regnext(scan);
4237 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4238 I32 max1 = 0, min1 = I32_MAX;
4239 struct regnode_charclass_class accum;
4241 if (flags & SCF_DO_SUBSTR) /* XXXX Add !SUSPEND? */
4242 SCAN_COMMIT(pRExC_state, data,minlenp); /* Cannot merge strings after this. */
4243 if (flags & SCF_DO_STCLASS)
4244 cl_init_zero(pRExC_state, &accum);
4250 const regnode *nextbranch= NULL;
4253 for ( word=1 ; word <= trie->wordcount ; word++)
4255 I32 deltanext=0, minnext=0, f = 0, fake;
4256 struct regnode_charclass_class this_class;
4258 data_fake.flags = 0;
4260 data_fake.whilem_c = data->whilem_c;
4261 data_fake.last_closep = data->last_closep;
4264 data_fake.last_closep = &fake;
4265 data_fake.pos_delta = delta;
4266 if (flags & SCF_DO_STCLASS) {
4267 cl_init(pRExC_state, &this_class);
4268 data_fake.start_class = &this_class;
4269 f = SCF_DO_STCLASS_AND;
4271 if (flags & SCF_WHILEM_VISITED_POS)
4272 f |= SCF_WHILEM_VISITED_POS;
4274 if (trie->jump[word]) {
4276 nextbranch = trie_node + trie->jump[0];
4277 scan= trie_node + trie->jump[word];
4278 /* We go from the jump point to the branch that follows
4279 it. Note this means we need the vestigal unused branches
4280 even though they arent otherwise used.
4282 minnext = study_chunk(pRExC_state, &scan, minlenp,
4283 &deltanext, (regnode *)nextbranch, &data_fake,
4284 stopparen, recursed, NULL, f,depth+1);
4286 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
4287 nextbranch= regnext((regnode*)nextbranch);
4289 if (min1 > (I32)(minnext + trie->minlen))
4290 min1 = minnext + trie->minlen;
4291 if (max1 < (I32)(minnext + deltanext + trie->maxlen))
4292 max1 = minnext + deltanext + trie->maxlen;
4293 if (deltanext == I32_MAX)
4294 is_inf = is_inf_internal = 1;
4296 if (data_fake.flags & (SF_HAS_PAR|SF_IN_PAR))
4298 if (data_fake.flags & SCF_SEEN_ACCEPT) {
4299 if ( stopmin > min + min1)
4300 stopmin = min + min1;
4301 flags &= ~SCF_DO_SUBSTR;
4303 data->flags |= SCF_SEEN_ACCEPT;
4306 if (data_fake.flags & SF_HAS_EVAL)
4307 data->flags |= SF_HAS_EVAL;
4308 data->whilem_c = data_fake.whilem_c;
4310 if (flags & SCF_DO_STCLASS)
4311 cl_or(pRExC_state, &accum, &this_class);
4314 if (flags & SCF_DO_SUBSTR) {
4315 data->pos_min += min1;
4316 data->pos_delta += max1 - min1;
4317 if (max1 != min1 || is_inf)
4318 data->longest = &(data->longest_float);
4321 delta += max1 - min1;
4322 if (flags & SCF_DO_STCLASS_OR) {
4323 cl_or(pRExC_state, data->start_class, &accum);
4325 cl_and(data->start_class, and_withp);
4326 flags &= ~SCF_DO_STCLASS;
4329 else if (flags & SCF_DO_STCLASS_AND) {
4331 cl_and(data->start_class, &accum);
4332 flags &= ~SCF_DO_STCLASS;
4335 /* Switch to OR mode: cache the old value of
4336 * data->start_class */
4338 StructCopy(data->start_class, and_withp,
4339 struct regnode_charclass_class);
4340 flags &= ~SCF_DO_STCLASS_AND;
4341 StructCopy(&accum, data->start_class,
4342 struct regnode_charclass_class);
4343 flags |= SCF_DO_STCLASS_OR;
4344 data->start_class->flags |= ANYOF_EOS;
4351 else if (PL_regkind[OP(scan)] == TRIE) {
4352 reg_trie_data *trie = (reg_trie_data*)RExC_rxi->data->data[ ARG(scan) ];
4355 min += trie->minlen;
4356 delta += (trie->maxlen - trie->minlen);
4357 flags &= ~SCF_DO_STCLASS; /* xxx */
4358 if (flags & SCF_DO_SUBSTR) {
4359 SCAN_COMMIT(pRExC_state,data,minlenp); /* Cannot expect anything... */
4360 data->pos_min += trie->minlen;
4361 data->pos_delta += (trie->maxlen - trie->minlen);
4362 if (trie->maxlen != trie->minlen)
4363 data->longest = &(data->longest_float);
4365 if (trie->jump) /* no more substrings -- for now /grr*/
4366 flags &= ~SCF_DO_SUBSTR;
4368 #endif /* old or new */
4369 #endif /* TRIE_STUDY_OPT */
4371 /* Else: zero-length, ignore. */
4372 scan = regnext(scan);
4377 stopparen = frame->stop;
4378 frame = frame->prev;
4379 goto fake_study_recurse;
4384 DEBUG_STUDYDATA("pre-fin:",data,depth);
4387 *deltap = is_inf_internal ? I32_MAX : delta;
4388 if (flags & SCF_DO_SUBSTR && is_inf)
4389 data->pos_delta = I32_MAX - data->pos_min;
4390 if (is_par > (I32)U8_MAX)
4392 if (is_par && pars==1 && data) {
4393 data->flags |= SF_IN_PAR;
4394 data->flags &= ~SF_HAS_PAR;
4396 else if (pars && data) {
4397 data->flags |= SF_HAS_PAR;
4398 data->flags &= ~SF_IN_PAR;
4400 if (flags & SCF_DO_STCLASS_OR)
4401 cl_and(data->start_class, and_withp);
4402 if (flags & SCF_TRIE_RESTUDY)
4403 data->flags |= SCF_TRIE_RESTUDY;
4405 DEBUG_STUDYDATA("post-fin:",data,depth);
4407 return min < stopmin ? min : stopmin;
4411 S_add_data(RExC_state_t *pRExC_state, U32 n, const char *s)
4413 U32 count = RExC_rxi->data ? RExC_rxi->data->count : 0;
4415 PERL_ARGS_ASSERT_ADD_DATA;
4417 Renewc(RExC_rxi->data,
4418 sizeof(*RExC_rxi->data) + sizeof(void*) * (count + n - 1),
4419 char, struct reg_data);
4421 Renew(RExC_rxi->data->what, count + n, U8);
4423 Newx(RExC_rxi->data->what, n, U8);
4424 RExC_rxi->data->count = count + n;
4425 Copy(s, RExC_rxi->data->what + count, n, U8);
4429 /*XXX: todo make this not included in a non debugging perl */
4430 #ifndef PERL_IN_XSUB_RE
4432 Perl_reginitcolors(pTHX)
4435 const char * const s = PerlEnv_getenv("PERL_RE_COLORS");
4437 char *t = savepv(s);
4441 t = strchr(t, '\t');
4447 PL_colors[i] = t = (char *)"";
4452 PL_colors[i++] = (char *)"";
4459 #ifdef TRIE_STUDY_OPT
4460 #define CHECK_RESTUDY_GOTO \
4462 (data.flags & SCF_TRIE_RESTUDY) \
4466 #define CHECK_RESTUDY_GOTO
4470 - pregcomp - compile a regular expression into internal code
4472 * We can't allocate space until we know how big the compiled form will be,
4473 * but we can't compile it (and thus know how big it is) until we've got a
4474 * place to put the code. So we cheat: we compile it twice, once with code
4475 * generation turned off and size counting turned on, and once "for real".
4476 * This also means that we don't allocate space until we are sure that the
4477 * thing really will compile successfully, and we never have to move the
4478 * code and thus invalidate pointers into it. (Note that it has to be in
4479 * one piece because free() must be able to free it all.) [NB: not true in perl]
4481 * Beware that the optimization-preparation code in here knows about some
4482 * of the structure of the compiled regexp. [I'll say.]
4487 #ifndef PERL_IN_XSUB_RE
4488 #define RE_ENGINE_PTR &PL_core_reg_engine
4490 extern const struct regexp_engine my_reg_engine;
4491 #define RE_ENGINE_PTR &my_reg_engine
4494 #ifndef PERL_IN_XSUB_RE
4496 Perl_pregcomp(pTHX_ SV * const pattern, const U32 flags)
4499 HV * const table = GvHV(PL_hintgv);
4501 PERL_ARGS_ASSERT_PREGCOMP;
4503 /* Dispatch a request to compile a regexp to correct
4506 SV **ptr= hv_fetchs(table, "regcomp", FALSE);
4507 GET_RE_DEBUG_FLAGS_DECL;
4508 if (ptr && SvIOK(*ptr) && SvIV(*ptr)) {
4509 const regexp_engine *eng=INT2PTR(regexp_engine*,SvIV(*ptr));
4511 PerlIO_printf(Perl_debug_log, "Using engine %"UVxf"\n",
4514 return CALLREGCOMP_ENG(eng, pattern, flags);
4517 return Perl_re_compile(aTHX_ pattern, flags);
4522 Perl_re_compile(pTHX_ SV * const pattern, U32 orig_pm_flags)
4527 register regexp_internal *ri;
4536 /* these are all flags - maybe they should be turned
4537 * into a single int with different bit masks */
4538 I32 sawlookahead = 0;
4541 bool used_setjump = FALSE;
4542 regex_charset initial_charset = get_regex_charset(orig_pm_flags);
4547 RExC_state_t RExC_state;
4548 RExC_state_t * const pRExC_state = &RExC_state;
4549 #ifdef TRIE_STUDY_OPT
4551 RExC_state_t copyRExC_state;
4553 GET_RE_DEBUG_FLAGS_DECL;
4555 PERL_ARGS_ASSERT_RE_COMPILE;
4557 DEBUG_r(if (!PL_colorset) reginitcolors());
4559 RExC_utf8 = RExC_orig_utf8 = SvUTF8(pattern);
4560 RExC_uni_semantics = 0;
4561 RExC_contains_locale = 0;
4563 /****************** LONG JUMP TARGET HERE***********************/
4564 /* Longjmp back to here if have to switch in midstream to utf8 */
4565 if (! RExC_orig_utf8) {
4566 JMPENV_PUSH(jump_ret);
4567 used_setjump = TRUE;
4570 if (jump_ret == 0) { /* First time through */
4571 exp = SvPV(pattern, plen);
4573 /* ignore the utf8ness if the pattern is 0 length */
4575 RExC_utf8 = RExC_orig_utf8 = 0;
4579 SV *dsv= sv_newmortal();
4580 RE_PV_QUOTED_DECL(s, RExC_utf8,
4581 dsv, exp, plen, 60);
4582 PerlIO_printf(Perl_debug_log, "%sCompiling REx%s %s\n",
4583 PL_colors[4],PL_colors[5],s);
4586 else { /* longjumped back */
4589 /* If the cause for the longjmp was other than changing to utf8, pop
4590 * our own setjmp, and longjmp to the correct handler */
4591 if (jump_ret != UTF8_LONGJMP) {
4593 JMPENV_JUMP(jump_ret);
4598 /* It's possible to write a regexp in ascii that represents Unicode
4599 codepoints outside of the byte range, such as via \x{100}. If we
4600 detect such a sequence we have to convert the entire pattern to utf8
4601 and then recompile, as our sizing calculation will have been based
4602 on 1 byte == 1 character, but we will need to use utf8 to encode
4603 at least some part of the pattern, and therefore must convert the whole
4606 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log,
4607 "UTF8 mismatch! Converting to utf8 for resizing and compile\n"));
4608 exp = (char*)Perl_bytes_to_utf8(aTHX_ (U8*)SvPV(pattern, plen), &len);
4610 RExC_orig_utf8 = RExC_utf8 = 1;
4614 #ifdef TRIE_STUDY_OPT
4618 pm_flags = orig_pm_flags;
4620 if (initial_charset == REGEX_LOCALE_CHARSET) {
4621 RExC_contains_locale = 1;
4623 else if (RExC_utf8 && initial_charset == REGEX_DEPENDS_CHARSET) {
4625 /* Set to use unicode semantics if the pattern is in utf8 and has the
4626 * 'depends' charset specified, as it means unicode when utf8 */
4627 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4631 RExC_flags = pm_flags;
4635 RExC_in_lookbehind = 0;
4636 RExC_seen_zerolen = *exp == '^' ? -1 : 0;
4637 RExC_seen_evals = 0;
4639 RExC_override_recoding = 0;
4641 /* First pass: determine size, legality. */
4649 RExC_emit = &PL_regdummy;
4650 RExC_whilem_seen = 0;
4651 RExC_open_parens = NULL;
4652 RExC_close_parens = NULL;
4654 RExC_paren_names = NULL;
4656 RExC_paren_name_list = NULL;
4658 RExC_recurse = NULL;
4659 RExC_recurse_count = 0;
4661 #if 0 /* REGC() is (currently) a NOP at the first pass.
4662 * Clever compilers notice this and complain. --jhi */
4663 REGC((U8)REG_MAGIC, (char*)RExC_emit);
4665 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "Starting first pass (sizing)\n"));
4666 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4667 RExC_precomp = NULL;
4671 /* Here, finished first pass. Get rid of any added setjmp */
4677 PerlIO_printf(Perl_debug_log,
4678 "Required size %"IVdf" nodes\n"
4679 "Starting second pass (creation)\n",
4682 RExC_lastparse=NULL;
4685 /* The first pass could have found things that force Unicode semantics */
4686 if ((RExC_utf8 || RExC_uni_semantics)
4687 && get_regex_charset(pm_flags) == REGEX_DEPENDS_CHARSET)
4689 set_regex_charset(&pm_flags, REGEX_UNICODE_CHARSET);
4692 /* Small enough for pointer-storage convention?
4693 If extralen==0, this means that we will not need long jumps. */
4694 if (RExC_size >= 0x10000L && RExC_extralen)
4695 RExC_size += RExC_extralen;
4698 if (RExC_whilem_seen > 15)
4699 RExC_whilem_seen = 15;
4701 /* Allocate space and zero-initialize. Note, the two step process
4702 of zeroing when in debug mode, thus anything assigned has to
4703 happen after that */
4704 rx = (REGEXP*) newSV_type(SVt_REGEXP);
4705 r = (struct regexp*)SvANY(rx);
4706 Newxc(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode),
4707 char, regexp_internal);
4708 if ( r == NULL || ri == NULL )
4709 FAIL("Regexp out of space");
4711 /* avoid reading uninitialized memory in DEBUGGING code in study_chunk() */
4712 Zero(ri, sizeof(regexp_internal) + (unsigned)RExC_size * sizeof(regnode), char);
4714 /* bulk initialize base fields with 0. */
4715 Zero(ri, sizeof(regexp_internal), char);
4718 /* non-zero initialization begins here */
4720 r->engine= RE_ENGINE_PTR;
4721 r->extflags = pm_flags;
4723 bool has_p = ((r->extflags & RXf_PMf_KEEPCOPY) == RXf_PMf_KEEPCOPY);
4724 bool has_charset = (get_regex_charset(r->extflags) != REGEX_DEPENDS_CHARSET);
4726 /* The caret is output if there are any defaults: if not all the STD
4727 * flags are set, or if no character set specifier is needed */
4729 (((r->extflags & RXf_PMf_STD_PMMOD) != RXf_PMf_STD_PMMOD)
4731 bool has_runon = ((RExC_seen & REG_SEEN_RUN_ON_COMMENT)==REG_SEEN_RUN_ON_COMMENT);
4732 U16 reganch = (U16)((r->extflags & RXf_PMf_STD_PMMOD)
4733 >> RXf_PMf_STD_PMMOD_SHIFT);
4734 const char *fptr = STD_PAT_MODS; /*"msix"*/
4736 /* Allocate for the worst case, which is all the std flags are turned
4737 * on. If more precision is desired, we could do a population count of
4738 * the flags set. This could be done with a small lookup table, or by
4739 * shifting, masking and adding, or even, when available, assembly
4740 * language for a machine-language population count.
4741 * We never output a minus, as all those are defaults, so are
4742 * covered by the caret */
4743 const STRLEN wraplen = plen + has_p + has_runon
4744 + has_default /* If needs a caret */
4746 /* If needs a character set specifier */
4747 + ((has_charset) ? MAX_CHARSET_NAME_LENGTH : 0)
4748 + (sizeof(STD_PAT_MODS) - 1)
4749 + (sizeof("(?:)") - 1);
4751 p = sv_grow(MUTABLE_SV(rx), wraplen + 1); /* +1 for the ending NUL */
4753 SvFLAGS(rx) |= SvUTF8(pattern);
4756 /* If a default, cover it using the caret */
4758 *p++= DEFAULT_PAT_MOD;
4762 const char* const name = get_regex_charset_name(r->extflags, &len);
4763 Copy(name, p, len, char);
4767 *p++ = KEEPCOPY_PAT_MOD; /*'p'*/
4770 while((ch = *fptr++)) {
4778 Copy(RExC_precomp, p, plen, char);
4779 assert ((RX_WRAPPED(rx) - p) < 16);
4780 r->pre_prefix = p - RX_WRAPPED(rx);
4786 SvCUR_set(rx, p - SvPVX_const(rx));
4790 r->nparens = RExC_npar - 1; /* set early to validate backrefs */
4792 if (RExC_seen & REG_SEEN_RECURSE) {
4793 Newxz(RExC_open_parens, RExC_npar,regnode *);
4794 SAVEFREEPV(RExC_open_parens);
4795 Newxz(RExC_close_parens,RExC_npar,regnode *);
4796 SAVEFREEPV(RExC_close_parens);
4799 /* Useful during FAIL. */
4800 #ifdef RE_TRACK_PATTERN_OFFSETS
4801 Newxz(ri->u.offsets, 2*RExC_size+1, U32); /* MJD 20001228 */
4802 DEBUG_OFFSETS_r(PerlIO_printf(Perl_debug_log,
4803 "%s %"UVuf" bytes for offset annotations.\n",
4804 ri->u.offsets ? "Got" : "Couldn't get",
4805 (UV)((2*RExC_size+1) * sizeof(U32))));
4807 SetProgLen(ri,RExC_size);
4812 /* Second pass: emit code. */
4813 RExC_flags = pm_flags; /* don't let top level (?i) bleed */
4818 RExC_emit_start = ri->program;
4819 RExC_emit = ri->program;
4820 RExC_emit_bound = ri->program + RExC_size + 1;
4822 /* Store the count of eval-groups for security checks: */
4823 RExC_rx->seen_evals = RExC_seen_evals;
4824 REGC((U8)REG_MAGIC, (char*) RExC_emit++);
4825 if (reg(pRExC_state, 0, &flags,1) == NULL) {
4829 /* XXXX To minimize changes to RE engine we always allocate
4830 3-units-long substrs field. */
4831 Newx(r->substrs, 1, struct reg_substr_data);
4832 if (RExC_recurse_count) {
4833 Newxz(RExC_recurse,RExC_recurse_count,regnode *);
4834 SAVEFREEPV(RExC_recurse);
4838 r->minlen = minlen = sawlookahead = sawplus = sawopen = 0;
4839 Zero(r->substrs, 1, struct reg_substr_data);
4841 #ifdef TRIE_STUDY_OPT
4843 StructCopy(&zero_scan_data, &data, scan_data_t);
4844 copyRExC_state = RExC_state;
4847 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log,"Restudying\n"));
4849 RExC_state = copyRExC_state;
4850 if (seen & REG_TOP_LEVEL_BRANCHES)
4851 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
4853 RExC_seen &= ~REG_TOP_LEVEL_BRANCHES;
4854 if (data.last_found) {
4855 SvREFCNT_dec(data.longest_fixed);
4856 SvREFCNT_dec(data.longest_float);
4857 SvREFCNT_dec(data.last_found);
4859 StructCopy(&zero_scan_data, &data, scan_data_t);
4862 StructCopy(&zero_scan_data, &data, scan_data_t);
4865 /* Dig out information for optimizations. */
4866 r->extflags = RExC_flags; /* was pm_op */
4867 /*dmq: removed as part of de-PMOP: pm->op_pmflags = RExC_flags; */
4870 SvUTF8_on(rx); /* Unicode in it? */
4871 ri->regstclass = NULL;
4872 if (RExC_naughty >= 10) /* Probably an expensive pattern. */
4873 r->intflags |= PREGf_NAUGHTY;
4874 scan = ri->program + 1; /* First BRANCH. */
4876 /* testing for BRANCH here tells us whether there is "must appear"
4877 data in the pattern. If there is then we can use it for optimisations */
4878 if (!(RExC_seen & REG_TOP_LEVEL_BRANCHES)) { /* Only one top-level choice. */
4880 STRLEN longest_float_length, longest_fixed_length;
4881 struct regnode_charclass_class ch_class; /* pointed to by data */
4883 I32 last_close = 0; /* pointed to by data */
4884 regnode *first= scan;
4885 regnode *first_next= regnext(first);
4887 * Skip introductions and multiplicators >= 1
4888 * so that we can extract the 'meat' of the pattern that must
4889 * match in the large if() sequence following.
4890 * NOTE that EXACT is NOT covered here, as it is normally
4891 * picked up by the optimiser separately.
4893 * This is unfortunate as the optimiser isnt handling lookahead
4894 * properly currently.
4897 while ((OP(first) == OPEN && (sawopen = 1)) ||
4898 /* An OR of *one* alternative - should not happen now. */
4899 (OP(first) == BRANCH && OP(first_next) != BRANCH) ||
4900 /* for now we can't handle lookbehind IFMATCH*/
4901 (OP(first) == IFMATCH && !first->flags && (sawlookahead = 1)) ||
4902 (OP(first) == PLUS) ||
4903 (OP(first) == MINMOD) ||
4904 /* An {n,m} with n>0 */
4905 (PL_regkind[OP(first)] == CURLY && ARG1(first) > 0) ||
4906 (OP(first) == NOTHING && PL_regkind[OP(first_next)] != END ))
4909 * the only op that could be a regnode is PLUS, all the rest
4910 * will be regnode_1 or regnode_2.
4913 if (OP(first) == PLUS)
4916 first += regarglen[OP(first)];
4918 first = NEXTOPER(first);
4919 first_next= regnext(first);
4922 /* Starting-point info. */
4924 DEBUG_PEEP("first:",first,0);
4925 /* Ignore EXACT as we deal with it later. */
4926 if (PL_regkind[OP(first)] == EXACT) {
4927 if (OP(first) == EXACT)
4928 NOOP; /* Empty, get anchored substr later. */
4930 ri->regstclass = first;
4933 else if (PL_regkind[OP(first)] == TRIE &&
4934 ((reg_trie_data *)ri->data->data[ ARG(first) ])->minlen>0)
4937 /* this can happen only on restudy */
4938 if ( OP(first) == TRIE ) {
4939 struct regnode_1 *trieop = (struct regnode_1 *)
4940 PerlMemShared_calloc(1, sizeof(struct regnode_1));
4941 StructCopy(first,trieop,struct regnode_1);
4942 trie_op=(regnode *)trieop;
4944 struct regnode_charclass *trieop = (struct regnode_charclass *)
4945 PerlMemShared_calloc(1, sizeof(struct regnode_charclass));
4946 StructCopy(first,trieop,struct regnode_charclass);
4947 trie_op=(regnode *)trieop;
4950 make_trie_failtable(pRExC_state, (regnode *)first, trie_op, 0);
4951 ri->regstclass = trie_op;
4954 else if (REGNODE_SIMPLE(OP(first)))
4955 ri->regstclass = first;
4956 else if (PL_regkind[OP(first)] == BOUND ||
4957 PL_regkind[OP(first)] == NBOUND)
4958 ri->regstclass = first;
4959 else if (PL_regkind[OP(first)] == BOL) {
4960 r->extflags |= (OP(first) == MBOL
4962 : (OP(first) == SBOL
4965 first = NEXTOPER(first);
4968 else if (OP(first) == GPOS) {
4969 r->extflags |= RXf_ANCH_GPOS;
4970 first = NEXTOPER(first);
4973 else if ((!sawopen || !RExC_sawback) &&
4974 (OP(first) == STAR &&
4975 PL_regkind[OP(NEXTOPER(first))] == REG_ANY) &&
4976 !(r->extflags & RXf_ANCH) && !(RExC_seen & REG_SEEN_EVAL))
4978 /* turn .* into ^.* with an implied $*=1 */
4980 (OP(NEXTOPER(first)) == REG_ANY)
4983 r->extflags |= type;
4984 r->intflags |= PREGf_IMPLICIT;
4985 first = NEXTOPER(first);
4988 if (sawplus && !sawlookahead && (!sawopen || !RExC_sawback)
4989 && !(RExC_seen & REG_SEEN_EVAL)) /* May examine pos and $& */
4990 /* x+ must match at the 1st pos of run of x's */
4991 r->intflags |= PREGf_SKIP;
4993 /* Scan is after the zeroth branch, first is atomic matcher. */
4994 #ifdef TRIE_STUDY_OPT
4997 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
4998 (IV)(first - scan + 1))
5002 PerlIO_printf(Perl_debug_log, "first at %"IVdf"\n",
5003 (IV)(first - scan + 1))
5009 * If there's something expensive in the r.e., find the
5010 * longest literal string that must appear and make it the
5011 * regmust. Resolve ties in favor of later strings, since
5012 * the regstart check works with the beginning of the r.e.
5013 * and avoiding duplication strengthens checking. Not a
5014 * strong reason, but sufficient in the absence of others.
5015 * [Now we resolve ties in favor of the earlier string if
5016 * it happens that c_offset_min has been invalidated, since the
5017 * earlier string may buy us something the later one won't.]
5020 data.longest_fixed = newSVpvs("");
5021 data.longest_float = newSVpvs("");
5022 data.last_found = newSVpvs("");
5023 data.longest = &(data.longest_fixed);
5025 if (!ri->regstclass) {
5026 cl_init(pRExC_state, &ch_class);
5027 data.start_class = &ch_class;
5028 stclass_flag = SCF_DO_STCLASS_AND;
5029 } else /* XXXX Check for BOUND? */
5031 data.last_closep = &last_close;
5033 minlen = study_chunk(pRExC_state, &first, &minlen, &fake, scan + RExC_size, /* Up to end */
5034 &data, -1, NULL, NULL,
5035 SCF_DO_SUBSTR | SCF_WHILEM_VISITED_POS | stclass_flag,0);
5041 if ( RExC_npar == 1 && data.longest == &(data.longest_fixed)
5042 && data.last_start_min == 0 && data.last_end > 0
5043 && !RExC_seen_zerolen
5044 && !(RExC_seen & REG_SEEN_VERBARG)
5045 && (!(RExC_seen & REG_SEEN_GPOS) || (r->extflags & RXf_ANCH_GPOS)))
5046 r->extflags |= RXf_CHECK_ALL;
5047 scan_commit(pRExC_state, &data,&minlen,0);
5048 SvREFCNT_dec(data.last_found);
5050 /* Note that code very similar to this but for anchored string
5051 follows immediately below, changes may need to be made to both.
5054 longest_float_length = CHR_SVLEN(data.longest_float);
5055 if (longest_float_length
5056 || (data.flags & SF_FL_BEFORE_EOL
5057 && (!(data.flags & SF_FL_BEFORE_MEOL)
5058 || (RExC_flags & RXf_PMf_MULTILINE))))
5062 if (SvCUR(data.longest_fixed) /* ok to leave SvCUR */
5063 && data.offset_fixed == data.offset_float_min
5064 && SvCUR(data.longest_fixed) == SvCUR(data.longest_float))
5065 goto remove_float; /* As in (a)+. */
5067 /* copy the information about the longest float from the reg_scan_data
5068 over to the program. */
5069 if (SvUTF8(data.longest_float)) {
5070 r->float_utf8 = data.longest_float;
5071 r->float_substr = NULL;
5073 r->float_substr = data.longest_float;
5074 r->float_utf8 = NULL;
5076 /* float_end_shift is how many chars that must be matched that
5077 follow this item. We calculate it ahead of time as once the
5078 lookbehind offset is added in we lose the ability to correctly
5080 ml = data.minlen_float ? *(data.minlen_float)
5081 : (I32)longest_float_length;
5082 r->float_end_shift = ml - data.offset_float_min
5083 - longest_float_length + (SvTAIL(data.longest_float) != 0)
5084 + data.lookbehind_float;
5085 r->float_min_offset = data.offset_float_min - data.lookbehind_float;
5086 r->float_max_offset = data.offset_float_max;
5087 if (data.offset_float_max < I32_MAX) /* Don't offset infinity */
5088 r->float_max_offset -= data.lookbehind_float;
5090 t = (data.flags & SF_FL_BEFORE_EOL /* Can't have SEOL and MULTI */
5091 && (!(data.flags & SF_FL_BEFORE_MEOL)
5092 || (RExC_flags & RXf_PMf_MULTILINE)));
5093 fbm_compile(data.longest_float, t ? FBMcf_TAIL : 0);
5097 r->float_substr = r->float_utf8 = NULL;
5098 SvREFCNT_dec(data.longest_float);
5099 longest_float_length = 0;
5102 /* Note that code very similar to this but for floating string
5103 is immediately above, changes may need to be made to both.
5106 longest_fixed_length = CHR_SVLEN(data.longest_fixed);
5107 if (longest_fixed_length
5108 || (data.flags & SF_FIX_BEFORE_EOL /* Cannot have SEOL and MULTI */
5109 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5110 || (RExC_flags & RXf_PMf_MULTILINE))))
5114 /* copy the information about the longest fixed
5115 from the reg_scan_data over to the program. */
5116 if (SvUTF8(data.longest_fixed)) {
5117 r->anchored_utf8 = data.longest_fixed;
5118 r->anchored_substr = NULL;
5120 r->anchored_substr = data.longest_fixed;
5121 r->anchored_utf8 = NULL;
5123 /* fixed_end_shift is how many chars that must be matched that
5124 follow this item. We calculate it ahead of time as once the
5125 lookbehind offset is added in we lose the ability to correctly
5127 ml = data.minlen_fixed ? *(data.minlen_fixed)
5128 : (I32)longest_fixed_length;
5129 r->anchored_end_shift = ml - data.offset_fixed
5130 - longest_fixed_length + (SvTAIL(data.longest_fixed) != 0)
5131 + data.lookbehind_fixed;
5132 r->anchored_offset = data.offset_fixed - data.lookbehind_fixed;
5134 t = (data.flags & SF_FIX_BEFORE_EOL /* Can't have SEOL and MULTI */
5135 && (!(data.flags & SF_FIX_BEFORE_MEOL)
5136 || (RExC_flags & RXf_PMf_MULTILINE)));
5137 fbm_compile(data.longest_fixed, t ? FBMcf_TAIL : 0);
5140 r->anchored_substr = r->anchored_utf8 = NULL;
5141 SvREFCNT_dec(data.longest_fixed);
5142 longest_fixed_length = 0;
5145 && (OP(ri->regstclass) == REG_ANY || OP(ri->regstclass) == SANY))
5146 ri->regstclass = NULL;
5148 if ((!(r->anchored_substr || r->anchored_utf8) || r->anchored_offset)
5150 && !(data.start_class->flags & ANYOF_EOS)
5151 && !cl_is_anything(data.start_class))
5153 const U32 n = add_data(pRExC_state, 1, "f");
5154 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5156 Newx(RExC_rxi->data->data[n], 1,
5157 struct regnode_charclass_class);
5158 StructCopy(data.start_class,
5159 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5160 struct regnode_charclass_class);
5161 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5162 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5163 DEBUG_COMPILE_r({ SV *sv = sv_newmortal();
5164 regprop(r, sv, (regnode*)data.start_class);
5165 PerlIO_printf(Perl_debug_log,
5166 "synthetic stclass \"%s\".\n",
5167 SvPVX_const(sv));});
5170 /* A temporary algorithm prefers floated substr to fixed one to dig more info. */
5171 if (longest_fixed_length > longest_float_length) {
5172 r->check_end_shift = r->anchored_end_shift;
5173 r->check_substr = r->anchored_substr;
5174 r->check_utf8 = r->anchored_utf8;
5175 r->check_offset_min = r->check_offset_max = r->anchored_offset;
5176 if (r->extflags & RXf_ANCH_SINGLE)
5177 r->extflags |= RXf_NOSCAN;
5180 r->check_end_shift = r->float_end_shift;
5181 r->check_substr = r->float_substr;
5182 r->check_utf8 = r->float_utf8;
5183 r->check_offset_min = r->float_min_offset;
5184 r->check_offset_max = r->float_max_offset;
5186 /* XXXX Currently intuiting is not compatible with ANCH_GPOS.
5187 This should be changed ASAP! */
5188 if ((r->check_substr || r->check_utf8) && !(r->extflags & RXf_ANCH_GPOS)) {
5189 r->extflags |= RXf_USE_INTUIT;
5190 if (SvTAIL(r->check_substr ? r->check_substr : r->check_utf8))
5191 r->extflags |= RXf_INTUIT_TAIL;
5193 /* XXX Unneeded? dmq (shouldn't as this is handled elsewhere)
5194 if ( (STRLEN)minlen < longest_float_length )
5195 minlen= longest_float_length;
5196 if ( (STRLEN)minlen < longest_fixed_length )
5197 minlen= longest_fixed_length;
5201 /* Several toplevels. Best we can is to set minlen. */
5203 struct regnode_charclass_class ch_class;
5206 DEBUG_PARSE_r(PerlIO_printf(Perl_debug_log, "\nMulti Top Level\n"));
5208 scan = ri->program + 1;
5209 cl_init(pRExC_state, &ch_class);
5210 data.start_class = &ch_class;
5211 data.last_closep = &last_close;
5214 minlen = study_chunk(pRExC_state, &scan, &minlen, &fake, scan + RExC_size,
5215 &data, -1, NULL, NULL, SCF_DO_STCLASS_AND|SCF_WHILEM_VISITED_POS,0);
5219 r->check_substr = r->check_utf8 = r->anchored_substr = r->anchored_utf8
5220 = r->float_substr = r->float_utf8 = NULL;
5222 if (!(data.start_class->flags & ANYOF_EOS)
5223 && !cl_is_anything(data.start_class))
5225 const U32 n = add_data(pRExC_state, 1, "f");
5226 data.start_class->flags |= ANYOF_IS_SYNTHETIC;
5228 Newx(RExC_rxi->data->data[n], 1,
5229 struct regnode_charclass_class);
5230 StructCopy(data.start_class,
5231 (struct regnode_charclass_class*)RExC_rxi->data->data[n],
5232 struct regnode_charclass_class);
5233 ri->regstclass = (regnode*)RExC_rxi->data->data[n];
5234 r->intflags &= ~PREGf_SKIP; /* Used in find_byclass(). */
5235 DEBUG_COMPILE_r({ SV* sv = sv_newmortal();
5236 regprop(r, sv, (regnode*)data.start_class);
5237 PerlIO_printf(Perl_debug_log,
5238 "synthetic stclass \"%s\".\n",
5239 SvPVX_const(sv));});
5243 /* Guard against an embedded (?=) or (?<=) with a longer minlen than
5244 the "real" pattern. */
5246 PerlIO_printf(Perl_debug_log,"minlen: %"IVdf" r->minlen:%"IVdf"\n",
5247 (IV)minlen, (IV)r->minlen);
5249 r->minlenret = minlen;
5250 if (r->minlen < minlen)
5253 if (RExC_seen & REG_SEEN_GPOS)
5254 r->extflags |= RXf_GPOS_SEEN;
5255 if (RExC_seen & REG_SEEN_LOOKBEHIND)
5256 r->extflags |= RXf_LOOKBEHIND_SEEN;
5257 if (RExC_seen & REG_SEEN_EVAL)
5258 r->extflags |= RXf_EVAL_SEEN;
5259 if (RExC_seen & REG_SEEN_CANY)
5260 r->extflags |= RXf_CANY_SEEN;
5261 if (RExC_seen & REG_SEEN_VERBARG)
5262 r->intflags |= PREGf_VERBARG_SEEN;
5263 if (RExC_seen & REG_SEEN_CUTGROUP)
5264 r->intflags |= PREGf_CUTGROUP_SEEN;
5265 if (RExC_paren_names)
5266 RXp_PAREN_NAMES(r) = MUTABLE_HV(SvREFCNT_inc(RExC_paren_names));
5268 RXp_PAREN_NAMES(r) = NULL;
5270 #ifdef STUPID_PATTERN_CHECKS
5271 if (RX_PRELEN(rx) == 0)
5272 r->extflags |= RXf_NULL;
5273 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5274 /* XXX: this should happen BEFORE we compile */
5275 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5276 else if (RX_PRELEN(rx) == 3 && memEQ("\\s+", RX_PRECOMP(rx), 3))
5277 r->extflags |= RXf_WHITE;
5278 else if (RX_PRELEN(rx) == 1 && RXp_PRECOMP(rx)[0] == '^')
5279 r->extflags |= RXf_START_ONLY;
5281 if (r->extflags & RXf_SPLIT && RX_PRELEN(rx) == 1 && RX_PRECOMP(rx)[0] == ' ')
5282 /* XXX: this should happen BEFORE we compile */
5283 r->extflags |= (RXf_SKIPWHITE|RXf_WHITE);
5285 regnode *first = ri->program + 1;
5288 if (PL_regkind[fop] == NOTHING && OP(NEXTOPER(first)) == END)
5289 r->extflags |= RXf_NULL;
5290 else if (PL_regkind[fop] == BOL && OP(NEXTOPER(first)) == END)
5291 r->extflags |= RXf_START_ONLY;
5292 else if (fop == PLUS && OP(NEXTOPER(first)) == SPACE
5293 && OP(regnext(first)) == END)
5294 r->extflags |= RXf_WHITE;
5298 if (RExC_paren_names) {
5299 ri->name_list_idx = add_data( pRExC_state, 1, "a" );
5300 ri->data->data[ri->name_list_idx] = (void*)SvREFCNT_inc(RExC_paren_name_list);
5303 ri->name_list_idx = 0;
5305 if (RExC_recurse_count) {
5306 for ( ; RExC_recurse_count ; RExC_recurse_count-- ) {
5307 const regnode *scan = RExC_recurse[RExC_recurse_count-1];
5308 ARG2L_SET( scan, RExC_open_parens[ARG(scan)-1] - scan );
5311 Newxz(r->offs, RExC_npar, regexp_paren_pair);
5312 /* assume we don't need to swap parens around before we match */
5315 PerlIO_printf(Perl_debug_log,"Final program:\n");
5318 #ifdef RE_TRACK_PATTERN_OFFSETS
5319 DEBUG_OFFSETS_r(if (ri->u.offsets) {
5320 const U32 len = ri->u.offsets[0];
5322 GET_RE_DEBUG_FLAGS_DECL;
5323 PerlIO_printf(Perl_debug_log, "Offsets: [%"UVuf"]\n\t", (UV)ri->u.offsets[0]);
5324 for (i = 1; i <= len; i++) {
5325 if (ri->u.offsets[i*2-1] || ri->u.offsets[i*2])
5326 PerlIO_printf(Perl_debug_log, "%"UVuf":%"UVuf"[%"UVuf"] ",
5327 (UV)i, (UV)ri->u.offsets[i*2-1], (UV)ri->u.offsets[i*2]);
5329 PerlIO_printf(Perl_debug_log, "\n");
5335 #undef RE_ENGINE_PTR
5339 Perl_reg_named_buff(pTHX_ REGEXP * const rx, SV * const key, SV * const value,
5342 PERL_ARGS_ASSERT_REG_NAMED_BUFF;
5344 PERL_UNUSED_ARG(value);
5346 if (flags & RXapif_FETCH) {
5347 return reg_named_buff_fetch(rx, key, flags);
5348 } else if (flags & (RXapif_STORE | RXapif_DELETE | RXapif_CLEAR)) {
5349 Perl_croak_no_modify(aTHX);
5351 } else if (flags & RXapif_EXISTS) {
5352 return reg_named_buff_exists(rx, key, flags)
5355 } else if (flags & RXapif_REGNAMES) {
5356 return reg_named_buff_all(rx, flags);
5357 } else if (flags & (RXapif_SCALAR | RXapif_REGNAMES_COUNT)) {
5358 return reg_named_buff_scalar(rx, flags);
5360 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff", (int)flags);
5366 Perl_reg_named_buff_iter(pTHX_ REGEXP * const rx, const SV * const lastkey,
5369 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ITER;
5370 PERL_UNUSED_ARG(lastkey);
5372 if (flags & RXapif_FIRSTKEY)
5373 return reg_named_buff_firstkey(rx, flags);
5374 else if (flags & RXapif_NEXTKEY)
5375 return reg_named_buff_nextkey(rx, flags);
5377 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_iter", (int)flags);
5383 Perl_reg_named_buff_fetch(pTHX_ REGEXP * const r, SV * const namesv,
5386 AV *retarray = NULL;
5388 struct regexp *const rx = (struct regexp *)SvANY(r);
5390 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FETCH;
5392 if (flags & RXapif_ALL)
5395 if (rx && RXp_PAREN_NAMES(rx)) {
5396 HE *he_str = hv_fetch_ent( RXp_PAREN_NAMES(rx), namesv, 0, 0 );
5399 SV* sv_dat=HeVAL(he_str);
5400 I32 *nums=(I32*)SvPVX(sv_dat);
5401 for ( i=0; i<SvIVX(sv_dat); i++ ) {
5402 if ((I32)(rx->nparens) >= nums[i]
5403 && rx->offs[nums[i]].start != -1
5404 && rx->offs[nums[i]].end != -1)
5407 CALLREG_NUMBUF_FETCH(r,nums[i],ret);
5411 ret = newSVsv(&PL_sv_undef);
5414 av_push(retarray, ret);
5417 return newRV_noinc(MUTABLE_SV(retarray));
5424 Perl_reg_named_buff_exists(pTHX_ REGEXP * const r, SV * const key,
5427 struct regexp *const rx = (struct regexp *)SvANY(r);
5429 PERL_ARGS_ASSERT_REG_NAMED_BUFF_EXISTS;
5431 if (rx && RXp_PAREN_NAMES(rx)) {
5432 if (flags & RXapif_ALL) {
5433 return hv_exists_ent(RXp_PAREN_NAMES(rx), key, 0);
5435 SV *sv = CALLREG_NAMED_BUFF_FETCH(r, key, flags);
5449 Perl_reg_named_buff_firstkey(pTHX_ REGEXP * const r, const U32 flags)
5451 struct regexp *const rx = (struct regexp *)SvANY(r);
5453 PERL_ARGS_ASSERT_REG_NAMED_BUFF_FIRSTKEY;
5455 if ( rx && RXp_PAREN_NAMES(rx) ) {
5456 (void)hv_iterinit(RXp_PAREN_NAMES(rx));
5458 return CALLREG_NAMED_BUFF_NEXTKEY(r, NULL, flags & ~RXapif_FIRSTKEY);
5465 Perl_reg_named_buff_nextkey(pTHX_ REGEXP * const r, const U32 flags)
5467 struct regexp *const rx = (struct regexp *)SvANY(r);
5468 GET_RE_DEBUG_FLAGS_DECL;
5470 PERL_ARGS_ASSERT_REG_NAMED_BUFF_NEXTKEY;
5472 if (rx && RXp_PAREN_NAMES(rx)) {
5473 HV *hv = RXp_PAREN_NAMES(rx);
5475 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5478 SV* sv_dat = HeVAL(temphe);
5479 I32 *nums = (I32*)SvPVX(sv_dat);
5480 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5481 if ((I32)(rx->lastparen) >= nums[i] &&
5482 rx->offs[nums[i]].start != -1 &&
5483 rx->offs[nums[i]].end != -1)
5489 if (parno || flags & RXapif_ALL) {
5490 return newSVhek(HeKEY_hek(temphe));
5498 Perl_reg_named_buff_scalar(pTHX_ REGEXP * const r, const U32 flags)
5503 struct regexp *const rx = (struct regexp *)SvANY(r);
5505 PERL_ARGS_ASSERT_REG_NAMED_BUFF_SCALAR;
5507 if (rx && RXp_PAREN_NAMES(rx)) {
5508 if (flags & (RXapif_ALL | RXapif_REGNAMES_COUNT)) {
5509 return newSViv(HvTOTALKEYS(RXp_PAREN_NAMES(rx)));
5510 } else if (flags & RXapif_ONE) {
5511 ret = CALLREG_NAMED_BUFF_ALL(r, (flags | RXapif_REGNAMES));
5512 av = MUTABLE_AV(SvRV(ret));
5513 length = av_len(av);
5515 return newSViv(length + 1);
5517 Perl_croak(aTHX_ "panic: Unknown flags %d in named_buff_scalar", (int)flags);
5521 return &PL_sv_undef;
5525 Perl_reg_named_buff_all(pTHX_ REGEXP * const r, const U32 flags)
5527 struct regexp *const rx = (struct regexp *)SvANY(r);
5530 PERL_ARGS_ASSERT_REG_NAMED_BUFF_ALL;
5532 if (rx && RXp_PAREN_NAMES(rx)) {
5533 HV *hv= RXp_PAREN_NAMES(rx);
5535 (void)hv_iterinit(hv);
5536 while ( (temphe = hv_iternext_flags(hv,0)) ) {
5539 SV* sv_dat = HeVAL(temphe);
5540 I32 *nums = (I32*)SvPVX(sv_dat);
5541 for ( i = 0; i < SvIVX(sv_dat); i++ ) {
5542 if ((I32)(rx->lastparen) >= nums[i] &&
5543 rx->offs[nums[i]].start != -1 &&
5544 rx->offs[nums[i]].end != -1)
5550 if (parno || flags & RXapif_ALL) {
5551 av_push(av, newSVhek(HeKEY_hek(temphe)));
5556 return newRV_noinc(MUTABLE_SV(av));
5560 Perl_reg_numbered_buff_fetch(pTHX_ REGEXP * const r, const I32 paren,
5563 struct regexp *const rx = (struct regexp *)SvANY(r);
5568 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_FETCH;
5571 sv_setsv(sv,&PL_sv_undef);
5575 if (paren == RX_BUFF_IDX_PREMATCH && rx->offs[0].start != -1) {
5577 i = rx->offs[0].start;
5581 if (paren == RX_BUFF_IDX_POSTMATCH && rx->offs[0].end != -1) {
5583 s = rx->subbeg + rx->offs[0].end;
5584 i = rx->sublen - rx->offs[0].end;
5587 if ( 0 <= paren && paren <= (I32)rx->nparens &&
5588 (s1 = rx->offs[paren].start) != -1 &&
5589 (t1 = rx->offs[paren].end) != -1)
5593 s = rx->subbeg + s1;
5595 sv_setsv(sv,&PL_sv_undef);
5598 assert(rx->sublen >= (s - rx->subbeg) + i );
5600 const int oldtainted = PL_tainted;
5602 sv_setpvn(sv, s, i);
5603 PL_tainted = oldtainted;
5604 if ( (rx->extflags & RXf_CANY_SEEN)
5605 ? (RXp_MATCH_UTF8(rx)
5606 && (!i || is_utf8_string((U8*)s, i)))
5607 : (RXp_MATCH_UTF8(rx)) )
5614 if (RXp_MATCH_TAINTED(rx)) {
5615 if (SvTYPE(sv) >= SVt_PVMG) {
5616 MAGIC* const mg = SvMAGIC(sv);
5619 SvMAGIC_set(sv, mg->mg_moremagic);
5621 if ((mgt = SvMAGIC(sv))) {
5622 mg->mg_moremagic = mgt;
5623 SvMAGIC_set(sv, mg);
5633 sv_setsv(sv,&PL_sv_undef);
5639 Perl_reg_numbered_buff_store(pTHX_ REGEXP * const rx, const I32 paren,
5640 SV const * const value)
5642 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_STORE;
5644 PERL_UNUSED_ARG(rx);
5645 PERL_UNUSED_ARG(paren);
5646 PERL_UNUSED_ARG(value);
5649 Perl_croak_no_modify(aTHX);
5653 Perl_reg_numbered_buff_length(pTHX_ REGEXP * const r, const SV * const sv,
5656 struct regexp *const rx = (struct regexp *)SvANY(r);
5660 PERL_ARGS_ASSERT_REG_NUMBERED_BUFF_LENGTH;
5662 /* Some of this code was originally in C<Perl_magic_len> in F<mg.c> */
5664 /* $` / ${^PREMATCH} */
5665 case RX_BUFF_IDX_PREMATCH:
5666 if (rx->offs[0].start != -1) {
5667 i = rx->offs[0].start;
5675 /* $' / ${^POSTMATCH} */
5676 case RX_BUFF_IDX_POSTMATCH:
5677 if (rx->offs[0].end != -1) {
5678 i = rx->sublen - rx->offs[0].end;
5680 s1 = rx->offs[0].end;
5686 /* $& / ${^MATCH}, $1, $2, ... */
5688 if (paren <= (I32)rx->nparens &&
5689 (s1 = rx->offs[paren].start) != -1 &&
5690 (t1 = rx->offs[paren].end) != -1)
5695 if (ckWARN(WARN_UNINITIALIZED))
5696 report_uninit((const SV *)sv);
5701 if (i > 0 && RXp_MATCH_UTF8(rx)) {
5702 const char * const s = rx->subbeg + s1;
5707 if (is_utf8_string_loclen((U8*)s, i, &ep, &el))
5714 Perl_reg_qr_package(pTHX_ REGEXP * const rx)
5716 PERL_ARGS_ASSERT_REG_QR_PACKAGE;
5717 PERL_UNUSED_ARG(rx);
5721 return newSVpvs("Regexp");
5724 /* Scans the name of a named buffer from the pattern.
5725 * If flags is REG_RSN_RETURN_NULL returns null.
5726 * If flags is REG_RSN_RETURN_NAME returns an SV* containing the name
5727 * If flags is REG_RSN_RETURN_DATA returns the data SV* corresponding
5728 * to the parsed name as looked up in the RExC_paren_names hash.
5729 * If there is an error throws a vFAIL().. type exception.
5732 #define REG_RSN_RETURN_NULL 0
5733 #define REG_RSN_RETURN_NAME 1
5734 #define REG_RSN_RETURN_DATA 2
5737 S_reg_scan_name(pTHX_ RExC_state_t *pRExC_state, U32 flags)
5739 char *name_start = RExC_parse;
5741 PERL_ARGS_ASSERT_REG_SCAN_NAME;
5743 if (isIDFIRST_lazy_if(RExC_parse, UTF)) {
5744 /* skip IDFIRST by using do...while */
5747 RExC_parse += UTF8SKIP(RExC_parse);
5748 } while (isALNUM_utf8((U8*)RExC_parse));
5752 } while (isALNUM(*RExC_parse));
5757 = newSVpvn_flags(name_start, (int)(RExC_parse - name_start),
5758 SVs_TEMP | (UTF ? SVf_UTF8 : 0));
5759 if ( flags == REG_RSN_RETURN_NAME)
5761 else if (flags==REG_RSN_RETURN_DATA) {
5764 if ( ! sv_name ) /* should not happen*/
5765 Perl_croak(aTHX_ "panic: no svname in reg_scan_name");
5766 if (RExC_paren_names)
5767 he_str = hv_fetch_ent( RExC_paren_names, sv_name, 0, 0 );
5769 sv_dat = HeVAL(he_str);
5771 vFAIL("Reference to nonexistent named group");
5775 Perl_croak(aTHX_ "panic: bad flag in reg_scan_name");
5782 #define DEBUG_PARSE_MSG(funcname) DEBUG_PARSE_r({ \
5783 int rem=(int)(RExC_end - RExC_parse); \
5792 if (RExC_lastparse!=RExC_parse) \
5793 PerlIO_printf(Perl_debug_log," >%.*s%-*s", \
5796 iscut ? "..." : "<" \
5799 PerlIO_printf(Perl_debug_log,"%16s",""); \
5802 num = RExC_size + 1; \
5804 num=REG_NODE_NUM(RExC_emit); \
5805 if (RExC_lastnum!=num) \
5806 PerlIO_printf(Perl_debug_log,"|%4d",num); \
5808 PerlIO_printf(Perl_debug_log,"|%4s",""); \
5809 PerlIO_printf(Perl_debug_log,"|%*s%-4s", \
5810 (int)((depth*2)), "", \
5814 RExC_lastparse=RExC_parse; \
5819 #define DEBUG_PARSE(funcname) DEBUG_PARSE_r({ \
5820 DEBUG_PARSE_MSG((funcname)); \
5821 PerlIO_printf(Perl_debug_log,"%4s","\n"); \
5823 #define DEBUG_PARSE_FMT(funcname,fmt,args) DEBUG_PARSE_r({ \
5824 DEBUG_PARSE_MSG((funcname)); \
5825 PerlIO_printf(Perl_debug_log,fmt "\n",args); \
5828 /* This section of code defines the inversion list object and its methods. The
5829 * interfaces are highly subject to change, so as much as possible is static to
5830 * this file. An inversion list is here implemented as a malloc'd C array with
5831 * some added info. More will be coming when functionality is added later.
5833 * Some of the methods should always be private to the implementation, and some
5834 * should eventually be made public */
5836 #define INVLIST_INITIAL_LEN 10
5837 #define INVLIST_ARRAY_KEY "array"
5838 #define INVLIST_MAX_KEY "max"
5839 #define INVLIST_LEN_KEY "len"
5841 PERL_STATIC_INLINE UV*
5842 S_invlist_array(pTHX_ HV* const invlist)
5844 /* Returns the pointer to the inversion list's array. Every time the
5845 * length changes, this needs to be called in case malloc or realloc moved
5848 SV** list_ptr = hv_fetchs(invlist, INVLIST_ARRAY_KEY, FALSE);
5850 PERL_ARGS_ASSERT_INVLIST_ARRAY;
5852 if (list_ptr == NULL) {
5853 Perl_croak(aTHX_ "panic: inversion list without a '%s' element",
5857 return INT2PTR(UV *, SvUV(*list_ptr));
5860 PERL_STATIC_INLINE void
5861 S_invlist_set_array(pTHX_ HV* const invlist, const UV* const array)
5863 PERL_ARGS_ASSERT_INVLIST_SET_ARRAY;
5865 /* Sets the array stored in the inversion list to the memory beginning with
5868 if (hv_stores(invlist, INVLIST_ARRAY_KEY, newSVuv(PTR2UV(array))) == NULL) {
5869 Perl_croak(aTHX_ "panic: can't store '%s' entry in inversion list",
5874 PERL_STATIC_INLINE UV
5875 S_invlist_len(pTHX_ HV* const invlist)
5877 /* Returns the current number of elements in the inversion list's array */
5879 SV** len_ptr = hv_fetchs(invlist, INVLIST_LEN_KEY, FALSE);
5881 PERL_ARGS_ASSERT_INVLIST_LEN;
5883 if (len_ptr == NULL) {
5884 Perl_croak(aTHX_ "panic: inversion list without a '%s' element",
5888 return SvUV(*len_ptr);
5891 PERL_STATIC_INLINE UV
5892 S_invlist_max(pTHX_ HV* const invlist)
5894 /* Returns the maximum number of elements storable in the inversion list's
5895 * array, without having to realloc() */
5897 SV** max_ptr = hv_fetchs(invlist, INVLIST_MAX_KEY, FALSE);
5899 PERL_ARGS_ASSERT_INVLIST_MAX;
5901 if (max_ptr == NULL) {
5902 Perl_croak(aTHX_ "panic: inversion list without a '%s' element",
5906 return SvUV(*max_ptr);
5909 PERL_STATIC_INLINE void
5910 S_invlist_set_len(pTHX_ HV* const invlist, const UV len)
5912 /* Sets the current number of elements stored in the inversion list */
5914 PERL_ARGS_ASSERT_INVLIST_SET_LEN;
5916 if (len != 0 && len > invlist_max(invlist)) {
5917 Perl_croak(aTHX_ "panic: Can't make '%s=%"UVuf"' more than %s=%"UVuf" in inversion list", INVLIST_LEN_KEY, len, INVLIST_MAX_KEY, invlist_max(invlist));
5920 if (hv_stores(invlist, INVLIST_LEN_KEY, newSVuv(len)) == NULL) {
5921 Perl_croak(aTHX_ "panic: can't store '%s' entry in inversion list",
5926 PERL_STATIC_INLINE void
5927 S_invlist_set_max(pTHX_ HV* const invlist, const UV max)
5930 /* Sets the maximum number of elements storable in the inversion list
5931 * without having to realloc() */
5933 PERL_ARGS_ASSERT_INVLIST_SET_MAX;
5935 if (max < invlist_len(invlist)) {
5936 Perl_croak(aTHX_ "panic: Can't make '%s=%"UVuf"' less than %s=%"UVuf" in inversion list", INVLIST_MAX_KEY, invlist_len(invlist), INVLIST_LEN_KEY, invlist_max(invlist));
5939 if (hv_stores(invlist, INVLIST_MAX_KEY, newSVuv(max)) == NULL) {
5940 Perl_croak(aTHX_ "panic: can't store '%s' entry in inversion list",
5945 #ifndef PERL_IN_XSUB_RE
5947 Perl__new_invlist(pTHX_ IV initial_size)
5950 /* Return a pointer to a newly constructed inversion list, with enough
5951 * space to store 'initial_size' elements. If that number is negative, a
5952 * system default is used instead */
5954 HV* invlist = newHV();
5957 if (initial_size < 0) {
5958 initial_size = INVLIST_INITIAL_LEN;
5961 /* Allocate the initial space */
5962 Newx(list, initial_size, UV);
5963 invlist_set_array(invlist, list);
5965 /* set_len has to come before set_max, as the latter inspects the len */
5966 invlist_set_len(invlist, 0);
5967 invlist_set_max(invlist, initial_size);
5973 PERL_STATIC_INLINE void
5974 S_invlist_destroy(pTHX_ HV* const invlist)
5976 /* Inversion list destructor */
5978 SV** list_ptr = hv_fetchs(invlist, INVLIST_ARRAY_KEY, FALSE);
5980 PERL_ARGS_ASSERT_INVLIST_DESTROY;
5982 if (list_ptr != NULL) {
5983 UV *list = INT2PTR(UV *, SvUV(*list_ptr)); /* PERL_POISON needs lvalue */
5989 S_invlist_extend(pTHX_ HV* const invlist, const UV new_max)
5991 /* Change the maximum size of an inversion list (up or down) */
5995 const UV old_max = invlist_max(invlist);
5997 PERL_ARGS_ASSERT_INVLIST_EXTEND;
5999 if (old_max == new_max) { /* If a no-op */
6003 array = orig_array = invlist_array(invlist);
6004 Renew(array, new_max, UV);
6006 /* If the size change moved the list in memory, set the new one */
6007 if (array != orig_array) {
6008 invlist_set_array(invlist, array);
6011 invlist_set_max(invlist, new_max);
6015 PERL_STATIC_INLINE void
6016 S_invlist_trim(pTHX_ HV* const invlist)
6018 PERL_ARGS_ASSERT_INVLIST_TRIM;
6020 /* Change the length of the inversion list to how many entries it currently
6023 invlist_extend(invlist, invlist_len(invlist));
6026 /* An element is in an inversion list iff its index is even numbered: 0, 2, 4,
6029 #define ELEMENT_IN_INVLIST_SET(i) (! ((i) & 1))
6031 #ifndef PERL_IN_XSUB_RE
6033 Perl__append_range_to_invlist(pTHX_ HV* const invlist, const UV start, const UV end)
6035 /* Subject to change or removal. Append the range from 'start' to 'end' at
6036 * the end of the inversion list. The range must be above any existing
6039 UV* array = invlist_array(invlist);
6040 UV max = invlist_max(invlist);
6041 UV len = invlist_len(invlist);
6043 PERL_ARGS_ASSERT__APPEND_RANGE_TO_INVLIST;
6047 /* Here, the existing list is non-empty. The current max entry in the
6048 * list is generally the first value not in the set, except when the
6049 * set extends to the end of permissible values, in which case it is
6050 * the first entry in that final set, and so this call is an attempt to
6051 * append out-of-order */
6053 UV final_element = len - 1;
6054 if (array[final_element] > start
6055 || ELEMENT_IN_INVLIST_SET(final_element))
6057 Perl_croak(aTHX_ "panic: attempting to append to an inversion list, but wasn't at the end of the list");
6060 /* Here, it is a legal append. If the new range begins with the first
6061 * value not in the set, it is extending the set, so the new first
6062 * value not in the set is one greater than the newly extended range.
6064 if (array[final_element] == start) {
6065 if (end != UV_MAX) {
6066 array[final_element] = end + 1;
6069 /* But if the end is the maximum representable on the machine,
6070 * just let the range that this would extend have no end */
6071 invlist_set_len(invlist, len - 1);
6077 /* Here the new range doesn't extend any existing set. Add it */
6079 len += 2; /* Includes an element each for the start and end of range */
6081 /* If overflows the existing space, extend, which may cause the array to be
6084 invlist_extend(invlist, len);
6085 array = invlist_array(invlist);
6088 invlist_set_len(invlist, len);
6090 /* The next item on the list starts the range, the one after that is
6091 * one past the new range. */
6092 array[len - 2] = start;
6093 if (end != UV_MAX) {
6094 array[len - 1] = end + 1;
6097 /* But if the end is the maximum representable on the machine, just let
6098 * the range have no end */
6099 invlist_set_len(invlist, len - 1);
6105 S_invlist_union(pTHX_ HV* const a, HV* const b)
6107 /* Return a new inversion list which is the union of two inversion lists.
6108 * The basis for this comes from "Unicode Demystified" Chapter 13 by
6109 * Richard Gillam, published by Addison-Wesley, and explained at some
6110 * length there. The preface says to incorporate its examples into your
6111 * code at your own risk.
6113 * The algorithm is like a merge sort.
6115 * XXX A potential performance improvement is to keep track as we go along
6116 * if only one of the inputs contributes to the result, meaning the other
6117 * is a subset of that one. In that case, we can skip the final copy and
6118 * return the larger of the input lists */
6120 UV* array_a = invlist_array(a); /* a's array */
6121 UV* array_b = invlist_array(b);
6122 UV len_a = invlist_len(a); /* length of a's array */
6123 UV len_b = invlist_len(b);
6125 HV* u; /* the resulting union */
6129 UV i_a = 0; /* current index into a's array */
6133 /* running count, as explained in the algorithm source book; items are
6134 * stopped accumulating and are output when the count changes to/from 0.
6135 * The count is incremented when we start a range that's in the set, and
6136 * decremented when we start a range that's not in the set. So its range
6137 * is 0 to 2. Only when the count is zero is something not in the set.
6141 PERL_ARGS_ASSERT_INVLIST_UNION;
6143 /* Size the union for the worst case: that the sets are completely
6145 u = _new_invlist(len_a + len_b);
6146 array_u = invlist_array(u);
6148 /* Go through each list item by item, stopping when exhausted one of
6150 while (i_a < len_a && i_b < len_b) {
6151 UV cp; /* The element to potentially add to the union's array */
6152 bool cp_in_set; /* is it in the the input list's set or not */
6154 /* We need to take one or the other of the two inputs for the union.
6155 * Since we are merging two sorted lists, we take the smaller of the
6156 * next items. In case of a tie, we take the one that is in its set
6157 * first. If we took one not in the set first, it would decrement the
6158 * count, possibly to 0 which would cause it to be output as ending the
6159 * range, and the next time through we would take the same number, and
6160 * output it again as beginning the next range. By doing it the
6161 * opposite way, there is no possibility that the count will be
6162 * momentarily decremented to 0, and thus the two adjoining ranges will
6163 * be seamlessly merged. (In a tie and both are in the set or both not
6164 * in the set, it doesn't matter which we take first.) */
6165 if (array_a[i_a] < array_b[i_b]
6166 || (array_a[i_a] == array_b[i_b] && ELEMENT_IN_INVLIST_SET(i_a)))
6168 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6172 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6176 /* Here, have chosen which of the two inputs to look at. Only output
6177 * if the running count changes to/from 0, which marks the
6178 * beginning/end of a range in that's in the set */
6181 array_u[i_u++] = cp;
6188 array_u[i_u++] = cp;
6193 /* Here, we are finished going through at least one of the lists, which
6194 * means there is something remaining in at most one. We check if the list
6195 * that hasn't been exhausted is positioned such that we are in the middle
6196 * of a range in its set or not. (We are in the set if the next item in
6197 * the array marks the beginning of something not in the set) If in the
6198 * set, we decrement 'count'; if 0, there is potentially more to output.
6199 * There are four cases:
6200 * 1) Both weren't in their sets, count is 0, and remains 0. What's left
6201 * in the union is entirely from the non-exhausted set.
6202 * 2) Both were in their sets, count is 2. Nothing further should
6203 * be output, as everything that remains will be in the exhausted
6204 * list's set, hence in the union; decrementing to 1 but not 0 insures
6206 * 3) the exhausted was in its set, non-exhausted isn't, count is 1.
6207 * Nothing further should be output because the union includes
6208 * everything from the exhausted set. Not decrementing insures that.
6209 * 4) the exhausted wasn't in its set, non-exhausted is, count is 1;
6210 * decrementing to 0 insures that we look at the remainder of the
6211 * non-exhausted set */
6212 if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
6213 || (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
6218 /* The final length is what we've output so far, plus what else is about to
6219 * be output. (If 'count' is non-zero, then the input list we exhausted
6220 * has everything remaining up to the machine's limit in its set, and hence
6221 * in the union, so there will be no further output. */
6224 /* At most one of the subexpressions will be non-zero */
6225 len_u += (len_a - i_a) + (len_b - i_b);
6228 /* Set result to final length, which can change the pointer to array_u, so
6230 if (len_u != invlist_len(u)) {
6231 invlist_set_len(u, len_u);
6233 array_u = invlist_array(u);
6236 /* When 'count' is 0, the list that was exhausted (if one was shorter than
6237 * the other) ended with everything above it not in its set. That means
6238 * that the remaining part of the union is precisely the same as the
6239 * non-exhausted list, so can just copy it unchanged. (If both list were
6240 * exhausted at the same time, then the operations below will be both 0.)
6243 IV copy_count; /* At most one will have a non-zero copy count */
6244 if ((copy_count = len_a - i_a) > 0) {
6245 Copy(array_a + i_a, array_u + i_u, copy_count, UV);
6247 else if ((copy_count = len_b - i_b) > 0) {
6248 Copy(array_b + i_b, array_u + i_u, copy_count, UV);
6256 S_invlist_intersection(pTHX_ HV* const a, HV* const b)
6258 /* Return the intersection of two inversion lists. The basis for this
6259 * comes from "Unicode Demystified" Chapter 13 by Richard Gillam, published
6260 * by Addison-Wesley, and explained at some length there. The preface says
6261 * to incorporate its examples into your code at your own risk.
6263 * The algorithm is like a merge sort, and is essentially the same as the
6267 UV* array_a = invlist_array(a); /* a's array */
6268 UV* array_b = invlist_array(b);
6269 UV len_a = invlist_len(a); /* length of a's array */
6270 UV len_b = invlist_len(b);
6272 HV* r; /* the resulting intersection */
6276 UV i_a = 0; /* current index into a's array */
6280 /* running count, as explained in the algorithm source book; items are
6281 * stopped accumulating and are output when the count changes to/from 2.
6282 * The count is incremented when we start a range that's in the set, and
6283 * decremented when we start a range that's not in the set. So its range
6284 * is 0 to 2. Only when the count is 2 is something in the intersection.
6288 PERL_ARGS_ASSERT_INVLIST_INTERSECTION;
6290 /* Size the intersection for the worst case: that the intersection ends up
6291 * fragmenting everything to be completely disjoint */
6292 r= _new_invlist(len_a + len_b);
6293 array_r = invlist_array(r);
6295 /* Go through each list item by item, stopping when exhausted one of
6297 while (i_a < len_a && i_b < len_b) {
6298 UV cp; /* The element to potentially add to the intersection's
6300 bool cp_in_set; /* Is it in the input list's set or not */
6302 /* We need to take one or the other of the two inputs for the union.
6303 * Since we are merging two sorted lists, we take the smaller of the
6304 * next items. In case of a tie, we take the one that is not in its
6305 * set first (a difference from the union algorithm). If we took one
6306 * in the set first, it would increment the count, possibly to 2 which
6307 * would cause it to be output as starting a range in the intersection,
6308 * and the next time through we would take that same number, and output
6309 * it again as ending the set. By doing it the opposite of this, we
6310 * there is no possibility that the count will be momentarily
6311 * incremented to 2. (In a tie and both are in the set or both not in
6312 * the set, it doesn't matter which we take first.) */
6313 if (array_a[i_a] < array_b[i_b]
6314 || (array_a[i_a] == array_b[i_b] && ! ELEMENT_IN_INVLIST_SET(i_a)))
6316 cp_in_set = ELEMENT_IN_INVLIST_SET(i_a);
6320 cp_in_set = ELEMENT_IN_INVLIST_SET(i_b);
6324 /* Here, have chosen which of the two inputs to look at. Only output
6325 * if the running count changes to/from 2, which marks the
6326 * beginning/end of a range that's in the intersection */
6330 array_r[i_r++] = cp;
6335 array_r[i_r++] = cp;
6341 /* Here, we are finished going through at least one of the sets, which
6342 * means there is something remaining in at most one. See the comments in
6344 if ((i_a != len_a && ! ELEMENT_IN_INVLIST_SET(i_a))
6345 || (i_b != len_b && ! ELEMENT_IN_INVLIST_SET(i_b)))
6350 /* The final length is what we've output so far plus what else is in the
6351 * intersection. Only one of the subexpressions below will be non-zero */
6354 len_r += (len_a - i_a) + (len_b - i_b);
6357 /* Set result to final length, which can change the pointer to array_r, so
6359 if (len_r != invlist_len(r)) {
6360 invlist_set_len(r, len_r);
6362 array_r = invlist_array(r);
6365 /* Finish outputting any remaining */
6366 if (count == 2) { /* Only one of will have a non-zero copy count */
6368 if ((copy_count = len_a - i_a) > 0) {
6369 Copy(array_a + i_a, array_r + i_r, copy_count, UV);
6371 else if ((copy_count = len_b - i_b) > 0) {
6372 Copy(array_b + i_b, array_r + i_r, copy_count, UV);
6380 S_add_range_to_invlist(pTHX_ HV* invlist, const UV start, const UV end)
6382 /* Add the range from 'start' to 'end' inclusive to the inversion list's
6383 * set. A pointer to the inversion list is returned. This may actually be
6384 * a new list, in which case the passed in one has been destroyed. The
6385 * passed in inversion list can be NULL, in which case a new one is created
6386 * with just the one range in it */
6392 if (invlist == NULL) {
6393 invlist = _new_invlist(2);
6397 len = invlist_len(invlist);
6400 /* If comes after the final entry, can just append it to the end */
6402 || start >= invlist_array(invlist)
6403 [invlist_len(invlist) - 1])
6405 _append_range_to_invlist(invlist, start, end);
6409 /* Here, can't just append things, create and return a new inversion list
6410 * which is the union of this range and the existing inversion list */
6411 range_invlist = _new_invlist(2);
6412 _append_range_to_invlist(range_invlist, start, end);
6414 added_invlist = invlist_union(invlist, range_invlist);
6416 /* The passed in list can be freed, as well as our temporary */
6417 invlist_destroy(range_invlist);
6418 if (invlist != added_invlist) {
6419 invlist_destroy(invlist);
6422 return added_invlist;
6425 PERL_STATIC_INLINE HV*
6426 S_add_cp_to_invlist(pTHX_ HV* invlist, const UV cp) {
6427 return add_range_to_invlist(invlist, cp, cp);
6430 /* End of inversion list object */
6433 - reg - regular expression, i.e. main body or parenthesized thing
6435 * Caller must absorb opening parenthesis.
6437 * Combining parenthesis handling with the base level of regular expression
6438 * is a trifle forced, but the need to tie the tails of the branches to what
6439 * follows makes it hard to avoid.
6441 #define REGTAIL(x,y,z) regtail((x),(y),(z),depth+1)
6443 #define REGTAIL_STUDY(x,y,z) regtail_study((x),(y),(z),depth+1)
6445 #define REGTAIL_STUDY(x,y,z) regtail((x),(y),(z),depth+1)
6449 S_reg(pTHX_ RExC_state_t *pRExC_state, I32 paren, I32 *flagp,U32 depth)
6450 /* paren: Parenthesized? 0=top, 1=(, inside: changed to letter. */
6453 register regnode *ret; /* Will be the head of the group. */
6454 register regnode *br;
6455 register regnode *lastbr;
6456 register regnode *ender = NULL;
6457 register I32 parno = 0;
6459 U32 oregflags = RExC_flags;
6460 bool have_branch = 0;
6462 I32 freeze_paren = 0;
6463 I32 after_freeze = 0;
6465 /* for (?g), (?gc), and (?o) warnings; warning
6466 about (?c) will warn about (?g) -- japhy */
6468 #define WASTED_O 0x01
6469 #define WASTED_G 0x02
6470 #define WASTED_C 0x04
6471 #define WASTED_GC (0x02|0x04)
6472 I32 wastedflags = 0x00;
6474 char * parse_start = RExC_parse; /* MJD */
6475 char * const oregcomp_parse = RExC_parse;
6477 GET_RE_DEBUG_FLAGS_DECL;
6479 PERL_ARGS_ASSERT_REG;
6480 DEBUG_PARSE("reg ");
6482 *flagp = 0; /* Tentatively. */
6485 /* Make an OPEN node, if parenthesized. */
6487 if ( *RExC_parse == '*') { /* (*VERB:ARG) */
6488 char *start_verb = RExC_parse;
6489 STRLEN verb_len = 0;
6490 char *start_arg = NULL;
6491 unsigned char op = 0;
6493 int internal_argval = 0; /* internal_argval is only useful if !argok */
6494 while ( *RExC_parse && *RExC_parse != ')' ) {
6495 if ( *RExC_parse == ':' ) {
6496 start_arg = RExC_parse + 1;
6502 verb_len = RExC_parse - start_verb;
6505 while ( *RExC_parse && *RExC_parse != ')' )
6507 if ( *RExC_parse != ')' )
6508 vFAIL("Unterminated verb pattern argument");
6509 if ( RExC_parse == start_arg )
6512 if ( *RExC_parse != ')' )
6513 vFAIL("Unterminated verb pattern");
6516 switch ( *start_verb ) {
6517 case 'A': /* (*ACCEPT) */
6518 if ( memEQs(start_verb,verb_len,"ACCEPT") ) {
6520 internal_argval = RExC_nestroot;
6523 case 'C': /* (*COMMIT) */
6524 if ( memEQs(start_verb,verb_len,"COMMIT") )
6527 case 'F': /* (*FAIL) */
6528 if ( verb_len==1 || memEQs(start_verb,verb_len,"FAIL") ) {
6533 case ':': /* (*:NAME) */
6534 case 'M': /* (*MARK:NAME) */
6535 if ( verb_len==0 || memEQs(start_verb,verb_len,"MARK") ) {
6540 case 'P': /* (*PRUNE) */
6541 if ( memEQs(start_verb,verb_len,"PRUNE") )
6544 case 'S': /* (*SKIP) */
6545 if ( memEQs(start_verb,verb_len,"SKIP") )
6548 case 'T': /* (*THEN) */
6549 /* [19:06] <TimToady> :: is then */
6550 if ( memEQs(start_verb,verb_len,"THEN") ) {
6552 RExC_seen |= REG_SEEN_CUTGROUP;
6558 vFAIL3("Unknown verb pattern '%.*s'",
6559 verb_len, start_verb);
6562 if ( start_arg && internal_argval ) {
6563 vFAIL3("Verb pattern '%.*s' may not have an argument",
6564 verb_len, start_verb);
6565 } else if ( argok < 0 && !start_arg ) {
6566 vFAIL3("Verb pattern '%.*s' has a mandatory argument",
6567 verb_len, start_verb);
6569 ret = reganode(pRExC_state, op, internal_argval);
6570 if ( ! internal_argval && ! SIZE_ONLY ) {
6572 SV *sv = newSVpvn( start_arg, RExC_parse - start_arg);
6573 ARG(ret) = add_data( pRExC_state, 1, "S" );
6574 RExC_rxi->data->data[ARG(ret)]=(void*)sv;
6581 if (!internal_argval)
6582 RExC_seen |= REG_SEEN_VERBARG;
6583 } else if ( start_arg ) {
6584 vFAIL3("Verb pattern '%.*s' may not have an argument",
6585 verb_len, start_verb);
6587 ret = reg_node(pRExC_state, op);
6589 nextchar(pRExC_state);
6592 if (*RExC_parse == '?') { /* (?...) */
6593 bool is_logical = 0;
6594 const char * const seqstart = RExC_parse;
6595 bool has_use_defaults = FALSE;
6598 paren = *RExC_parse++;
6599 ret = NULL; /* For look-ahead/behind. */
6602 case 'P': /* (?P...) variants for those used to PCRE/Python */
6603 paren = *RExC_parse++;
6604 if ( paren == '<') /* (?P<...>) named capture */
6606 else if (paren == '>') { /* (?P>name) named recursion */
6607 goto named_recursion;
6609 else if (paren == '=') { /* (?P=...) named backref */
6610 /* this pretty much dupes the code for \k<NAME> in regatom(), if
6611 you change this make sure you change that */
6612 char* name_start = RExC_parse;
6614 SV *sv_dat = reg_scan_name(pRExC_state,
6615 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6616 if (RExC_parse == name_start || *RExC_parse != ')')
6617 vFAIL2("Sequence %.3s... not terminated",parse_start);
6620 num = add_data( pRExC_state, 1, "S" );
6621 RExC_rxi->data->data[num]=(void*)sv_dat;
6622 SvREFCNT_inc_simple_void(sv_dat);
6625 ret = reganode(pRExC_state,
6628 : (MORE_ASCII_RESTRICTED)
6630 : (AT_LEAST_UNI_SEMANTICS)
6638 Set_Node_Offset(ret, parse_start+1);
6639 Set_Node_Cur_Length(ret); /* MJD */
6641 nextchar(pRExC_state);
6645 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6647 case '<': /* (?<...) */
6648 if (*RExC_parse == '!')
6650 else if (*RExC_parse != '=')
6656 case '\'': /* (?'...') */
6657 name_start= RExC_parse;
6658 svname = reg_scan_name(pRExC_state,
6659 SIZE_ONLY ? /* reverse test from the others */
6660 REG_RSN_RETURN_NAME :
6661 REG_RSN_RETURN_NULL);
6662 if (RExC_parse == name_start) {
6664 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6667 if (*RExC_parse != paren)
6668 vFAIL2("Sequence (?%c... not terminated",
6669 paren=='>' ? '<' : paren);
6673 if (!svname) /* shouldn't happen */
6675 "panic: reg_scan_name returned NULL");
6676 if (!RExC_paren_names) {
6677 RExC_paren_names= newHV();
6678 sv_2mortal(MUTABLE_SV(RExC_paren_names));
6680 RExC_paren_name_list= newAV();
6681 sv_2mortal(MUTABLE_SV(RExC_paren_name_list));
6684 he_str = hv_fetch_ent( RExC_paren_names, svname, 1, 0 );
6686 sv_dat = HeVAL(he_str);
6688 /* croak baby croak */
6690 "panic: paren_name hash element allocation failed");
6691 } else if ( SvPOK(sv_dat) ) {
6692 /* (?|...) can mean we have dupes so scan to check
6693 its already been stored. Maybe a flag indicating
6694 we are inside such a construct would be useful,
6695 but the arrays are likely to be quite small, so
6696 for now we punt -- dmq */
6697 IV count = SvIV(sv_dat);
6698 I32 *pv = (I32*)SvPVX(sv_dat);
6700 for ( i = 0 ; i < count ; i++ ) {
6701 if ( pv[i] == RExC_npar ) {
6707 pv = (I32*)SvGROW(sv_dat, SvCUR(sv_dat) + sizeof(I32)+1);
6708 SvCUR_set(sv_dat, SvCUR(sv_dat) + sizeof(I32));
6709 pv[count] = RExC_npar;
6710 SvIV_set(sv_dat, SvIVX(sv_dat) + 1);
6713 (void)SvUPGRADE(sv_dat,SVt_PVNV);
6714 sv_setpvn(sv_dat, (char *)&(RExC_npar), sizeof(I32));
6716 SvIV_set(sv_dat, 1);
6719 if (!av_store(RExC_paren_name_list, RExC_npar, SvREFCNT_inc(svname)))
6720 SvREFCNT_dec(svname);
6723 /*sv_dump(sv_dat);*/
6725 nextchar(pRExC_state);
6727 goto capturing_parens;
6729 RExC_seen |= REG_SEEN_LOOKBEHIND;
6730 RExC_in_lookbehind++;
6732 case '=': /* (?=...) */
6733 RExC_seen_zerolen++;
6735 case '!': /* (?!...) */
6736 RExC_seen_zerolen++;
6737 if (*RExC_parse == ')') {
6738 ret=reg_node(pRExC_state, OPFAIL);
6739 nextchar(pRExC_state);
6743 case '|': /* (?|...) */
6744 /* branch reset, behave like a (?:...) except that
6745 buffers in alternations share the same numbers */
6747 after_freeze = freeze_paren = RExC_npar;
6749 case ':': /* (?:...) */
6750 case '>': /* (?>...) */
6752 case '$': /* (?$...) */
6753 case '@': /* (?@...) */
6754 vFAIL2("Sequence (?%c...) not implemented", (int)paren);
6756 case '#': /* (?#...) */
6757 while (*RExC_parse && *RExC_parse != ')')
6759 if (*RExC_parse != ')')
6760 FAIL("Sequence (?#... not terminated");
6761 nextchar(pRExC_state);
6764 case '0' : /* (?0) */
6765 case 'R' : /* (?R) */
6766 if (*RExC_parse != ')')
6767 FAIL("Sequence (?R) not terminated");
6768 ret = reg_node(pRExC_state, GOSTART);
6769 *flagp |= POSTPONED;
6770 nextchar(pRExC_state);
6773 { /* named and numeric backreferences */
6775 case '&': /* (?&NAME) */
6776 parse_start = RExC_parse - 1;
6779 SV *sv_dat = reg_scan_name(pRExC_state,
6780 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6781 num = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6783 goto gen_recurse_regop;
6786 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6788 vFAIL("Illegal pattern");
6790 goto parse_recursion;
6792 case '-': /* (?-1) */
6793 if (!(RExC_parse[0] >= '1' && RExC_parse[0] <= '9')) {
6794 RExC_parse--; /* rewind to let it be handled later */
6798 case '1': case '2': case '3': case '4': /* (?1) */
6799 case '5': case '6': case '7': case '8': case '9':
6802 num = atoi(RExC_parse);
6803 parse_start = RExC_parse - 1; /* MJD */
6804 if (*RExC_parse == '-')
6806 while (isDIGIT(*RExC_parse))
6808 if (*RExC_parse!=')')
6809 vFAIL("Expecting close bracket");
6812 if ( paren == '-' ) {
6814 Diagram of capture buffer numbering.
6815 Top line is the normal capture buffer numbers
6816 Bottom line is the negative indexing as from
6820 /(a(x)y)(a(b(c(?-2)d)e)f)(g(h))/
6824 num = RExC_npar + num;
6827 vFAIL("Reference to nonexistent group");
6829 } else if ( paren == '+' ) {
6830 num = RExC_npar + num - 1;
6833 ret = reganode(pRExC_state, GOSUB, num);
6835 if (num > (I32)RExC_rx->nparens) {
6837 vFAIL("Reference to nonexistent group");
6839 ARG2L_SET( ret, RExC_recurse_count++);
6841 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
6842 "Recurse #%"UVuf" to %"IVdf"\n", (UV)ARG(ret), (IV)ARG2L(ret)));
6846 RExC_seen |= REG_SEEN_RECURSE;
6847 Set_Node_Length(ret, 1 + regarglen[OP(ret)]); /* MJD */
6848 Set_Node_Offset(ret, parse_start); /* MJD */
6850 *flagp |= POSTPONED;
6851 nextchar(pRExC_state);
6853 } /* named and numeric backreferences */
6856 case '?': /* (??...) */
6858 if (*RExC_parse != '{') {
6860 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
6863 *flagp |= POSTPONED;
6864 paren = *RExC_parse++;
6866 case '{': /* (?{...}) */
6871 char *s = RExC_parse;
6873 RExC_seen_zerolen++;
6874 RExC_seen |= REG_SEEN_EVAL;
6875 while (count && (c = *RExC_parse)) {
6886 if (*RExC_parse != ')') {
6888 vFAIL("Sequence (?{...}) not terminated or not {}-balanced");
6892 OP_4tree *sop, *rop;
6893 SV * const sv = newSVpvn(s, RExC_parse - 1 - s);
6896 Perl_save_re_context(aTHX);
6897 rop = Perl_sv_compile_2op_is_broken(aTHX_ sv, &sop, "re", &pad);
6898 sop->op_private |= OPpREFCOUNTED;
6899 /* re_dup will OpREFCNT_inc */
6900 OpREFCNT_set(sop, 1);
6903 n = add_data(pRExC_state, 3, "nop");
6904 RExC_rxi->data->data[n] = (void*)rop;
6905 RExC_rxi->data->data[n+1] = (void*)sop;
6906 RExC_rxi->data->data[n+2] = (void*)pad;
6909 else { /* First pass */
6910 if (PL_reginterp_cnt < ++RExC_seen_evals
6912 /* No compiled RE interpolated, has runtime
6913 components ===> unsafe. */
6914 FAIL("Eval-group not allowed at runtime, use re 'eval'");
6915 if (PL_tainting && PL_tainted)
6916 FAIL("Eval-group in insecure regular expression");
6917 #if PERL_VERSION > 8
6918 if (IN_PERL_COMPILETIME)
6923 nextchar(pRExC_state);
6925 ret = reg_node(pRExC_state, LOGICAL);
6928 REGTAIL(pRExC_state, ret, reganode(pRExC_state, EVAL, n));
6929 /* deal with the length of this later - MJD */
6932 ret = reganode(pRExC_state, EVAL, n);
6933 Set_Node_Length(ret, RExC_parse - parse_start + 1);
6934 Set_Node_Offset(ret, parse_start);
6937 case '(': /* (?(?{...})...) and (?(?=...)...) */
6940 if (RExC_parse[0] == '?') { /* (?(?...)) */
6941 if (RExC_parse[1] == '=' || RExC_parse[1] == '!'
6942 || RExC_parse[1] == '<'
6943 || RExC_parse[1] == '{') { /* Lookahead or eval. */
6946 ret = reg_node(pRExC_state, LOGICAL);
6949 REGTAIL(pRExC_state, ret, reg(pRExC_state, 1, &flag,depth+1));
6953 else if ( RExC_parse[0] == '<' /* (?(<NAME>)...) */
6954 || RExC_parse[0] == '\'' ) /* (?('NAME')...) */
6956 char ch = RExC_parse[0] == '<' ? '>' : '\'';
6957 char *name_start= RExC_parse++;
6959 SV *sv_dat=reg_scan_name(pRExC_state,
6960 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6961 if (RExC_parse == name_start || *RExC_parse != ch)
6962 vFAIL2("Sequence (?(%c... not terminated",
6963 (ch == '>' ? '<' : ch));
6966 num = add_data( pRExC_state, 1, "S" );
6967 RExC_rxi->data->data[num]=(void*)sv_dat;
6968 SvREFCNT_inc_simple_void(sv_dat);
6970 ret = reganode(pRExC_state,NGROUPP,num);
6971 goto insert_if_check_paren;
6973 else if (RExC_parse[0] == 'D' &&
6974 RExC_parse[1] == 'E' &&
6975 RExC_parse[2] == 'F' &&
6976 RExC_parse[3] == 'I' &&
6977 RExC_parse[4] == 'N' &&
6978 RExC_parse[5] == 'E')
6980 ret = reganode(pRExC_state,DEFINEP,0);
6983 goto insert_if_check_paren;
6985 else if (RExC_parse[0] == 'R') {
6988 if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
6989 parno = atoi(RExC_parse++);
6990 while (isDIGIT(*RExC_parse))
6992 } else if (RExC_parse[0] == '&') {
6995 sv_dat = reg_scan_name(pRExC_state,
6996 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
6997 parno = sv_dat ? *((I32 *)SvPVX(sv_dat)) : 0;
6999 ret = reganode(pRExC_state,INSUBP,parno);
7000 goto insert_if_check_paren;
7002 else if (RExC_parse[0] >= '1' && RExC_parse[0] <= '9' ) {
7005 parno = atoi(RExC_parse++);
7007 while (isDIGIT(*RExC_parse))
7009 ret = reganode(pRExC_state, GROUPP, parno);
7011 insert_if_check_paren:
7012 if ((c = *nextchar(pRExC_state)) != ')')
7013 vFAIL("Switch condition not recognized");
7015 REGTAIL(pRExC_state, ret, reganode(pRExC_state, IFTHEN, 0));
7016 br = regbranch(pRExC_state, &flags, 1,depth+1);
7018 br = reganode(pRExC_state, LONGJMP, 0);
7020 REGTAIL(pRExC_state, br, reganode(pRExC_state, LONGJMP, 0));
7021 c = *nextchar(pRExC_state);
7026 vFAIL("(?(DEFINE)....) does not allow branches");
7027 lastbr = reganode(pRExC_state, IFTHEN, 0); /* Fake one for optimizer. */
7028 regbranch(pRExC_state, &flags, 1,depth+1);
7029 REGTAIL(pRExC_state, ret, lastbr);
7032 c = *nextchar(pRExC_state);
7037 vFAIL("Switch (?(condition)... contains too many branches");
7038 ender = reg_node(pRExC_state, TAIL);
7039 REGTAIL(pRExC_state, br, ender);
7041 REGTAIL(pRExC_state, lastbr, ender);
7042 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender);
7045 REGTAIL(pRExC_state, ret, ender);
7046 RExC_size++; /* XXX WHY do we need this?!!
7047 For large programs it seems to be required
7048 but I can't figure out why. -- dmq*/
7052 vFAIL2("Unknown switch condition (?(%.2s", RExC_parse);
7056 RExC_parse--; /* for vFAIL to print correctly */
7057 vFAIL("Sequence (? incomplete");
7059 case DEFAULT_PAT_MOD: /* Use default flags with the exceptions
7061 has_use_defaults = TRUE;
7062 STD_PMMOD_FLAGS_CLEAR(&RExC_flags);
7063 set_regex_charset(&RExC_flags, (RExC_utf8 || RExC_uni_semantics)
7064 ? REGEX_UNICODE_CHARSET
7065 : REGEX_DEPENDS_CHARSET);
7069 parse_flags: /* (?i) */
7071 U32 posflags = 0, negflags = 0;
7072 U32 *flagsp = &posflags;
7073 char has_charset_modifier = '\0';
7074 regex_charset cs = (RExC_utf8 || RExC_uni_semantics)
7075 ? REGEX_UNICODE_CHARSET
7076 : REGEX_DEPENDS_CHARSET;
7078 while (*RExC_parse) {
7079 /* && strchr("iogcmsx", *RExC_parse) */
7080 /* (?g), (?gc) and (?o) are useless here
7081 and must be globally applied -- japhy */
7082 switch (*RExC_parse) {
7083 CASE_STD_PMMOD_FLAGS_PARSE_SET(flagsp);
7084 case LOCALE_PAT_MOD:
7085 if (has_charset_modifier) {
7086 goto excess_modifier;
7088 else if (flagsp == &negflags) {
7091 cs = REGEX_LOCALE_CHARSET;
7092 has_charset_modifier = LOCALE_PAT_MOD;
7093 RExC_contains_locale = 1;
7095 case UNICODE_PAT_MOD:
7096 if (has_charset_modifier) {
7097 goto excess_modifier;
7099 else if (flagsp == &negflags) {
7102 cs = REGEX_UNICODE_CHARSET;
7103 has_charset_modifier = UNICODE_PAT_MOD;
7105 case ASCII_RESTRICT_PAT_MOD:
7106 if (flagsp == &negflags) {
7109 if (has_charset_modifier) {
7110 if (cs != REGEX_ASCII_RESTRICTED_CHARSET) {
7111 goto excess_modifier;
7113 /* Doubled modifier implies more restricted */
7114 cs = REGEX_ASCII_MORE_RESTRICTED_CHARSET;
7117 cs = REGEX_ASCII_RESTRICTED_CHARSET;
7119 has_charset_modifier = ASCII_RESTRICT_PAT_MOD;
7121 case DEPENDS_PAT_MOD:
7122 if (has_use_defaults) {
7123 goto fail_modifiers;
7125 else if (flagsp == &negflags) {
7128 else if (has_charset_modifier) {
7129 goto excess_modifier;
7132 /* The dual charset means unicode semantics if the
7133 * pattern (or target, not known until runtime) are
7134 * utf8, or something in the pattern indicates unicode
7136 cs = (RExC_utf8 || RExC_uni_semantics)
7137 ? REGEX_UNICODE_CHARSET
7138 : REGEX_DEPENDS_CHARSET;
7139 has_charset_modifier = DEPENDS_PAT_MOD;
7143 if (has_charset_modifier == ASCII_RESTRICT_PAT_MOD) {
7144 vFAIL2("Regexp modifier \"%c\" may appear a maximum of twice", ASCII_RESTRICT_PAT_MOD);
7146 else if (has_charset_modifier == *(RExC_parse - 1)) {
7147 vFAIL2("Regexp modifier \"%c\" may not appear twice", *(RExC_parse - 1));
7150 vFAIL3("Regexp modifiers \"%c\" and \"%c\" are mutually exclusive", has_charset_modifier, *(RExC_parse - 1));
7155 vFAIL2("Regexp modifier \"%c\" may not appear after the \"-\"", *(RExC_parse - 1));
7157 case ONCE_PAT_MOD: /* 'o' */
7158 case GLOBAL_PAT_MOD: /* 'g' */
7159 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7160 const I32 wflagbit = *RExC_parse == 'o' ? WASTED_O : WASTED_G;
7161 if (! (wastedflags & wflagbit) ) {
7162 wastedflags |= wflagbit;
7165 "Useless (%s%c) - %suse /%c modifier",
7166 flagsp == &negflags ? "?-" : "?",
7168 flagsp == &negflags ? "don't " : "",
7175 case CONTINUE_PAT_MOD: /* 'c' */
7176 if (SIZE_ONLY && ckWARN(WARN_REGEXP)) {
7177 if (! (wastedflags & WASTED_C) ) {
7178 wastedflags |= WASTED_GC;
7181 "Useless (%sc) - %suse /gc modifier",
7182 flagsp == &negflags ? "?-" : "?",
7183 flagsp == &negflags ? "don't " : ""
7188 case KEEPCOPY_PAT_MOD: /* 'p' */
7189 if (flagsp == &negflags) {
7191 ckWARNreg(RExC_parse + 1,"Useless use of (?-p)");
7193 *flagsp |= RXf_PMf_KEEPCOPY;
7197 /* A flag is a default iff it is following a minus, so
7198 * if there is a minus, it means will be trying to
7199 * re-specify a default which is an error */
7200 if (has_use_defaults || flagsp == &negflags) {
7203 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7207 wastedflags = 0; /* reset so (?g-c) warns twice */
7213 RExC_flags |= posflags;
7214 RExC_flags &= ~negflags;
7215 set_regex_charset(&RExC_flags, cs);
7217 oregflags |= posflags;
7218 oregflags &= ~negflags;
7219 set_regex_charset(&oregflags, cs);
7221 nextchar(pRExC_state);
7232 vFAIL3("Sequence (%.*s...) not recognized", RExC_parse-seqstart, seqstart);
7237 }} /* one for the default block, one for the switch */
7244 ret = reganode(pRExC_state, OPEN, parno);
7247 RExC_nestroot = parno;
7248 if (RExC_seen & REG_SEEN_RECURSE
7249 && !RExC_open_parens[parno-1])
7251 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7252 "Setting open paren #%"IVdf" to %d\n",
7253 (IV)parno, REG_NODE_NUM(ret)));
7254 RExC_open_parens[parno-1]= ret;
7257 Set_Node_Length(ret, 1); /* MJD */
7258 Set_Node_Offset(ret, RExC_parse); /* MJD */
7266 /* Pick up the branches, linking them together. */
7267 parse_start = RExC_parse; /* MJD */
7268 br = regbranch(pRExC_state, &flags, 1,depth+1);
7270 /* branch_len = (paren != 0); */
7274 if (*RExC_parse == '|') {
7275 if (!SIZE_ONLY && RExC_extralen) {
7276 reginsert(pRExC_state, BRANCHJ, br, depth+1);
7279 reginsert(pRExC_state, BRANCH, br, depth+1);
7280 Set_Node_Length(br, paren != 0);
7281 Set_Node_Offset_To_R(br-RExC_emit_start, parse_start-RExC_start);
7285 RExC_extralen += 1; /* For BRANCHJ-BRANCH. */
7287 else if (paren == ':') {
7288 *flagp |= flags&SIMPLE;
7290 if (is_open) { /* Starts with OPEN. */
7291 REGTAIL(pRExC_state, ret, br); /* OPEN -> first. */
7293 else if (paren != '?') /* Not Conditional */
7295 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7297 while (*RExC_parse == '|') {
7298 if (!SIZE_ONLY && RExC_extralen) {
7299 ender = reganode(pRExC_state, LONGJMP,0);
7300 REGTAIL(pRExC_state, NEXTOPER(NEXTOPER(lastbr)), ender); /* Append to the previous. */
7303 RExC_extralen += 2; /* Account for LONGJMP. */
7304 nextchar(pRExC_state);
7306 if (RExC_npar > after_freeze)
7307 after_freeze = RExC_npar;
7308 RExC_npar = freeze_paren;
7310 br = regbranch(pRExC_state, &flags, 0, depth+1);
7314 REGTAIL(pRExC_state, lastbr, br); /* BRANCH -> BRANCH. */
7316 *flagp |= flags & (SPSTART | HASWIDTH | POSTPONED);
7319 if (have_branch || paren != ':') {
7320 /* Make a closing node, and hook it on the end. */
7323 ender = reg_node(pRExC_state, TAIL);
7326 ender = reganode(pRExC_state, CLOSE, parno);
7327 if (!SIZE_ONLY && RExC_seen & REG_SEEN_RECURSE) {
7328 DEBUG_OPTIMISE_MORE_r(PerlIO_printf(Perl_debug_log,
7329 "Setting close paren #%"IVdf" to %d\n",
7330 (IV)parno, REG_NODE_NUM(ender)));
7331 RExC_close_parens[parno-1]= ender;
7332 if (RExC_nestroot == parno)
7335 Set_Node_Offset(ender,RExC_parse+1); /* MJD */
7336 Set_Node_Length(ender,1); /* MJD */
7342 *flagp &= ~HASWIDTH;
7345 ender = reg_node(pRExC_state, SUCCEED);
7348 ender = reg_node(pRExC_state, END);
7350 assert(!RExC_opend); /* there can only be one! */
7355 REGTAIL(pRExC_state, lastbr, ender);
7357 if (have_branch && !SIZE_ONLY) {
7359 RExC_seen |= REG_TOP_LEVEL_BRANCHES;
7361 /* Hook the tails of the branches to the closing node. */
7362 for (br = ret; br; br = regnext(br)) {
7363 const U8 op = PL_regkind[OP(br)];
7365 REGTAIL_STUDY(pRExC_state, NEXTOPER(br), ender);
7367 else if (op == BRANCHJ) {
7368 REGTAIL_STUDY(pRExC_state, NEXTOPER(NEXTOPER(br)), ender);
7376 static const char parens[] = "=!<,>";
7378 if (paren && (p = strchr(parens, paren))) {
7379 U8 node = ((p - parens) % 2) ? UNLESSM : IFMATCH;
7380 int flag = (p - parens) > 1;
7383 node = SUSPEND, flag = 0;
7384 reginsert(pRExC_state, node,ret, depth+1);
7385 Set_Node_Cur_Length(ret);
7386 Set_Node_Offset(ret, parse_start + 1);
7388 REGTAIL_STUDY(pRExC_state, ret, reg_node(pRExC_state, TAIL));
7392 /* Check for proper termination. */
7394 RExC_flags = oregflags;
7395 if (RExC_parse >= RExC_end || *nextchar(pRExC_state) != ')') {
7396 RExC_parse = oregcomp_parse;
7397 vFAIL("Unmatched (");
7400 else if (!paren && RExC_parse < RExC_end) {
7401 if (*RExC_parse == ')') {
7403 vFAIL("Unmatched )");
7406 FAIL("Junk on end of regexp"); /* "Can't happen". */
7410 if (RExC_in_lookbehind) {
7411 RExC_in_lookbehind--;
7413 if (after_freeze > RExC_npar)
7414 RExC_npar = after_freeze;
7419 - regbranch - one alternative of an | operator
7421 * Implements the concatenation operator.
7424 S_regbranch(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, I32 first, U32 depth)
7427 register regnode *ret;
7428 register regnode *chain = NULL;
7429 register regnode *latest;
7430 I32 flags = 0, c = 0;
7431 GET_RE_DEBUG_FLAGS_DECL;
7433 PERL_ARGS_ASSERT_REGBRANCH;
7435 DEBUG_PARSE("brnc");
7440 if (!SIZE_ONLY && RExC_extralen)
7441 ret = reganode(pRExC_state, BRANCHJ,0);
7443 ret = reg_node(pRExC_state, BRANCH);
7444 Set_Node_Length(ret, 1);
7448 if (!first && SIZE_ONLY)
7449 RExC_extralen += 1; /* BRANCHJ */
7451 *flagp = WORST; /* Tentatively. */
7454 nextchar(pRExC_state);
7455 while (RExC_parse < RExC_end && *RExC_parse != '|' && *RExC_parse != ')') {
7457 latest = regpiece(pRExC_state, &flags,depth+1);
7458 if (latest == NULL) {
7459 if (flags & TRYAGAIN)
7463 else if (ret == NULL)
7465 *flagp |= flags&(HASWIDTH|POSTPONED);
7466 if (chain == NULL) /* First piece. */
7467 *flagp |= flags&SPSTART;
7470 REGTAIL(pRExC_state, chain, latest);
7475 if (chain == NULL) { /* Loop ran zero times. */
7476 chain = reg_node(pRExC_state, NOTHING);
7481 *flagp |= flags&SIMPLE;
7488 - regpiece - something followed by possible [*+?]
7490 * Note that the branching code sequences used for ? and the general cases
7491 * of * and + are somewhat optimized: they use the same NOTHING node as
7492 * both the endmarker for their branch list and the body of the last branch.
7493 * It might seem that this node could be dispensed with entirely, but the
7494 * endmarker role is not redundant.
7497 S_regpiece(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7500 register regnode *ret;
7502 register char *next;
7504 const char * const origparse = RExC_parse;
7506 I32 max = REG_INFTY;
7508 const char *maxpos = NULL;
7509 GET_RE_DEBUG_FLAGS_DECL;
7511 PERL_ARGS_ASSERT_REGPIECE;
7513 DEBUG_PARSE("piec");
7515 ret = regatom(pRExC_state, &flags,depth+1);
7517 if (flags & TRYAGAIN)
7524 if (op == '{' && regcurly(RExC_parse)) {
7526 parse_start = RExC_parse; /* MJD */
7527 next = RExC_parse + 1;
7528 while (isDIGIT(*next) || *next == ',') {
7537 if (*next == '}') { /* got one */
7541 min = atoi(RExC_parse);
7545 maxpos = RExC_parse;
7547 if (!max && *maxpos != '0')
7548 max = REG_INFTY; /* meaning "infinity" */
7549 else if (max >= REG_INFTY)
7550 vFAIL2("Quantifier in {,} bigger than %d", REG_INFTY - 1);
7552 nextchar(pRExC_state);
7555 if ((flags&SIMPLE)) {
7556 RExC_naughty += 2 + RExC_naughty / 2;
7557 reginsert(pRExC_state, CURLY, ret, depth+1);
7558 Set_Node_Offset(ret, parse_start+1); /* MJD */
7559 Set_Node_Cur_Length(ret);
7562 regnode * const w = reg_node(pRExC_state, WHILEM);
7565 REGTAIL(pRExC_state, ret, w);
7566 if (!SIZE_ONLY && RExC_extralen) {
7567 reginsert(pRExC_state, LONGJMP,ret, depth+1);
7568 reginsert(pRExC_state, NOTHING,ret, depth+1);
7569 NEXT_OFF(ret) = 3; /* Go over LONGJMP. */
7571 reginsert(pRExC_state, CURLYX,ret, depth+1);
7573 Set_Node_Offset(ret, parse_start+1);
7574 Set_Node_Length(ret,
7575 op == '{' ? (RExC_parse - parse_start) : 1);
7577 if (!SIZE_ONLY && RExC_extralen)
7578 NEXT_OFF(ret) = 3; /* Go over NOTHING to LONGJMP. */
7579 REGTAIL(pRExC_state, ret, reg_node(pRExC_state, NOTHING));
7581 RExC_whilem_seen++, RExC_extralen += 3;
7582 RExC_naughty += 4 + RExC_naughty; /* compound interest */
7591 vFAIL("Can't do {n,m} with n > m");
7593 ARG1_SET(ret, (U16)min);
7594 ARG2_SET(ret, (U16)max);
7606 #if 0 /* Now runtime fix should be reliable. */
7608 /* if this is reinstated, don't forget to put this back into perldiag:
7610 =item Regexp *+ operand could be empty at {#} in regex m/%s/
7612 (F) The part of the regexp subject to either the * or + quantifier
7613 could match an empty string. The {#} shows in the regular
7614 expression about where the problem was discovered.
7618 if (!(flags&HASWIDTH) && op != '?')
7619 vFAIL("Regexp *+ operand could be empty");
7622 parse_start = RExC_parse;
7623 nextchar(pRExC_state);
7625 *flagp = (op != '+') ? (WORST|SPSTART|HASWIDTH) : (WORST|HASWIDTH);
7627 if (op == '*' && (flags&SIMPLE)) {
7628 reginsert(pRExC_state, STAR, ret, depth+1);
7632 else if (op == '*') {
7636 else if (op == '+' && (flags&SIMPLE)) {
7637 reginsert(pRExC_state, PLUS, ret, depth+1);
7641 else if (op == '+') {
7645 else if (op == '?') {
7650 if (!SIZE_ONLY && !(flags&(HASWIDTH|POSTPONED)) && max > REG_INFTY/3) {
7651 ckWARN3reg(RExC_parse,
7652 "%.*s matches null string many times",
7653 (int)(RExC_parse >= origparse ? RExC_parse - origparse : 0),
7657 if (RExC_parse < RExC_end && *RExC_parse == '?') {
7658 nextchar(pRExC_state);
7659 reginsert(pRExC_state, MINMOD, ret, depth+1);
7660 REGTAIL(pRExC_state, ret, ret + NODE_STEP_REGNODE);
7662 #ifndef REG_ALLOW_MINMOD_SUSPEND
7665 if (RExC_parse < RExC_end && *RExC_parse == '+') {
7667 nextchar(pRExC_state);
7668 ender = reg_node(pRExC_state, SUCCEED);
7669 REGTAIL(pRExC_state, ret, ender);
7670 reginsert(pRExC_state, SUSPEND, ret, depth+1);
7672 ender = reg_node(pRExC_state, TAIL);
7673 REGTAIL(pRExC_state, ret, ender);
7677 if (RExC_parse < RExC_end && ISMULT2(RExC_parse)) {
7679 vFAIL("Nested quantifiers");
7686 /* reg_namedseq(pRExC_state,UVp, UV depth)
7688 This is expected to be called by a parser routine that has
7689 recognized '\N' and needs to handle the rest. RExC_parse is
7690 expected to point at the first char following the N at the time
7693 The \N may be inside (indicated by valuep not being NULL) or outside a
7696 \N may begin either a named sequence, or if outside a character class, mean
7697 to match a non-newline. For non single-quoted regexes, the tokenizer has
7698 attempted to decide which, and in the case of a named sequence converted it
7699 into one of the forms: \N{} (if the sequence is null), or \N{U+c1.c2...},
7700 where c1... are the characters in the sequence. For single-quoted regexes,
7701 the tokenizer passes the \N sequence through unchanged; this code will not
7702 attempt to determine this nor expand those. The net effect is that if the
7703 beginning of the passed-in pattern isn't '{U+' or there is no '}', it
7704 signals that this \N occurrence means to match a non-newline.
7706 Only the \N{U+...} form should occur in a character class, for the same
7707 reason that '.' inside a character class means to just match a period: it
7708 just doesn't make sense.
7710 If valuep is non-null then it is assumed that we are parsing inside
7711 of a charclass definition and the first codepoint in the resolved
7712 string is returned via *valuep and the routine will return NULL.
7713 In this mode if a multichar string is returned from the charnames
7714 handler, a warning will be issued, and only the first char in the
7715 sequence will be examined. If the string returned is zero length
7716 then the value of *valuep is undefined and NON-NULL will
7717 be returned to indicate failure. (This will NOT be a valid pointer
7720 If valuep is null then it is assumed that we are parsing normal text and a
7721 new EXACT node is inserted into the program containing the resolved string,
7722 and a pointer to the new node is returned. But if the string is zero length
7723 a NOTHING node is emitted instead.
7725 On success RExC_parse is set to the char following the endbrace.
7726 Parsing failures will generate a fatal error via vFAIL(...)
7729 S_reg_namedseq(pTHX_ RExC_state_t *pRExC_state, UV *valuep, I32 *flagp, U32 depth)
7731 char * endbrace; /* '}' following the name */
7732 regnode *ret = NULL;
7735 GET_RE_DEBUG_FLAGS_DECL;
7737 PERL_ARGS_ASSERT_REG_NAMEDSEQ;
7741 /* The [^\n] meaning of \N ignores spaces and comments under the /x
7742 * modifier. The other meaning does not */
7743 p = (RExC_flags & RXf_PMf_EXTENDED)
7744 ? regwhite( pRExC_state, RExC_parse )
7747 /* Disambiguate between \N meaning a named character versus \N meaning
7748 * [^\n]. The former is assumed when it can't be the latter. */
7749 if (*p != '{' || regcurly(p)) {
7752 /* no bare \N in a charclass */
7753 vFAIL("\\N in a character class must be a named character: \\N{...}");
7755 nextchar(pRExC_state);
7756 ret = reg_node(pRExC_state, REG_ANY);
7757 *flagp |= HASWIDTH|SIMPLE;
7760 Set_Node_Length(ret, 1); /* MJD */
7764 /* Here, we have decided it should be a named sequence */
7766 /* The test above made sure that the next real character is a '{', but
7767 * under the /x modifier, it could be separated by space (or a comment and
7768 * \n) and this is not allowed (for consistency with \x{...} and the
7769 * tokenizer handling of \N{NAME}). */
7770 if (*RExC_parse != '{') {
7771 vFAIL("Missing braces on \\N{}");
7774 RExC_parse++; /* Skip past the '{' */
7776 if (! (endbrace = strchr(RExC_parse, '}')) /* no trailing brace */
7777 || ! (endbrace == RExC_parse /* nothing between the {} */
7778 || (endbrace - RExC_parse >= 2 /* U+ (bad hex is checked below */
7779 && strnEQ(RExC_parse, "U+", 2)))) /* for a better error msg) */
7781 if (endbrace) RExC_parse = endbrace; /* position msg's '<--HERE' */
7782 vFAIL("\\N{NAME} must be resolved by the lexer");
7785 if (endbrace == RExC_parse) { /* empty: \N{} */
7787 RExC_parse = endbrace + 1;
7788 return reg_node(pRExC_state,NOTHING);
7792 ckWARNreg(RExC_parse,
7793 "Ignoring zero length \\N{} in character class"
7795 RExC_parse = endbrace + 1;
7798 return (regnode *) &RExC_parse; /* Invalid regnode pointer */
7801 REQUIRE_UTF8; /* named sequences imply Unicode semantics */
7802 RExC_parse += 2; /* Skip past the 'U+' */
7804 if (valuep) { /* In a bracketed char class */
7805 /* We only pay attention to the first char of
7806 multichar strings being returned. I kinda wonder
7807 if this makes sense as it does change the behaviour
7808 from earlier versions, OTOH that behaviour was broken
7809 as well. XXX Solution is to recharacterize as
7810 [rest-of-class]|multi1|multi2... */
7812 STRLEN length_of_hex;
7813 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
7814 | PERL_SCAN_DISALLOW_PREFIX
7815 | (SIZE_ONLY ? PERL_SCAN_SILENT_ILLDIGIT : 0);
7817 char * endchar = RExC_parse + strcspn(RExC_parse, ".}");
7818 if (endchar < endbrace) {
7819 ckWARNreg(endchar, "Using just the first character returned by \\N{} in character class");
7822 length_of_hex = (STRLEN)(endchar - RExC_parse);
7823 *valuep = grok_hex(RExC_parse, &length_of_hex, &flags, NULL);
7825 /* The tokenizer should have guaranteed validity, but it's possible to
7826 * bypass it by using single quoting, so check */
7827 if (length_of_hex == 0
7828 || length_of_hex != (STRLEN)(endchar - RExC_parse) )
7830 RExC_parse += length_of_hex; /* Includes all the valid */
7831 RExC_parse += (RExC_orig_utf8) /* point to after 1st invalid */
7832 ? UTF8SKIP(RExC_parse)
7834 /* Guard against malformed utf8 */
7835 if (RExC_parse >= endchar) RExC_parse = endchar;
7836 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7839 RExC_parse = endbrace + 1;
7840 if (endchar == endbrace) return NULL;
7842 ret = (regnode *) &RExC_parse; /* Invalid regnode pointer */
7844 else { /* Not a char class */
7846 /* What is done here is to convert this to a sub-pattern of the form
7847 * (?:\x{char1}\x{char2}...)
7848 * and then call reg recursively. That way, it retains its atomicness,
7849 * while not having to worry about special handling that some code
7850 * points may have. toke.c has converted the original Unicode values
7851 * to native, so that we can just pass on the hex values unchanged. We
7852 * do have to set a flag to keep recoding from happening in the
7855 SV * substitute_parse = newSVpvn_flags("?:", 2, SVf_UTF8|SVs_TEMP);
7857 char *endchar; /* Points to '.' or '}' ending cur char in the input
7859 char *orig_end = RExC_end;
7861 while (RExC_parse < endbrace) {
7863 /* Code points are separated by dots. If none, there is only one
7864 * code point, and is terminated by the brace */
7865 endchar = RExC_parse + strcspn(RExC_parse, ".}");
7867 /* Convert to notation the rest of the code understands */
7868 sv_catpv(substitute_parse, "\\x{");
7869 sv_catpvn(substitute_parse, RExC_parse, endchar - RExC_parse);
7870 sv_catpv(substitute_parse, "}");
7872 /* Point to the beginning of the next character in the sequence. */
7873 RExC_parse = endchar + 1;
7875 sv_catpv(substitute_parse, ")");
7877 RExC_parse = SvPV(substitute_parse, len);
7879 /* Don't allow empty number */
7881 vFAIL("Invalid hexadecimal number in \\N{U+...}");
7883 RExC_end = RExC_parse + len;
7885 /* The values are Unicode, and therefore not subject to recoding */
7886 RExC_override_recoding = 1;
7888 ret = reg(pRExC_state, 1, flagp, depth+1);
7890 RExC_parse = endbrace;
7891 RExC_end = orig_end;
7892 RExC_override_recoding = 0;
7894 nextchar(pRExC_state);
7904 * It returns the code point in utf8 for the value in *encp.
7905 * value: a code value in the source encoding
7906 * encp: a pointer to an Encode object
7908 * If the result from Encode is not a single character,
7909 * it returns U+FFFD (Replacement character) and sets *encp to NULL.
7912 S_reg_recode(pTHX_ const char value, SV **encp)
7915 SV * const sv = newSVpvn_flags(&value, numlen, SVs_TEMP);
7916 const char * const s = *encp ? sv_recode_to_utf8(sv, *encp) : SvPVX(sv);
7917 const STRLEN newlen = SvCUR(sv);
7918 UV uv = UNICODE_REPLACEMENT;
7920 PERL_ARGS_ASSERT_REG_RECODE;
7924 ? utf8n_to_uvchr((U8*)s, newlen, &numlen, UTF8_ALLOW_DEFAULT)
7927 if (!newlen || numlen != newlen) {
7928 uv = UNICODE_REPLACEMENT;
7936 - regatom - the lowest level
7938 Try to identify anything special at the start of the pattern. If there
7939 is, then handle it as required. This may involve generating a single regop,
7940 such as for an assertion; or it may involve recursing, such as to
7941 handle a () structure.
7943 If the string doesn't start with something special then we gobble up
7944 as much literal text as we can.
7946 Once we have been able to handle whatever type of thing started the
7947 sequence, we return.
7949 Note: we have to be careful with escapes, as they can be both literal
7950 and special, and in the case of \10 and friends can either, depending
7951 on context. Specifically there are two separate switches for handling
7952 escape sequences, with the one for handling literal escapes requiring
7953 a dummy entry for all of the special escapes that are actually handled
7958 S_regatom(pTHX_ RExC_state_t *pRExC_state, I32 *flagp, U32 depth)
7961 register regnode *ret = NULL;
7963 char *parse_start = RExC_parse;
7965 GET_RE_DEBUG_FLAGS_DECL;
7966 DEBUG_PARSE("atom");
7967 *flagp = WORST; /* Tentatively. */
7969 PERL_ARGS_ASSERT_REGATOM;
7972 switch ((U8)*RExC_parse) {
7974 RExC_seen_zerolen++;
7975 nextchar(pRExC_state);
7976 if (RExC_flags & RXf_PMf_MULTILINE)
7977 ret = reg_node(pRExC_state, MBOL);
7978 else if (RExC_flags & RXf_PMf_SINGLELINE)
7979 ret = reg_node(pRExC_state, SBOL);
7981 ret = reg_node(pRExC_state, BOL);
7982 Set_Node_Length(ret, 1); /* MJD */
7985 nextchar(pRExC_state);
7987 RExC_seen_zerolen++;
7988 if (RExC_flags & RXf_PMf_MULTILINE)
7989 ret = reg_node(pRExC_state, MEOL);
7990 else if (RExC_flags & RXf_PMf_SINGLELINE)
7991 ret = reg_node(pRExC_state, SEOL);
7993 ret = reg_node(pRExC_state, EOL);
7994 Set_Node_Length(ret, 1); /* MJD */
7997 nextchar(pRExC_state);
7998 if (RExC_flags & RXf_PMf_SINGLELINE)
7999 ret = reg_node(pRExC_state, SANY);
8001 ret = reg_node(pRExC_state, REG_ANY);
8002 *flagp |= HASWIDTH|SIMPLE;
8004 Set_Node_Length(ret, 1); /* MJD */
8008 char * const oregcomp_parse = ++RExC_parse;
8009 ret = regclass(pRExC_state,depth+1);
8010 if (*RExC_parse != ']') {
8011 RExC_parse = oregcomp_parse;
8012 vFAIL("Unmatched [");
8014 nextchar(pRExC_state);
8015 *flagp |= HASWIDTH|SIMPLE;
8016 Set_Node_Length(ret, RExC_parse - oregcomp_parse + 1); /* MJD */
8020 nextchar(pRExC_state);
8021 ret = reg(pRExC_state, 1, &flags,depth+1);
8023 if (flags & TRYAGAIN) {
8024 if (RExC_parse == RExC_end) {
8025 /* Make parent create an empty node if needed. */
8033 *flagp |= flags&(HASWIDTH|SPSTART|SIMPLE|POSTPONED);
8037 if (flags & TRYAGAIN) {
8041 vFAIL("Internal urp");
8042 /* Supposed to be caught earlier. */
8045 if (!regcurly(RExC_parse)) {
8054 vFAIL("Quantifier follows nothing");
8059 This switch handles escape sequences that resolve to some kind
8060 of special regop and not to literal text. Escape sequnces that
8061 resolve to literal text are handled below in the switch marked
8064 Every entry in this switch *must* have a corresponding entry
8065 in the literal escape switch. However, the opposite is not
8066 required, as the default for this switch is to jump to the
8067 literal text handling code.
8069 switch ((U8)*++RExC_parse) {
8070 /* Special Escapes */
8072 RExC_seen_zerolen++;
8073 ret = reg_node(pRExC_state, SBOL);
8075 goto finish_meta_pat;
8077 ret = reg_node(pRExC_state, GPOS);
8078 RExC_seen |= REG_SEEN_GPOS;
8080 goto finish_meta_pat;
8082 RExC_seen_zerolen++;
8083 ret = reg_node(pRExC_state, KEEPS);
8085 /* XXX:dmq : disabling in-place substitution seems to
8086 * be necessary here to avoid cases of memory corruption, as
8087 * with: C<$_="x" x 80; s/x\K/y/> -- rgs
8089 RExC_seen |= REG_SEEN_LOOKBEHIND;
8090 goto finish_meta_pat;
8092 ret = reg_node(pRExC_state, SEOL);
8094 RExC_seen_zerolen++; /* Do not optimize RE away */
8095 goto finish_meta_pat;
8097 ret = reg_node(pRExC_state, EOS);
8099 RExC_seen_zerolen++; /* Do not optimize RE away */
8100 goto finish_meta_pat;
8102 ret = reg_node(pRExC_state, CANY);
8103 RExC_seen |= REG_SEEN_CANY;
8104 *flagp |= HASWIDTH|SIMPLE;
8105 goto finish_meta_pat;
8107 ret = reg_node(pRExC_state, CLUMP);
8109 goto finish_meta_pat;
8111 switch (get_regex_charset(RExC_flags)) {
8112 case REGEX_LOCALE_CHARSET:
8115 case REGEX_UNICODE_CHARSET:
8118 case REGEX_ASCII_RESTRICTED_CHARSET:
8119 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8122 case REGEX_DEPENDS_CHARSET:
8128 ret = reg_node(pRExC_state, op);
8129 *flagp |= HASWIDTH|SIMPLE;
8130 goto finish_meta_pat;
8132 switch (get_regex_charset(RExC_flags)) {
8133 case REGEX_LOCALE_CHARSET:
8136 case REGEX_UNICODE_CHARSET:
8139 case REGEX_ASCII_RESTRICTED_CHARSET:
8140 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8143 case REGEX_DEPENDS_CHARSET:
8149 ret = reg_node(pRExC_state, op);
8150 *flagp |= HASWIDTH|SIMPLE;
8151 goto finish_meta_pat;
8153 RExC_seen_zerolen++;
8154 RExC_seen |= REG_SEEN_LOOKBEHIND;
8155 switch (get_regex_charset(RExC_flags)) {
8156 case REGEX_LOCALE_CHARSET:
8159 case REGEX_UNICODE_CHARSET:
8162 case REGEX_ASCII_RESTRICTED_CHARSET:
8163 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8166 case REGEX_DEPENDS_CHARSET:
8172 ret = reg_node(pRExC_state, op);
8173 FLAGS(ret) = get_regex_charset(RExC_flags);
8175 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8176 ckWARNregdep(RExC_parse, "\"\\b{\" is deprecated; use \"\\b\\{\" instead");
8178 goto finish_meta_pat;
8180 RExC_seen_zerolen++;
8181 RExC_seen |= REG_SEEN_LOOKBEHIND;
8182 switch (get_regex_charset(RExC_flags)) {
8183 case REGEX_LOCALE_CHARSET:
8186 case REGEX_UNICODE_CHARSET:
8189 case REGEX_ASCII_RESTRICTED_CHARSET:
8190 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8193 case REGEX_DEPENDS_CHARSET:
8199 ret = reg_node(pRExC_state, op);
8200 FLAGS(ret) = get_regex_charset(RExC_flags);
8202 if (! SIZE_ONLY && (U8) *(RExC_parse + 1) == '{') {
8203 ckWARNregdep(RExC_parse, "\"\\B{\" is deprecated; use \"\\B\\{\" instead");
8205 goto finish_meta_pat;
8207 switch (get_regex_charset(RExC_flags)) {
8208 case REGEX_LOCALE_CHARSET:
8211 case REGEX_UNICODE_CHARSET:
8214 case REGEX_ASCII_RESTRICTED_CHARSET:
8215 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8218 case REGEX_DEPENDS_CHARSET:
8224 ret = reg_node(pRExC_state, op);
8225 *flagp |= HASWIDTH|SIMPLE;
8226 goto finish_meta_pat;
8228 switch (get_regex_charset(RExC_flags)) {
8229 case REGEX_LOCALE_CHARSET:
8232 case REGEX_UNICODE_CHARSET:
8235 case REGEX_ASCII_RESTRICTED_CHARSET:
8236 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8239 case REGEX_DEPENDS_CHARSET:
8245 ret = reg_node(pRExC_state, op);
8246 *flagp |= HASWIDTH|SIMPLE;
8247 goto finish_meta_pat;
8249 switch (get_regex_charset(RExC_flags)) {
8250 case REGEX_LOCALE_CHARSET:
8253 case REGEX_ASCII_RESTRICTED_CHARSET:
8254 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8257 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8258 case REGEX_UNICODE_CHARSET:
8264 ret = reg_node(pRExC_state, op);
8265 *flagp |= HASWIDTH|SIMPLE;
8266 goto finish_meta_pat;
8268 switch (get_regex_charset(RExC_flags)) {
8269 case REGEX_LOCALE_CHARSET:
8272 case REGEX_ASCII_RESTRICTED_CHARSET:
8273 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
8276 case REGEX_DEPENDS_CHARSET: /* No difference between these */
8277 case REGEX_UNICODE_CHARSET:
8283 ret = reg_node(pRExC_state, op);
8284 *flagp |= HASWIDTH|SIMPLE;
8285 goto finish_meta_pat;
8287 ret = reg_node(pRExC_state, LNBREAK);
8288 *flagp |= HASWIDTH|SIMPLE;
8289 goto finish_meta_pat;
8291 ret = reg_node(pRExC_state, HORIZWS);
8292 *flagp |= HASWIDTH|SIMPLE;
8293 goto finish_meta_pat;
8295 ret = reg_node(pRExC_state, NHORIZWS);
8296 *flagp |= HASWIDTH|SIMPLE;
8297 goto finish_meta_pat;
8299 ret = reg_node(pRExC_state, VERTWS);
8300 *flagp |= HASWIDTH|SIMPLE;
8301 goto finish_meta_pat;
8303 ret = reg_node(pRExC_state, NVERTWS);
8304 *flagp |= HASWIDTH|SIMPLE;
8306 nextchar(pRExC_state);
8307 Set_Node_Length(ret, 2); /* MJD */
8312 char* const oldregxend = RExC_end;
8314 char* parse_start = RExC_parse - 2;
8317 if (RExC_parse[1] == '{') {
8318 /* a lovely hack--pretend we saw [\pX] instead */
8319 RExC_end = strchr(RExC_parse, '}');
8321 const U8 c = (U8)*RExC_parse;
8323 RExC_end = oldregxend;
8324 vFAIL2("Missing right brace on \\%c{}", c);
8329 RExC_end = RExC_parse + 2;
8330 if (RExC_end > oldregxend)
8331 RExC_end = oldregxend;
8335 ret = regclass(pRExC_state,depth+1);
8337 RExC_end = oldregxend;
8340 Set_Node_Offset(ret, parse_start + 2);
8341 Set_Node_Cur_Length(ret);
8342 nextchar(pRExC_state);
8343 *flagp |= HASWIDTH|SIMPLE;
8347 /* Handle \N and \N{NAME} here and not below because it can be
8348 multicharacter. join_exact() will join them up later on.
8349 Also this makes sure that things like /\N{BLAH}+/ and
8350 \N{BLAH} being multi char Just Happen. dmq*/
8352 ret= reg_namedseq(pRExC_state, NULL, flagp, depth);
8354 case 'k': /* Handle \k<NAME> and \k'NAME' */
8357 char ch= RExC_parse[1];
8358 if (ch != '<' && ch != '\'' && ch != '{') {
8360 vFAIL2("Sequence %.2s... not terminated",parse_start);
8362 /* this pretty much dupes the code for (?P=...) in reg(), if
8363 you change this make sure you change that */
8364 char* name_start = (RExC_parse += 2);
8366 SV *sv_dat = reg_scan_name(pRExC_state,
8367 SIZE_ONLY ? REG_RSN_RETURN_NULL : REG_RSN_RETURN_DATA);
8368 ch= (ch == '<') ? '>' : (ch == '{') ? '}' : '\'';
8369 if (RExC_parse == name_start || *RExC_parse != ch)
8370 vFAIL2("Sequence %.3s... not terminated",parse_start);
8373 num = add_data( pRExC_state, 1, "S" );
8374 RExC_rxi->data->data[num]=(void*)sv_dat;
8375 SvREFCNT_inc_simple_void(sv_dat);
8379 ret = reganode(pRExC_state,
8382 : (MORE_ASCII_RESTRICTED)
8384 : (AT_LEAST_UNI_SEMANTICS)
8392 /* override incorrect value set in reganode MJD */
8393 Set_Node_Offset(ret, parse_start+1);
8394 Set_Node_Cur_Length(ret); /* MJD */
8395 nextchar(pRExC_state);
8401 case '1': case '2': case '3': case '4':
8402 case '5': case '6': case '7': case '8': case '9':
8405 bool isg = *RExC_parse == 'g';
8410 if (*RExC_parse == '{') {
8414 if (*RExC_parse == '-') {
8418 if (hasbrace && !isDIGIT(*RExC_parse)) {
8419 if (isrel) RExC_parse--;
8421 goto parse_named_seq;
8423 num = atoi(RExC_parse);
8424 if (isg && num == 0)
8425 vFAIL("Reference to invalid group 0");
8427 num = RExC_npar - num;
8429 vFAIL("Reference to nonexistent or unclosed group");
8431 if (!isg && num > 9 && num >= RExC_npar)
8434 char * const parse_start = RExC_parse - 1; /* MJD */
8435 while (isDIGIT(*RExC_parse))
8437 if (parse_start == RExC_parse - 1)
8438 vFAIL("Unterminated \\g... pattern");
8440 if (*RExC_parse != '}')
8441 vFAIL("Unterminated \\g{...} pattern");
8445 if (num > (I32)RExC_rx->nparens)
8446 vFAIL("Reference to nonexistent group");
8449 ret = reganode(pRExC_state,
8452 : (MORE_ASCII_RESTRICTED)
8454 : (AT_LEAST_UNI_SEMANTICS)
8462 /* override incorrect value set in reganode MJD */
8463 Set_Node_Offset(ret, parse_start+1);
8464 Set_Node_Cur_Length(ret); /* MJD */
8466 nextchar(pRExC_state);
8471 if (RExC_parse >= RExC_end)
8472 FAIL("Trailing \\");
8475 /* Do not generate "unrecognized" warnings here, we fall
8476 back into the quick-grab loop below */
8483 if (RExC_flags & RXf_PMf_EXTENDED) {
8484 if ( reg_skipcomment( pRExC_state ) )
8491 parse_start = RExC_parse - 1;
8504 char_state latest_char_state = generic_char;
8505 register STRLEN len;
8510 U8 tmpbuf[UTF8_MAXBYTES_CASE+1], *foldbuf;
8511 regnode * orig_emit;
8514 orig_emit = RExC_emit; /* Save the original output node position in
8515 case we need to output a different node
8517 ret = reg_node(pRExC_state,
8518 (U8) ((! FOLD) ? EXACT
8521 : (MORE_ASCII_RESTRICTED)
8523 : (AT_LEAST_UNI_SEMANTICS)
8528 for (len = 0, p = RExC_parse - 1;
8529 len < 127 && p < RExC_end;
8532 char * const oldp = p;
8534 if (RExC_flags & RXf_PMf_EXTENDED)
8535 p = regwhite( pRExC_state, p );
8546 /* Literal Escapes Switch
8548 This switch is meant to handle escape sequences that
8549 resolve to a literal character.
8551 Every escape sequence that represents something
8552 else, like an assertion or a char class, is handled
8553 in the switch marked 'Special Escapes' above in this
8554 routine, but also has an entry here as anything that
8555 isn't explicitly mentioned here will be treated as
8556 an unescaped equivalent literal.
8560 /* These are all the special escapes. */
8561 case 'A': /* Start assertion */
8562 case 'b': case 'B': /* Word-boundary assertion*/
8563 case 'C': /* Single char !DANGEROUS! */
8564 case 'd': case 'D': /* digit class */
8565 case 'g': case 'G': /* generic-backref, pos assertion */
8566 case 'h': case 'H': /* HORIZWS */
8567 case 'k': case 'K': /* named backref, keep marker */
8568 case 'N': /* named char sequence */
8569 case 'p': case 'P': /* Unicode property */
8570 case 'R': /* LNBREAK */
8571 case 's': case 'S': /* space class */
8572 case 'v': case 'V': /* VERTWS */
8573 case 'w': case 'W': /* word class */
8574 case 'X': /* eXtended Unicode "combining character sequence" */
8575 case 'z': case 'Z': /* End of line/string assertion */
8579 /* Anything after here is an escape that resolves to a
8580 literal. (Except digits, which may or may not)
8599 ender = ASCII_TO_NATIVE('\033');
8603 ender = ASCII_TO_NATIVE('\007');
8608 STRLEN brace_len = len;
8610 const char* error_msg;
8612 bool valid = grok_bslash_o(p,
8619 RExC_parse = p; /* going to die anyway; point
8620 to exact spot of failure */
8627 if (PL_encoding && ender < 0x100) {
8628 goto recode_encoding;
8637 char* const e = strchr(p, '}');
8641 vFAIL("Missing right brace on \\x{}");
8644 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
8645 | PERL_SCAN_DISALLOW_PREFIX;
8646 STRLEN numlen = e - p - 1;
8647 ender = grok_hex(p + 1, &numlen, &flags, NULL);
8654 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
8656 ender = grok_hex(p, &numlen, &flags, NULL);
8659 if (PL_encoding && ender < 0x100)
8660 goto recode_encoding;
8664 ender = grok_bslash_c(*p++, UTF, SIZE_ONLY);
8666 case '0': case '1': case '2': case '3':case '4':
8667 case '5': case '6': case '7': case '8':case '9':
8669 (isDIGIT(p[1]) && atoi(p) >= RExC_npar))
8671 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
8673 ender = grok_oct(p, &numlen, &flags, NULL);
8683 if (PL_encoding && ender < 0x100)
8684 goto recode_encoding;
8687 if (! RExC_override_recoding) {
8688 SV* enc = PL_encoding;
8689 ender = reg_recode((const char)(U8)ender, &enc);
8690 if (!enc && SIZE_ONLY)
8691 ckWARNreg(p, "Invalid escape in the specified encoding");
8697 FAIL("Trailing \\");
8700 if (!SIZE_ONLY&& isALPHA(*p)) {
8701 /* Include any { following the alpha to emphasize
8702 * that it could be part of an escape at some point
8704 int len = (*(p + 1) == '{') ? 2 : 1;
8705 ckWARN3reg(p + len, "Unrecognized escape \\%.*s passed through", len, p);
8707 goto normal_default;
8712 if (UTF8_IS_START(*p) && UTF) {
8714 ender = utf8n_to_uvchr((U8*)p, RExC_end - p,
8715 &numlen, UTF8_ALLOW_DEFAULT);
8721 } /* End of switch on the literal */
8723 /* Certain characters are problematic because their folded
8724 * length is so different from their original length that it
8725 * isn't handleable by the optimizer. They are therefore not
8726 * placed in an EXACTish node; and are here handled specially.
8727 * (Even if the optimizer handled LATIN_SMALL_LETTER_SHARP_S,
8728 * putting it in a special node keeps regexec from having to
8729 * deal with a non-utf8 multi-char fold */
8731 && (ender > 255 || (! MORE_ASCII_RESTRICTED && ! LOC)))
8733 /* We look for either side of the fold. For example \xDF
8734 * folds to 'ss'. We look for both the single character
8735 * \xDF and the sequence 'ss'. When we find something that
8736 * could be one of those, we stop and flush whatever we
8737 * have output so far into the EXACTish node that was being
8738 * built. Then restore the input pointer to what it was.
8739 * regatom will return that EXACT node, and will be called
8740 * again, positioned so the first character is the one in
8741 * question, which we return in a different node type.
8742 * The multi-char folds are a sequence, so the occurrence
8743 * of the first character in that sequence doesn't
8744 * necessarily mean that what follows is the rest of the
8745 * sequence. We keep track of that with a state machine,
8746 * with the state being set to the latest character
8747 * processed before the current one. Most characters will
8748 * set the state to 0, but if one occurs that is part of a
8749 * potential tricky fold sequence, the state is set to that
8750 * character, and the next loop iteration sees if the state
8751 * should progress towards the final folded-from character,
8752 * or if it was a false alarm. If it turns out to be a
8753 * false alarm, the character(s) will be output in a new
8754 * EXACTish node, and join_exact() will later combine them.
8755 * In the case of the 'ss' sequence, which is more common
8756 * and more easily checked, some look-ahead is done to
8757 * save time by ruling-out some false alarms */
8760 latest_char_state = generic_char;
8764 if (AT_LEAST_UNI_SEMANTICS) {
8765 if (latest_char_state == char_s) { /* 'ss' */
8766 ender = LATIN_SMALL_LETTER_SHARP_S;
8769 else if (p < RExC_end) {
8771 /* Look-ahead at the next character. If it
8772 * is also an s, we handle as a sharp s
8773 * tricky regnode. */
8774 if (*p == 's' || *p == 'S') {
8776 /* But first flush anything in the
8777 * EXACTish buffer */
8782 p++; /* Account for swallowing this
8784 ender = LATIN_SMALL_LETTER_SHARP_S;
8787 /* Here, the next character is not a
8788 * literal 's', but still could
8789 * evaluate to one if part of a \o{},
8790 * \x or \OCTAL-DIGIT. The minimum
8791 * length required for that is 4, eg
8795 && (isDIGIT(*(p + 1))
8797 || *(p + 1) == 'o' ))
8800 /* Here, it could be an 's', too much
8801 * bother to figure it out here. Flush
8802 * the buffer if any; when come back
8803 * here, set the state so know that the
8804 * previous char was an 's' */
8806 latest_char_state = generic_char;
8810 latest_char_state = char_s;
8816 /* Here, can't be an 'ss' sequence, or at least not
8817 * one that could fold to/from the sharp ss */
8818 latest_char_state = generic_char;
8820 case 0x03C5: /* First char in upsilon series */
8821 if (p < RExC_end - 4) { /* Need >= 4 bytes left */
8822 latest_char_state = upsilon_1;
8829 latest_char_state = generic_char;
8832 case 0x03B9: /* First char in iota series */
8833 if (p < RExC_end - 4) {
8834 latest_char_state = iota_1;
8841 latest_char_state = generic_char;
8845 if (latest_char_state == upsilon_1) {
8846 latest_char_state = upsilon_2;
8848 else if (latest_char_state == iota_1) {
8849 latest_char_state = iota_2;
8852 latest_char_state = generic_char;
8856 if (latest_char_state == upsilon_2) {
8857 ender = GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS;
8860 else if (latest_char_state == iota_2) {
8861 ender = GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS;
8864 latest_char_state = generic_char;
8867 /* These are the tricky fold characters. Flush any
8869 case GREEK_SMALL_LETTER_UPSILON_WITH_DIALYTIKA_AND_TONOS:
8870 case GREEK_SMALL_LETTER_IOTA_WITH_DIALYTIKA_AND_TONOS:
8871 case LATIN_SMALL_LETTER_SHARP_S:
8872 case LATIN_CAPITAL_LETTER_SHARP_S:
8881 char* const oldregxend = RExC_end;
8882 U8 tmpbuf[UTF8_MAXBYTES+1];
8884 /* Here, we know we need to generate a special
8885 * regnode, and 'ender' contains the tricky
8886 * character. What's done is to pretend it's in a
8887 * [bracketed] class, and let the code that deals
8888 * with those handle it, as that code has all the
8889 * intelligence necessary. First save the current
8890 * parse state, get rid of the already allocated
8891 * but empty EXACT node that the ANYOFV node will
8892 * replace, and point the parse to a buffer which
8893 * we fill with the character we want the regclass
8894 * code to think is being parsed */
8895 RExC_emit = orig_emit;
8896 RExC_parse = (char *) tmpbuf;
8898 U8 *d = uvchr_to_utf8(tmpbuf, ender);
8900 RExC_end = (char *) d;
8902 else { /* ender above 255 already excluded */
8903 tmpbuf[0] = (U8) ender;
8905 RExC_end = RExC_parse + 1;
8908 ret = regclass(pRExC_state,depth+1);
8910 /* Here, have parsed the buffer. Reset the parse to
8911 * the actual input, and return */
8912 RExC_end = oldregxend;
8915 Set_Node_Offset(ret, RExC_parse);
8916 Set_Node_Cur_Length(ret);
8917 nextchar(pRExC_state);
8918 *flagp |= HASWIDTH|SIMPLE;
8924 if ( RExC_flags & RXf_PMf_EXTENDED)
8925 p = regwhite( pRExC_state, p );
8927 /* Prime the casefolded buffer. Locale rules, which apply
8928 * only to code points < 256, aren't known until execution,
8929 * so for them, just output the original character using
8931 if (LOC && ender < 256) {
8932 if (UNI_IS_INVARIANT(ender)) {
8933 *tmpbuf = (U8) ender;
8936 *tmpbuf = UTF8_TWO_BYTE_HI(ender);
8937 *(tmpbuf + 1) = UTF8_TWO_BYTE_LO(ender);
8941 else if (isASCII(ender)) { /* Note: Here can't also be LOC
8943 ender = toLOWER(ender);
8944 *tmpbuf = (U8) ender;
8947 else if (! MORE_ASCII_RESTRICTED && ! LOC) {
8949 /* Locale and /aa require more selectivity about the
8950 * fold, so are handled below. Otherwise, here, just
8952 ender = toFOLD_uni(ender, tmpbuf, &foldlen);
8955 /* Under locale rules or /aa we are not to mix,
8956 * respectively, ords < 256 or ASCII with non-. So
8957 * reject folds that mix them, using only the
8958 * non-folded code point. So do the fold to a
8959 * temporary, and inspect each character in it. */
8960 U8 trialbuf[UTF8_MAXBYTES_CASE+1];
8962 UV tmpender = toFOLD_uni(ender, trialbuf, &foldlen);
8963 U8* e = s + foldlen;
8964 bool fold_ok = TRUE;
8968 || (LOC && (UTF8_IS_INVARIANT(*s)
8969 || UTF8_IS_DOWNGRADEABLE_START(*s))))
8977 Copy(trialbuf, tmpbuf, foldlen, U8);
8981 uvuni_to_utf8(tmpbuf, ender);
8982 foldlen = UNISKIP(ender);
8986 if (p < RExC_end && ISMULT2(p)) { /* Back off on ?+*. */
8991 /* Emit all the Unicode characters. */
8993 for (foldbuf = tmpbuf;
8995 foldlen -= numlen) {
8996 ender = utf8_to_uvchr(foldbuf, &numlen);
8998 const STRLEN unilen = reguni(pRExC_state, ender, s);
9001 /* In EBCDIC the numlen
9002 * and unilen can differ. */
9004 if (numlen >= foldlen)
9008 break; /* "Can't happen." */
9012 const STRLEN unilen = reguni(pRExC_state, ender, s);
9021 REGC((char)ender, s++);
9027 /* Emit all the Unicode characters. */
9029 for (foldbuf = tmpbuf;
9031 foldlen -= numlen) {
9032 ender = utf8_to_uvchr(foldbuf, &numlen);
9034 const STRLEN unilen = reguni(pRExC_state, ender, s);
9037 /* In EBCDIC the numlen
9038 * and unilen can differ. */
9040 if (numlen >= foldlen)
9048 const STRLEN unilen = reguni(pRExC_state, ender, s);
9057 REGC((char)ender, s++);
9060 loopdone: /* Jumped to when encounters something that shouldn't be in
9063 Set_Node_Cur_Length(ret); /* MJD */
9064 nextchar(pRExC_state);
9066 /* len is STRLEN which is unsigned, need to copy to signed */
9069 vFAIL("Internal disaster");
9073 if (len == 1 && UNI_IS_INVARIANT(ender))
9077 RExC_size += STR_SZ(len);
9080 RExC_emit += STR_SZ(len);
9088 /* Jumped to when an unrecognized character set is encountered */
9090 Perl_croak(aTHX_ "panic: Unknown regex character set encoding: %u", get_regex_charset(RExC_flags));
9095 S_regwhite( RExC_state_t *pRExC_state, char *p )
9097 const char *e = RExC_end;
9099 PERL_ARGS_ASSERT_REGWHITE;
9104 else if (*p == '#') {
9113 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
9121 /* Parse POSIX character classes: [[:foo:]], [[=foo=]], [[.foo.]].
9122 Character classes ([:foo:]) can also be negated ([:^foo:]).
9123 Returns a named class id (ANYOF_XXX) if successful, -1 otherwise.
9124 Equivalence classes ([=foo=]) and composites ([.foo.]) are parsed,
9125 but trigger failures because they are currently unimplemented. */
9127 #define POSIXCC_DONE(c) ((c) == ':')
9128 #define POSIXCC_NOTYET(c) ((c) == '=' || (c) == '.')
9129 #define POSIXCC(c) (POSIXCC_DONE(c) || POSIXCC_NOTYET(c))
9132 S_regpposixcc(pTHX_ RExC_state_t *pRExC_state, I32 value)
9135 I32 namedclass = OOB_NAMEDCLASS;
9137 PERL_ARGS_ASSERT_REGPPOSIXCC;
9139 if (value == '[' && RExC_parse + 1 < RExC_end &&
9140 /* I smell either [: or [= or [. -- POSIX has been here, right? */
9141 POSIXCC(UCHARAT(RExC_parse))) {
9142 const char c = UCHARAT(RExC_parse);
9143 char* const s = RExC_parse++;
9145 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != c)
9147 if (RExC_parse == RExC_end)
9148 /* Grandfather lone [:, [=, [. */
9151 const char* const t = RExC_parse++; /* skip over the c */
9154 if (UCHARAT(RExC_parse) == ']') {
9155 const char *posixcc = s + 1;
9156 RExC_parse++; /* skip over the ending ] */
9159 const I32 complement = *posixcc == '^' ? *posixcc++ : 0;
9160 const I32 skip = t - posixcc;
9162 /* Initially switch on the length of the name. */
9165 if (memEQ(posixcc, "word", 4)) /* this is not POSIX, this is the Perl \w */
9166 namedclass = complement ? ANYOF_NALNUM : ANYOF_ALNUM;
9169 /* Names all of length 5. */
9170 /* alnum alpha ascii blank cntrl digit graph lower
9171 print punct space upper */
9172 /* Offset 4 gives the best switch position. */
9173 switch (posixcc[4]) {
9175 if (memEQ(posixcc, "alph", 4)) /* alpha */
9176 namedclass = complement ? ANYOF_NALPHA : ANYOF_ALPHA;
9179 if (memEQ(posixcc, "spac", 4)) /* space */
9180 namedclass = complement ? ANYOF_NPSXSPC : ANYOF_PSXSPC;
9183 if (memEQ(posixcc, "grap", 4)) /* graph */
9184 namedclass = complement ? ANYOF_NGRAPH : ANYOF_GRAPH;
9187 if (memEQ(posixcc, "asci", 4)) /* ascii */
9188 namedclass = complement ? ANYOF_NASCII : ANYOF_ASCII;
9191 if (memEQ(posixcc, "blan", 4)) /* blank */
9192 namedclass = complement ? ANYOF_NBLANK : ANYOF_BLANK;
9195 if (memEQ(posixcc, "cntr", 4)) /* cntrl */
9196 namedclass = complement ? ANYOF_NCNTRL : ANYOF_CNTRL;
9199 if (memEQ(posixcc, "alnu", 4)) /* alnum */
9200 namedclass = complement ? ANYOF_NALNUMC : ANYOF_ALNUMC;
9203 if (memEQ(posixcc, "lowe", 4)) /* lower */
9204 namedclass = complement ? ANYOF_NLOWER : ANYOF_LOWER;
9205 else if (memEQ(posixcc, "uppe", 4)) /* upper */
9206 namedclass = complement ? ANYOF_NUPPER : ANYOF_UPPER;
9209 if (memEQ(posixcc, "digi", 4)) /* digit */
9210 namedclass = complement ? ANYOF_NDIGIT : ANYOF_DIGIT;
9211 else if (memEQ(posixcc, "prin", 4)) /* print */
9212 namedclass = complement ? ANYOF_NPRINT : ANYOF_PRINT;
9213 else if (memEQ(posixcc, "punc", 4)) /* punct */
9214 namedclass = complement ? ANYOF_NPUNCT : ANYOF_PUNCT;
9219 if (memEQ(posixcc, "xdigit", 6))
9220 namedclass = complement ? ANYOF_NXDIGIT : ANYOF_XDIGIT;
9224 if (namedclass == OOB_NAMEDCLASS)
9225 Simple_vFAIL3("POSIX class [:%.*s:] unknown",
9227 assert (posixcc[skip] == ':');
9228 assert (posixcc[skip+1] == ']');
9229 } else if (!SIZE_ONLY) {
9230 /* [[=foo=]] and [[.foo.]] are still future. */
9232 /* adjust RExC_parse so the warning shows after
9234 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse) != ']')
9236 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9239 /* Maternal grandfather:
9240 * "[:" ending in ":" but not in ":]" */
9250 S_checkposixcc(pTHX_ RExC_state_t *pRExC_state)
9254 PERL_ARGS_ASSERT_CHECKPOSIXCC;
9256 if (POSIXCC(UCHARAT(RExC_parse))) {
9257 const char *s = RExC_parse;
9258 const char c = *s++;
9262 if (*s && c == *s && s[1] == ']') {
9264 "POSIX syntax [%c %c] belongs inside character classes",
9267 /* [[=foo=]] and [[.foo.]] are still future. */
9268 if (POSIXCC_NOTYET(c)) {
9269 /* adjust RExC_parse so the error shows after
9271 while (UCHARAT(RExC_parse) && UCHARAT(RExC_parse++) != ']')
9273 Simple_vFAIL3("POSIX syntax [%c %c] is reserved for future extensions", c, c);
9279 /* No locale test, and always Unicode semantics */
9280 #define _C_C_T_NOLOC_(NAME,TEST,WORD) \
9282 for (value = 0; value < 256; value++) \
9284 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9288 case ANYOF_N##NAME: \
9289 for (value = 0; value < 256; value++) \
9291 stored += set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9296 /* Like the above, but there are differences if we are in uni-8-bit or not, so
9297 * there are two tests passed in, to use depending on that. There aren't any
9298 * cases where the label is different from the name, so no need for that
9300 #define _C_C_T_(NAME, TEST_8, TEST_7, WORD) \
9302 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_##NAME); \
9303 else if (UNI_SEMANTICS) { \
9304 for (value = 0; value < 256; value++) { \
9305 if (TEST_8(value)) stored += \
9306 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9310 for (value = 0; value < 128; value++) { \
9311 if (TEST_7(UNI_TO_NATIVE(value))) stored += \
9312 set_regclass_bit(pRExC_state, ret, \
9313 (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9319 case ANYOF_N##NAME: \
9320 if (LOC) ANYOF_CLASS_SET(ret, ANYOF_N##NAME); \
9321 else if (UNI_SEMANTICS) { \
9322 for (value = 0; value < 256; value++) { \
9323 if (! TEST_8(value)) stored += \
9324 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate); \
9328 for (value = 0; value < 128; value++) { \
9329 if (! TEST_7(UNI_TO_NATIVE(value))) stored += set_regclass_bit( \
9330 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9332 if (AT_LEAST_ASCII_RESTRICTED) { \
9333 for (value = 128; value < 256; value++) { \
9334 stored += set_regclass_bit( \
9335 pRExC_state, ret, (U8) UNI_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate); \
9337 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL; \
9340 /* For a non-ut8 target string with DEPENDS semantics, all above \
9341 * ASCII Latin1 code points match the complement of any of the \
9342 * classes. But in utf8, they have their Unicode semantics, so \
9343 * can't just set them in the bitmap, or else regexec.c will think \
9344 * they matched when they shouldn't. */ \
9345 ANYOF_FLAGS(ret) |= ANYOF_NON_UTF8_LATIN1_ALL; \
9353 S_set_regclass_bit_fold(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9356 /* Handle the setting of folds in the bitmap for non-locale ANYOF nodes.
9357 * Locale folding is done at run-time, so this function should not be
9358 * called for nodes that are for locales.
9360 * This function sets the bit corresponding to the fold of the input
9361 * 'value', if not already set. The fold of 'f' is 'F', and the fold of
9364 * It also knows about the characters that are in the bitmap that have
9365 * folds that are matchable only outside it, and sets the appropriate lists
9368 * It returns the number of bits that actually changed from 0 to 1 */
9373 PERL_ARGS_ASSERT_SET_REGCLASS_BIT_FOLD;
9375 fold = (AT_LEAST_UNI_SEMANTICS) ? PL_fold_latin1[value]
9378 /* It assumes the bit for 'value' has already been set */
9379 if (fold != value && ! ANYOF_BITMAP_TEST(node, fold)) {
9380 ANYOF_BITMAP_SET(node, fold);
9383 if (_HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value) && (! isASCII(value) || ! MORE_ASCII_RESTRICTED)) {
9384 /* Certain Latin1 characters have matches outside the bitmap. To get
9385 * here, 'value' is one of those characters. None of these matches is
9386 * valid for ASCII characters under /aa, which have been excluded by
9387 * the 'if' above. The matches fall into three categories:
9388 * 1) They are singly folded-to or -from an above 255 character, as
9389 * LATIN SMALL LETTER Y WITH DIAERESIS and LATIN CAPITAL LETTER Y
9391 * 2) They are part of a multi-char fold with another character in the
9392 * bitmap, only LATIN SMALL LETTER SHARP S => "ss" fits that bill;
9393 * 3) They are part of a multi-char fold with a character not in the
9394 * bitmap, such as various ligatures.
9395 * We aren't dealing fully with multi-char folds, except we do deal
9396 * with the pattern containing a character that has a multi-char fold
9397 * (not so much the inverse).
9398 * For types 1) and 3), the matches only happen when the target string
9399 * is utf8; that's not true for 2), and we set a flag for it.
9401 * The code below adds to the passed in inversion list the single fold
9402 * closures for 'value'. The values are hard-coded here so that an
9403 * innocent-looking character class, like /[ks]/i won't have to go out
9404 * to disk to find the possible matches. XXX It would be better to
9405 * generate these via regen, in case a new version of the Unicode
9406 * standard adds new mappings, though that is not really likely. */
9411 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212A);
9415 /* LATIN SMALL LETTER LONG S */
9416 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x017F);
9419 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9420 GREEK_SMALL_LETTER_MU);
9421 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9422 GREEK_CAPITAL_LETTER_MU);
9424 case LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE:
9425 case LATIN_SMALL_LETTER_A_WITH_RING_ABOVE:
9427 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, 0x212B);
9428 if (DEPENDS_SEMANTICS) { /* See DEPENDS comment below */
9429 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9430 PL_fold_latin1[value]);
9433 case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
9434 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9435 LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS);
9437 case LATIN_SMALL_LETTER_SHARP_S:
9438 *invlist_ptr = add_cp_to_invlist(*invlist_ptr,
9439 LATIN_CAPITAL_LETTER_SHARP_S);
9441 /* Under /a, /d, and /u, this can match the two chars "ss" */
9442 if (! MORE_ASCII_RESTRICTED) {
9443 add_alternate(alternate_ptr, (U8 *) "ss", 2);
9445 /* And under /u or /a, it can match even if the target is
9447 if (AT_LEAST_UNI_SEMANTICS) {
9448 ANYOF_FLAGS(node) |= ANYOF_NONBITMAP_NON_UTF8;
9462 /* These all are targets of multi-character folds from code
9463 * points that require UTF8 to express, so they can't match
9464 * unless the target string is in UTF-8, so no action here is
9465 * necessary, as regexec.c properly handles the general case
9466 * for UTF-8 matching */
9469 /* Use deprecated warning to increase the chances of this
9471 ckWARN2regdep(RExC_parse, "Perl folding rules are not up-to-date for 0x%x; please use the perlbug utility to report;", value);
9475 else if (DEPENDS_SEMANTICS
9477 && PL_fold_latin1[value] != value)
9479 /* Under DEPENDS rules, non-ASCII Latin1 characters match their
9480 * folds only when the target string is in UTF-8. We add the fold
9481 * here to the list of things to match outside the bitmap, which
9482 * won't be looked at unless it is UTF8 (or else if something else
9483 * says to look even if not utf8, but those things better not happen
9484 * under DEPENDS semantics. */
9485 *invlist_ptr = add_cp_to_invlist(*invlist_ptr, PL_fold_latin1[value]);
9492 PERL_STATIC_INLINE U8
9493 S_set_regclass_bit(pTHX_ RExC_state_t *pRExC_state, regnode* node, const U8 value, HV** invlist_ptr, AV** alternate_ptr)
9495 /* This inline function sets a bit in the bitmap if not already set, and if
9496 * appropriate, its fold, returning the number of bits that actually
9497 * changed from 0 to 1 */
9501 PERL_ARGS_ASSERT_SET_REGCLASS_BIT;
9503 if (ANYOF_BITMAP_TEST(node, value)) { /* Already set */
9507 ANYOF_BITMAP_SET(node, value);
9510 if (FOLD && ! LOC) { /* Locale folds aren't known until runtime */
9511 stored += set_regclass_bit_fold(pRExC_state, node, value, invlist_ptr, alternate_ptr);
9518 S_add_alternate(pTHX_ AV** alternate_ptr, U8* string, STRLEN len)
9520 /* Adds input 'string' with length 'len' to the ANYOF node's unicode
9521 * alternate list, pointed to by 'alternate_ptr'. This is an array of
9522 * the multi-character folds of characters in the node */
9525 PERL_ARGS_ASSERT_ADD_ALTERNATE;
9527 if (! *alternate_ptr) {
9528 *alternate_ptr = newAV();
9530 sv = newSVpvn_utf8((char*)string, len, TRUE);
9531 av_push(*alternate_ptr, sv);
9536 parse a class specification and produce either an ANYOF node that
9537 matches the pattern or perhaps will be optimized into an EXACTish node
9538 instead. The node contains a bit map for the first 256 characters, with the
9539 corresponding bit set if that character is in the list. For characters
9540 above 255, a range list is used */
9543 S_regclass(pTHX_ RExC_state_t *pRExC_state, U32 depth)
9546 register UV nextvalue;
9547 register IV prevvalue = OOB_UNICODE;
9548 register IV range = 0;
9549 UV value = 0; /* XXX:dmq: needs to be referenceable (unfortunately) */
9550 register regnode *ret;
9553 char *rangebegin = NULL;
9554 bool need_class = 0;
9555 bool allow_full_fold = TRUE; /* Assume wants multi-char folding */
9557 STRLEN initial_listsv_len = 0; /* Kind of a kludge to see if it is more
9558 than just initialized. */
9561 /* code points this node matches that can't be stored in the bitmap */
9562 HV* nonbitmap = NULL;
9564 /* The items that are to match that aren't stored in the bitmap, but are a
9565 * result of things that are stored there. This is the fold closure of
9566 * such a character, either because it has DEPENDS semantics and shouldn't
9567 * be matched unless the target string is utf8, or is a code point that is
9568 * too large for the bit map, as for example, the fold of the MICRO SIGN is
9569 * above 255. This all is solely for performance reasons. By having this
9570 * code know the outside-the-bitmap folds that the bitmapped characters are
9571 * involved with, we don't have to go out to disk to find the list of
9572 * matches, unless the character class includes code points that aren't
9573 * storable in the bit map. That means that a character class with an 's'
9574 * in it, for example, doesn't need to go out to disk to find everything
9575 * that matches. A 2nd list is used so that the 'nonbitmap' list is kept
9576 * empty unless there is something whose fold we don't know about, and will
9577 * have to go out to the disk to find. */
9578 HV* l1_fold_invlist = NULL;
9580 /* List of multi-character folds that are matched by this node */
9581 AV* unicode_alternate = NULL;
9583 UV literal_endpoint = 0;
9585 UV stored = 0; /* how many chars stored in the bitmap */
9587 regnode * const orig_emit = RExC_emit; /* Save the original RExC_emit in
9588 case we need to change the emitted regop to an EXACT. */
9589 const char * orig_parse = RExC_parse;
9590 GET_RE_DEBUG_FLAGS_DECL;
9592 PERL_ARGS_ASSERT_REGCLASS;
9594 PERL_UNUSED_ARG(depth);
9597 DEBUG_PARSE("clas");
9599 /* Assume we are going to generate an ANYOF node. */
9600 ret = reganode(pRExC_state, ANYOF, 0);
9604 ANYOF_FLAGS(ret) = 0;
9607 if (UCHARAT(RExC_parse) == '^') { /* Complement of range. */
9611 ANYOF_FLAGS(ret) |= ANYOF_INVERT;
9613 /* We have decided to not allow multi-char folds in inverted character
9614 * classes, due to the confusion that can happen, even with classes
9615 * that are designed for a non-Unicode world: You have the peculiar
9617 "s s" =~ /^[^\xDF]+$/i => Y
9618 "ss" =~ /^[^\xDF]+$/i => N
9620 * See [perl #89750] */
9621 allow_full_fold = FALSE;
9625 RExC_size += ANYOF_SKIP;
9626 listsv = &PL_sv_undef; /* For code scanners: listsv always non-NULL. */
9629 RExC_emit += ANYOF_SKIP;
9631 ANYOF_FLAGS(ret) |= ANYOF_LOCALE;
9633 ANYOF_BITMAP_ZERO(ret);
9634 listsv = newSVpvs("# comment\n");
9635 initial_listsv_len = SvCUR(listsv);
9638 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9640 if (!SIZE_ONLY && POSIXCC(nextvalue))
9641 checkposixcc(pRExC_state);
9643 /* allow 1st char to be ] (allowing it to be - is dealt with later) */
9644 if (UCHARAT(RExC_parse) == ']')
9648 while (RExC_parse < RExC_end && UCHARAT(RExC_parse) != ']') {
9652 namedclass = OOB_NAMEDCLASS; /* initialize as illegal */
9655 rangebegin = RExC_parse;
9657 value = utf8n_to_uvchr((U8*)RExC_parse,
9658 RExC_end - RExC_parse,
9659 &numlen, UTF8_ALLOW_DEFAULT);
9660 RExC_parse += numlen;
9663 value = UCHARAT(RExC_parse++);
9665 nextvalue = RExC_parse < RExC_end ? UCHARAT(RExC_parse) : 0;
9666 if (value == '[' && POSIXCC(nextvalue))
9667 namedclass = regpposixcc(pRExC_state, value);
9668 else if (value == '\\') {
9670 value = utf8n_to_uvchr((U8*)RExC_parse,
9671 RExC_end - RExC_parse,
9672 &numlen, UTF8_ALLOW_DEFAULT);
9673 RExC_parse += numlen;
9676 value = UCHARAT(RExC_parse++);
9677 /* Some compilers cannot handle switching on 64-bit integer
9678 * values, therefore value cannot be an UV. Yes, this will
9679 * be a problem later if we want switch on Unicode.
9680 * A similar issue a little bit later when switching on
9681 * namedclass. --jhi */
9682 switch ((I32)value) {
9683 case 'w': namedclass = ANYOF_ALNUM; break;
9684 case 'W': namedclass = ANYOF_NALNUM; break;
9685 case 's': namedclass = ANYOF_SPACE; break;
9686 case 'S': namedclass = ANYOF_NSPACE; break;
9687 case 'd': namedclass = ANYOF_DIGIT; break;
9688 case 'D': namedclass = ANYOF_NDIGIT; break;
9689 case 'v': namedclass = ANYOF_VERTWS; break;
9690 case 'V': namedclass = ANYOF_NVERTWS; break;
9691 case 'h': namedclass = ANYOF_HORIZWS; break;
9692 case 'H': namedclass = ANYOF_NHORIZWS; break;
9693 case 'N': /* Handle \N{NAME} in class */
9695 /* We only pay attention to the first char of
9696 multichar strings being returned. I kinda wonder
9697 if this makes sense as it does change the behaviour
9698 from earlier versions, OTOH that behaviour was broken
9700 UV v; /* value is register so we cant & it /grrr */
9701 if (reg_namedseq(pRExC_state, &v, NULL, depth)) {
9711 if (RExC_parse >= RExC_end)
9712 vFAIL2("Empty \\%c{}", (U8)value);
9713 if (*RExC_parse == '{') {
9714 const U8 c = (U8)value;
9715 e = strchr(RExC_parse++, '}');
9717 vFAIL2("Missing right brace on \\%c{}", c);
9718 while (isSPACE(UCHARAT(RExC_parse)))
9720 if (e == RExC_parse)
9721 vFAIL2("Empty \\%c{}", c);
9723 while (isSPACE(UCHARAT(RExC_parse + n - 1)))
9731 if (UCHARAT(RExC_parse) == '^') {
9734 value = value == 'p' ? 'P' : 'p'; /* toggle */
9735 while (isSPACE(UCHARAT(RExC_parse))) {
9741 /* Add the property name to the list. If /i matching, give
9742 * a different name which consists of the normal name
9743 * sandwiched between two underscores and '_i'. The design
9744 * is discussed in the commit message for this. */
9745 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::%s%.*s%s\n",
9746 (value=='p' ? '+' : '!'),
9755 /* The \p could match something in the Latin1 range, hence
9756 * something that isn't utf8 */
9757 ANYOF_FLAGS(ret) |= ANYOF_NONBITMAP_NON_UTF8;
9758 namedclass = ANYOF_MAX; /* no official name, but it's named */
9760 /* \p means they want Unicode semantics */
9761 RExC_uni_semantics = 1;
9764 case 'n': value = '\n'; break;
9765 case 'r': value = '\r'; break;
9766 case 't': value = '\t'; break;
9767 case 'f': value = '\f'; break;
9768 case 'b': value = '\b'; break;
9769 case 'e': value = ASCII_TO_NATIVE('\033');break;
9770 case 'a': value = ASCII_TO_NATIVE('\007');break;
9772 RExC_parse--; /* function expects to be pointed at the 'o' */
9774 const char* error_msg;
9775 bool valid = grok_bslash_o(RExC_parse,
9780 RExC_parse += numlen;
9785 if (PL_encoding && value < 0x100) {
9786 goto recode_encoding;
9790 if (*RExC_parse == '{') {
9791 I32 flags = PERL_SCAN_ALLOW_UNDERSCORES
9792 | PERL_SCAN_DISALLOW_PREFIX;
9793 char * const e = strchr(RExC_parse++, '}');
9795 vFAIL("Missing right brace on \\x{}");
9797 numlen = e - RExC_parse;
9798 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9802 I32 flags = PERL_SCAN_DISALLOW_PREFIX;
9804 value = grok_hex(RExC_parse, &numlen, &flags, NULL);
9805 RExC_parse += numlen;
9807 if (PL_encoding && value < 0x100)
9808 goto recode_encoding;
9811 value = grok_bslash_c(*RExC_parse++, UTF, SIZE_ONLY);
9813 case '0': case '1': case '2': case '3': case '4':
9814 case '5': case '6': case '7':
9816 /* Take 1-3 octal digits */
9817 I32 flags = PERL_SCAN_SILENT_ILLDIGIT;
9819 value = grok_oct(--RExC_parse, &numlen, &flags, NULL);
9820 RExC_parse += numlen;
9821 if (PL_encoding && value < 0x100)
9822 goto recode_encoding;
9826 if (! RExC_override_recoding) {
9827 SV* enc = PL_encoding;
9828 value = reg_recode((const char)(U8)value, &enc);
9829 if (!enc && SIZE_ONLY)
9830 ckWARNreg(RExC_parse,
9831 "Invalid escape in the specified encoding");
9835 /* Allow \_ to not give an error */
9836 if (!SIZE_ONLY && isALNUM(value) && value != '_') {
9837 ckWARN2reg(RExC_parse,
9838 "Unrecognized escape \\%c in character class passed through",
9843 } /* end of \blah */
9849 if (namedclass > OOB_NAMEDCLASS) { /* this is a named class \blah */
9851 /* What matches in a locale is not known until runtime, so need to
9852 * (one time per class) allocate extra space to pass to regexec.
9853 * The space will contain a bit for each named class that is to be
9854 * matched against. This isn't needed for \p{} and pseudo-classes,
9855 * as they are not affected by locale, and hence are dealt with
9857 if (LOC && namedclass < ANYOF_MAX && ! need_class) {
9860 RExC_size += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9863 RExC_emit += ANYOF_CLASS_SKIP - ANYOF_SKIP;
9864 ANYOF_CLASS_ZERO(ret);
9866 ANYOF_FLAGS(ret) |= ANYOF_CLASS;
9869 /* a bad range like a-\d, a-[:digit:]. The '-' is taken as a
9870 * literal, as is the character that began the false range, i.e.
9871 * the 'a' in the examples */
9875 RExC_parse >= rangebegin ?
9876 RExC_parse - rangebegin : 0;
9877 ckWARN4reg(RExC_parse,
9878 "False [] range \"%*.*s\"",
9882 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
9883 if (prevvalue < 256) {
9885 set_regclass_bit(pRExC_state, ret, (U8) prevvalue, &l1_fold_invlist, &unicode_alternate);
9888 nonbitmap = add_cp_to_invlist(nonbitmap, prevvalue);
9892 range = 0; /* this was not a true range */
9898 const char *what = NULL;
9901 /* Possible truncation here but in some 64-bit environments
9902 * the compiler gets heartburn about switch on 64-bit values.
9903 * A similar issue a little earlier when switching on value.
9905 switch ((I32)namedclass) {
9907 case _C_C_T_(ALNUMC, isALNUMC_L1, isALNUMC, "XPosixAlnum");
9908 case _C_C_T_(ALPHA, isALPHA_L1, isALPHA, "XPosixAlpha");
9909 case _C_C_T_(BLANK, isBLANK_L1, isBLANK, "XPosixBlank");
9910 case _C_C_T_(CNTRL, isCNTRL_L1, isCNTRL, "XPosixCntrl");
9911 case _C_C_T_(GRAPH, isGRAPH_L1, isGRAPH, "XPosixGraph");
9912 case _C_C_T_(LOWER, isLOWER_L1, isLOWER, "XPosixLower");
9913 case _C_C_T_(PRINT, isPRINT_L1, isPRINT, "XPosixPrint");
9914 case _C_C_T_(PSXSPC, isPSXSPC_L1, isPSXSPC, "XPosixSpace");
9915 case _C_C_T_(PUNCT, isPUNCT_L1, isPUNCT, "XPosixPunct");
9916 case _C_C_T_(UPPER, isUPPER_L1, isUPPER, "XPosixUpper");
9917 /* \s, \w match all unicode if utf8. */
9918 case _C_C_T_(SPACE, isSPACE_L1, isSPACE, "SpacePerl");
9919 case _C_C_T_(ALNUM, isWORDCHAR_L1, isALNUM, "Word");
9920 case _C_C_T_(XDIGIT, isXDIGIT_L1, isXDIGIT, "XPosixXDigit");
9921 case _C_C_T_NOLOC_(VERTWS, is_VERTWS_latin1(&value), "VertSpace");
9922 case _C_C_T_NOLOC_(HORIZWS, is_HORIZWS_latin1(&value), "HorizSpace");
9925 ANYOF_CLASS_SET(ret, ANYOF_ASCII);
9927 for (value = 0; value < 128; value++)
9929 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9932 what = NULL; /* Doesn't match outside ascii, so
9933 don't want to add +utf8:: */
9937 ANYOF_CLASS_SET(ret, ANYOF_NASCII);
9939 for (value = 128; value < 256; value++)
9941 set_regclass_bit(pRExC_state, ret, (U8) ASCII_TO_NATIVE(value), &l1_fold_invlist, &unicode_alternate);
9943 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9949 ANYOF_CLASS_SET(ret, ANYOF_DIGIT);
9951 /* consecutive digits assumed */
9952 for (value = '0'; value <= '9'; value++)
9954 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9961 ANYOF_CLASS_SET(ret, ANYOF_NDIGIT);
9963 /* consecutive digits assumed */
9964 for (value = 0; value < '0'; value++)
9966 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9967 for (value = '9' + 1; value < 256; value++)
9969 set_regclass_bit(pRExC_state, ret, (U8) value, &l1_fold_invlist, &unicode_alternate);
9973 if (AT_LEAST_ASCII_RESTRICTED ) {
9974 ANYOF_FLAGS(ret) |= ANYOF_UNICODE_ALL;
9978 /* this is to handle \p and \P */
9981 vFAIL("Invalid [::] class");
9984 if (what && ! (AT_LEAST_ASCII_RESTRICTED)) {
9985 /* Strings such as "+utf8::isWord\n" */
9986 Perl_sv_catpvf(aTHX_ listsv, "%cutf8::Is%s\n", yesno, what);
9991 } /* end of namedclass \blah */
9994 if (prevvalue > (IV)value) /* b-a */ {
9995 const int w = RExC_parse - rangebegin;
9996 Simple_vFAIL4("Invalid [] range \"%*.*s\"", w, w, rangebegin);
9997 range = 0; /* not a valid range */
10001 prevvalue = value; /* save the beginning of the range */
10002 if (RExC_parse+1 < RExC_end
10003 && *RExC_parse == '-'
10004 && RExC_parse[1] != ']')
10008 /* a bad range like \w-, [:word:]- ? */
10009 if (namedclass > OOB_NAMEDCLASS) {
10010 if (ckWARN(WARN_REGEXP)) {
10012 RExC_parse >= rangebegin ?
10013 RExC_parse - rangebegin : 0;
10015 "False [] range \"%*.*s\"",
10020 set_regclass_bit(pRExC_state, ret, '-', &l1_fold_invlist, &unicode_alternate);
10022 range = 1; /* yeah, it's a range! */
10023 continue; /* but do it the next time */
10027 /* non-Latin1 code point implies unicode semantics. Must be set in
10028 * pass1 so is there for the whole of pass 2 */
10030 RExC_uni_semantics = 1;
10033 /* now is the next time */
10035 if (prevvalue < 256) {
10036 const IV ceilvalue = value < 256 ? value : 255;
10039 /* In EBCDIC [\x89-\x91] should include
10040 * the \x8e but [i-j] should not. */
10041 if (literal_endpoint == 2 &&
10042 ((isLOWER(prevvalue) && isLOWER(ceilvalue)) ||
10043 (isUPPER(prevvalue) && isUPPER(ceilvalue))))
10045 if (isLOWER(prevvalue)) {
10046 for (i = prevvalue; i <= ceilvalue; i++)
10047 if (isLOWER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10049 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10052 for (i = prevvalue; i <= ceilvalue; i++)
10053 if (isUPPER(i) && !ANYOF_BITMAP_TEST(ret,i)) {
10055 set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10061 for (i = prevvalue; i <= ceilvalue; i++) {
10062 stored += set_regclass_bit(pRExC_state, ret, (U8) i, &l1_fold_invlist, &unicode_alternate);
10066 const UV prevnatvalue = NATIVE_TO_UNI(prevvalue);
10067 const UV natvalue = NATIVE_TO_UNI(value);
10068 nonbitmap = add_range_to_invlist(nonbitmap, prevnatvalue, natvalue);
10071 literal_endpoint = 0;
10075 range = 0; /* this range (if it was one) is done now */
10082 /****** !SIZE_ONLY AFTER HERE *********/
10084 /* If folding and there are code points above 255, we calculate all
10085 * characters that could fold to or from the ones already on the list */
10086 if (FOLD && nonbitmap) {
10089 HV* fold_intersection;
10092 /* This is a list of all the characters that participate in folds
10093 * (except marks, etc in multi-char folds */
10094 if (! PL_utf8_foldable) {
10095 SV* swash = swash_init("utf8", "Cased", &PL_sv_undef, 1, 0);
10096 PL_utf8_foldable = _swash_to_invlist(swash);
10099 /* This is a hash that for a particular fold gives all characters
10100 * that are involved in it */
10101 if (! PL_utf8_foldclosures) {
10103 /* If we were unable to find any folds, then we likely won't be
10104 * able to find the closures. So just create an empty list.
10105 * Folding will effectively be restricted to the non-Unicode rules
10106 * hard-coded into Perl. (This case happens legitimately during
10107 * compilation of Perl itself before the Unicode tables are
10109 if (invlist_len(PL_utf8_foldable) == 0) {
10110 PL_utf8_foldclosures = _new_invlist(0);
10112 /* If the folds haven't been read in, call a fold function
10114 if (! PL_utf8_tofold) {
10115 U8 dummy[UTF8_MAXBYTES+1];
10117 to_utf8_fold((U8*) "A", dummy, &dummy_len);
10119 PL_utf8_foldclosures = _swash_inversion_hash(PL_utf8_tofold);
10123 /* Only the characters in this class that participate in folds need
10124 * be checked. Get the intersection of this class and all the
10125 * possible characters that are foldable. This can quickly narrow
10126 * down a large class */
10127 fold_intersection = invlist_intersection(PL_utf8_foldable, nonbitmap);
10129 /* Now look at the foldable characters in this class individually */
10130 fold_list = invlist_array(fold_intersection);
10131 for (i = 0; i < invlist_len(fold_intersection); i++) {
10134 /* The next entry is the beginning of the range that is in the
10136 UV start = fold_list[i++];
10139 /* The next entry is the beginning of the next range, which
10140 * isn't in the class, so the end of the current range is one
10141 * less than that */
10142 UV end = fold_list[i] - 1;
10144 /* Look at every character in the range */
10145 for (j = start; j <= end; j++) {
10148 U8 foldbuf[UTF8_MAXBYTES_CASE+1];
10151 _to_uni_fold_flags(j, foldbuf, &foldlen, allow_full_fold);
10153 if (foldlen > (STRLEN)UNISKIP(f)) {
10155 /* Any multicharacter foldings (disallowed in
10156 * lookbehind patterns) require the following
10157 * transform: [ABCDEF] -> (?:[ABCabcDEFd]|pq|rst) where
10158 * E folds into "pq" and F folds into "rst", all other
10159 * characters fold to single characters. We save away
10160 * these multicharacter foldings, to be later saved as
10161 * part of the additional "s" data. */
10162 if (! RExC_in_lookbehind) {
10164 U8* e = foldbuf + foldlen;
10166 /* If any of the folded characters of this are in
10167 * the Latin1 range, tell the regex engine that
10168 * this can match a non-utf8 target string. The
10169 * only multi-byte fold whose source is in the
10170 * Latin1 range (U+00DF) applies only when the
10171 * target string is utf8, or under unicode rules */
10172 if (j > 255 || AT_LEAST_UNI_SEMANTICS) {
10175 /* Can't mix ascii with non- under /aa */
10176 if (MORE_ASCII_RESTRICTED
10177 && (isASCII(*loc) != isASCII(j)))
10179 goto end_multi_fold;
10181 if (UTF8_IS_INVARIANT(*loc)
10182 || UTF8_IS_DOWNGRADEABLE_START(*loc))
10184 /* Can't mix above and below 256 under
10187 goto end_multi_fold;
10190 |= ANYOF_NONBITMAP_NON_UTF8;
10193 loc += UTF8SKIP(loc);
10197 add_alternate(&unicode_alternate, foldbuf, foldlen);
10201 /* This is special-cased, as it is the only letter which
10202 * has both a multi-fold and single-fold in Latin1. All
10203 * the other chars that have single and multi-folds are
10204 * always in utf8, and the utf8 folding algorithm catches
10206 if (! LOC && j == LATIN_CAPITAL_LETTER_SHARP_S) {
10207 stored += set_regclass_bit(pRExC_state,
10209 LATIN_SMALL_LETTER_SHARP_S,
10210 &l1_fold_invlist, &unicode_alternate);
10214 /* Single character fold. Add everything in its fold
10215 * closure to the list that this node should match */
10218 /* The fold closures data structure is a hash with the
10219 * keys being every character that is folded to, like
10220 * 'k', and the values each an array of everything that
10221 * folds to its key. e.g. [ 'k', 'K', KELVIN_SIGN ] */
10222 if ((listp = hv_fetch(PL_utf8_foldclosures,
10223 (char *) foldbuf, foldlen, FALSE)))
10225 AV* list = (AV*) *listp;
10227 for (k = 0; k <= av_len(list); k++) {
10228 SV** c_p = av_fetch(list, k, FALSE);
10231 Perl_croak(aTHX_ "panic: invalid PL_utf8_foldclosures structure");
10235 /* /aa doesn't allow folds between ASCII and
10236 * non-; /l doesn't allow them between above
10238 if ((MORE_ASCII_RESTRICTED
10239 && (isASCII(c) != isASCII(j)))
10240 || (LOC && ((c < 256) != (j < 256))))
10245 if (c < 256 && AT_LEAST_UNI_SEMANTICS) {
10246 stored += set_regclass_bit(pRExC_state,
10249 &l1_fold_invlist, &unicode_alternate);
10251 /* It may be that the code point is already
10252 * in this range or already in the bitmap,
10253 * in which case we need do nothing */
10254 else if ((c < start || c > end)
10256 || ! ANYOF_BITMAP_TEST(ret, c)))
10258 nonbitmap = add_cp_to_invlist(nonbitmap, c);
10265 invlist_destroy(fold_intersection);
10268 /* Combine the two lists into one. */
10269 if (l1_fold_invlist) {
10271 nonbitmap = invlist_union(nonbitmap, l1_fold_invlist);
10274 nonbitmap = l1_fold_invlist;
10278 /* Here, we have calculated what code points should be in the character
10279 * class. Now we can see about various optimizations. Fold calculation
10280 * needs to take place before inversion. Otherwise /[^k]/i would invert to
10281 * include K, which under /i would match k. */
10283 /* Optimize inverted simple patterns (e.g. [^a-z]). Note that we haven't
10284 * set the FOLD flag yet, so this this does optimize those. It doesn't
10285 * optimize locale. Doing so perhaps could be done as long as there is
10286 * nothing like \w in it; some thought also would have to be given to the
10287 * interaction with above 0x100 chars */
10289 && (ANYOF_FLAGS(ret) & ANYOF_FLAGS_ALL) == ANYOF_INVERT
10290 && ! unicode_alternate
10292 && SvCUR(listsv) == initial_listsv_len)
10294 for (value = 0; value < ANYOF_BITMAP_SIZE; ++value)
10295 ANYOF_BITMAP(ret)[value] ^= 0xFF;
10296 stored = 256 - stored;
10298 /* The inversion means that everything above 255 is matched; and at the
10299 * same time we clear the invert flag */
10300 ANYOF_FLAGS(ret) = ANYOF_UNICODE_ALL;
10303 /* Folding in the bitmap is taken care of above, but not for locale (for
10304 * which we have to wait to see what folding is in effect at runtime), and
10305 * for things not in the bitmap. Set run-time fold flag for these */
10306 if (FOLD && (LOC || nonbitmap || unicode_alternate)) {
10307 ANYOF_FLAGS(ret) |= ANYOF_LOC_NONBITMAP_FOLD;
10310 /* A single character class can be "optimized" into an EXACTish node.
10311 * Note that since we don't currently count how many characters there are
10312 * outside the bitmap, we are XXX missing optimization possibilities for
10313 * them. This optimization can't happen unless this is a truly single
10314 * character class, which means that it can't be an inversion into a
10315 * many-character class, and there must be no possibility of there being
10316 * things outside the bitmap. 'stored' (only) for locales doesn't include
10317 * \w, etc, so have to make a special test that they aren't present
10319 * Similarly A 2-character class of the very special form like [bB] can be
10320 * optimized into an EXACTFish node, but only for non-locales, and for
10321 * characters which only have the two folds; so things like 'fF' and 'Ii'
10322 * wouldn't work because they are part of the fold of 'LATIN SMALL LIGATURE
10325 && ! unicode_alternate
10326 && SvCUR(listsv) == initial_listsv_len
10327 && ! (ANYOF_FLAGS(ret) & (ANYOF_INVERT|ANYOF_UNICODE_ALL))
10328 && (((stored == 1 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10329 || (! ANYOF_CLASS_TEST_ANY_SET(ret)))))
10330 || (stored == 2 && ((! (ANYOF_FLAGS(ret) & ANYOF_LOCALE))
10331 && (! _HAS_NONLATIN1_FOLD_CLOSURE_ONLY_FOR_USE_BY_REGCOMP_DOT_C_AND_REGEXEC_DOT_C(value))
10332 /* If the latest code point has a fold whose
10333 * bit is set, it must be the only other one */
10334 && ((prevvalue = PL_fold_latin1[value]) != (IV)value)
10335 && ANYOF_BITMAP_TEST(ret, prevvalue)))))
10337 /* Note that the information needed to decide to do this optimization
10338 * is not currently available until the 2nd pass, and that the actually
10339 * used EXACTish node takes less space than the calculated ANYOF node,
10340 * and hence the amount of space calculated in the first pass is larger
10341 * than actually used, so this optimization doesn't gain us any space.
10342 * But an EXACT node is faster than an ANYOF node, and can be combined
10343 * with any adjacent EXACT nodes later by the optimizer for further
10344 * gains. The speed of executing an EXACTF is similar to an ANYOF
10345 * node, so the optimization advantage comes from the ability to join
10346 * it to adjacent EXACT nodes */
10348 const char * cur_parse= RExC_parse;
10350 RExC_emit = (regnode *)orig_emit;
10351 RExC_parse = (char *)orig_parse;
10355 /* A locale node with one point can be folded; all the other cases
10356 * with folding will have two points, since we calculate them above
10358 if (ANYOF_FLAGS(ret) & ANYOF_LOC_NONBITMAP_FOLD) {
10364 } /* else 2 chars in the bit map: the folds of each other */
10365 else if (AT_LEAST_UNI_SEMANTICS || !isASCII(value)) {
10367 /* To join adjacent nodes, they must be the exact EXACTish type.
10368 * Try to use the most likely type, by using EXACTFU if the regex
10369 * calls for them, or is required because the character is
10373 else { /* Otherwise, more likely to be EXACTF type */
10377 ret = reg_node(pRExC_state, op);
10378 RExC_parse = (char *)cur_parse;
10379 if (UTF && ! NATIVE_IS_INVARIANT(value)) {
10380 *STRING(ret)= UTF8_EIGHT_BIT_HI((U8) value);
10381 *(STRING(ret) + 1)= UTF8_EIGHT_BIT_LO((U8) value);
10383 RExC_emit += STR_SZ(2);
10386 *STRING(ret)= (char)value;
10388 RExC_emit += STR_SZ(1);
10390 SvREFCNT_dec(listsv);
10395 UV* nonbitmap_array = invlist_array(nonbitmap);
10396 UV nonbitmap_len = invlist_len(nonbitmap);
10399 /* Here have the full list of items to match that aren't in the
10400 * bitmap. Convert to the structure that the rest of the code is
10401 * expecting. XXX That rest of the code should convert to this
10403 for (i = 0; i < nonbitmap_len; i++) {
10405 /* The next entry is the beginning of the range that is in the
10407 UV start = nonbitmap_array[i++];
10410 /* The next entry is the beginning of the next range, which isn't
10411 * in the class, so the end of the current range is one less than
10412 * that. But if there is no next range, it means that the range
10413 * begun by 'start' extends to infinity, which for this platform
10414 * ends at UV_MAX */
10415 if (i == nonbitmap_len) {
10419 end = nonbitmap_array[i] - 1;
10422 if (start == end) {
10423 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\n", start);
10426 /* The \t sets the whole range */
10427 Perl_sv_catpvf(aTHX_ listsv, "%04"UVxf"\t%04"UVxf"\n",
10432 invlist_destroy(nonbitmap);
10435 if (SvCUR(listsv) == initial_listsv_len && ! unicode_alternate) {
10436 ARG_SET(ret, ANYOF_NONBITMAP_EMPTY);
10437 SvREFCNT_dec(listsv);
10438 SvREFCNT_dec(unicode_alternate);
10442 AV * const av = newAV();
10444 /* The 0th element stores the character class description
10445 * in its textual form: used later (regexec.c:Perl_regclass_swash())
10446 * to initialize the appropriate swash (which gets stored in
10447 * the 1st element), and also useful for dumping the regnode.
10448 * The 2nd element stores the multicharacter foldings,
10449 * used later (regexec.c:S_reginclass()). */
10450 av_store(av, 0, listsv);
10451 av_store(av, 1, NULL);
10453 /* Store any computed multi-char folds only if we are allowing
10455 if (allow_full_fold) {
10456 av_store(av, 2, MUTABLE_SV(unicode_alternate));
10457 if (unicode_alternate) { /* This node is variable length */
10462 av_store(av, 2, NULL);
10464 rv = newRV_noinc(MUTABLE_SV(av));
10465 n = add_data(pRExC_state, 1, "s");
10466 RExC_rxi->data->data[n] = (void*)rv;
10474 /* reg_skipcomment()
10476 Absorbs an /x style # comments from the input stream.
10477 Returns true if there is more text remaining in the stream.
10478 Will set the REG_SEEN_RUN_ON_COMMENT flag if the comment
10479 terminates the pattern without including a newline.
10481 Note its the callers responsibility to ensure that we are
10482 actually in /x mode
10487 S_reg_skipcomment(pTHX_ RExC_state_t *pRExC_state)
10491 PERL_ARGS_ASSERT_REG_SKIPCOMMENT;
10493 while (RExC_parse < RExC_end)
10494 if (*RExC_parse++ == '\n') {
10499 /* we ran off the end of the pattern without ending
10500 the comment, so we have to add an \n when wrapping */
10501 RExC_seen |= REG_SEEN_RUN_ON_COMMENT;
10509 Advances the parse position, and optionally absorbs
10510 "whitespace" from the inputstream.
10512 Without /x "whitespace" means (?#...) style comments only,
10513 with /x this means (?#...) and # comments and whitespace proper.
10515 Returns the RExC_parse point from BEFORE the scan occurs.
10517 This is the /x friendly way of saying RExC_parse++.
10521 S_nextchar(pTHX_ RExC_state_t *pRExC_state)
10523 char* const retval = RExC_parse++;
10525 PERL_ARGS_ASSERT_NEXTCHAR;
10528 if (*RExC_parse == '(' && RExC_parse[1] == '?' &&
10529 RExC_parse[2] == '#') {
10530 while (*RExC_parse != ')') {
10531 if (RExC_parse == RExC_end)
10532 FAIL("Sequence (?#... not terminated");
10538 if (RExC_flags & RXf_PMf_EXTENDED) {
10539 if (isSPACE(*RExC_parse)) {
10543 else if (*RExC_parse == '#') {
10544 if ( reg_skipcomment( pRExC_state ) )
10553 - reg_node - emit a node
10555 STATIC regnode * /* Location. */
10556 S_reg_node(pTHX_ RExC_state_t *pRExC_state, U8 op)
10559 register regnode *ptr;
10560 regnode * const ret = RExC_emit;
10561 GET_RE_DEBUG_FLAGS_DECL;
10563 PERL_ARGS_ASSERT_REG_NODE;
10566 SIZE_ALIGN(RExC_size);
10570 if (RExC_emit >= RExC_emit_bound)
10571 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10573 NODE_ALIGN_FILL(ret);
10575 FILL_ADVANCE_NODE(ptr, op);
10576 REH_CALL_REGCOMP_HOOK(pRExC_state->rx, (ptr) - 1);
10577 #ifdef RE_TRACK_PATTERN_OFFSETS
10578 if (RExC_offsets) { /* MJD */
10579 MJD_OFFSET_DEBUG(("%s:%d: (op %s) %s %"UVuf" (len %"UVuf") (max %"UVuf").\n",
10580 "reg_node", __LINE__,
10582 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0]
10583 ? "Overwriting end of array!\n" : "OK",
10584 (UV)(RExC_emit - RExC_emit_start),
10585 (UV)(RExC_parse - RExC_start),
10586 (UV)RExC_offsets[0]));
10587 Set_Node_Offset(RExC_emit, RExC_parse + (op == END));
10595 - reganode - emit a node with an argument
10597 STATIC regnode * /* Location. */
10598 S_reganode(pTHX_ RExC_state_t *pRExC_state, U8 op, U32 arg)
10601 register regnode *ptr;
10602 regnode * const ret = RExC_emit;
10603 GET_RE_DEBUG_FLAGS_DECL;
10605 PERL_ARGS_ASSERT_REGANODE;
10608 SIZE_ALIGN(RExC_size);
10613 assert(2==regarglen[op]+1);
10615 Anything larger than this has to allocate the extra amount.
10616 If we changed this to be:
10618 RExC_size += (1 + regarglen[op]);
10620 then it wouldn't matter. Its not clear what side effect
10621 might come from that so its not done so far.
10626 if (RExC_emit >= RExC_emit_bound)
10627 Perl_croak(aTHX_ "panic: reg_node overrun trying to emit %d", op);
10629 NODE_ALIGN_FILL(ret);
10631 FILL_ADVANCE_NODE_ARG(ptr, op, arg);
10632 REH_CALL_REGCOMP_HOOK(pRExC_state->rx, (ptr) - 2);
10633 #ifdef RE_TRACK_PATTERN_OFFSETS
10634 if (RExC_offsets) { /* MJD */
10635 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10639 (UV)(RExC_emit - RExC_emit_start) > RExC_offsets[0] ?
10640 "Overwriting end of array!\n" : "OK",
10641 (UV)(RExC_emit - RExC_emit_start),
10642 (UV)(RExC_parse - RExC_start),
10643 (UV)RExC_offsets[0]));
10644 Set_Cur_Node_Offset;
10652 - reguni - emit (if appropriate) a Unicode character
10655 S_reguni(pTHX_ const RExC_state_t *pRExC_state, UV uv, char* s)
10659 PERL_ARGS_ASSERT_REGUNI;
10661 return SIZE_ONLY ? UNISKIP(uv) : (uvchr_to_utf8((U8*)s, uv) - (U8*)s);
10665 - reginsert - insert an operator in front of already-emitted operand
10667 * Means relocating the operand.
10670 S_reginsert(pTHX_ RExC_state_t *pRExC_state, U8 op, regnode *opnd, U32 depth)
10673 register regnode *src;
10674 register regnode *dst;
10675 register regnode *place;
10676 const int offset = regarglen[(U8)op];
10677 const int size = NODE_STEP_REGNODE + offset;
10678 GET_RE_DEBUG_FLAGS_DECL;
10680 PERL_ARGS_ASSERT_REGINSERT;
10681 PERL_UNUSED_ARG(depth);
10682 /* (PL_regkind[(U8)op] == CURLY ? EXTRA_STEP_2ARGS : 0); */
10683 DEBUG_PARSE_FMT("inst"," - %s",PL_reg_name[op]);
10692 if (RExC_open_parens) {
10694 /*DEBUG_PARSE_FMT("inst"," - %"IVdf, (IV)RExC_npar);*/
10695 for ( paren=0 ; paren < RExC_npar ; paren++ ) {
10696 if ( RExC_open_parens[paren] >= opnd ) {
10697 /*DEBUG_PARSE_FMT("open"," - %d",size);*/
10698 RExC_open_parens[paren] += size;
10700 /*DEBUG_PARSE_FMT("open"," - %s","ok");*/
10702 if ( RExC_close_parens[paren] >= opnd ) {
10703 /*DEBUG_PARSE_FMT("close"," - %d",size);*/
10704 RExC_close_parens[paren] += size;
10706 /*DEBUG_PARSE_FMT("close"," - %s","ok");*/
10711 while (src > opnd) {
10712 StructCopy(--src, --dst, regnode);
10713 #ifdef RE_TRACK_PATTERN_OFFSETS
10714 if (RExC_offsets) { /* MJD 20010112 */
10715 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s copy %"UVuf" -> %"UVuf" (max %"UVuf").\n",
10719 (UV)(dst - RExC_emit_start) > RExC_offsets[0]
10720 ? "Overwriting end of array!\n" : "OK",
10721 (UV)(src - RExC_emit_start),
10722 (UV)(dst - RExC_emit_start),
10723 (UV)RExC_offsets[0]));
10724 Set_Node_Offset_To_R(dst-RExC_emit_start, Node_Offset(src));
10725 Set_Node_Length_To_R(dst-RExC_emit_start, Node_Length(src));
10731 place = opnd; /* Op node, where operand used to be. */
10732 #ifdef RE_TRACK_PATTERN_OFFSETS
10733 if (RExC_offsets) { /* MJD */
10734 MJD_OFFSET_DEBUG(("%s(%d): (op %s) %s %"UVuf" <- %"UVuf" (max %"UVuf").\n",
10738 (UV)(place - RExC_emit_start) > RExC_offsets[0]
10739 ? "Overwriting end of array!\n" : "OK",
10740 (UV)(place - RExC_emit_start),
10741 (UV)(RExC_parse - RExC_start),
10742 (UV)RExC_offsets[0]));
10743 Set_Node_Offset(place, RExC_parse);
10744 Set_Node_Length(place, 1);
10747 src = NEXTOPER(place);
10748 FILL_ADVANCE_NODE(place, op);
10749 REH_CALL_REGCOMP_HOOK(pRExC_state->rx, (place) - 1);
10750 Zero(src, offset, regnode);
10754 - regtail - set the next-pointer at the end of a node chain of p to val.
10755 - SEE ALSO: regtail_study
10757 /* TODO: All three parms should be const */
10759 S_regtail(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10762 register regnode *scan;
10763 GET_RE_DEBUG_FLAGS_DECL;
10765 PERL_ARGS_ASSERT_REGTAIL;
10767 PERL_UNUSED_ARG(depth);
10773 /* Find last node. */
10776 regnode * const temp = regnext(scan);
10778 SV * const mysv=sv_newmortal();
10779 DEBUG_PARSE_MSG((scan==p ? "tail" : ""));
10780 regprop(RExC_rx, mysv, scan);
10781 PerlIO_printf(Perl_debug_log, "~ %s (%d) %s %s\n",
10782 SvPV_nolen_const(mysv), REG_NODE_NUM(scan),
10783 (temp == NULL ? "->" : ""),
10784 (temp == NULL ? PL_reg_name[OP(val)] : "")
10792 if (reg_off_by_arg[OP(scan)]) {
10793 ARG_SET(scan, val - scan);
10796 NEXT_OFF(scan) = val - scan;
10802 - regtail_study - set the next-pointer at the end of a node chain of p to val.
10803 - Look for optimizable sequences at the same time.
10804 - currently only looks for EXACT chains.
10806 This is experimental code. The idea is to use this routine to perform
10807 in place optimizations on branches and groups as they are constructed,
10808 with the long term intention of removing optimization from study_chunk so
10809 that it is purely analytical.
10811 Currently only used when in DEBUG mode. The macro REGTAIL_STUDY() is used
10812 to control which is which.
10815 /* TODO: All four parms should be const */
10818 S_regtail_study(pTHX_ RExC_state_t *pRExC_state, regnode *p, const regnode *val,U32 depth)
10821 register regnode *scan;
10823 #ifdef EXPERIMENTAL_INPLACESCAN
10826 GET_RE_DEBUG_FLAGS_DECL;
10828 PERL_ARGS_ASSERT_REGTAIL_STUDY;
10834 /* Find last node. */
10838 regnode * const temp = regnext(scan);
10839 #ifdef EXPERIMENTAL_INPLACESCAN
10840 if (PL_regkind[OP(scan)] == EXACT)
10841 if (join_exact(pRExC_state,scan,&min,1,val,depth+1))
10845 switch (OP(scan)) {
10851 if( exact == PSEUDO )
10853 else if ( exact != OP(scan) )
10862 SV * const mysv=sv_newmortal();
10863 DEBUG_PARSE_MSG((scan==p ? "tsdy" : ""));
10864 regprop(RExC_rx, mysv, scan);
10865 PerlIO_printf(Perl_debug_log, "~ %s (%d) -> %s\n",
10866 SvPV_nolen_const(mysv),
10867 REG_NODE_NUM(scan),
10868 PL_reg_name[exact]);
10875 SV * const mysv_val=sv_newmortal();
10876 DEBUG_PARSE_MSG("");
10877 regprop(RExC_rx, mysv_val, val);
10878 PerlIO_printf(Perl_debug_log, "~ attach to %s (%"IVdf") offset to %"IVdf"\n",
10879 SvPV_nolen_const(mysv_val),
10880 (IV)REG_NODE_NUM(val),
10884 if (reg_off_by_arg[OP(scan)]) {
10885 ARG_SET(scan, val - scan);
10888 NEXT_OFF(scan) = val - scan;
10896 - regdump - dump a regexp onto Perl_debug_log in vaguely comprehensible form
10900 S_regdump_extflags(pTHX_ const char *lead, const U32 flags)
10906 for (bit=0; bit<32; bit++) {
10907 if (flags & (1<<bit)) {
10908 if ((1<<bit) & RXf_PMf_CHARSET) { /* Output separately, below */
10911 if (!set++ && lead)
10912 PerlIO_printf(Perl_debug_log, "%s",lead);
10913 PerlIO_printf(Perl_debug_log, "%s ",PL_reg_extflags_name[bit]);
10916 if ((cs = get_regex_charset(flags)) != REGEX_DEPENDS_CHARSET) {
10917 if (!set++ && lead) {
10918 PerlIO_printf(Perl_debug_log, "%s",lead);
10921 case REGEX_UNICODE_CHARSET:
10922 PerlIO_printf(Perl_debug_log, "UNICODE");
10924 case REGEX_LOCALE_CHARSET:
10925 PerlIO_printf(Perl_debug_log, "LOCALE");
10927 case REGEX_ASCII_RESTRICTED_CHARSET:
10928 PerlIO_printf(Perl_debug_log, "ASCII-RESTRICTED");
10930 case REGEX_ASCII_MORE_RESTRICTED_CHARSET:
10931 PerlIO_printf(Perl_debug_log, "ASCII-MORE_RESTRICTED");
10934 PerlIO_printf(Perl_debug_log, "UNKNOWN CHARACTER SET");
10940 PerlIO_printf(Perl_debug_log, "\n");
10942 PerlIO_printf(Perl_debug_log, "%s[none-set]\n",lead);
10948 Perl_regdump(pTHX_ const regexp *r)
10952 SV * const sv = sv_newmortal();
10953 SV *dsv= sv_newmortal();
10954 RXi_GET_DECL(r,ri);
10955 GET_RE_DEBUG_FLAGS_DECL;
10957 PERL_ARGS_ASSERT_REGDUMP;
10959 (void)dumpuntil(r, ri->program, ri->program + 1, NULL, NULL, sv, 0, 0);
10961 /* Header fields of interest. */
10962 if (r->anchored_substr) {
10963 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->anchored_substr),
10964 RE_SV_DUMPLEN(r->anchored_substr), 30);
10965 PerlIO_printf(Perl_debug_log,
10966 "anchored %s%s at %"IVdf" ",
10967 s, RE_SV_TAIL(r->anchored_substr),
10968 (IV)r->anchored_offset);
10969 } else if (r->anchored_utf8) {
10970 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->anchored_utf8),
10971 RE_SV_DUMPLEN(r->anchored_utf8), 30);
10972 PerlIO_printf(Perl_debug_log,
10973 "anchored utf8 %s%s at %"IVdf" ",
10974 s, RE_SV_TAIL(r->anchored_utf8),
10975 (IV)r->anchored_offset);
10977 if (r->float_substr) {
10978 RE_PV_QUOTED_DECL(s, 0, dsv, SvPVX_const(r->float_substr),
10979 RE_SV_DUMPLEN(r->float_substr), 30);
10980 PerlIO_printf(Perl_debug_log,
10981 "floating %s%s at %"IVdf"..%"UVuf" ",
10982 s, RE_SV_TAIL(r->float_substr),
10983 (IV)r->float_min_offset, (UV)r->float_max_offset);
10984 } else if (r->float_utf8) {
10985 RE_PV_QUOTED_DECL(s, 1, dsv, SvPVX_const(r->float_utf8),
10986 RE_SV_DUMPLEN(r->float_utf8), 30);
10987 PerlIO_printf(Perl_debug_log,
10988 "floating utf8 %s%s at %"IVdf"..%"UVuf" ",
10989 s, RE_SV_TAIL(r->float_utf8),
10990 (IV)r->float_min_offset, (UV)r->float_max_offset);
10992 if (r->check_substr || r->check_utf8)
10993 PerlIO_printf(Perl_debug_log,
10995 (r->check_substr == r->float_substr
10996 && r->check_utf8 == r->float_utf8
10997 ? "(checking floating" : "(checking anchored"));
10998 if (r->extflags & RXf_NOSCAN)
10999 PerlIO_printf(Perl_debug_log, " noscan");
11000 if (r->extflags & RXf_CHECK_ALL)
11001 PerlIO_printf(Perl_debug_log, " isall");
11002 if (r->check_substr || r->check_utf8)
11003 PerlIO_printf(Perl_debug_log, ") ");
11005 if (ri->regstclass) {
11006 regprop(r, sv, ri->regstclass);
11007 PerlIO_printf(Perl_debug_log, "stclass %s ", SvPVX_const(sv));
11009 if (r->extflags & RXf_ANCH) {
11010 PerlIO_printf(Perl_debug_log, "anchored");
11011 if (r->extflags & RXf_ANCH_BOL)
11012 PerlIO_printf(Perl_debug_log, "(BOL)");
11013 if (r->extflags & RXf_ANCH_MBOL)
11014 PerlIO_printf(Perl_debug_log, "(MBOL)");
11015 if (r->extflags & RXf_ANCH_SBOL)
11016 PerlIO_printf(Perl_debug_log, "(SBOL)");
11017 if (r->extflags & RXf_ANCH_GPOS)
11018 PerlIO_printf(Perl_debug_log, "(GPOS)");
11019 PerlIO_putc(Perl_debug_log, ' ');
11021 if (r->extflags & RXf_GPOS_SEEN)
11022 PerlIO_printf(Perl_debug_log, "GPOS:%"UVuf" ", (UV)r->gofs);
11023 if (r->intflags & PREGf_SKIP)
11024 PerlIO_printf(Perl_debug_log, "plus ");
11025 if (r->intflags & PREGf_IMPLICIT)
11026 PerlIO_printf(Perl_debug_log, "implicit ");
11027 PerlIO_printf(Perl_debug_log, "minlen %"IVdf" ", (IV)r->minlen);
11028 if (r->extflags & RXf_EVAL_SEEN)
11029 PerlIO_printf(Perl_debug_log, "with eval ");
11030 PerlIO_printf(Perl_debug_log, "\n");
11031 DEBUG_FLAGS_r(regdump_extflags("r->extflags: ",r->extflags));
11033 PERL_ARGS_ASSERT_REGDUMP;
11034 PERL_UNUSED_CONTEXT;
11035 PERL_UNUSED_ARG(r);
11036 #endif /* DEBUGGING */
11040 - regprop - printable representation of opcode
11042 #define EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags) \
11045 Perl_sv_catpvf(aTHX_ sv,"%s][%s",PL_colors[1],PL_colors[0]); \
11046 if (flags & ANYOF_INVERT) \
11047 /*make sure the invert info is in each */ \
11048 sv_catpvs(sv, "^"); \
11054 Perl_regprop(pTHX_ const regexp *prog, SV *sv, const regnode *o)
11059 RXi_GET_DECL(prog,progi);
11060 GET_RE_DEBUG_FLAGS_DECL;
11062 PERL_ARGS_ASSERT_REGPROP;
11066 if (OP(o) > REGNODE_MAX) /* regnode.type is unsigned */
11067 /* It would be nice to FAIL() here, but this may be called from
11068 regexec.c, and it would be hard to supply pRExC_state. */
11069 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(o), (int)REGNODE_MAX);
11070 sv_catpv(sv, PL_reg_name[OP(o)]); /* Take off const! */
11072 k = PL_regkind[OP(o)];
11075 sv_catpvs(sv, " ");
11076 /* Using is_utf8_string() (via PERL_PV_UNI_DETECT)
11077 * is a crude hack but it may be the best for now since
11078 * we have no flag "this EXACTish node was UTF-8"
11080 pv_pretty(sv, STRING(o), STR_LEN(o), 60, PL_colors[0], PL_colors[1],
11081 PERL_PV_ESCAPE_UNI_DETECT |
11082 PERL_PV_ESCAPE_NONASCII |
11083 PERL_PV_PRETTY_ELLIPSES |
11084 PERL_PV_PRETTY_LTGT |
11085 PERL_PV_PRETTY_NOCLEAR
11087 } else if (k == TRIE) {
11088 /* print the details of the trie in dumpuntil instead, as
11089 * progi->data isn't available here */
11090 const char op = OP(o);
11091 const U32 n = ARG(o);
11092 const reg_ac_data * const ac = IS_TRIE_AC(op) ?
11093 (reg_ac_data *)progi->data->data[n] :
11095 const reg_trie_data * const trie
11096 = (reg_trie_data*)progi->data->data[!IS_TRIE_AC(op) ? n : ac->trie];
11098 Perl_sv_catpvf(aTHX_ sv, "-%s",PL_reg_name[o->flags]);
11099 DEBUG_TRIE_COMPILE_r(
11100 Perl_sv_catpvf(aTHX_ sv,
11101 "<S:%"UVuf"/%"IVdf" W:%"UVuf" L:%"UVuf"/%"UVuf" C:%"UVuf"/%"UVuf">",
11102 (UV)trie->startstate,
11103 (IV)trie->statecount-1, /* -1 because of the unused 0 element */
11104 (UV)trie->wordcount,
11107 (UV)TRIE_CHARCOUNT(trie),
11108 (UV)trie->uniquecharcount
11111 if ( IS_ANYOF_TRIE(op) || trie->bitmap ) {
11113 int rangestart = -1;
11114 U8* bitmap = IS_ANYOF_TRIE(op) ? (U8*)ANYOF_BITMAP(o) : (U8*)TRIE_BITMAP(trie);
11115 sv_catpvs(sv, "[");
11116 for (i = 0; i <= 256; i++) {
11117 if (i < 256 && BITMAP_TEST(bitmap,i)) {
11118 if (rangestart == -1)
11120 } else if (rangestart != -1) {
11121 if (i <= rangestart + 3)
11122 for (; rangestart < i; rangestart++)
11123 put_byte(sv, rangestart);
11125 put_byte(sv, rangestart);
11126 sv_catpvs(sv, "-");
11127 put_byte(sv, i - 1);
11132 sv_catpvs(sv, "]");
11135 } else if (k == CURLY) {
11136 if (OP(o) == CURLYM || OP(o) == CURLYN || OP(o) == CURLYX)
11137 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* Parenth number */
11138 Perl_sv_catpvf(aTHX_ sv, " {%d,%d}", ARG1(o), ARG2(o));
11140 else if (k == WHILEM && o->flags) /* Ordinal/of */
11141 Perl_sv_catpvf(aTHX_ sv, "[%d/%d]", o->flags & 0xf, o->flags>>4);
11142 else if (k == REF || k == OPEN || k == CLOSE || k == GROUPP || OP(o)==ACCEPT) {
11143 Perl_sv_catpvf(aTHX_ sv, "%d", (int)ARG(o)); /* Parenth number */
11144 if ( RXp_PAREN_NAMES(prog) ) {
11145 if ( k != REF || (OP(o) < NREF)) {
11146 AV *list= MUTABLE_AV(progi->data->data[progi->name_list_idx]);
11147 SV **name= av_fetch(list, ARG(o), 0 );
11149 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11152 AV *list= MUTABLE_AV(progi->data->data[ progi->name_list_idx ]);
11153 SV *sv_dat= MUTABLE_SV(progi->data->data[ ARG( o ) ]);
11154 I32 *nums=(I32*)SvPVX(sv_dat);
11155 SV **name= av_fetch(list, nums[0], 0 );
11158 for ( n=0; n<SvIVX(sv_dat); n++ ) {
11159 Perl_sv_catpvf(aTHX_ sv, "%s%"IVdf,
11160 (n ? "," : ""), (IV)nums[n]);
11162 Perl_sv_catpvf(aTHX_ sv, " '%"SVf"'", SVfARG(*name));
11166 } else if (k == GOSUB)
11167 Perl_sv_catpvf(aTHX_ sv, "%d[%+d]", (int)ARG(o),(int)ARG2L(o)); /* Paren and offset */
11168 else if (k == VERB) {
11170 Perl_sv_catpvf(aTHX_ sv, ":%"SVf,
11171 SVfARG((MUTABLE_SV(progi->data->data[ ARG( o ) ]))));
11172 } else if (k == LOGICAL)
11173 Perl_sv_catpvf(aTHX_ sv, "[%d]", o->flags); /* 2: embedded, otherwise 1 */
11174 else if (k == FOLDCHAR)
11175 Perl_sv_catpvf(aTHX_ sv, "[0x%"UVXf"]", PTR2UV(ARG(o)) );
11176 else if (k == ANYOF) {
11177 int i, rangestart = -1;
11178 const U8 flags = ANYOF_FLAGS(o);
11181 /* Should be synchronized with * ANYOF_ #xdefines in regcomp.h */
11182 static const char * const anyofs[] = {
11215 if (flags & ANYOF_LOCALE)
11216 sv_catpvs(sv, "{loc}");
11217 if (flags & ANYOF_LOC_NONBITMAP_FOLD)
11218 sv_catpvs(sv, "{i}");
11219 Perl_sv_catpvf(aTHX_ sv, "[%s", PL_colors[0]);
11220 if (flags & ANYOF_INVERT)
11221 sv_catpvs(sv, "^");
11223 /* output what the standard cp 0-255 bitmap matches */
11224 for (i = 0; i <= 256; i++) {
11225 if (i < 256 && ANYOF_BITMAP_TEST(o,i)) {
11226 if (rangestart == -1)
11228 } else if (rangestart != -1) {
11229 if (i <= rangestart + 3)
11230 for (; rangestart < i; rangestart++)
11231 put_byte(sv, rangestart);
11233 put_byte(sv, rangestart);
11234 sv_catpvs(sv, "-");
11235 put_byte(sv, i - 1);
11242 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11243 /* output any special charclass tests (used entirely under use locale) */
11244 if (ANYOF_CLASS_TEST_ANY_SET(o))
11245 for (i = 0; i < (int)(sizeof(anyofs)/sizeof(char*)); i++)
11246 if (ANYOF_CLASS_TEST(o,i)) {
11247 sv_catpv(sv, anyofs[i]);
11251 EMIT_ANYOF_TEST_SEPARATOR(do_sep,sv,flags);
11253 if (flags & ANYOF_NON_UTF8_LATIN1_ALL) {
11254 sv_catpvs(sv, "{non-utf8-latin1-all}");
11257 /* output information about the unicode matching */
11258 if (flags & ANYOF_UNICODE_ALL)
11259 sv_catpvs(sv, "{unicode_all}");
11260 else if (ANYOF_NONBITMAP(o))
11261 sv_catpvs(sv, "{unicode}");
11262 if (flags & ANYOF_NONBITMAP_NON_UTF8)
11263 sv_catpvs(sv, "{outside bitmap}");
11265 if (ANYOF_NONBITMAP(o)) {
11267 SV * const sw = regclass_swash(prog, o, FALSE, &lv, 0);
11271 U8 s[UTF8_MAXBYTES_CASE+1];
11273 for (i = 0; i <= 256; i++) { /* just the first 256 */
11274 uvchr_to_utf8(s, i);
11276 if (i < 256 && swash_fetch(sw, s, TRUE)) {
11277 if (rangestart == -1)
11279 } else if (rangestart != -1) {
11280 if (i <= rangestart + 3)
11281 for (; rangestart < i; rangestart++) {
11282 const U8 * const e = uvchr_to_utf8(s,rangestart);
11284 for(p = s; p < e; p++)
11288 const U8 *e = uvchr_to_utf8(s,rangestart);
11290 for (p = s; p < e; p++)
11292 sv_catpvs(sv, "-");
11293 e = uvchr_to_utf8(s, i-1);
11294 for (p = s; p < e; p++)
11301 sv_catpvs(sv, "..."); /* et cetera */
11305 char *s = savesvpv(lv);
11306 char * const origs = s;
11308 while (*s && *s != '\n')
11312 const char * const t = ++s;
11330 Perl_sv_catpvf(aTHX_ sv, "%s]", PL_colors[1]);
11332 else if (k == BRANCHJ && (OP(o) == UNLESSM || OP(o) == IFMATCH))
11333 Perl_sv_catpvf(aTHX_ sv, "[%d]", -(o->flags));
11335 PERL_UNUSED_CONTEXT;
11336 PERL_UNUSED_ARG(sv);
11337 PERL_UNUSED_ARG(o);
11338 PERL_UNUSED_ARG(prog);
11339 #endif /* DEBUGGING */
11343 Perl_re_intuit_string(pTHX_ REGEXP * const r)
11344 { /* Assume that RE_INTUIT is set */
11346 struct regexp *const prog = (struct regexp *)SvANY(r);
11347 GET_RE_DEBUG_FLAGS_DECL;
11349 PERL_ARGS_ASSERT_RE_INTUIT_STRING;
11350 PERL_UNUSED_CONTEXT;
11354 const char * const s = SvPV_nolen_const(prog->check_substr
11355 ? prog->check_substr : prog->check_utf8);
11357 if (!PL_colorset) reginitcolors();
11358 PerlIO_printf(Perl_debug_log,
11359 "%sUsing REx %ssubstr:%s \"%s%.60s%s%s\"\n",
11361 prog->check_substr ? "" : "utf8 ",
11362 PL_colors[5],PL_colors[0],
11365 (strlen(s) > 60 ? "..." : ""));
11368 return prog->check_substr ? prog->check_substr : prog->check_utf8;
11374 handles refcounting and freeing the perl core regexp structure. When
11375 it is necessary to actually free the structure the first thing it
11376 does is call the 'free' method of the regexp_engine associated to
11377 the regexp, allowing the handling of the void *pprivate; member
11378 first. (This routine is not overridable by extensions, which is why
11379 the extensions free is called first.)
11381 See regdupe and regdupe_internal if you change anything here.
11383 #ifndef PERL_IN_XSUB_RE
11385 Perl_pregfree(pTHX_ REGEXP *r)
11391 Perl_pregfree2(pTHX_ REGEXP *rx)
11394 struct regexp *const r = (struct regexp *)SvANY(rx);
11395 GET_RE_DEBUG_FLAGS_DECL;
11397 PERL_ARGS_ASSERT_PREGFREE2;
11399 if (r->mother_re) {
11400 ReREFCNT_dec(r->mother_re);
11402 CALLREGFREE_PVT(rx); /* free the private data */
11403 SvREFCNT_dec(RXp_PAREN_NAMES(r));
11406 SvREFCNT_dec(r->anchored_substr);
11407 SvREFCNT_dec(r->anchored_utf8);
11408 SvREFCNT_dec(r->float_substr);
11409 SvREFCNT_dec(r->float_utf8);
11410 Safefree(r->substrs);
11412 RX_MATCH_COPY_FREE(rx);
11413 #ifdef PERL_OLD_COPY_ON_WRITE
11414 SvREFCNT_dec(r->saved_copy);
11421 This is a hacky workaround to the structural issue of match results
11422 being stored in the regexp structure which is in turn stored in
11423 PL_curpm/PL_reg_curpm. The problem is that due to qr// the pattern
11424 could be PL_curpm in multiple contexts, and could require multiple
11425 result sets being associated with the pattern simultaneously, such
11426 as when doing a recursive match with (??{$qr})
11428 The solution is to make a lightweight copy of the regexp structure
11429 when a qr// is returned from the code executed by (??{$qr}) this
11430 lightweight copy doesn't actually own any of its data except for
11431 the starp/end and the actual regexp structure itself.
11437 Perl_reg_temp_copy (pTHX_ REGEXP *ret_x, REGEXP *rx)
11439 struct regexp *ret;
11440 struct regexp *const r = (struct regexp *)SvANY(rx);
11441 register const I32 npar = r->nparens+1;
11443 PERL_ARGS_ASSERT_REG_TEMP_COPY;
11446 ret_x = (REGEXP*) newSV_type(SVt_REGEXP);
11447 ret = (struct regexp *)SvANY(ret_x);
11449 (void)ReREFCNT_inc(rx);
11450 /* We can take advantage of the existing "copied buffer" mechanism in SVs
11451 by pointing directly at the buffer, but flagging that the allocated
11452 space in the copy is zero. As we've just done a struct copy, it's now
11453 a case of zero-ing that, rather than copying the current length. */
11454 SvPV_set(ret_x, RX_WRAPPED(rx));
11455 SvFLAGS(ret_x) |= SvFLAGS(rx) & (SVf_POK|SVp_POK|SVf_UTF8);
11456 memcpy(&(ret->xpv_cur), &(r->xpv_cur),
11457 sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur));
11458 SvLEN_set(ret_x, 0);
11459 SvSTASH_set(ret_x, NULL);
11460 SvMAGIC_set(ret_x, NULL);
11461 Newx(ret->offs, npar, regexp_paren_pair);
11462 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11464 Newx(ret->substrs, 1, struct reg_substr_data);
11465 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11467 SvREFCNT_inc_void(ret->anchored_substr);
11468 SvREFCNT_inc_void(ret->anchored_utf8);
11469 SvREFCNT_inc_void(ret->float_substr);
11470 SvREFCNT_inc_void(ret->float_utf8);
11472 /* check_substr and check_utf8, if non-NULL, point to either their
11473 anchored or float namesakes, and don't hold a second reference. */
11475 RX_MATCH_COPIED_off(ret_x);
11476 #ifdef PERL_OLD_COPY_ON_WRITE
11477 ret->saved_copy = NULL;
11479 ret->mother_re = rx;
11485 /* regfree_internal()
11487 Free the private data in a regexp. This is overloadable by
11488 extensions. Perl takes care of the regexp structure in pregfree(),
11489 this covers the *pprivate pointer which technically perl doesn't
11490 know about, however of course we have to handle the
11491 regexp_internal structure when no extension is in use.
11493 Note this is called before freeing anything in the regexp
11498 Perl_regfree_internal(pTHX_ REGEXP * const rx)
11501 struct regexp *const r = (struct regexp *)SvANY(rx);
11502 RXi_GET_DECL(r,ri);
11503 GET_RE_DEBUG_FLAGS_DECL;
11505 PERL_ARGS_ASSERT_REGFREE_INTERNAL;
11511 SV *dsv= sv_newmortal();
11512 RE_PV_QUOTED_DECL(s, RX_UTF8(rx),
11513 dsv, RX_PRECOMP(rx), RX_PRELEN(rx), 60);
11514 PerlIO_printf(Perl_debug_log,"%sFreeing REx:%s %s\n",
11515 PL_colors[4],PL_colors[5],s);
11518 #ifdef RE_TRACK_PATTERN_OFFSETS
11520 Safefree(ri->u.offsets); /* 20010421 MJD */
11523 int n = ri->data->count;
11524 PAD* new_comppad = NULL;
11529 /* If you add a ->what type here, update the comment in regcomp.h */
11530 switch (ri->data->what[n]) {
11535 SvREFCNT_dec(MUTABLE_SV(ri->data->data[n]));
11538 Safefree(ri->data->data[n]);
11541 new_comppad = MUTABLE_AV(ri->data->data[n]);
11544 if (new_comppad == NULL)
11545 Perl_croak(aTHX_ "panic: pregfree comppad");
11546 PAD_SAVE_LOCAL(old_comppad,
11547 /* Watch out for global destruction's random ordering. */
11548 (SvTYPE(new_comppad) == SVt_PVAV) ? new_comppad : NULL
11551 refcnt = OpREFCNT_dec((OP_4tree*)ri->data->data[n]);
11554 op_free((OP_4tree*)ri->data->data[n]);
11556 PAD_RESTORE_LOCAL(old_comppad);
11557 SvREFCNT_dec(MUTABLE_SV(new_comppad));
11558 new_comppad = NULL;
11563 { /* Aho Corasick add-on structure for a trie node.
11564 Used in stclass optimization only */
11566 reg_ac_data *aho=(reg_ac_data*)ri->data->data[n];
11568 refcount = --aho->refcount;
11571 PerlMemShared_free(aho->states);
11572 PerlMemShared_free(aho->fail);
11573 /* do this last!!!! */
11574 PerlMemShared_free(ri->data->data[n]);
11575 PerlMemShared_free(ri->regstclass);
11581 /* trie structure. */
11583 reg_trie_data *trie=(reg_trie_data*)ri->data->data[n];
11585 refcount = --trie->refcount;
11588 PerlMemShared_free(trie->charmap);
11589 PerlMemShared_free(trie->states);
11590 PerlMemShared_free(trie->trans);
11592 PerlMemShared_free(trie->bitmap);
11594 PerlMemShared_free(trie->jump);
11595 PerlMemShared_free(trie->wordinfo);
11596 /* do this last!!!! */
11597 PerlMemShared_free(ri->data->data[n]);
11602 Perl_croak(aTHX_ "panic: regfree data code '%c'", ri->data->what[n]);
11605 Safefree(ri->data->what);
11606 Safefree(ri->data);
11612 #define av_dup_inc(s,t) MUTABLE_AV(sv_dup_inc((const SV *)s,t))
11613 #define hv_dup_inc(s,t) MUTABLE_HV(sv_dup_inc((const SV *)s,t))
11614 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
11617 re_dup - duplicate a regexp.
11619 This routine is expected to clone a given regexp structure. It is only
11620 compiled under USE_ITHREADS.
11622 After all of the core data stored in struct regexp is duplicated
11623 the regexp_engine.dupe method is used to copy any private data
11624 stored in the *pprivate pointer. This allows extensions to handle
11625 any duplication it needs to do.
11627 See pregfree() and regfree_internal() if you change anything here.
11629 #if defined(USE_ITHREADS)
11630 #ifndef PERL_IN_XSUB_RE
11632 Perl_re_dup_guts(pTHX_ const REGEXP *sstr, REGEXP *dstr, CLONE_PARAMS *param)
11636 const struct regexp *r = (const struct regexp *)SvANY(sstr);
11637 struct regexp *ret = (struct regexp *)SvANY(dstr);
11639 PERL_ARGS_ASSERT_RE_DUP_GUTS;
11641 npar = r->nparens+1;
11642 Newx(ret->offs, npar, regexp_paren_pair);
11643 Copy(r->offs, ret->offs, npar, regexp_paren_pair);
11645 /* no need to copy these */
11646 Newx(ret->swap, npar, regexp_paren_pair);
11649 if (ret->substrs) {
11650 /* Do it this way to avoid reading from *r after the StructCopy().
11651 That way, if any of the sv_dup_inc()s dislodge *r from the L1
11652 cache, it doesn't matter. */
11653 const bool anchored = r->check_substr
11654 ? r->check_substr == r->anchored_substr
11655 : r->check_utf8 == r->anchored_utf8;
11656 Newx(ret->substrs, 1, struct reg_substr_data);
11657 StructCopy(r->substrs, ret->substrs, struct reg_substr_data);
11659 ret->anchored_substr = sv_dup_inc(ret->anchored_substr, param);
11660 ret->anchored_utf8 = sv_dup_inc(ret->anchored_utf8, param);
11661 ret->float_substr = sv_dup_inc(ret->float_substr, param);
11662 ret->float_utf8 = sv_dup_inc(ret->float_utf8, param);
11664 /* check_substr and check_utf8, if non-NULL, point to either their
11665 anchored or float namesakes, and don't hold a second reference. */
11667 if (ret->check_substr) {
11669 assert(r->check_utf8 == r->anchored_utf8);
11670 ret->check_substr = ret->anchored_substr;
11671 ret->check_utf8 = ret->anchored_utf8;
11673 assert(r->check_substr == r->float_substr);
11674 assert(r->check_utf8 == r->float_utf8);
11675 ret->check_substr = ret->float_substr;
11676 ret->check_utf8 = ret->float_utf8;
11678 } else if (ret->check_utf8) {
11680 ret->check_utf8 = ret->anchored_utf8;
11682 ret->check_utf8 = ret->float_utf8;
11687 RXp_PAREN_NAMES(ret) = hv_dup_inc(RXp_PAREN_NAMES(ret), param);
11690 RXi_SET(ret,CALLREGDUPE_PVT(dstr,param));
11692 if (RX_MATCH_COPIED(dstr))
11693 ret->subbeg = SAVEPVN(ret->subbeg, ret->sublen);
11695 ret->subbeg = NULL;
11696 #ifdef PERL_OLD_COPY_ON_WRITE
11697 ret->saved_copy = NULL;
11700 if (ret->mother_re) {
11701 if (SvPVX_const(dstr) == SvPVX_const(ret->mother_re)) {
11702 /* Our storage points directly to our mother regexp, but that's
11703 1: a buffer in a different thread
11704 2: something we no longer hold a reference on
11705 so we need to copy it locally. */
11706 /* Note we need to sue SvCUR() on our mother_re, because it, in
11707 turn, may well be pointing to its own mother_re. */
11708 SvPV_set(dstr, SAVEPVN(SvPVX_const(ret->mother_re),
11709 SvCUR(ret->mother_re)+1));
11710 SvLEN_set(dstr, SvCUR(ret->mother_re)+1);
11712 ret->mother_re = NULL;
11716 #endif /* PERL_IN_XSUB_RE */
11721 This is the internal complement to regdupe() which is used to copy
11722 the structure pointed to by the *pprivate pointer in the regexp.
11723 This is the core version of the extension overridable cloning hook.
11724 The regexp structure being duplicated will be copied by perl prior
11725 to this and will be provided as the regexp *r argument, however
11726 with the /old/ structures pprivate pointer value. Thus this routine
11727 may override any copying normally done by perl.
11729 It returns a pointer to the new regexp_internal structure.
11733 Perl_regdupe_internal(pTHX_ REGEXP * const rx, CLONE_PARAMS *param)
11736 struct regexp *const r = (struct regexp *)SvANY(rx);
11737 regexp_internal *reti;
11739 RXi_GET_DECL(r,ri);
11741 PERL_ARGS_ASSERT_REGDUPE_INTERNAL;
11743 npar = r->nparens+1;
11746 Newxc(reti, sizeof(regexp_internal) + len*sizeof(regnode), char, regexp_internal);
11747 Copy(ri->program, reti->program, len+1, regnode);
11750 reti->regstclass = NULL;
11753 struct reg_data *d;
11754 const int count = ri->data->count;
11757 Newxc(d, sizeof(struct reg_data) + count*sizeof(void *),
11758 char, struct reg_data);
11759 Newx(d->what, count, U8);
11762 for (i = 0; i < count; i++) {
11763 d->what[i] = ri->data->what[i];
11764 switch (d->what[i]) {
11765 /* legal options are one of: sSfpontTua
11766 see also regcomp.h and pregfree() */
11767 case 'a': /* actually an AV, but the dup function is identical. */
11770 case 'p': /* actually an AV, but the dup function is identical. */
11771 case 'u': /* actually an HV, but the dup function is identical. */
11772 d->data[i] = sv_dup_inc((const SV *)ri->data->data[i], param);
11775 /* This is cheating. */
11776 Newx(d->data[i], 1, struct regnode_charclass_class);
11777 StructCopy(ri->data->data[i], d->data[i],
11778 struct regnode_charclass_class);
11779 reti->regstclass = (regnode*)d->data[i];
11782 /* Compiled op trees are readonly and in shared memory,
11783 and can thus be shared without duplication. */
11785 d->data[i] = (void*)OpREFCNT_inc((OP*)ri->data->data[i]);
11789 /* Trie stclasses are readonly and can thus be shared
11790 * without duplication. We free the stclass in pregfree
11791 * when the corresponding reg_ac_data struct is freed.
11793 reti->regstclass= ri->regstclass;
11797 ((reg_trie_data*)ri->data->data[i])->refcount++;
11801 d->data[i] = ri->data->data[i];
11804 Perl_croak(aTHX_ "panic: re_dup unknown data code '%c'", ri->data->what[i]);
11813 reti->name_list_idx = ri->name_list_idx;
11815 #ifdef RE_TRACK_PATTERN_OFFSETS
11816 if (ri->u.offsets) {
11817 Newx(reti->u.offsets, 2*len+1, U32);
11818 Copy(ri->u.offsets, reti->u.offsets, 2*len+1, U32);
11821 SetProgLen(reti,len);
11824 return (void*)reti;
11827 #endif /* USE_ITHREADS */
11829 #ifndef PERL_IN_XSUB_RE
11832 - regnext - dig the "next" pointer out of a node
11835 Perl_regnext(pTHX_ register regnode *p)
11838 register I32 offset;
11843 if (OP(p) > REGNODE_MAX) { /* regnode.type is unsigned */
11844 Perl_croak(aTHX_ "Corrupted regexp opcode %d > %d", (int)OP(p), (int)REGNODE_MAX);
11847 offset = (reg_off_by_arg[OP(p)] ? ARG(p) : NEXT_OFF(p));
11856 S_re_croak2(pTHX_ const char* pat1,const char* pat2,...)
11859 STRLEN l1 = strlen(pat1);
11860 STRLEN l2 = strlen(pat2);
11863 const char *message;
11865 PERL_ARGS_ASSERT_RE_CROAK2;
11871 Copy(pat1, buf, l1 , char);
11872 Copy(pat2, buf + l1, l2 , char);
11873 buf[l1 + l2] = '\n';
11874 buf[l1 + l2 + 1] = '\0';
11876 /* ANSI variant takes additional second argument */
11877 va_start(args, pat2);
11881 msv = vmess(buf, &args);
11883 message = SvPV_const(msv,l1);
11886 Copy(message, buf, l1 , char);
11887 buf[l1-1] = '\0'; /* Overwrite \n */
11888 Perl_croak(aTHX_ "%s", buf);
11891 /* XXX Here's a total kludge. But we need to re-enter for swash routines. */
11893 #ifndef PERL_IN_XSUB_RE
11895 Perl_save_re_context(pTHX)
11899 struct re_save_state *state;
11901 SAVEVPTR(PL_curcop);
11902 SSGROW(SAVESTACK_ALLOC_FOR_RE_SAVE_STATE + 1);
11904 state = (struct re_save_state *)(PL_savestack + PL_savestack_ix);
11905 PL_savestack_ix += SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
11906 SSPUSHUV(SAVEt_RE_STATE);
11908 Copy(&PL_reg_state, state, 1, struct re_save_state);
11910 PL_reg_start_tmp = 0;
11911 PL_reg_start_tmpl = 0;
11912 PL_reg_oldsaved = NULL;
11913 PL_reg_oldsavedlen = 0;
11914 PL_reg_maxiter = 0;
11915 PL_reg_leftiter = 0;
11916 PL_reg_poscache = NULL;
11917 PL_reg_poscache_size = 0;
11918 #ifdef PERL_OLD_COPY_ON_WRITE
11922 /* Save $1..$n (#18107: UTF-8 s/(\w+)/uc($1)/e); AMS 20021106. */
11924 const REGEXP * const rx = PM_GETRE(PL_curpm);
11927 for (i = 1; i <= RX_NPARENS(rx); i++) {
11928 char digits[TYPE_CHARS(long)];
11929 const STRLEN len = my_snprintf(digits, sizeof(digits), "%lu", (long)i);
11930 GV *const *const gvp
11931 = (GV**)hv_fetch(PL_defstash, digits, len, 0);
11934 GV * const gv = *gvp;
11935 if (SvTYPE(gv) == SVt_PVGV && GvSV(gv))
11945 clear_re(pTHX_ void *r)
11948 ReREFCNT_dec((REGEXP *)r);
11954 S_put_byte(pTHX_ SV *sv, int c)
11956 PERL_ARGS_ASSERT_PUT_BYTE;
11958 /* Our definition of isPRINT() ignores locales, so only bytes that are
11959 not part of UTF-8 are considered printable. I assume that the same
11960 holds for UTF-EBCDIC.
11961 Also, code point 255 is not printable in either (it's E0 in EBCDIC,
11962 which Wikipedia says:
11964 EO, or Eight Ones, is an 8-bit EBCDIC character code represented as all
11965 ones (binary 1111 1111, hexadecimal FF). It is similar, but not
11966 identical, to the ASCII delete (DEL) or rubout control character.
11967 ) So the old condition can be simplified to !isPRINT(c) */
11970 Perl_sv_catpvf(aTHX_ sv, "\\x%02x", c);
11973 Perl_sv_catpvf(aTHX_ sv, "\\x{%x}", c);
11977 const char string = c;
11978 if (c == '-' || c == ']' || c == '\\' || c == '^')
11979 sv_catpvs(sv, "\\");
11980 sv_catpvn(sv, &string, 1);
11985 #define CLEAR_OPTSTART \
11986 if (optstart) STMT_START { \
11987 DEBUG_OPTIMISE_r(PerlIO_printf(Perl_debug_log, " (%"IVdf" nodes)\n", (IV)(node - optstart))); \
11991 #define DUMPUNTIL(b,e) CLEAR_OPTSTART; node=dumpuntil(r,start,(b),(e),last,sv,indent+1,depth+1);
11993 STATIC const regnode *
11994 S_dumpuntil(pTHX_ const regexp *r, const regnode *start, const regnode *node,
11995 const regnode *last, const regnode *plast,
11996 SV* sv, I32 indent, U32 depth)
11999 register U8 op = PSEUDO; /* Arbitrary non-END op. */
12000 register const regnode *next;
12001 const regnode *optstart= NULL;
12003 RXi_GET_DECL(r,ri);
12004 GET_RE_DEBUG_FLAGS_DECL;
12006 PERL_ARGS_ASSERT_DUMPUNTIL;
12008 #ifdef DEBUG_DUMPUNTIL
12009 PerlIO_printf(Perl_debug_log, "--- %d : %d - %d - %d\n",indent,node-start,
12010 last ? last-start : 0,plast ? plast-start : 0);
12013 if (plast && plast < last)
12016 while (PL_regkind[op] != END && (!last || node < last)) {
12017 /* While that wasn't END last time... */
12020 if (op == CLOSE || op == WHILEM)
12022 next = regnext((regnode *)node);
12025 if (OP(node) == OPTIMIZED) {
12026 if (!optstart && RE_DEBUG_FLAG(RE_DEBUG_COMPILE_OPTIMISE))
12033 regprop(r, sv, node);
12034 PerlIO_printf(Perl_debug_log, "%4"IVdf":%*s%s", (IV)(node - start),
12035 (int)(2*indent + 1), "", SvPVX_const(sv));
12037 if (OP(node) != OPTIMIZED) {
12038 if (next == NULL) /* Next ptr. */
12039 PerlIO_printf(Perl_debug_log, " (0)");
12040 else if (PL_regkind[(U8)op] == BRANCH && PL_regkind[OP(next)] != BRANCH )
12041 PerlIO_printf(Perl_debug_log, " (FAIL)");
12043 PerlIO_printf(Perl_debug_log, " (%"IVdf")", (IV)(next - start));
12044 (void)PerlIO_putc(Perl_debug_log, '\n');
12048 if (PL_regkind[(U8)op] == BRANCHJ) {
12051 register const regnode *nnode = (OP(next) == LONGJMP
12052 ? regnext((regnode *)next)
12054 if (last && nnode > last)
12056 DUMPUNTIL(NEXTOPER(NEXTOPER(node)), nnode);
12059 else if (PL_regkind[(U8)op] == BRANCH) {
12061 DUMPUNTIL(NEXTOPER(node), next);
12063 else if ( PL_regkind[(U8)op] == TRIE ) {
12064 const regnode *this_trie = node;
12065 const char op = OP(node);
12066 const U32 n = ARG(node);
12067 const reg_ac_data * const ac = op>=AHOCORASICK ?
12068 (reg_ac_data *)ri->data->data[n] :
12070 const reg_trie_data * const trie =
12071 (reg_trie_data*)ri->data->data[op<AHOCORASICK ? n : ac->trie];
12073 AV *const trie_words = MUTABLE_AV(ri->data->data[n + TRIE_WORDS_OFFSET]);
12075 const regnode *nextbranch= NULL;
12078 for (word_idx= 0; word_idx < (I32)trie->wordcount; word_idx++) {
12079 SV ** const elem_ptr = av_fetch(trie_words,word_idx,0);
12081 PerlIO_printf(Perl_debug_log, "%*s%s ",
12082 (int)(2*(indent+3)), "",
12083 elem_ptr ? pv_pretty(sv, SvPV_nolen_const(*elem_ptr), SvCUR(*elem_ptr), 60,
12084 PL_colors[0], PL_colors[1],
12085 (SvUTF8(*elem_ptr) ? PERL_PV_ESCAPE_UNI : 0) |
12086 PERL_PV_PRETTY_ELLIPSES |
12087 PERL_PV_PRETTY_LTGT
12092 U16 dist= trie->jump[word_idx+1];
12093 PerlIO_printf(Perl_debug_log, "(%"UVuf")\n",
12094 (UV)((dist ? this_trie + dist : next) - start));
12097 nextbranch= this_trie + trie->jump[0];
12098 DUMPUNTIL(this_trie + dist, nextbranch);
12100 if (nextbranch && PL_regkind[OP(nextbranch)]==BRANCH)
12101 nextbranch= regnext((regnode *)nextbranch);
12103 PerlIO_printf(Perl_debug_log, "\n");
12106 if (last && next > last)
12111 else if ( op == CURLY ) { /* "next" might be very big: optimizer */
12112 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS,
12113 NEXTOPER(node) + EXTRA_STEP_2ARGS + 1);
12115 else if (PL_regkind[(U8)op] == CURLY && op != CURLYX) {
12117 DUMPUNTIL(NEXTOPER(node) + EXTRA_STEP_2ARGS, next);
12119 else if ( op == PLUS || op == STAR) {
12120 DUMPUNTIL(NEXTOPER(node), NEXTOPER(node) + 1);
12122 else if (PL_regkind[(U8)op] == ANYOF) {
12123 /* arglen 1 + class block */
12124 node += 1 + ((ANYOF_FLAGS(node) & ANYOF_CLASS)
12125 ? ANYOF_CLASS_SKIP : ANYOF_SKIP);
12126 node = NEXTOPER(node);
12128 else if (PL_regkind[(U8)op] == EXACT) {
12129 /* Literal string, where present. */
12130 node += NODE_SZ_STR(node) - 1;
12131 node = NEXTOPER(node);
12134 node = NEXTOPER(node);
12135 node += regarglen[(U8)op];
12137 if (op == CURLYX || op == OPEN)
12141 #ifdef DEBUG_DUMPUNTIL
12142 PerlIO_printf(Perl_debug_log, "--- %d\n", (int)indent);
12147 #endif /* DEBUGGING */
12151 * c-indentation-style: bsd
12152 * c-basic-offset: 4
12153 * indent-tabs-mode: t
12156 * ex: set ts=8 sts=4 sw=4 noet: